

Life-cycle inheritance : a Petri-Net-Based approach

Citation for published version (APA):
Aalst, van der, W. M. P., & Basten, T. (1996). Life-cycle inheritance : a Petri-Net-Based approach. (Computing
science reports; Vol. 9606). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1996

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 23. Aug. 2022

https://research.tue.nl/en/publications/c75a0201-a0df-4508-b1ba-dde7ebe60611

Eindhoven University of Technology
Dcpartment of Mathematics and Computing Science

Life-Cycle Inheritance
A Petri-Net-Based Approach

by

W.M.P. van der Aalst and T. Basten

ISSN 0926-4515

All rights resclVed
editors: prof. dr. R.C. Backhousc

prof.dr. J.C.M. Baeten

Reports are available at:
http://www.win.tue.nJ/win/cs

Computing Science Report 96/06
Eindhoven, March 1996

96/06

Life-Cycle Inheritance
A Petri-Net-Based Approach

W.M.P. van der Aalst and T. Basten

Department of Mathematics and Computing Science
Eindhoven University of Technology, The Netherlands
email: {wsinwa.tbastenj@win.tue.nl

Abstract. Inheritance is one of the key issues of object-orientation. The inheritance mechanism
allows for the definition of a subclass which inherits the features of a specific superclass. This
means that methods and attributes defined for the superclass, are also available for objects of
the subclass. Existing methods for object-oriented modeling and design, abstract from the dy
namic behavior of objects when defining inheritance. Nevertheless, it would be useful to have a
mechanism which allows for the inheritance of dynamic behavior. This paper describes a Petri
net-based approach to the formal specification and verification of this type of inheritance. We
use Petri nets to specify the dynamics of an object class. The Petri-net formalism allows for
a graphical representation of the life cycle of objects which belong to a specific object class.
Four possible inheritance relations are defined. These inheritance relations can be verified au
tomatically. Moreover, four powerful transformation rules which preserve specific inheritance
relations are given.

Keywords: Object orientation, Petri nets, Inheritance, Object life cycle.

1 Introduction

Although object-oriented design is a relatively young practice, it is considered to be the most promis
ing approach to software development. Within a few years the two leading object-oriented method
ologies, OMT [13] and OOD [5], have conquered the world of software engineering. Both method
ologies use state-transition diagrams for specifying the dynamic behavior of objects. Typically, for
each object class, one state-transition diagram is specified. Such a state-transition diagram shows
the state space of a class and the methods that cause a transition from one state to another. In this
paper, we use Petri nets (See for example [12]) for specifying the dynamics of an object class. There
are several reasons for using Petri nets. First of all, Petri nets provide a graphical description tech
nique which is easy to understand and close to state-transition diagrams. Second, parallelism, con
currency and synchronization are easy to model in terms of a Petri net. Third, many techniques and
software tools are available for the analysis of Petri nets. Finally, Petri nets have been extended
with color, time and hierarchy [10,11]. The extension with color allows for the modeling of ob
ject attributes and methods. The extension with time allows for the quantification of the dynamic
behavior of an object. The hierarchy concept can be used to structure the dynamics of an object
class.

In this paper, we use the term object life cycle to refer to a Petri net specifying the dynamics of
an object class. Figure 1 shows two object life cycles. Object life cycle No specifies the dynamics

1

~
No +

Figure 1: 1\\'0 object life cycles.

of an object of tbe class person. The creation of an object is modeled by a transition witb a 'V label.
Firing this transition corresponds to the birth of a person. Firing one of the two transitions witb a t:"
label results in the termination of the object, i.e., tbe death of a person. An object oftbe class person
is either in state single or in state married. Each of these states corresponds to a place in the object
life cycle No. Firing the transition with label m corresponds to tbe marriage of a person and results
in the transfer of a token from single to married. Firing the transition with label d corresponds
to the divorce of a person. As a result, a token is transferred from married to single. Object life
cycle NJ specifies tbe dynamics of tbe class another -person. Compared to tbe original object life
cycle, the transition labeled b and the place alive have been added. Firing this additional transition
corresponds to the birthday of a person. Note tbat in this object life cycle tbe state of a person is
represented by two tokens. As a result, it is possible to have concurrency within tbe same object.

In general, the state of an object is represented by a configuration of tokens over places. Tran
sitions represent state changes. The label of a transition refers to the method being executed when
the transition fires. Note that a method is the implementation of an operation that can be executed
for specific objects. There are three reserved metbod labels, 'V (object creation), t:" (object termi
nation) and 'l' (internal method). In Figure 1 there are no 'l'-Iabeled transitions. However, it turns
out to be useful to distinguish internal methods from external methods. Internal metbods can only
be activated by the object itself. External methods can also be activated by other objects.

The two object life cycles shown in Figure 1 have a lot in common. In fact, NJ comprizes No.
Moreover, it appears that life cycle NJ incorporates, or inherits, all properties of life cycle No and
adds its own unique properties. Inheritance is one of the key issues in object-orientation. Unfor
tunately, inheritance is often limited to sharing attributes and methods among object classes. Until
now, a good concept for life-cycle inheritance was lacking (See for example [2]). Existing object
oriented methodologies such as OMT [13] and OOD [5] do not give a clear definition of inheritance
with respect to the dynamics of an object class. In this paper, we tackle the problem of deciding
whether the object life cycle of one class inherits the life cycle of another class.

In anotber paper ([4]), we have investigated this problem using a simple ACP-like process al-

2

gebra. In that paper, it is shown that encapsulation and abstraction turn out to be important con
cepts for the characterization of life-cycle inheritance. Based on these concepts, four inheritance
relations have been defined. The process-algebraic characterization of life-cycle inheritance in [4]
is rather straightforward because encapsulation and abstraction are well investigated and, in con
trast to state-transition diagrams and Petri nets, states are not represented explicitly. Using the rich
theory of ACP it is quite easy to show that each of the four inheritance relations has a number of de
sirable properties. Unfortunately, an algebraic characterization of inheritance is difficult to handle
by people not familiar with process algebra. Most of these people prefer state-transition diagrams
because of their graphical nature, simplicity and the fact that states are represented explicitly. These
features do not apply to process algebra, but are essential to the success of existing object-oriented
methodologies. Therefore, we resort to Petri nets for the specification of object life cycles. Petri
nets provide a graphical formalism which is much closer to existing methodologies such as OMT
andOOD.

