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Life-Cycle Inheritance 
A Petri-Net-Based Approach 

W.M.P. van der Aalst and T. Basten 

Department of Mathematics and Computing Science 
Eindhoven University of Technology, The Netherlands 
email: {wsinwa.tbastenj@win.tue.nl 

Abstract. Inheritance is one of the key issues of object-orientation. The inheritance mechanism 
allows for the definition of a subclass which inherits the features of a specific superclass. This 
means that methods and attributes defined for the superclass, are also available for objects of 
the subclass. Existing methods for object-oriented modeling and design, abstract from the dy
namic behavior of objects when defining inheritance. Nevertheless, it would be useful to have a 
mechanism which allows for the inheritance of dynamic behavior. This paper describes a Petri
net-based approach to the formal specification and verification of this type of inheritance. We 
use Petri nets to specify the dynamics of an object class. The Petri-net formalism allows for 
a graphical representation of the life cycle of objects which belong to a specific object class. 
Four possible inheritance relations are defined. These inheritance relations can be verified au
tomatically. Moreover, four powerful transformation rules which preserve specific inheritance 
relations are given. 

Keywords: Object orientation, Petri nets, Inheritance, Object life cycle. 

1 Introduction 

Although object-oriented design is a relatively young practice, it is considered to be the most promis
ing approach to software development. Within a few years the two leading object-oriented method
ologies, OMT [13] and OOD [5], have conquered the world of software engineering. Both method
ologies use state-transition diagrams for specifying the dynamic behavior of objects. Typically, for 
each object class, one state-transition diagram is specified. Such a state-transition diagram shows 
the state space of a class and the methods that cause a transition from one state to another. In this 
paper, we use Petri nets (See for example [12]) for specifying the dynamics of an object class. There 
are several reasons for using Petri nets. First of all, Petri nets provide a graphical description tech
nique which is easy to understand and close to state-transition diagrams. Second, parallelism, con
currency and synchronization are easy to model in terms of a Petri net. Third, many techniques and 
software tools are available for the analysis of Petri nets. Finally, Petri nets have been extended 
with color, time and hierarchy [10,11]. The extension with color allows for the modeling of ob
ject attributes and methods. The extension with time allows for the quantification of the dynamic 
behavior of an object. The hierarchy concept can be used to structure the dynamics of an object 
class. 

In this paper, we use the term object life cycle to refer to a Petri net specifying the dynamics of 
an object class. Figure 1 shows two object life cycles. Object life cycle No specifies the dynamics 
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Figure 1: 1\\'0 object life cycles. 

of an object of tbe class person. The creation of an object is modeled by a transition witb a 'V label. 
Firing this transition corresponds to the birth of a person. Firing one of the two transitions witb a t:" 
label results in the termination of the object, i.e., tbe death of a person. An object oftbe class person 
is either in state single or in state married. Each of these states corresponds to a place in the object 
life cycle No. Firing the transition with label m corresponds to tbe marriage of a person and results 
in the transfer of a token from single to married. Firing the transition with label d corresponds 
to the divorce of a person. As a result, a token is transferred from married to single. Object life 
cycle NJ specifies tbe dynamics of tbe class another -person. Compared to tbe original object life 
cycle, the transition labeled b and the place alive have been added. Firing this additional transition 
corresponds to the birthday of a person. Note tbat in this object life cycle tbe state of a person is 
represented by two tokens. As a result, it is possible to have concurrency within tbe same object. 

In general, the state of an object is represented by a configuration of tokens over places. Tran
sitions represent state changes. The label of a transition refers to the method being executed when 
the transition fires. Note that a method is the implementation of an operation that can be executed 
for specific objects. There are three reserved metbod labels, 'V (object creation), t:" (object termi
nation) and 'l' (internal method). In Figure 1 there are no 'l'-Iabeled transitions. However, it turns 
out to be useful to distinguish internal methods from external methods. Internal metbods can only 
be activated by the object itself. External methods can also be activated by other objects. 

The two object life cycles shown in Figure 1 have a lot in common. In fact, NJ comprizes No. 
Moreover, it appears that life cycle NJ incorporates, or inherits, all properties of life cycle No and 
adds its own unique properties. Inheritance is one of the key issues in object-orientation. Unfor
tunately, inheritance is often limited to sharing attributes and methods among object classes. Until 
now, a good concept for life-cycle inheritance was lacking (See for example [2]). Existing object
oriented methodologies such as OMT [13] and OOD [5] do not give a clear definition of inheritance 
with respect to the dynamics of an object class. In this paper, we tackle the problem of deciding 
whether the object life cycle of one class inherits the life cycle of another class. 

In anotber paper ([4]), we have investigated this problem using a simple ACP-like process al-
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gebra. In that paper, it is shown that encapsulation and abstraction turn out to be important con
cepts for the characterization of life-cycle inheritance. Based on these concepts, four inheritance 
relations have been defined. The process-algebraic characterization of life-cycle inheritance in [4] 
is rather straightforward because encapsulation and abstraction are well investigated and, in con
trast to state-transition diagrams and Petri nets, states are not represented explicitly. Using the rich 
theory of ACP it is quite easy to show that each of the four inheritance relations has a number of de
sirable properties. Unfortunately, an algebraic characterization of inheritance is difficult to handle 
by people not familiar with process algebra. Most of these people prefer state-transition diagrams 
because of their graphical nature, simplicity and the fact that states are represented explicitly. These 
features do not apply to process algebra, but are essential to the success of existing object-oriented 
methodologies. Therefore, we resort to Petri nets for the specification of object life cycles. Petri 
nets provide a graphical formalism which is much closer to existing methodologies such as OMT 
andOOD. 

