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Abstract Thin-layer cascades (TLCs) enable algae cultivation at high cell
densities, thus increasing biomass yields and facilitating the harvest process.
This makes them a promising technology for industrial-scale algal fuel pro-
duction. We use Life Cycle Assessment (LCA) to calculate the greenhouse gas
(GHG) emissions of aviation fuel produced using algal biomass from TLCs.
We �nd that the impact (81 g CO2e per MJ) is lower than that of fuel from
algal biomass cultivated in open race way ponds (94 g CO2e). However, neither
of the two cultivation systems achieve su�cient GHG savings for compliance
with the Renewable Energy Directive II. Seawater desalination in particular
dominates the TLC impact, indicating a trade-o� between carbon- and water
footprint. In both cultivation systems, power for mixing and fertilizer sup-
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ply further add signi�cant impacts. There is uncertainty in the correlation
between mixing power and oil yield, which should be investigated by future
experimental studies.

Keywords life cycle assessment · greenhouse gases · microalgae · fuel ·
thin-layer cascade · cultivation system

1 Introduction

In 2018, the global transport of passengers and goods was responsible for 8.0
Gt of CO2 emissions (24% of total fuel-related emissions) [1]. Avoiding these
emissions is the aim of several frameworks to which the international commu-
nity has committed [2, 3]. Biofuels will play an important role in these e�orts,
despite the advent of batteries and fuel cells, especially in sectors like long-haul
aviation, which require energy-dense fuels. To meet the demand of these sec-
tors while avoiding land competition with the food & feed sector, low land-use
change-risk biofuel-feedstocks are needed. Microalgae o�er several advantages
in this regard, i.e. the possibility to use marginal lands for their cultivation and
their high theoretical biomass yield [4]. Yet, there are doubts whether algal
fuels can achieve the greenhouse gas emission (GHG) reductions necessary to
comply with existing regulations, such as the Renewable Energy Directive II
in the EU (RED II) [5] and the Renewable Fuel Standard in the US (RFS)
[6]. In a meta-analysis comprising 69 Life Cycle Assessments (LCAs) of re-
newable algal diesel, Tu et al. [7] found that only 17 (25%) of the reported
pathways comply with the RFS (50% GHG reduction compared to 2005 base-
line diesel). The RED II mandates even higher GHG savings of 65% for biofuel
producers starting operation after 1 January 2021 [5]. Needless to say, the al-
gal fuel community is facing a challenge. Several studies have identi�ed the
cultivation stage as a bottleneck on the way towards economically- and envi-
ronmentally feasible algal fuel production [8, 9, 10, 11]. Alternative cultivation
technologies could reduce the cultivation impact, enabling the production of
a�ordable, regulation-compliant algal fuel. One such alternative is proposed
by Doucha and Lívanský [12]: Comparing sloping thin-layer cascades (TLCs)
to conventional open raceway ponds (ORPs), they �nd that the former require
less power, water, and CO2 per unit biomass produced. Although TLCs date
back to the 1950s, they have received relatively little attention to date [13, 14].
The existing literature on TLCs is mainly focused on technical aspects, such
as the optimization of operation conditions and the measurement of culture
parameters [15, 16, 17, 18, 19, 20, 21, 22]. Furthermore, a few techno-economic
assessments have been published [12, 23, 24]. To the authors' knowledge, no
LCA of algae cultivation in TLCs has been conducted so far - a gap we wish
to close with this study.
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Fig. 1 Algae fuel production pathway. Boxes represent process steps. Colors distinguish
process types: foreground database (blue), background database (yellow), biosphere (green)