In this paper, we show that it is possible to formalize the four inheritance relations in a Petri
net context. Moreover, we extend some of the results presented in [4]. For example, in contrast
to the approach in [4], we are able to handle object life cycles with recursion. Although we allow
recursion, it is possible to verify each of the four inheritance relations automatically. Moreover, a
number of transformation rules which preserve specific forms of inheritance are presented. These
transformation rules show how the object life cycle of a superclass may be extended for a subclass
while preserving life-cycle inheritance.

2 Labeled Petri Nets

In this paper, we use standard Petri nets extended with a labeling function. Let A be some universe
of action labels. Action labels can be thought of as method identifiers, i.e., firing a transition with
label a E A corresponds to the execution of method a.

Definition 2.1. (Labeled Petri net) An A-labeled Petri net is a tuple N = (P, T, F,l) where

i) P is a finite set of places;

ii) T is a finite set of transitions such that P n T = 111;

iii) F 5; (P x T) U (T x P) is a set of directed arcs, called the flow relation;

iv) l : T --+ A is a labeling function.

A place p is called an input place of a transition t if and only if there exists a directed arc from p
to t. Place p is called an output place of transition t if and only if there exists a directed arc from t
to p. We use ·t to denote the set of input places for a transition t. The notations t·, .p, and p. have
similar meanings. For example, p. is the set of transitions sharing p as an input place.

Places of a Petri net may contain zero or more tokens. The state of a Petri net, often referred to
as marking, is the distribution of tokens over the places. Hence, the state of a net can be represented
by a finite multi-set, or bag, of places. The following definitions and notations for bags are used.

A bag of elements from some alphabet A can be considered as a function from A to the natural
numbers IN. That is, for some bag X over alphabet A and a E A, X(a) denotes the number of

3

occurrences of a. The empty bag is denoted O. For the explicit enumeration of a bag, a notation
similar to the notation for sets is used, but using square brackets instead of curly brackets and using
superscripts to denote the cardinality of the elements. For example, [a2, b, c3] denotes the bag with
two elements a, one b, and three elements c; the bag [a2 I a E A 1\ Pea)] contains two elements
a for every a E A such that Pea) holds, where P is some predicate on symbols of the alphabet.
To denote individual elements of a bag, the same symbol "E" is used as for sets. The union of two
bags X and Y, denoted X I±I Y, is defined as [an I a E A 1\ n = X(a) + Yea)]. The difference of
X and Y, denoted X - Y, is defined as [an I a E A 1\ n = (X(a) - yea)) max 0]. The restriction
of some bag X to some domain D S;; A, denoted X r D, is defined as [aXIal I a ED]. The notion
of subbags is defined as expected: bag X is a subbag of Y, denoted X :s Y, if and only if for all
a E A, X(a) :s Yea).

Definition 2.2. (Marked Petri net) A marked Petri net is a pair (N, s) where N = (P, T, F, e) is
a labeled Petri net and where s is a bag over P denoting the state or marking of the net.

Marked Petri nets have a dynamic behavior which is defined by the following firing rule.

Definition 2.3. (Firing rule) Let (N, s) be some marked Petri net with N = (P, T, F, e). A transi
tion t E T is enabled, denoted (N, s)[t) , if and only if each input place contains at least one token.
That is, (N, s)[t) {} °t :s s. An enabled transition can fire. If a transition t fires, then it consumes
one token from each of its input places; it produces one token for each of its output places. The
visible effect of a firing is the label ofthe transition. Formally, (N, s) [e(t)) (N, s - °t I±I to).

Based on the firing rule, the notion of reachability can be formalized.

Definition 2.4. (Reachability) Let (N, s) be a marked A-labeled Petri net. State s' is reachable from
s, denoted (N, s)[*) (N, s'), if and only if s' equals s oriffor some n E IN there exist ao, ai, ... an E

A and markings S" ... , Sn such that (N, s) lao) (N, s,) [a,) ... [an) (N, s').

In this paper, we we want to be able to compare the behavior of objects which are specified by
marked Petri nets. Therefore, an equivalence on Petri nets is needed. The equivalence should distin
guish Petri nets whose behaviors have different moments of choice, because the moment of choice
may influence the order in which methods are allowed to be executed. In addition, Petri nets with
the same external behavior, but with possibly different internal behavior must be considered equal.
Given these two requirements, branching bisimulation seems to be a suitable equivalence [7].

Let N be the set of marked A-labeled Petri nets where A is equal to A U {r}. Recall that a r
labeled transition corresponds to an internal method. The following auxiliary relation expresses that
a marked Petri net can evolve into another markeq net by firing a sequence of r -labeled transitions.

Definition 2.5. The relation _[)) _ : P (N x N) is the smallest relation satisfying, for any n, n', n" E

N, n [)) n and n [)) n' 1\ n' [r) n" =} n [)) n".

Let, for any n, n' EN and a E A, n [(a))n' be an abbreviationofn [a) n'V (a = r I\n = n'). That
is, n [(T)) n' means zero or one T steps and, for any a E A, n [(a)) n' is simply n [a) n'. To define
branching bisimulation, we need to identify marked Petri nets which correspond to the successful
termination of an object. A life cycle without any tokens corresponds to a terminated object, i.e.,
the life cycle of a terminated object is of the form (N, 0).

4

Definition 2.6. (Branching-bisimulation equivalence) A binary relation R : P(N x N) is called
a branching bisimulation if and only if, for any n, n', m, m', (N, sn), (M, sm) EN and a E A,

I) nRm /\ n [a) n' =} (3 m', m" : m', m" E /If: m [)) m" [(a») m' /\ nRm" /\ n'Rm'),

ii) nRm /\ m [a) m' =} (3n', n" : n', n" E /If: n [)) n" [(a») n' /\ n"Rm /\ n'Rm'),

iii) (N, sn)R(M, sm) =} (N, sn) [)) (N,O) # (M, sm) [)) (M,O).