In this paper, we show that it is possible to formalize the four inheritance relations in a Petri
net context. Moreover, we extend some of the results presented in [4]. For example, in contrast 
to the approach in [4], we are able to handle object life cycles with recursion. Although we allow 
recursion, it is possible to verify each of the four inheritance relations automatically. Moreover, a 
number of transformation rules which preserve specific forms of inheritance are presented. These 
transformation rules show how the object life cycle of a superclass may be extended for a subclass 
while preserving life-cycle inheritance. 

2 Labeled Petri Nets 

In this paper, we use standard Petri nets extended with a labeling function. Let A be some universe 
of action labels. Action labels can be thought of as method identifiers, i.e., firing a transition with 
label a E A corresponds to the execution of method a. 

Definition 2.1. (Labeled Petri net) An A-labeled Petri net is a tuple N = (P, T, F,l) where 

i) P is a finite set of places; 

ii) T is a finite set of transitions such that P n T = 111; 

iii) F 5; (P x T) U (T x P) is a set of directed arcs, called the flow relation; 

iv) l : T --+ A is a labeling function. 

A place p is called an input place of a transition t if and only if there exists a directed arc from p 
to t. Place p is called an output place of transition t if and only if there exists a directed arc from t 
to p. We use ·t to denote the set of input places for a transition t. The notations t·, .p, and p. have 
similar meanings. For example, p. is the set of transitions sharing p as an input place. 

Places of a Petri net may contain zero or more tokens. The state of a Petri net, often referred to 
as marking, is the distribution of tokens over the places. Hence, the state of a net can be represented 
by a finite multi-set, or bag, of places. The following definitions and notations for bags are used. 

A bag of elements from some alphabet A can be considered as a function from A to the natural 
numbers IN. That is, for some bag X over alphabet A and a E A, X(a) denotes the number of 
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occurrences of a. The empty bag is denoted O. For the explicit enumeration of a bag, a notation 
similar to the notation for sets is used, but using square brackets instead of curly brackets and using 
superscripts to denote the cardinality of the elements. For example, [a2, b, c3 ] denotes the bag with 
two elements a, one b, and three elements c; the bag [a2 I a E A 1\ Pea)] contains two elements 
a for every a E A such that Pea) holds, where P is some predicate on symbols of the alphabet. 
To denote individual elements of a bag, the same symbol "E" is used as for sets. The union of two 
bags X and Y, denoted X I±I Y, is defined as [an I a E A 1\ n = X(a) + Yea)]. The difference of 
X and Y, denoted X - Y, is defined as [an I a E A 1\ n = (X(a) - yea)) max 0]. The restriction 
of some bag X to some domain D S;; A, denoted X r D, is defined as [aXIal I a ED]. The notion 
of subbags is defined as expected: bag X is a subbag of Y, denoted X :s Y, if and only if for all 
a E A, X(a) :s Yea). 

Definition 2.2. (Marked Petri net) A marked Petri net is a pair (N, s) where N = (P, T, F, e) is 
a labeled Petri net and where s is a bag over P denoting the state or marking of the net. 

Marked Petri nets have a dynamic behavior which is defined by the following firing rule. 

Definition 2.3. (Firing rule) Let (N, s) be some marked Petri net with N = (P, T, F, e). A transi
tion t E T is enabled, denoted (N, s)[t) , if and only if each input place contains at least one token. 
That is, (N, s)[t) {} °t :s s. An enabled transition can fire. If a transition t fires, then it consumes 
one token from each of its input places; it produces one token for each of its output places. The 
visible effect of a firing is the label ofthe transition. Formally, (N, s) [e(t)) (N, s - °t I±I to). 

Based on the firing rule, the notion of reachability can be formalized. 

Definition 2.4. (Reachability) Let (N, s) be a marked A-labeled Petri net. State s' is reachable from 
s, denoted (N, s)[ *) (N, s'), if and only if s' equals s oriffor some n E IN there exist ao, ai, ... an E 

A and markings S" ... , Sn such that (N, s) lao) (N, s,) [a,) ... [an) (N, s'). 

In this paper, we we want to be able to compare the behavior of objects which are specified by 
marked Petri nets. Therefore, an equivalence on Petri nets is needed. The equivalence should distin
guish Petri nets whose behaviors have different moments of choice, because the moment of choice 
may influence the order in which methods are allowed to be executed. In addition, Petri nets with 
the same external behavior, but with possibly different internal behavior must be considered equal. 
Given these two requirements, branching bisimulation seems to be a suitable equivalence [7]. 

Let N be the set of marked A-labeled Petri nets where A is equal to A U {r}. Recall that a r
labeled transition corresponds to an internal method. The following auxiliary relation expresses that 
a marked Petri net can evolve into another markeq net by firing a sequence of r -labeled transitions. 

Definition 2.5. The relation _[ )) _ : P (N x N) is the smallest relation satisfying, for any n, n', n" E 

N, n [)) n and n [)) n' 1\ n' [r) n" =} n [)) n". 