2 Method

Life Cycle Assessment (LCA) is used to calculate the Global Warming Po-
tential (GWP 100) of the TLC algae fuel pathway producing 1 MJ (lower
heating value) of fuel (functional unit). The life cycle comprises the following
stages: a biogas-�red combined heat and power (CHP) plant provides CO2 to
the algae cultivation facility where algae grow autotrophically in TLCs, the
biomass is harvested, converted into fuel, residual biomass is valorized energet-
ically, fuel is transported and combusted (Figure 1). Models of the individual
stages are based on engineering �rst principles and are tuned to parameters
from the literature and from expert interviews. Models from the ecoinvent 3.6
APOS database are used for background activities, such as electricity gener-
ation and fertilizer production [25]. The impact assessment is conducted in
Brightway2 using the ILCD 2.0 2018 midpoint, climate change total method
[26]. Apart from fuel, the studied pathway produces electricity and heat. This
multifunctionality is resolved by subtractive system expansion. The TLC path-
way is compared to two other options, namely conventional petroleum-based
fuel production and algal fuel production using ORPs in the cultivation stage.
The algae pathways are presented brie�y in the following. For more detailed
reference, we refer to the Excel spreadsheets available in the supporting infor-
mation.
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3 Model

3.1 CO2 source

CO2 from a biogas-�red CHP plant serves as the primary carbon source for
autotrophic microalgae cultivation. The model is based on ecoinvent activity
heat and power co-generation, biogas, gas engine, ES and has been edited to
a) eliminate CO2 emissions to the atmosphere and b) implement an energy
penalty of 8% for extraction and compression of CO2 from the �ue gas, based
on Lively et al. [27]. The CHP plant then produces 5.8 MJ of useful heat and
4.1 MJ of electricity for each kg of CO2 captured.

3.2 Cultivation

In their modern form, thin-layer cascades consist of a thin �lm, few mm thick,
�owing down an inclined plane driven by gravity. Thanks to the short light
path and the large surface-to-volume ratio of the thin �lm, TLCs can maintain
high growth rates up until cell concentrations of 40 � 50 gDW/L [19, 21].
Seasonal productivity typically ranges between 22 � 25 gDW/(m

2d) [12]. For
our study, we consider a hypothetical cultivation plant in a coastal area in
Spain, which is operated 8 months per year. A seasonal productivity of 25
gDW/(m

2d) is assumed at an oil content of 30 wt-%. A cultivation area of 100
ha will then yield 1 800 t of algae oil per year.

A pump continuously circulates the cultivation medium from the bottom
to the top of the plane. Excluding friction losses, the pump power demand
per unit area is proportional to the plane inclination I, the layer thickness h,
the �ow velocity u, the gravity constant g = 9.81 m/s2, the medium density
ρ ≈ 1 000 kg/m3, and the inverse of the pump e�ciency ηp [18]:

P

A
=
I h u g ρ

ηp
(1)

Using values from Doucha and Lívanský [18] for I (1.7%), h (6 mm), u (0.6
m/s), and assuming a pump e�ciency of 80%, the power demand amounts to
0.75 W/m2. The pump is operated only during the day (12 hours). At night,
the medium is stored in a retention tank where it is mildly aerated. Doucha
and Lívanský [12] approximate the power demand for aeration at 40% of the
demand for pumping. The total power demand is thus 12.6 Wh/(d m2) or 0.50
Wh/gDW. Note that this is a lower-bound estimate, as additional energy loss
mechanisms such as friction in pipes and �ttings have been neglected.

Apart from power, nutrients are needed in the cultivation stage to maintain
algae growth. We follow the approach described by Geider and La Roche [28]
to derive the demand for elements C, N, and P from the macro-molecular
biomass composition. The latter is presumed to be (by weight) 35% proteins,
30% lipids, 10% phospholipids, 20% carbohydrates, and 5% nucleic acids. Part
of the elemental demand is satis�ed by recycling digestate and �ue gas from
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the residue valorization step (30% of the C-demand and 48% of the N- and
P-demand), the rest is ful�lled by supplementation of CO2, urea, and triple
superphosphate (TSP). It is assumed that, due to technical limitations, 25%
of the supplied CO2 are lost by out-gassing and 15% of the supplied N in urea
are lost by other mechanisms. The net nutrient input is then 1.9 kg CO2, 0.17
kg urea, and 0.035 kg TSP per kgDW biomass.