Two marked Petri nets n and m are called branching bisimilar, denoted n ~b m, if and only if there
exists a branching bisimulation between n and m.

n m

,r'-,-,]
.... ----.
n' m"=m'

n m

1"";---1'
Cl "

"" "1' m" n ex

•
m'

Figure 2: Branching bisimulation.

The first two requirements state that steps in the first marked Petri net are also possible in the second
and vice versa. The third requirement says that if a marked Petri net can terminate via a number of
, steps, then this also holds for any other related marked Petri net. Figure 2 shows the essence of
branching bisimulation. Note that for any a E A, the relation _ [a) _ is depicted by an a-labeled
arrow, whereas the relation _ [)) _ is depicted by a double-headed arrow. Also note that the defini
tion given here differs from the original definition given in [8]. In fact, it is the definition of semi
branching bisimulation, which was first defined in [9], but formulated as it appears in [3]. It can be
shown that the two notions are equivalent [9, 3]. The reason for using the alternative definition is
that it is more concise and more intuitive than the original definition.

3 Object Life Cycles

Using Petri nets for the specification of object life cycles allows us to specify a partial ordering
of methods. However, not every labeled Petri net specifies an object life cycle. As discussed in
the introduction, we introduce three reserved labels, namely " for object creation, /:;. for object
termination and , for internal methods. Set L, not containing any of the special labels, is the set of
method labels corresponding to external methods; Ls is the set of method labels including the three
special labels, i.e., Ls = L U {", /:;., ,}. A Petri net which specifies a life cycle has exactly one
transition tv which corresponds to the creation of an object and bears a " label. For convenience,
we assume that tv has one unique input place i and that every transition has at least one input place.
A Petri net describing a life cycle refers to the life cycle of a single object. It suffices to consider just
one object because of the fact that objects interact via the execution of methods and not directly via
the life cycle. Since we focus on one object at a time, initially, place i contains one token. An object
terminates the moment a method with a /:;. label is executed. Between the creation of an object (i.e.,

5

the firing of tv) and the termination of an object (i.e., the firing of a 6-labeled transition), there is
always at least one token present in the life cycle. If we restrict ourselves to life cycles without
inherent parallelism, it suffices to have just one token. The introduction of parallelism results in
multiple tokens that are present in the life cycle. We can think of these tokens as 'stage indicators'
referring to the same object. The moment an object is terminated, all tokens which correspond to
the object should be removed. This means that firing a 6-labeled transition results in an empty Petri
net indicating that the object has ceased to exist and all references to the object have been removed.
Finally, we assume that it is always possible to terminate by executing the appropriate sequence
of methods. However, this does not mean that every object is forced to terminate. The following
definition formalizes the definition of an object life cycle.

Definition 3.1. (Object life cycle) A marked Ls-labeled Petri net (N, s) where N = (P, T, F,l)
describes an object life cycle if and only if

i) P contains a special place i and T contains a special transition tv such that °i = fil, iO = {tv}
and °tv = Ii}. Moreover, tv is the only transition in T such thatl(tv) = \1. For any transition
t E T, °t f= fil.

ii) The initial marking s contains just one token, which is a token in the initial place i: s = [i].

iii) Let s' be an arbitrary state reachable from s, i.e., (N, s) [*} (N, s').

- For any t E T such that (N, s')[t), (N, s') [l(t)} (N,O) {} l(t) = 6. Hence, there
is a one-to-one correspondence between the termination of an object and the firing of a
6-labeled transition.

- It is possible to terminate successfully from s', i.e., (N, s') [*} (N, 0).

Ifwe restrict ourselves to free-choice Petri nets, then there is a polynomial-time algorithm to verify
the requirements in Definition 3.1 [1]. Moreover, for most object life cycles it is easy to see whether
these requirements hold. Petri nets satisfying the requirements stated in Definition 3.1 have a num
ber of nice properties. One of them is boundedness, i.e., the number of reachable states is finite.

Property 3.2. Any marked Petri net (N, [iD representing an object life cycle is bounded.

Proof. If an object life cycle (N, [iD is not bounded, then there are two reachable states SI and S2

such that (N, [i])[*}(N, SI)[*}(N, S2) and S2 > SI. Since (N, [i]) is a life cycle, there is a sequence
of firings a leading from (N, SI) to (N, 0). The label of the last transition that fired is 6. However,
we can also execute a from (N, S2). In this case, the label of the final firing is still 6 but this firing
does not result in (N, 0) which contradicts the fact that (N, [iD is an object life cycle. Hence, an
object life cycle (N, [iD is bounded. 0

6

4 Life-Cycle Inheritance

We have given a formal definition of an object life cycle in terms of a Petri net. Now, it is time to an
swer the following question: When is an object life cycle a subclass of some other object life cycle?
For example, is (N\, [iD in Figure 1 a subclass of (No, liD? In other words, does (N\, [iD inherit
certain features of (No, [iD? To answer this question, we have to establish an inheritance relation
for object life cycles. Inspired by process-algebraic concepts like encapsulation and abstraction,
two basic forms of inheritance seem to be appropriate [4].

The first basic form of inheritance corresponds to encapsulation. Let (No, [iD and (N\, [iD be
two object life cycles.

If the environment only calls the methods of (N\, [iD which are not present in (No, [iD
and it cannot distinguish the observable behavior of (No, [iD and (N\, [iD, then (N\, [i])
is a subclass of (No, liD.

This means that if the new methods added to the subclass are blocked or the environment is not will
ing to use the new methods, then the superclass and the subclass behave equivalently. As shown in
[4] this corresponds to the encapsulation operator known from ACP (aH) which translates actions
in H to deadlock Ii. This form of inheritance is referred to as protocol inheritance because the sub
class inherits the protocol of the superclass. It is not difficult to verify that (N\, [iD in Figure I is
a subclass of (No, [iD with respect to protocol inheritance. If the method birthday is blocked, then
the observable behaviors are identical.