Let, for any n, n' EN and a E A, n [(a))n' be an abbreviationofn [a) n'V (a = r I\n = n'). That 
is, n [(T)) n' means zero or one T steps and, for any a E A, n [(a)) n' is simply n [a) n'. To define 
branching bisimulation, we need to identify marked Petri nets which correspond to the successful 
termination of an object. A life cycle without any tokens corresponds to a terminated object, i.e., 
the life cycle of a terminated object is of the form (N, 0). 
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Definition 2.6. (Branching-bisimulation equivalence) A binary relation R : P(N x N) is called 
a branching bisimulation if and only if, for any n, n', m, m', (N, sn), (M, sm) EN and a E A, 

I) nRm /\ n [a) n' =} (3 m', m" : m', m" E /If: m [ )) m" [(a») m' /\ nRm" /\ n'Rm'), 

ii) nRm /\ m [a) m' =} (3n', n" : n', n" E /If: n [)) n" [(a») n' /\ n"Rm /\ n'Rm'), 

iii) (N, sn)R(M, sm) =} (N, sn) [)) (N,O) # (M, sm) [)) (M,O). 

Two marked Petri nets n and m are called branching bisimilar, denoted n ~b m, if and only if there 
exists a branching bisimulation between n and m. 

n m 

,r'-,-,] 
.... ----. 
n' m"=m' 

n m 

1"";---1' 
Cl " 

"" "1' m" n ................ ex 

• 
m' 

Figure 2: Branching bisimulation. 

The first two requirements state that steps in the first marked Petri net are also possible in the second 
and vice versa. The third requirement says that if a marked Petri net can terminate via a number of 
, steps, then this also holds for any other related marked Petri net. Figure 2 shows the essence of 
branching bisimulation. Note that for any a E A, the relation _ [a) _ is depicted by an a-labeled 
arrow, whereas the relation _ [ )) _ is depicted by a double-headed arrow. Also note that the defini
tion given here differs from the original definition given in [8]. In fact, it is the definition of semi
branching bisimulation, which was first defined in [9], but formulated as it appears in [3]. It can be 
shown that the two notions are equivalent [9, 3]. The reason for using the alternative definition is 
that it is more concise and more intuitive than the original definition. 

3 Object Life Cycles 

Using Petri nets for the specification of object life cycles allows us to specify a partial ordering 
of methods. However, not every labeled Petri net specifies an object life cycle. As discussed in 
the introduction, we introduce three reserved labels, namely " for object creation, /:;. for object 
termination and , for internal methods. Set L, not containing any of the special labels, is the set of 
method labels corresponding to external methods; Ls is the set of method labels including the three 
special labels, i.e., Ls = L U {", /:;., ,}. A Petri net which specifies a life cycle has exactly one 
transition tv which corresponds to the creation of an object and bears a " label. For convenience, 
we assume that tv has one unique input place i and that every transition has at least one input place. 
A Petri net describing a life cycle refers to the life cycle of a single object. It suffices to consider just 
one object because of the fact that objects interact via the execution of methods and not directly via 
the life cycle. Since we focus on one object at a time, initially, place i contains one token. An object 
terminates the moment a method with a /:;. label is executed. Between the creation of an object (i.e., 
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the firing of tv) and the termination of an object (i.e., the firing of a 6-labeled transition), there is 
always at least one token present in the life cycle. If we restrict ourselves to life cycles without 
inherent parallelism, it suffices to have just one token. The introduction of parallelism results in 
multiple tokens that are present in the life cycle. We can think of these tokens as 'stage indicators' 
referring to the same object. The moment an object is terminated, all tokens which correspond to 
the object should be removed. This means that firing a 6-labeled transition results in an empty Petri 
net indicating that the object has ceased to exist and all references to the object have been removed. 
Finally, we assume that it is always possible to terminate by executing the appropriate sequence 
of methods. However, this does not mean that every object is forced to terminate. The following 
definition formalizes the definition of an object life cycle. 

Definition 3.1. (Object life cycle) A marked Ls-labeled Petri net (N, s) where N = (P, T, F,l) 
describes an object life cycle if and only if 

i) P contains a special place i and T contains a special transition tv such that °i = fil, iO = {tv} 
and °tv = Ii}. Moreover, tv is the only transition in T such thatl(tv ) = \1. For any transition 
t E T, °t f= fil. 

ii) The initial marking s contains just one token, which is a token in the initial place i: s = [i]. 

iii) Let s' be an arbitrary state reachable from s, i.e., (N, s) [*} (N, s'). 

- For any t E T such that (N, s')[t), (N, s') [l(t)} (N,O) {} l(t) = 6. Hence, there 
is a one-to-one correspondence between the termination of an object and the firing of a 
6-labeled transition. 

- It is possible to terminate successfully from s', i.e., (N, s') [*} (N, 0). 

Ifwe restrict ourselves to free-choice Petri nets, then there is a polynomial-time algorithm to verify 
the requirements in Definition 3.1 [1]. Moreover, for most object life cycles it is easy to see whether 
these requirements hold. Petri nets satisfying the requirements stated in Definition 3.1 have a num
ber of nice properties. One of them is boundedness, i.e., the number of reachable states is finite. 

Property 3.2. Any marked Petri net (N, [iD representing an object life cycle is bounded. 

Proof. If an object life cycle (N, [iD is not bounded, then there are two reachable states SI and S2 

such that (N, [i])[ *}(N, SI)[ *}(N, S2) and S2 > SI. Since (N, [i]) is a life cycle, there is a sequence 
of firings a leading from (N, SI) to (N, 0). The label of the last transition that fired is 6. However, 
we can also execute a from (N, S2). In this case, the label of the final firing is still 6 but this firing 
does not result in (N, 0) which contradicts the fact that (N, [iD is an object life cycle. Hence, an 
object life cycle (N, [iD is bounded. 0 
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4 Life-Cycle Inheritance 

We have given a formal definition of an object life cycle in terms of a Petri net. Now, it is time to an
swer the following question: When is an object life cycle a subclass of some other object life cycle? 
For example, is (N\, [iD in Figure 1 a subclass of (No, liD? In other words, does (N\, [iD inherit 
certain features of (No, [iD? To answer this question, we have to establish an inheritance relation 
for object life cycles. Inspired by process-algebraic concepts like encapsulation and abstraction, 
two basic forms of inheritance seem to be appropriate [4]. 