Lastly, water replenishment is needed to compensate losses from evapora-
tion and technical blow-down. Guieysse et al. [29] estimate the evaporation
loss rate for a Mediterranean climate at 1.3 m3/(m2 a). Assuming that algae
are cultivated in seawater to reduce the freshwater footprint, evaporation will
cause an increase in salt concentration. To prevent inhibiting conditions, both
water and salt-�ows must be balanced. Conducting a mass balance for both
components yields:

ṁfresh = ṁevap + ṁharvest (1−R)

(
1− cculture

csea

)
(2)

ṁsea = ṁharvest (1−R)
cculture
csea

(3)

where ṁfresh is the demand for freshwater, ṁsea is the demand for seawater,
ṁevap is the evaporation rate, ṁharvest is the amount of water in the harvest,
R is the fraction of water returned to the reactor after the harvest, cculture is
the salt concentration in the reactor and csea is the concentration of salt in the
seawater. The �ow rates ṁi here are normalized by the biomass production
rate of the reactor, yielding units of gram water per gram biomass dry weight.

Note that if the salt concentration in the reactor is higher than in the
seawater ( cculturecsea

> 1), the second term in eq. 2 turns negative, meaning that
freshwater consumption can be reduced by increasing the blow-down. In other
words: The use of halotolerant species reduces the freshwater demand (al-
though at the cost of an increased seawater demand). The salt concentration
at which freshwater demand is zero is given by:

c0culture = csea

(
1 +

ṁevap

ṁharvest (1−R)

)
(4)

For TLCs, the biomass concentration at the time of harvest is relatively
high (here 20 g/L). This in turn means that relatively little water is removed
during the harvest process (50 g/gDW) compared to evaporation (220 g/gDW).
According to eq. 4, the salt concentration would have to be at least 19% to
avoid freshwater use (for csea = 3.5% and R = 0). Such high concentrations
would require adapted algae strains and it is questionable whether these would
be suitable for industrial-scale biofuel production. For most use cases, freshwa-
ter will be necessary for TLC cultivation. This is in contrast to ORPs, in which
the biomass concentration is usually low, making harvest water blow-down an
e�ective mechanism for salt removal. Nevertheless, we assume that the TLC is
operated at a slightly elevated salt concentration of 5.3% to reduce freshwater
demand.
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All water used in the cultivation stage is supplied by a pipeline from the
neighboring sea. Freshwater is provided by re-routing part of the seawater feed
through a reverse osmosis plant. Seawater is used without pre-treatment. The
energy demand for water transport is given by eq. 5 and depends on the total
transport demand ṁ = 260 g/gDW, the gravity constant g = 9.81m/s2, the
pump e�ciency ηp and the head loss∆h. The latter will depend on the distance
to the sea, the height di�erence between inlet and outlet of the pipeline, as well
as friction losses in between. Without a concrete design at hand, we assume
an arbitrary head loss of 60 m. The power demand then amounts to 0.054
Wh/gDW. Note that this number is one order of magnitude smaller than the
demand for culture circulation.

P =
ṁ g ∆h

ηp
(5)

ORP cultivation requirements are similar to TLC requirements except for
certain points highlighted in the following. ORPs are deeper (here 30 cm) than
TLCs (here 6 mm) and algae cells in deeper layers receive less sun light than
those at the surface. The lower average sun exposure leads to lower biomass
yields on the order of 15 gDW/(m

2d) and lower harvest cell densities around
0.5 gDW/L. Because, in comparison to TLCs, more area is needed for the
same biomass production rate, speci�c evaporation is increased (360 g/gDW).
Furthermore, the water portion in the harvested medium is signi�cantly higher
(2 000 g/gDW). Operating the system at a blow-down ratio of 36% (R =
0.64) and at a slightly elevated salt concentration c0culture = 5.3% eliminates
freshwater demand and yields a saltwater demand of 1 100 g/gDW. The power
demand for water transport is then 0.22 Wh/gDW. ORPs are typically mixed
by paddle wheels to enable homogeneous sun exposure and to facilitate oxygen
removal. Their energy demand depends on several factors, such as the mixing
velocity and the depth of the pond [30]. Here, a mixing power requirement
of 0.4 W/m2 (= 0.48 Wh/gDW) is assumed [30]. Nutrient demand per unit
biomass is identical for ORP and TLC cultivation, assuming identical biomass
composition and nutrient utilization ratios.