The second basic form of inheritance corresponds to abstraction.

If the environment is willing to call the methods of (N\, [iD which are not present in
(No, [iD and it cannot distinguish the observable behavior of (No, [iD and (N\, [i])
with respect to the methods of (No, liD, then (N\, [iD is a subclass of (No, liD.

This means that even by calling the new methods (i.e. the methods in N\ but not in No), the behav
ior of the subclass coincides with the behavior of the superclass with respect to the old methods.
However, if the environment is reluctant to call some of the new methods, it may discover differ
ences with respect to the old methods. If we consider the new methods to be internal methods which
cannot disable or enable old methods, then the superclass and the subclass behave equivalently. For
those familiar with process algebra, it is easy to see that this corresponds to the abstraction oper
ator (r[) which translates actions in I to silent steps r. This form of inheritance is referred to as
projection inheritance. It is also easy to see that (N\, [iD in Figure I is a subclass of (No, [iD with
respect to projection inheritance. If we hide the method birthday, then the observable behaviors are
identical. '

Analogously to [4], we define two other forms of inheritance by combining the two basic forms
just presented. But first, we define the encapsulation operator aH and the abstraction operator r[for
Petri nets.

Definition 4.1. (EncapSUlation and abstraction) Let (N, s) be a marked L,-labeled Petri net with
N = (P, T, F, i).

i) For any H £;; L, the encapsulation operator aH removes all transitions with a label in H from
a given Petri net. Formally, aH(N, s) = (N', s) such that N' = (P, T', F', i'), T' = (t E

T I i(t) ~ H), F' = F n «P x T') U (T' x P)) and e' = i n (T' xL,).

7

ii) For any I !:;; L, the abstraction operator 'I renames all transition labels in I to ,. That is,
'I(N,s) = (N',s)suchthatN' = (P, T,F,l')andforanyt E T,l(t) E Iimpliesl'(t) =,
and let) f/- I implies l'(t) = let).

Note that the encapsulation of methods corresponds to the removal of transitions, i.e., the blocking
of a method is achieved by removing the corresponding transitions.

Property 4.2. Branching bisimulation, ~b, is a congruence for encapsulation and abstraction.

Proof. It is straightforward to verify that branching bisimulation, ~b, is an equivalence relation [3].
It remains to show that for any two marked Petri nets (No, so) and (Nl' SI) and any H, I !:;; L,
(No, so) ~b (Nl' SI) implies that aH(No, so) ~b aH(N1, sd and 'I (No, so) ~b 'I(N1 , SI). Let 'R be
a branching bisimulation between (No, so) and (N1 , sd. Based on 'R, we define the binary relation
Q = {(aH(No, u), aH(Nl, v» I (No, so)[*) (No, u)A(N1 , sl)[*)(N1, v)A(No, U)'R(Nl' v»). It is not
difficult to verify that Q is a branching bisimulation between aH(No, so) and aH(N1 , SI). Hence, ~b
is a congruence for the encapsulation operator a H. Similarly, we can prove that ~b is a congruence
for the abstraction operator 'I. 0

Using encapsulation and abstraction, we define protocol inheritance and projection inheritance re
spectively. However, it is possible to combine these two definitions. Therefore, we also define two
additional forms of inheritance. Protocol/projection inheritance is the conjunction of the two basic
forms of inheritance. An object life cycle is a subclass of another object life cycle with respect to
protocol/projection inheritance if and only if it is a subclass with respect to protocol inheritance and
projection inheritance. The disjunction of the two basic forms of inheritance does not yield an inher
itance relation with desirable properties such as transitivity. However, it is possible to state that for
every new method one of the two basic forms of inheritance should hold. This form of inheritance
is called life-cycle inheritance. An object life cycle is a subclass of another object life cycle (i.e. the
superclass) with respect to life-cycle inheritance if and only if the abstraction of some methods and
the encapsulation of some other methods of the subclass results in an object life cycle equivalent to
the superclass.

Definition 4.3. (Inheritance relations) For any two marked Petri nets (N, s), (N', s') EN,

i) protocol inheritance:
(N, s) is a subclass of (N', s') under protocol inheritance, denoted (N, s) :::pt (N', s'), if and
only ifthere is an H !:;; L such that aH(N, s) ~b (N', s'),

ii) projection inheritance:
(N, s) is a subclass of (N', s') under projection inheritance, denoted (N, s) :::pj (N', s'), if
and only if there is an I!:;; L such that 'I(N, s) ~b (N', s'),

iii) protocol/projection inheritance:
(N, s) is a subclass of (N', s') under protocol/projection inheritance, denoted (N, s) :::pp

(N', s'), if and only if there is an H !:;; L such that aH(N, s) ~b (N', s') and an I !:;; L
such that 'I(N, s) ~b (N', s'),

iv) life-cycle inheritance:
(N, s) is a subclass of (N', s') underlife-cycle inheritance, denoted (N, s) :::Ic (N', s'), if and
only if there is an I!:;; L and an H !:;; L such that I n H =!il and '10 aH(N, s) ~b (N', s').

8

.

Note that life-cycle inheritance is defined in terms of a function composition (rE 0 dH). Since we
demand that I and H are disjoint. we may change the order of encapsulation and abstraction without
changing the definition of life-cycle inheritance.

Figure 3: An overview of life-cycle-inheritance relations.

Figure 3 shows an overview of the four inheritance relations. Protocol/projection inheritance is
the strongest form of inheritance. If an object life cycle is a subclass with respect to protocol/pro
jection inheritance. then it is also a subclass with respect to the other three forms of inheritance. In
Figure I. (NI • [iD is a subclass of (No. [iD with respect to protocol/projection inheritance. There
fore. (NI • [iD is also a subclass of (No. [iD with respect to the other three forms of inheritance.
Life-cycle inheritance is the weakest form of inheritance. If an object life cycle is a subclass with
respect to any of the four forms of inheritance. then it is also a subclass with respect to life-cycle
inheritance. In [4] it is shown that the inclusion relations in Figure 3 are strict and that there are no
inclusion relations between protocol inheritance and projection inheritance.