The first basic form of inheritance corresponds to encapsulation. Let (No, [iD and (N\, [iD be 
two object life cycles. 

If the environment only calls the methods of (N\, [iD which are not present in (No, [iD 
and it cannot distinguish the observable behavior of (No, [iD and (N\, [iD, then (N\, [i]) 
is a subclass of (No, liD. 

This means that if the new methods added to the subclass are blocked or the environment is not will
ing to use the new methods, then the superclass and the subclass behave equivalently. As shown in 
[4] this corresponds to the encapsulation operator known from ACP (aH ) which translates actions 
in H to deadlock Ii. This form of inheritance is referred to as protocol inheritance because the sub
class inherits the protocol of the superclass. It is not difficult to verify that (N\, [iD in Figure I is 
a subclass of (No, [iD with respect to protocol inheritance. If the method birthday is blocked, then 
the observable behaviors are identical. 

The second basic form of inheritance corresponds to abstraction. 

If the environment is willing to call the methods of (N\, [iD which are not present in 
(No, [iD and it cannot distinguish the observable behavior of (No, [iD and (N\, [i]) 
with respect to the methods of (No, liD, then (N\, [iD is a subclass of (No, liD. 

This means that even by calling the new methods (i.e. the methods in N\ but not in No), the behav
ior of the subclass coincides with the behavior of the superclass with respect to the old methods. 
However, if the environment is reluctant to call some of the new methods, it may discover differ
ences with respect to the old methods. If we consider the new methods to be internal methods which 
cannot disable or enable old methods, then the superclass and the subclass behave equivalently. For 
those familiar with process algebra, it is easy to see that this corresponds to the abstraction oper
ator (r[) which translates actions in I to silent steps r. This form of inheritance is referred to as 
projection inheritance. It is also easy to see that (N\, [iD in Figure I is a subclass of (No, [iD with 
respect to projection inheritance. If we hide the method birthday, then the observable behaviors are 
identical. ' 

Analogously to [4], we define two other forms of inheritance by combining the two basic forms 
just presented. But first, we define the encapsulation operator aH and the abstraction operator r[ for 
Petri nets. 

Definition 4.1. (EncapSUlation and abstraction) Let (N, s) be a marked L,-labeled Petri net with 
N = (P, T, F, i). 

i) For any H £;; L, the encapsulation operator aH removes all transitions with a label in H from 
a given Petri net. Formally, aH(N, s) = (N', s) such that N' = (P, T', F', i'), T' = (t E 

T I i(t) ~ H), F' = F n «P x T') U (T' x P)) and e' = i n (T' xL,). 
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ii) For any I !:;; L, the abstraction operator 'I renames all transition labels in I to ,. That is, 
'I(N,s) = (N',s)suchthatN' = (P, T,F,l')andforanyt E T,l(t) E Iimpliesl'(t) =, 
and let) f/- I implies l'(t) = let). 

Note that the encapsulation of methods corresponds to the removal of transitions, i.e., the blocking 
of a method is achieved by removing the corresponding transitions. 

Property 4.2. Branching bisimulation, ~b, is a congruence for encapsulation and abstraction. 

Proof. It is straightforward to verify that branching bisimulation, ~b, is an equivalence relation [3]. 
It remains to show that for any two marked Petri nets (No, so) and (Nl' SI) and any H, I !:;; L, 
(No, so) ~b (Nl' SI) implies that aH(No, so) ~b aH(N1, sd and 'I (No, so) ~b 'I(N1 , SI). Let 'R be 
a branching bisimulation between (No, so) and (N1 , sd. Based on 'R, we define the binary relation 
Q = {(aH(No, u), aH(Nl, v» I (No, so)[*) (No, u)A(N1 , sl)[*)(N1, v)A(No, U)'R(Nl' v»). It is not 
difficult to verify that Q is a branching bisimulation between aH(No, so) and aH(N1 , SI). Hence, ~b 
is a congruence for the encapsulation operator a H. Similarly, we can prove that ~b is a congruence 
for the abstraction operator 'I. 0 

Using encapsulation and abstraction, we define protocol inheritance and projection inheritance re
spectively. However, it is possible to combine these two definitions. Therefore, we also define two 
additional forms of inheritance. Protocol/projection inheritance is the conjunction of the two basic 
forms of inheritance. An object life cycle is a subclass of another object life cycle with respect to 
protocol/projection inheritance if and only if it is a subclass with respect to protocol inheritance and 
projection inheritance. The disjunction of the two basic forms of inheritance does not yield an inher
itance relation with desirable properties such as transitivity. However, it is possible to state that for 
every new method one of the two basic forms of inheritance should hold. This form of inheritance 
is called life-cycle inheritance. An object life cycle is a subclass of another object life cycle (i.e. the 
superclass) with respect to life-cycle inheritance if and only if the abstraction of some methods and 
the encapsulation of some other methods of the subclass results in an object life cycle equivalent to 
the superclass. 