For the construction phase, we assume that both reactor types can be
cost-e�ectively implemented by spreading LDPE pond liners over compacted
sand. Furthermore, a pipeline is built to deliver seawater to the cultivation
units. End of life for both liners and pipeline is accounted for using ecoinvent
markets.

3.3 Harvest

Harvest procedures di�er between ORP and TLC systems due to di�erent
biomass concentrations at the time of harvest. For TLCs, the culture medium
is centrifuged until a biomass concentration of 20 wt-% is reached in the con-
centrate (concentration factor 10). The energy demand for centrifuge opera-



8 Benjamin W. Portner et al.

tion is estimated at 4 kWh/m3
feed [7]. It is assumed that 95% of the biomass

is recovered [7].
For ORPs, due to the large amount of water in the cultivation medium,

direct centrifugation would be too energy intensive. Instead, the cells are pre-
concentrated by �occulation. A great deal of studies have investigated �occu-
lation of microalgae by pH-shift, electrocoagulation, addition of metal salts,
natural and synthetic cationic polymers, and bio�occulants [31]. For marine
media in particular, the naturally high concentration of magnesium ions favors
�occulation by pH-shift [32, 33, 34, 35, 36, 37, 38]. We assume that addition
of 200 mg/L of slaked lime (Ca(OH)2) results in the recovery of 95% of the
biomass at a concentration factor of 40. To remove magnesium hydroxide from
the precipitate [36, 39] and to neutralize the supernatant, HCl is subsequently
added at a stoichiometric ratio of 2:1. The precipitate is then further dewa-
tered in a centrifuge with parameters equal to the TLC scenario. Note that the
additional dewatering step in the ORP con�guration leads to higher biomass
losses compared to the TLC con�guration, leading in turn to an increased
biomass demand per unit fuel.

In the ORP scenario, part of the supernatant from the harvest process is
re-used for cultivation. In the TLC scenario, recycling is avoided to prevent
salt accumulation. Blow-down in both scenarios is treated in a wastewater
treatment plant.

3.4 Oil extraction and transport

To maximize oil yield, the algae cell walls are mechanically disrupted by a ball
mill. Power consumption for this process is estimated at 0.06 kWh/L based on
the data sheet of an industrial manufacturer [40]. After cell disruption, liquid
hexane is applied to absorb the algae oil. The loaded hexane is removed and
exposed to heat to release the oil. According to Frank et al. [41], oil recovery
ratio, heat demand, electricity demand, and speci�c hexane loss of this process
are 95%, 6.1 MJ/kgoil, 1.9 MJ/kgoil, and 5.2 g/kgoil, respectively.

The oil production rate of 190 kg/h is relatively small for processing in
conventional re�neries. To enable e�cient operation, it is assumed that the
output of multiple plants across Europe is collected and jointly processed in
a dedicated re�nery. Transport requirements for the collection process are
approximated as follows: 50 km via truck to a collection point, 100 km via
train to a harbor, 3 500 km via ship to the re�nery.

3.5 Conversion, fuel transport & use

The algae oil is converted into so-called HEFA fuel (hydrotreated esters and
fatty acids) to be used for aviation. The conversion process model is adopted
from Zschocke [42]: Phospholipids and other impurities are removed prior to
conversion by application of phosphoric acid (0.62 g/kgoil) and sodium hydrox-
ide (1.9 g/kgoil). The clean oil is then hydroprocessed, removing heteroatoms
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and saturating the carbon bonds. Hydrocracking serves to increase the yield of
middle distillates in the jet fuel range. Light fractions are consumed on-site to
supply process energy (0.24 MJ//kgoil) and hydrogen for hydroprocessing. The
remaining fractions (mainly jet fuel, diesel, naphtha) total 1 MJ lower heating
value by de�nition of the functional unit. Direct CO2 emissions during the
conversion process amount to 0.50 kg/kgoil.