No

Figure 4: (NI. [iD ~pt (No. [iD. (N2. [iD ~pj (No. [iD and (N3 • [iD ~Ic (No. liD.

Example 4.4. The four object life cycles shown in Figure 4 illustrate these inheritance relations.
(NI • [iD is the subclass of (No. [iD under protocol inheritance. because the omission of the transi
tion labeled bo in NJ yields a net structurally equivalent and. hence. branching bisimilar to (No. [i]).
(N2• [iD is a subclass of (No. [iD under projection inheritance. because hiding the transition labeled
b l in N2 yields a marked Petri net which is branching bisimilar to (No. liD. (N2• [iD is not a sub
class of (No. [iD under protocol inheritance. because the blocking of b l yields a net which cannot

9

terminate successfully. (N3 • [iD is not a subclass of (No. [iD under protocol inheritance. nor is it a
subclass under projection inheritance. However. (N3• [iD is a subclass of (No. [iD under life-cycle
inheritance.

The object life cycles shown in Figures 1 and 4 illustrate that the four inheritance relations are com
plementary. Moreover. our belief that the four inheritance relations are valuable is strengthened by
the fact that each of the four relations is reflexive and transitive.

Property 4.5. Protocol inheritance. projection inheritance. protocol/projection inheritance. and life
cycle inheritance are preorders.

Proof. For any labeled marked Petri net (N. s). o,,(N. s) is equal to (N. s) and ,,,(N. s) is equal
to (N. s). Hence. ~Pt. ~pj. ~pp, and ~Io are reflexive. It is fairly straightforward to show that ~pt
is transitive. Let (No. so). (N1• sd and (N2• S2) be three marked Petri nets such that (No. so) ~pt
(N1• Sl) and (N1• sd ~pt (N2• S2). It is possible to find two sets of labels H. H' £; L such that
oH(No• so) ~b (N1 • Sl) and ow(NJ, Sl) ~b (N2• S2). Since ~b is a congruence for OH (see Prop
erty 4.2). it is easy to verify that owuH(No• so) = owooH(No. so) ~bow(NI. Sl) ~b (N2. S2). Hence.
(No. so) ~pt (N2. S2). Analogously. we can prove that ~Pt is transitive. Since ~pp = ~Pt n ~pj. it
follows immediately that ~pp is transitive. Showing that life-cycle inheritance is transitive is more
involved. Assume (No. so) ~Io (N1• sd ~Io (N2. S2). From the definition of life-cycle inheritance
it follows that there are subsets H. H'. I. and I' of L such that 'I 0 oH(No• so) ~b (N1• sd and
'I' 0 ow(NI • sd ~b (N2• S2). H n I = P and H' n I' = p. Moreover. it is possible to choose
H. H'. I. and I' such that (H U I) n (H' U I') = P (see [4]). Since ~b is a congruence for ab
straction and encapsulation. it follows that "CrUl 0 OH'UH(No• so) = 'I' 0 "CI 0 Ow 0 oH(No• so) =
"CI' 0 Ow O"CI 0 oH(No• so) ~b 'I' 0 ow(NI • Sl) ~b (N2• S2). Hence. ~I, is also transitive. 0

Analogously to the result in [4] we can also show that subclass equivalence coincides with branching
bisimulation equivalence. i.e .• given two object life cycles and one of the four inheritance relations.
if the first life cycle is a subclass of the second life cycle and vice versa. then the two life cycles are
branching bisimilar. This is another result showing that the definitions are sound.

Theorem 4.6. (Decidability of inheritance) For any two object life cycles (No. [iD and (NI. [i])
it is decidable whether (N1• [iD is a subclass of (No. [iD with respect to ~p" ~pj. ~pp. or ~Io.

Proof. If follows from Property 3.2 that the two object life cycles are bounded. Each of the modi
fied object life cycles used in Definition 4.3 (i.e .• oH(NI • liD. "CI(N1• [iD and 'I 0 OH (N1• [iD with
H. I £; L) is also bounded (Although they may not satisfy the requirements in Definition 3.1).
Therefore. checking whether such a modified life cycle and (No. [iD are branching bisimilar is de
cidable. 0

10

5 Inheritance-Preserving-Transformation Rules on Petri Nets

As long as life cycles are not too complex, it is easy to check whether a specific inheritance relation
holds. Unfortunately, object life cycles tend to become very complex. Although it is possible to
check the inheritance relations automatically, such a check may require a lot of computing power.
Therefore, we propose a number of transformation rules which preserve inheritance. Moreover,
these transformation rules reveal the essence of the inheritance relations described in Definition 4.3.

For convenience, we introduce the alphabet operator a on Petri nets. For any Ls-Iabeled Petri
net N = (P, T, F, e), a(N) = (e(t) I t ETA let) E Ls \ {r}}. The union of two Petri nets is
defined as the union of the components, i.e., Np U Nq = (Pp U Pq, Tp U Tq, Fp U Fq, ep U lq) under
the assumption that for any t E Tp n Tq, ep(t) = lq (t).

Figure 5: Protocol-inheritance-preserving transformation rule.

The first transformation rule preserves protocol inheritance and is illustrated in Figure 5. If we
extend a life cycle (N., [iD with a Petri net Np such that (1) no transitions are shared among both
nets, (2) all new transitions consuming from places in Nq have a label not ina(Nq) and (3) the result
is still a life cycle, then the extended life cycle is a subclass of the original life cycle with respect to
protocol inheritance.

Theorem 5.1. (Protocol-inheritance-preservingtransfonnation rule) Let Nq = (Pq, Tq, Fq, eq)
and Np = (Pp, Tp, Fp, ep) be two Petri nets. Let (N, [iD = (Nq UNp, [iD and (N', [iD = (Nq, [iD
be two object life cycles satisfying the requirements stated in Deflnition 3.1. If the following addi
tional properties are satisfled,

i) Tq n Tp = Iil,

ii) (V p, t : t E Tp APE Pq nOt: e(t) E L \ a(Nq»,
then (N, [iD is a subclass of(N', [iD with respect to protocol inheritance, i.e. (N, [iD :'Opt (N', liD.