Definition 4.3. (Inheritance relations) For any two marked Petri nets (N, s), (N', s') EN, 

i) protocol inheritance: 
(N, s) is a subclass of (N', s') under protocol inheritance, denoted (N, s) :::pt (N', s'), if and 
only ifthere is an H !:;; L such that aH(N, s) ~b (N', s'), 

ii) projection inheritance: 
(N, s) is a subclass of (N', s') under projection inheritance, denoted (N, s) :::pj (N', s'), if 
and only if there is an I!:;; L such that 'I(N, s) ~b (N', s'), 

iii) protocol/projection inheritance: 
(N, s) is a subclass of (N', s') under protocol/projection inheritance, denoted (N, s) :::pp 

(N', s'), if and only if there is an H !:;; L such that aH(N, s) ~b (N', s') and an I !:;; L 
such that 'I(N, s) ~b (N', s'), 

iv) life-cycle inheritance: 
(N, s) is a subclass of (N', s') underlife-cycle inheritance, denoted (N, s) :::Ic (N', s'), if and 
only if there is an I!:;; L and an H !:;; L such that I n H =!il and '10 aH(N, s) ~b (N', s'). 
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Note that life-cycle inheritance is defined in terms of a function composition (rE 0 dH). Since we 
demand that I and H are disjoint. we may change the order of encapsulation and abstraction without 
changing the definition of life-cycle inheritance. 

Figure 3: An overview of life-cycle-inheritance relations. 

Figure 3 shows an overview of the four inheritance relations. Protocol/projection inheritance is 
the strongest form of inheritance. If an object life cycle is a subclass with respect to protocol/pro
jection inheritance. then it is also a subclass with respect to the other three forms of inheritance. In 
Figure I. (NI • [iD is a subclass of (No. [iD with respect to protocol/projection inheritance. There
fore. (NI • [iD is also a subclass of (No. [iD with respect to the other three forms of inheritance. 
Life-cycle inheritance is the weakest form of inheritance. If an object life cycle is a subclass with 
respect to any of the four forms of inheritance. then it is also a subclass with respect to life-cycle 
inheritance. In [4] it is shown that the inclusion relations in Figure 3 are strict and that there are no 
inclusion relations between protocol inheritance and projection inheritance. 

No 

Figure 4: (NI. [iD ~pt (No. [iD. (N2. [iD ~pj (No. [iD and (N3 • [iD ~Ic (No. liD. 

Example 4.4. The four object life cycles shown in Figure 4 illustrate these inheritance relations. 
(NI • [iD is the subclass of (No. [iD under protocol inheritance. because the omission of the transi
tion labeled bo in NJ yields a net structurally equivalent and. hence. branching bisimilar to (No. [i]). 
(N2• [iD is a subclass of (No. [iD under projection inheritance. because hiding the transition labeled 
b l in N2 yields a marked Petri net which is branching bisimilar to (No. liD. (N2• [iD is not a sub
class of (No. [iD under protocol inheritance. because the blocking of b l yields a net which cannot 
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terminate successfully. (N3 • [iD is not a subclass of (No. [iD under protocol inheritance. nor is it a 
subclass under projection inheritance. However. (N3• [iD is a subclass of (No. [iD under life-cycle 
inheritance. 

The object life cycles shown in Figures 1 and 4 illustrate that the four inheritance relations are com
plementary. Moreover. our belief that the four inheritance relations are valuable is strengthened by 
the fact that each of the four relations is reflexive and transitive. 

Property 4.5. Protocol inheritance. projection inheritance. protocol/projection inheritance. and life
cycle inheritance are preorders. 

Proof. For any labeled marked Petri net (N. s). o,,(N. s) is equal to (N. s) and ,,,(N. s) is equal 
to (N. s). Hence. ~Pt. ~pj. ~pp, and ~Io are reflexive. It is fairly straightforward to show that ~pt 
is transitive. Let (No. so). (N1• sd and (N2• S2) be three marked Petri nets such that (No. so) ~pt 
(N1• Sl) and (N1• sd ~pt (N2• S2). It is possible to find two sets of labels H. H' £; L such that 
oH(No• so) ~b (N1 • Sl) and ow(NJ, Sl) ~b (N2• S2). Since ~b is a congruence for OH (see Prop
erty 4.2). it is easy to verify that owuH(No• so) = owooH(No. so) ~bow(NI. Sl) ~b (N2. S2). Hence. 
(No. so) ~pt (N2. S2). Analogously. we can prove that ~Pt is transitive. Since ~pp = ~Pt n ~pj. it 
follows immediately that ~pp is transitive. Showing that life-cycle inheritance is transitive is more 
involved. Assume (No. so) ~Io (N1• sd ~Io (N2. S2). From the definition of life-cycle inheritance 
it follows that there are subsets H. H'. I. and I' of L such that 'I 0 oH(No• so) ~b (N1• sd and 
'I' 0 ow(NI • sd ~b (N2• S2). H n I = P and H' n I' = p. Moreover. it is possible to choose 
H. H'. I. and I' such that (H U I) n (H' U I') = P (see [4]). Since ~b is a congruence for ab
straction and encapsulation. it follows that "CrUl 0 OH'UH(No• so) = 'I' 0 "CI 0 Ow 0 oH(No• so) = 
"CI' 0 Ow O"CI 0 oH(No• so) ~b 'I' 0 ow(NI • Sl) ~b (N2• S2). Hence. ~I, is also transitive. 0 

Analogously to the result in [4] we can also show that subclass equivalence coincides with branching
bisimulation equivalence. i.e .• given two object life cycles and one of the four inheritance relations. 
if the first life cycle is a subclass of the second life cycle and vice versa. then the two life cycles are 
branching bisimilar. This is another result showing that the definitions are sound. 