After conversion, the fuel fractions are transported 400 km via pipeline
to a depot and then 50 km by truck to the end user. The end user burns
the algal fuels, releasing CO2 to the atmosphere. Note that because this CO2

is originally derived from biomass (biomass � power plant �ue gas � algae
biomass� algal fuel combustion) and absorbed and re-emitted within a short
time frame, it is regarded as climate neutral in accordance with the ILCD
guidelines [43].

3.6 Residue valorization

Apart from oil, the hexane extraction process produces a wet biomass residue
still containing signi�cant amounts of carbon and energy. This residue is con-
verted to biogas in an anaerobic digester. Accounting for the high feed salinity,
a medium-to-low methane yield of 190 mL/g VS (volatile solids) is assumed
[44]. The following further assumptions are based on expert interviews: The
biogas consists of methane (60 vol.-%) and CO2 (40 vol.-%). 2.0% of the pro-
duced methane leak to the atmosphere. Electricity is needed for pumping and
mixing in the digester (0.40 MJ/kg VS). Heat is needed to maintain mesophilic
conditions (0.23 MJ/kg wet). We assume that N and P contained in the di-
gester feed remains in the digestate along with the C not turned into methane
or CO2. These o�er a valuable nutrient supplement for algae cultivation. It
is assumed that 50% of the contained C, N, and P is bio-available, displacing
corresponding amounts of CO2 and fertilizers.

The biogas is burnt in the previously mentioned CHP plant, producing
heat, electricity, and CO2. In this way, residue valorization supplies additional
0.24 MJ of useful heat and 0.20 MJ of electricity per unit fuel produced. As
before, combustion CO2 is captured and supplied to the cultivation plant.

4 Results and discussion

Figure 2 shows the life cycle climate impacts (GWP 100) of the TLC pathway,
the ORP pathway, and the conventional baseline (petroleum kerosene). The
TLC pathway has the lowest GHG intensity at 81 g CO2e per MJ fuel lower
heating value (LHV), followed by the fossil reference (84 g CO2e) and the ORP
pathway (94 g CO2e). This result supports prior techno-economic analyses,
which found that TLCs could outperform ORP technology [12, 24]. Compared
to petroleum kerosene, the TLC pathway achieves a GHG reduction of 4%.
However, these savings are too small to comply with the Renewable Energy
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Fig. 2 Life cycle climate impact (GWP 100) of algal fuel from thin-layer cascade (TLC)
cultivation, of algal fuel from open raceway pond (ORP) cultivation, and of conventional
petroleum-based kerosene (fossil baseline)

Directive II (65% reduction for installations starting operation after 1 January
2021)[5]. Thus, both algal fuel pathways need improvement before they can
contribute towards the goals of the Paris Agreement [3]. The following section
shall highlight the largest emission sources in each pathway to direct future
development e�orts.

Our results indicate that, for both the TLC and the ORP pathway, inputs
into the cultivation- and harvest stage dominate the life cycle climate impact.
This �nding is in line with previous studies on algae fuel production [9, 45,
10, 11]. Breaking down impacts of the TLC pathway, the largest contribution
comes from seawater desalination (54 g CO2e per MJ fuel LHV), mostly from
energy consumed in the reverse osmosis process. This impact can be reduced
by employing renewable energy or by supplying freshwater from a natural
source. In the latter case, the impact on local water reserves must be evaluated
critically. Without the contribution from reverse osmosis, the residual life cycle
impact of TLC algal fuel production is 27 g CO2e, indicating a potential to
drive GHG emissions below the RED II threshold.