Proof. We show that aH(N, [iD ~b (N', [i]) with H = a(Np) \ a(Nq). Consider the marked Petri
net (N, [i]). Initially, the places in Pp \ Pq are empty. The only way to add tokens to one of these
places is by firing a transition consuming tokens from Pq n Pp • So, if we encapsulate these transi
tions (a H (N, [iD), then the places in P p \ Pq will remain empty and none of the remaining transitions

11

in Tp will ever be able to fire. Hence, the subnet added to (N', [iD in oH(N, [iD is dead if we encap
sulate the transitions having a new label. Let n = {(oH(N, u), (N', u» I oH(N, [i)H*) oH(N, u) A

(N', [iD [*) (N', u)} be a binary relation. Since the subnet added to (N', [iD in oH(N, [iD is dead,
it is straightforward to verify that n is a branching bisimulation between oH(N, [iD and (N', liD.

o

The transitions in the set {t E Tp I Pq nOt t= !il} operate as 'guards'. By blocking these guards, the
new part of the object life cycle is deactivated. In Figure 5, bo and b l operate as guards. By applying
this transformation rule, we are able to show that (N1, [iD in Figure 4 is a subclass of (No, liD. We
can also apply this rule to show that (N1, [iD in Figure I is a subclass of (No, liD.

The transformation rule described by Theorem 5.1 is inspired by an axiom presented in [4). To
show the relation between the inheritance-preserving transformation rules presented in this paper
and some of the algebraic rules in [4), we give an intermezzo for those familiar with process algebra.

Intermezzo 5.2. In [4) we presented an algebraic theory PAj"p for studying life-cycle inheritance.
PAj"p is an ACP-like process algebra with deadlock, internal actions and renaming. In this context,
an object life cycle is defined to be a closed PAT term starting with the object-creation action \1.
Based on this theory, we have defined four forms of inheritance analogous to Definition 4.3. For
example, for any two object life cycles p and q, P :::pt q if and only ifPAj"p f- OH(P) = q.

In [4), we also presented a number of rules which illustrate under what conditions inheritance
is preserved. In the remainder of this intermezzo, we concentrate on these rules. L, Ls and a are
defined analogous to the definitions in this paper. Let p, q, qo, ql and r be closed PA T terms and a
andb actions in Ls such that anda(r) !:;; L \ (a(q) Ua(qo) Ua(ql) U (a)) and bEL \ (a(q) U{a)).
Under these conditions the following axioms apply.

q + b . P :::pt q PT
q·r:::pjq PJ1
a· (r· (qo + ql) + qo) :::pj a· (qo + ql) PJ2
a· (q II r) :::pj a· q PJ3
a· ((b·r).q +q) :::pp a·q PP

The first rule (axiom PT) corresponds to the rule in Theorem 5.1. Method b functions as a guard.
By blocking the guard, the environment is forced to follow the original life cycle q. Rules PJI and
P J2 state that inserting new behavior in an object life cycle that does not disable any behavior of
the original life cycle, yields a subclass under projection inheritance. Rule P J3 shows that putting
alternative behavior in parallel with the original life cycle also yields a subclass under projection
inheritance. Rule P P shows that under protocol/projection inheritance it is allowed to postpone
behavior. In the remainder of this section, we show that we can formulate transformation rules on
Petri nets which correspond to PJ3, PJI and PP. Although it is possible to define a transforma
tion rule which corresponds to P J2, we will not do so, because the duplication of qo is not very
meaningful in the context of Petri nets.

The second transformation rule corresponds to rule P J3 and is illustrated in Figure 6. If we extend
a life cycle (Nq, [iD with a Petri net NT such that (I) no places are shared among both nets, (2) all
new transitions have a label not in a(Nq), (3) the transitions in Nq consuming tokens from NT obey

12

the free-choice property ([6]) and (4) the result is still a life cycle, then the extended life cycle is a
subclass of the original life cycle with respect to projection inheritance. Hence, we can add parts to
the life cycle which are executed in parallel with the original life cycle while preserving projection
inheritance.

Nr

Figure 6: Projection-inheritance-preserving transformation rule.

Theorem 5.3. (Projection-inheritance-preservingtransformation rule) Let Nq = (Pq, Tq, Fq, lq)
and Nr = (P" T" F" lr) be two Petri nets with for any t E Tq n T" lq(t) = lr(t). Let (N, [iD =
(Nq U Nr , [i]) and (N', [iD = (Nq, [iD be two object life cycles satisfying the requirements stated
in Definition 3.1. lfthe following additional properties are satisfied,

i) Pq n Pr =~,

ii) \'I t : t E Tr \ Tq : let) fj a (Nq»,
iii) \'I p, t : p E Pr 1\ t E Tq n po : ('It': t' E Tq : °t nOt' i- ~ => °t = °t'»,

then (N, [iD is a subclass of(N', [iD with respect toprojectioninheritance, i.e. (N, [iD:::pj (N', [iD.