Theorem 4.6. (Decidability of inheritance) For any two object life cycles (No. [iD and (NI. [i]) 
it is decidable whether (N1• [iD is a subclass of (No. [iD with respect to ~p" ~pj. ~pp. or ~Io. 

Proof. If follows from Property 3.2 that the two object life cycles are bounded. Each of the modi
fied object life cycles used in Definition 4.3 (i.e .• oH(NI • liD. "CI(N1• [iD and 'I 0 OH (N1• [iD with 
H. I £; L) is also bounded (Although they may not satisfy the requirements in Definition 3.1). 
Therefore. checking whether such a modified life cycle and (No. [iD are branching bisimilar is de
cidable. 0 
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5 Inheritance-Preserving-Transformation Rules on Petri Nets 

As long as life cycles are not too complex, it is easy to check whether a specific inheritance relation 
holds. Unfortunately, object life cycles tend to become very complex. Although it is possible to 
check the inheritance relations automatically, such a check may require a lot of computing power. 
Therefore, we propose a number of transformation rules which preserve inheritance. Moreover, 
these transformation rules reveal the essence of the inheritance relations described in Definition 4.3. 

For convenience, we introduce the alphabet operator a on Petri nets. For any Ls-Iabeled Petri 
net N = (P, T, F, e), a(N) = (e(t) I t ETA let) E Ls \ {r}}. The union of two Petri nets is 
defined as the union of the components, i.e., Np U Nq = (Pp U Pq, Tp U Tq, Fp U Fq, ep U lq) under 
the assumption that for any t E Tp n Tq, ep(t) = lq (t). 

Figure 5: Protocol-inheritance-preserving transformation rule. 

The first transformation rule preserves protocol inheritance and is illustrated in Figure 5. If we 
extend a life cycle (N., [iD with a Petri net Np such that (1) no transitions are shared among both 
nets, (2) all new transitions consuming from places in Nq have a label not ina(Nq) and (3) the result 
is still a life cycle, then the extended life cycle is a subclass of the original life cycle with respect to 
protocol inheritance. 

Theorem 5.1. (Protocol-inheritance-preservingtransfonnation rule) Let Nq = (Pq, Tq, Fq, eq) 
and Np = (Pp, Tp, Fp, ep) be two Petri nets. Let (N, [iD = (Nq UNp, [iD and (N', [iD = (Nq, [iD 
be two object life cycles satisfying the requirements stated in Deflnition 3.1. If the following addi
tional properties are satisfled, 

i) Tq n Tp = Iil, 

ii) (V p, t : t E Tp APE Pq nOt: e(t) E L \ a(Nq», 
then (N, [iD is a subclass of(N', [iD with respect to protocol inheritance, i.e. (N, [iD :'Opt (N', liD. 

Proof. We show that aH(N, [iD ~b (N', [i]) with H = a(Np) \ a(Nq). Consider the marked Petri 
net (N, [i]). Initially, the places in Pp \ Pq are empty. The only way to add tokens to one of these 
places is by firing a transition consuming tokens from Pq n Pp • So, if we encapsulate these transi
tions (a H (N, [iD), then the places in P p \ Pq will remain empty and none of the remaining transitions 
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in Tp will ever be able to fire. Hence, the subnet added to (N', [iD in oH(N, [iD is dead if we encap
sulate the transitions having a new label. Let n = {(oH(N, u), (N', u» I oH(N, [i)H*) oH(N, u) A 

(N', [iD [*) (N', u)} be a binary relation. Since the subnet added to (N', [iD in oH(N, [iD is dead, 
it is straightforward to verify that n is a branching bisimulation between oH(N, [iD and (N', liD. 

o 

The transitions in the set {t E Tp I Pq nOt t= !il} operate as 'guards'. By blocking these guards, the 
new part of the object life cycle is deactivated. In Figure 5, bo and b l operate as guards. By applying 
this transformation rule, we are able to show that (N1, [iD in Figure 4 is a subclass of (No, liD. We 
can also apply this rule to show that (N1, [iD in Figure I is a subclass of (No, liD. 

The transformation rule described by Theorem 5.1 is inspired by an axiom presented in [4). To 
show the relation between the inheritance-preserving transformation rules presented in this paper 
and some of the algebraic rules in [4), we give an intermezzo for those familiar with process algebra. 

Intermezzo 5.2. In [4) we presented an algebraic theory PAj"p for studying life-cycle inheritance. 
PAj"p is an ACP-like process algebra with deadlock, internal actions and renaming. In this context, 
an object life cycle is defined to be a closed PAT term starting with the object-creation action \1. 
Based on this theory, we have defined four forms of inheritance analogous to Definition 4.3. For 
example, for any two object life cycles p and q, P :::pt q if and only ifPAj"p f- OH(P) = q. 