The second largest GHG contribution in the TLC pathway is power con-
sumed for mixing (19 g CO2e for operating the circulation pump during day
and an air compressor at night). Although the nominal power demand per unit
reactor area is higher for TLCs than ORPs, the biomass yield is proportionally
higher, yielding a similar energy demand per unit biomass. Experimental power
consumption measurements for large-scale TLC cultivation are unavailable at
the time of writing. More generally, mixing power in�uences biomass yields by
controlling the light-dark-cycles of the algal cells. Reducing the mixing power
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is thus expected to reduce biomass yields. Further research is necessary to
de�ne an optimum between power consumption and biomass production in
TLCs.

The third largest GHG contribution in the TLC pathway is urea supply (16
g CO2e). The role of fertilizers in the GHG balance of algae fuel production has
been highlighted by previous studies [45, 11, 8, 9]. Its impact can be reduced by
employing digestate recycling, as modeled in our study. If these reductions turn
out insu�cient, new nutrient sources (e.g. municipal or industrial wastewater)
can be explored or existing synthetic fertilizer production can be improved
(e.g. by employing green electricity and -hydrogen).

In the ORP model, cultivation impacts are dominated by paddle wheel
operation (19 g CO2e per MJ fuel LHV), followed by urea production (17 g
CO2e) and seawater replenishment (9 g CO2e). The power demand for paddle
wheel operation is low compared to other studies such as Doucha and Lívanský
[12] and Acién Fernández et al. [24]. Applicable validation data are scarce as
few large-scale ORP plants produce algal lipids in autotrophic growth mode.
Again, mixing power and biomass yield are intertwined and further research is
necessary to narrow the range of assumptions. For urea production, the same
comments as for the TLC apply. For seawater replenishment, the pumping
power follows eq. 5 and is most easily reduced by locating the cultivation
plant as close as possible to the sea, as well as by reducing water losses. The
latter are driven largely by evaporation. Collet et al. [11] suggest to cover open
cultivation systems by greenhouses, thus reducing the impact of evaporation.

Apart from cultivation, �occulation presents a large contribution to the
ORP GHG balance. Impacts are shared equally between HCl production (29
g CO2e per MJ fuel lower heating value) and treatment of discarded culture
medium (29 g CO2e) whereas the impact of lime production and consump-
tion is negligible. The HCl-related impact can be reduced if the leeching step
is omitted, meaning that Mg(OH)2 remains in the precipitate. This could,
however, negatively a�ect anaerobic digester performance downstream, as its
microbial consortia are sensitive to the concentration of alkaline earth metals
[46]. Concerning the impact of blow-down treatment, it is proportional to the
amount of blow-down and its pollution. The former is governed by eq. 4 and
if blow-down were to be reduced, a freshwater source would become necessary
with corresponding consequences for the GHG balance (see TLC impacts). For
the latter, we chose an 'average' pollution (according to ecoinvent de�nition).
The actual impact will depend not only on the degree of pollution but also on
local discharge regulations and will thus vary from location to location.

5 Conclusion

Our study presents for the �rst time a life cycle climate impact assessment
of aviation fuel produced from algal biomass cultivated in thin-layer cas-
cades (TLCs). Our results support the notion of prior economic assessments
that TLCs could o�er an advantage over established open raceway technology
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[12, 24]. Still, improvements are most likely necessary before TLC algal fuel
can achieve the GHG savings required by the Renewable Energy Directive
II [5]. Unlike ORPs, TLCs depend on a freshwater source to maintain stable
salt concentrations in the culture medium. To avoid the high GHG impacts
associated with seawater desalination, cultivation locations with nearby fresh-
water sources are preferable, where a low impact on natural reserves can be
assured. Furthermore, our results indicate that electricity demand for water
circulation presents a relevant contribution to the GHG footprint, although
its magnitude is rather uncertain. Establishment of an empirical correlation
between power consumption and biomass yield for various climatic conditions
would help to reduce this uncertainty. Lastly, our results support the �nding
of previous studies that fertilizer consumption contributes signi�cantly to the
life cycle climate impact [45, 11, 8, 9]. Future experiments should thus clarify
to which degree digestate recycling can reduce fertilizer demand. Our results
indicate that a moderate nutrient recovery yields insu�cient GHG savings and
that other, climate-friendly nutrient sources must be explored.
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