Proof. We have to prove that T:[(N, [iD ~b (N', [iD with I = OI(Nr) \ OI(Nq).
Let R = {(T:[(N, u), (N', v» I u r Pq = v 1\ T:[(N, [iD [*) T:[(N, u) 1\ (N', [iD [*) (N', v)} be a
binary relation. To prove that R is a branching bisimulation between T:[(N, [iD and (N', [iD, we
show that the three requirements stated in Definition 2.6 hold. Let u be a state of N and let v be a
state of N' such that T:[(N, u)R(N', v).

i) If u' is a state of N such that T:[(N, u) [01) T:[(N, u'), then it is easy to verify that there is a
state v' of N' such that T:[(N, u')R(N', v') and (N', V)[(OI» (N', v'). 1fT:[(N, U)[OI) T:[(N, u')
corresponds to the firing of a transition in T" then v' = v. Otherwise, there is a transition t
in Tq such that let) = a and (N', v) [01) (N', v').

ii) If v' is a state of N' such that (N', v) [01) (N', v'), then we have to prove that there is a state
u' and a state u" such that T:[(N, u) [» T:[(N, u") [(01» T:[(N, u'), T:[(N, u")R(N', v) and
T:[(N, u')R(N', v'). Let t be a transition in Tq such that (N', v) [l(t» (N', v'). If t is en
abled in T:[(N, u), then T:[(N, u) [l(t» T:[(N, u') and T:[(N, u')R(N', v'). 1ft is not enabled
in T:[(N, u), then we have to prove that t can be enabled without firing transitions in Nq. If t

13

is not enabled in '[(N, u), then °t n Pr "# ~ and one of the places in °t n Pr is empty. Assume
that t will never be able to fire in ,[(N, u). One of the input places of t contains a token (t
is enabled in (N', v) and u r Pq = v) and because of the third property all other transitions
also consuming from this input place will never be able to to fire. However, this means that
'[(N, u) is not a life cycle because successful termination is not possible. Hence, we con
clude that it is possible to enable t in '[(N, u) without firing transitions in Nq and firing t
results in a state u' such that ,[(N, u')R(N', v').

iii) Remains to prove that ,[(N, u) [)) ,[(N, 0) #- (N', v) [)) (N',O). The only way to reach
a state with no tokens in a marked Petri net satisfying Definition 3.1 is by firing a fl.-labeled
transition just before reaching state O. Hence ,[(N, u)[)) ,[(N, 0) #- u = 0 and (N', v)[))
(N', 0) #- v = O. If u = 0, then v = u r Pq = O. If v = 0, then u r Pq = O. Since (N, [i])
satisfies Definition 3.1, it is not possible that u "# 0 and u r Pq = O. Hence, u = 0 #- v = O.

o

Theorem 5.3 specifies sufficient requirements such that the extension of the life cycle with a part
that is executed in parallel yields a life cycle under projection inheritance. We can use this trans
formation rule, to show that (N2' [iD in Figure 4 is a subclass of (No, liD.

It is not difficult to find other transformation rules which preserve some kind of inheritance.
Figure 7 shows a transformation rule inspired by rule P J 1. This transformation rule shows that we
can insert new behavior between two parts of the original life cycle that are executed sequentially
while preserving projection inheritance. In contrast to the previous two transformation rules, the
Petri net which corresponds to the superclass is modified. The transformation rule shown in Figure 7
boils down to the replacement of an arc by an entire Petri net. This transformation rule preserves
projection inheritance if the requirements stated in the following conjecture are met.

Nr

Figure 7: Another projection-inheritance-preserving transformation rule.

Conjecture 5.4. (Another projection-inheritance-preserving transformation rule) Let Nq =
(Pq, Tq, Fq , lq) and Nr = (Pr, Tr , F" lr) be two Petri nets such that;

i) Pq n Pr = {P.}, Tq n Tr = {t.}, (t., P.) E Fq and lq(t.) = lr(t.) for some place P. and
transition t.,

14

ii) (Vt: t E Tr : t"# t. => i(t) 1/ a(Nq)),

iii) N: = (P" T" F:, ir) with F: = Fr U {(P., t.)} is a free-choice Petri net and (N:, [P.)) is live
and bounded.

Let N~ = (Pq, Tq, F~,f.q) with F~ = Fq \ {(t., P.)}. If(N, [i)) = (N~ UN" [i)) and (N', [i)) =
(Nq, [i)) are object life cycles satisfying the requirements stated in Definition 3.1, then (N, [i]) is
a subclass of(N', [i)) with respect to projection inheritance, i.e., (N, [i)) :::pj (N', [i]).

For people not familiar with free-choice Petri nets, requirement iii) may be hard to swallow. Using
the rich theory of free-choice Petri nets ([6)) it is easy to prove that [P.] is a so-called home marking
of (N:, [P.)), see [1]. This implies that eventually every token consumed from place p. by Nr is
returned. If we abstract from the methods added by N" then the replacement of the arc between t.
and P. by Nr does not change the external behavior. Therefore, it can be shown that the replacement
of this arc by Nr preserves projection inheritance.

~pj

:::lc
:::pj

==:lc

No

:::pt
-:SIc

Figure 8: The application of the three transformation rules leads from (No, [i)) to (N3, [iD while
preserving life-cycle inheritance.

Example 5.5. Figure 8 illustrates the three transformation rules presented thus far. The first transfor
mation rule can be used to prove that (NI, [i)):::pt (No, [i)) (bo is removed fromNI). The second rule
can be used to prove that (N2 , [i)) :::pj (NI , [iD (b l is relabeled to r). Application of the third trans
formation rule shows that (N3, [i)) :::pj (N2' [i)) (b2 is relabeled to r). The three transformation rules
also preserve life-cycle inheritance. Since :::10 is transitive, we deduce that (N3, [i)) :::/, (No, [i)).

Finally, we present a rule which preserves protocol and projection inheritance. This transformation
rule corresponds to rule P P and is illustrated in Figure 9.

15

Figure 9: A protocol/projection-inheritance-preserving transformation rule.

Conjecture 5.6. (Protocol/projection-inheritance-preserving transformation rule) Let Nq -

(Pq, Tq, Fq, lq) and Nr = (P" T" Fr, lr) be two Petri nets such that:

i) Tq n Tr = I2l and there is a place p. such that Pq n Pr = {P.},

ii) a(Nr) n a(Nq) = 12l,

iii) Nr = (Pr, T" F" ir) is a free-choice Petri net and (N" [p.D is live and bounded.

If (N, [iD = (Nq U N" [iD and (N', [iD = (Nq, [iD are object life cycles satisfying the re
quirements stated in Dennition 3.1, then (N, [iD is a subclass of (N', [iD with respect to proto
col/projection inheritance, i.e., (N, [iD ':::pp (N', liD.