In [4), we also presented a number of rules which illustrate under what conditions inheritance 
is preserved. In the remainder of this intermezzo, we concentrate on these rules. L, Ls and a are 
defined analogous to the definitions in this paper. Let p, q, qo, ql and r be closed PA T terms and a 
andb actions in Ls such that anda(r) !:;; L \ (a(q) Ua(qo) Ua(ql) U (a)) and bEL \ (a(q) U{a)). 
Under these conditions the following axioms apply. 

q + b . P :::pt q PT 
q·r:::pjq PJ1 
a· (r· (qo + ql) + qo) :::pj a· (qo + ql) PJ2 
a· (q II r) :::pj a· q PJ3 
a· ((b·r).q +q) :::pp a·q PP 

The first rule (axiom PT) corresponds to the rule in Theorem 5.1. Method b functions as a guard. 
By blocking the guard, the environment is forced to follow the original life cycle q. Rules PJI and 
P J2 state that inserting new behavior in an object life cycle that does not disable any behavior of 
the original life cycle, yields a subclass under projection inheritance. Rule P J3 shows that putting 
alternative behavior in parallel with the original life cycle also yields a subclass under projection 
inheritance. Rule P P shows that under protocol/projection inheritance it is allowed to postpone 
behavior. In the remainder of this section, we show that we can formulate transformation rules on 
Petri nets which correspond to PJ3, PJI and PP. Although it is possible to define a transforma
tion rule which corresponds to P J2, we will not do so, because the duplication of qo is not very 
meaningful in the context of Petri nets. 

The second transformation rule corresponds to rule P J3 and is illustrated in Figure 6. If we extend 
a life cycle (Nq, [iD with a Petri net NT such that (I) no places are shared among both nets, (2) all 
new transitions have a label not in a(Nq), (3) the transitions in Nq consuming tokens from NT obey 
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the free-choice property ([6]) and (4) the result is still a life cycle, then the extended life cycle is a 
subclass of the original life cycle with respect to projection inheritance. Hence, we can add parts to 
the life cycle which are executed in parallel with the original life cycle while preserving projection 
inheritance. 

Nr 

Figure 6: Projection-inheritance-preserving transformation rule. 

Theorem 5.3. (Projection-inheritance-preservingtransformation rule) Let Nq = (Pq, Tq, Fq, lq) 
and Nr = (P" T" F" lr) be two Petri nets with for any t E Tq n T" lq(t) = lr(t). Let (N, [iD = 
(Nq U Nr , [i]) and (N', [iD = (Nq, [iD be two object life cycles satisfying the requirements stated 
in Definition 3.1. lfthe following additional properties are satisfied, 

i) Pq n Pr =~, 

ii) \'I t : t E Tr \ Tq : let) fj a (Nq», 
iii) \'I p, t : p E Pr 1\ t E Tq n po : ('It': t' E Tq : °t nOt' i- ~ => °t = °t'», 

then (N, [iD is a subclass of(N', [iD with respect toprojectioninheritance, i.e. (N, [iD:::pj (N', [iD. 

Proof. We have to prove that T:[(N, [iD ~b (N', [iD with I = OI(Nr ) \ OI(Nq). 
Let R = {(T:[(N, u), (N', v» I u r Pq = v 1\ T:[(N, [iD [*) T:[(N, u) 1\ (N', [iD [*) (N', v)} be a 
binary relation. To prove that R is a branching bisimulation between T:[(N, [iD and (N', [iD, we 
show that the three requirements stated in Definition 2.6 hold. Let u be a state of N and let v be a 
state of N' such that T:[(N, u)R(N', v). 

i) If u' is a state of N such that T:[(N, u) [01) T:[(N, u'), then it is easy to verify that there is a 
state v' of N' such that T:[(N, u')R(N', v') and (N', V)[(OI» (N', v'). 1fT:[(N, U)[OI) T:[(N, u') 
corresponds to the firing of a transition in T" then v' = v. Otherwise, there is a transition t 
in Tq such that let) = a and (N', v) [01) (N', v'). 

ii) If v' is a state of N' such that (N', v) [01) (N', v'), then we have to prove that there is a state 
u' and a state u" such that T:[(N, u) [» T:[(N, u") [(01» T:[(N, u'), T:[(N, u")R(N', v) and 
T:[(N, u')R(N', v'). Let t be a transition in Tq such that (N', v) [l(t» (N', v'). If t is en
abled in T:[(N, u), then T:[(N, u) [l(t» T:[(N, u') and T:[(N, u')R(N', v'). 1ft is not enabled 
in T:[(N, u), then we have to prove that t can be enabled without firing transitions in Nq. If t 
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is not enabled in '[ (N, u), then °t n Pr "# ~ and one of the places in °t n Pr is empty. Assume 
that t will never be able to fire in ,[(N, u). One of the input places of t contains a token (t 
is enabled in (N', v) and u r Pq = v) and because of the third property all other transitions 
also consuming from this input place will never be able to to fire. However, this means that 
'[ (N, u) is not a life cycle because successful termination is not possible. Hence, we con
clude that it is possible to enable t in '[ (N, u) without firing transitions in Nq and firing t 
results in a state u' such that ,[(N, u')R(N', v'). 

iii) Remains to prove that ,[(N, u) [)) ,[(N, 0) #- (N', v) [)) (N',O). The only way to reach 
a state with no tokens in a marked Petri net satisfying Definition 3.1 is by firing a fl.-labeled 
transition just before reaching state O. Hence ,[(N, u)[ )) ,[(N, 0) #- u = 0 and (N', v)[ )) 
(N', 0) #- v = O. If u = 0, then v = u r Pq = O. If v = 0, then u r Pq = O. Since (N, [i]) 
satisfies Definition 3.1, it is not possible that u "# 0 and u r Pq = O. Hence, u = 0 #- v = O. 

o 

Theorem 5.3 specifies sufficient requirements such that the extension of the life cycle with a part 
that is executed in parallel yields a life cycle under projection inheritance. We can use this trans
formation rule, to show that (N2' [iD in Figure 4 is a subclass of (No, liD. 

It is not difficult to find other transformation rules which preserve some kind of inheritance. 
Figure 7 shows a transformation rule inspired by rule P J 1. This transformation rule shows that we 
can insert new behavior between two parts of the original life cycle that are executed sequentially 
while preserving projection inheritance. In contrast to the previous two transformation rules, the 
Petri net which corresponds to the superclass is modified. The transformation rule shown in Figure 7 
boils down to the replacement of an arc by an entire Petri net. This transformation rule preserves 
projection inheritance if the requirements stated in the following conjecture are met. 

Nr 

Figure 7: Another projection-inheritance-preserving transformation rule. 

Conjecture 5.4. (Another projection-inheritance-preserving transformation rule) Let Nq = 
(Pq, Tq, Fq , lq) and Nr = (Pr, Tr , F" lr) be two Petri nets such that; 

i) Pq n Pr = {P.}, Tq n Tr = {t.}, (t., P.) E Fq and lq(t.) = lr(t.) for some place P. and 
transition t., 
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ii) (Vt: t E Tr : t"# t. => i(t) 1/ a(Nq )), 

iii) N: = (P" T" F:, ir) with F: = Fr U {(P., t.)} is a free-choice Petri net and (N:, [P.)) is live 
and bounded. 

Let N~ = (Pq, Tq, F~,f.q) with F~ = Fq \ {(t., P.)}. If(N, [i)) = (N~ UN" [i)) and (N', [i)) = 
(Nq, [i)) are object life cycles satisfying the requirements stated in Definition 3.1, then (N, [i]) is 
a subclass of(N', [i)) with respect to projection inheritance, i.e., (N, [i)) :::pj (N', [i]). 

For people not familiar with free-choice Petri nets, requirement iii) may be hard to swallow. Using 
the rich theory of free-choice Petri nets ([6)) it is easy to prove that [P.] is a so-called home marking 
of (N:, [P.)), see [1]. This implies that eventually every token consumed from place p. by Nr is 
returned. If we abstract from the methods added by N" then the replacement of the arc between t. 
and P. by Nr does not change the external behavior. Therefore, it can be shown that the replacement 
of this arc by Nr preserves projection inheritance. 

~pj 

:::lc 
:::pj 

==:lc 

No 

:::pt 
-:SIc 

Figure 8: The application of the three transformation rules leads from (No, [i)) to (N3, [iD while 
preserving life-cycle inheritance. 

Example 5.5. Figure 8 illustrates the three transformation rules presented thus far. The first transfor
mation rule can be used to prove that (NI, [i)):::pt (No, [i)) (bo is removed fromNI). The second rule 
can be used to prove that (N2 , [i)) :::pj (NI , [iD (b l is relabeled to r). Application of the third trans
formation rule shows that (N3, [i)) :::pj (N2' [i)) (b2 is relabeled to r). The three transformation rules 
also preserve life-cycle inheritance. Since :::10 is transitive, we deduce that (N3, [i)) :::/, (No, [i)). 

Finally, we present a rule which preserves protocol and projection inheritance. This transformation 
rule corresponds to rule P P and is illustrated in Figure 9. 
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Figure 9: A protocol/projection-inheritance-preserving transformation rule. 

Conjecture 5.6. (Protocol/projection-inheritance-preserving transformation rule) Let Nq -

(Pq, Tq, Fq, lq) and Nr = (P" T" Fr, lr) be two Petri nets such that: 

i) Tq n Tr = I2l and there is a place p. such that Pq n Pr = {P.}, 

ii) a(Nr) n a(Nq) = 12l, 

iii) Nr = (Pr, T" F" ir) is a free-choice Petri net and (N" [p.D is live and bounded. 

If (N, [iD = (Nq U N" [iD and (N', [iD = (Nq, [iD are object life cycles satisfying the re
quirements stated in Dennition 3.1, then (N, [iD is a subclass of (N', [iD with respect to proto
col/projection inheritance, i.e., (N, [iD ':::pp (N', liD. 

It is easy to see that protocol inheritance is preserved, because the conditions stated in Theorem 5.1 
apply. Projection inheritance is also preserved because the transitions in Nr are renamed to r and are 
willing to fire such that any token consumed from [P.] is returned eventually. The latter is a direct 
result of the fact that [P.] is a home marking of (Nr , [p.D. The transformation rule described in 
Conjecture 5.6 shows that under protocol/projection inheritance it is allowed to postpone part of 
the life cycle. 

Note that, in contrast to the rules presented in [4], the four transformation rules presented in 
this paper are also applicable to object life cycles with recursion. In fact, it is easy to see that the 
application of the last transformation rule introduces recursion. 

The four transformation rules give a good characterization of the various forms of inheritance. 
In contrast to [4], we did not provide rules for the preservation of life-cycle inheritance, because 
these rules are combinations of the rules for protocol and projection inheritance (See Example 5.5). 
The fact that the rules in [4] correspond to elegant transformation rules in a Petri-net context is en
couraging. It appears that the inheritance concepts used in this paper are quite universal and tran
scend the two formalisms. 
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6 Concluding Remarks 

A framework for the specification and verification oflife-cycIe inheritance has been presented. The 
framework is based on Petri nets and, therefore, close to the professional experience of people en
gaged in object -oriented design. The four inheritance relations presented in this paper have been 
inspired by the process-algebraic concepts of encapsulation and abstraction [4]. It has been shown 
that these inheritance relations can be checked automatically. Moreover, a number of powerful 
inheritance-preserving transformation rules have been presented. These transformation rules show 
how an object life cycle may be extended while preserving certain dynamical properties. 

Acknowledgements. The authors would like to thank Jos Baeten and Marc Voorhoeve for their 
valuable suggestions. 
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