It is easy to see that protocol inheritance is preserved, because the conditions stated in Theorem 5.1
apply. Projection inheritance is also preserved because the transitions in Nr are renamed to r and are
willing to fire such that any token consumed from [P.] is returned eventually. The latter is a direct
result of the fact that [P.] is a home marking of (Nr , [p.D. The transformation rule described in
Conjecture 5.6 shows that under protocol/projection inheritance it is allowed to postpone part of
the life cycle.

Note that, in contrast to the rules presented in [4], the four transformation rules presented in
this paper are also applicable to object life cycles with recursion. In fact, it is easy to see that the
application of the last transformation rule introduces recursion.

The four transformation rules give a good characterization of the various forms of inheritance.
In contrast to [4], we did not provide rules for the preservation of life-cycle inheritance, because
these rules are combinations of the rules for protocol and projection inheritance (See Example 5.5).
The fact that the rules in [4] correspond to elegant transformation rules in a Petri-net context is en
couraging. It appears that the inheritance concepts used in this paper are quite universal and tran
scend the two formalisms.

16

6 Concluding Remarks

A framework for the specification and verification oflife-cycIe inheritance has been presented. The
framework is based on Petri nets and, therefore, close to the professional experience of people en
gaged in object -oriented design. The four inheritance relations presented in this paper have been
inspired by the process-algebraic concepts of encapsulation and abstraction [4]. It has been shown
that these inheritance relations can be checked automatically. Moreover, a number of powerful
inheritance-preserving transformation rules have been presented. These transformation rules show
how an object life cycle may be extended while preserving certain dynamical properties.

Acknowledgements. The authors would like to thank Jos Baeten and Marc Voorhoeve for their
valuable suggestions.

References

1. W.M.P. van der Aalst. A Class of Petri Nets for Modeling and Analyzing Business Processes. Comput
ing Science Reports 95/26, Eindhoven University of Technology, Eindhoven, The Netherlands, 1995.

2. G. Agha et al. Panel discussion at the workshop on Object-Oriented Programming and Models of Con
currency. 16th. International Conference on the Application and Theory of Petri Nets, Torino, Italy, June
1995.

3. T. Basten. Branching Bisimilarity is an Equivalence indeed! To appear in Information Processing Let
ters.

4. T. Basten and W.M.P. van der Aalst. A Process-Algebraic Approach to Life-Cycle Inheritance: Inheri
tance = encapsulation + abstraction. Computing Science Reports 96/05, Eindhoven University of Tech
nology, Eindhoven, The Netherlands, 1996.

5. G. Booch. Object· Oriented Analysis and Design: With Applications. Benjamin/Cummings, Redwood
City, CA, USA, 1994.

6. J. Desel and J. Esparza. Free Choice Petri Nets, volume 40 of Cambridge Tracts in Theoretical Computer
Science. Cambridge University Press, Cambridge, 1995.

7. R.J. van Glabbeek. What is Branching Time Semantics and Why to Use It? In Bulletin of the EATCS,
number 53, pages 191-198. European Association for Theoretical Computer Science, June 1994.

8. R.J. van Glabbeek and W.P. Weijland. Branching Time and Abstraction in Bisimulation Semantics (ex
tended abstract). In G.x. Ritter, editor,lnformationProcessing 89: Proceedings of the IFlP 11th. World
Computer Congress, pages 613-618, San Fransisco, CA, USA, August/September 1989. Elsevier Sci
ence Publishers B.V., North-Holland, 1989.

9. R.J. van Glabbeek and w.P. Weijland. Branching Time and Abstraction in Bisimulation Semantics. Re
port CS-R9120, Centre for Mathematics and Computer Science, CWI, Amsterdam, The Netherlands,
1991. A revised version will appear in Journal of the ACM.

10. K.M. van Hee. Information System Engineering: a Formal Approach. Cambridge University Press,
Cambridge, UK, 1994.

17

11. K. Jensen. Coloured Petri Nets. Basic concepts, analysis methods and practical use. EATCS Mono
graphs on Theoretical Computer Science. Springer-Verlag, Berlin, 1992.

12. W. Reisig. Petri Nets: An Introduction, volume 4 of Monographs in Theoretical Computer Science: An
EATCS Series. Springer-Verlag, Berlin, 1985.

13. J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen. Object-Oriented Modeling and De
sign. Prentice-Hall, Englewood Cliffs, NJ, USA, 1991.

18

Computing Science Reports

In this series appeared:

93/01

93/02

93/03

93/04

93/05

93/06

93/07

93/08

93/09

93/10

93/11

93/12

93/13

93/14

93/15

93/16

93/l7

93/18

93/19

93/20

93/21

93/22

93/23

93/24

93/25

93/26

93/27

93/28

93/29

93/30

R. van Geldrop

T. Verhoeff

T. Verhoeff

E.H.L Aarts
I.H.M. Karst
P.I, Zwietering

I,C.M. Baeten
C. Verhoef

J.P. Veltkamp

P.O. Moerland

J. Verhoosel

K.M. van Hee

K.M. van Hee

K.M. van Hce

K.M. van Hee

K.M. van Hee

J .C.M. Baeten
J .A. Bergstra

I.C.M. Baeten
I.A. Bergstra
R.N. 801

H. Schepers
I. Hooman

D. Alstein
P. van der Stok

C. Verhoef

G-J. Houben

F.S. de Boer

M. Codish
D. Dams
G. File
M. Bruynooghe

E. Poll

E. de Kogel

E. Poll and Paula Severi

H. Schepers and R. Gerth

W.M.P. van der Aalst

T. KIoks and D. Kratsch

F. Kamareddine and
R. Nederpelt

R. Post and P. Dc Bra

I. Deogun
T. KIoks
D. Kratsch
H. Muller

Department of Mathematics and Computing Science
Eindhoven University of Technology

Deriving the Aho-Corasick algorithms: a case study into the synergy of program~
ming methods, p. 36.

A continuous version of the Prisoner's Dilenuna, p. 17

Quicksort for linked lists, p. 8.

Detenninistic and randomized local search. p. 78.

A congruence theorem for structured operational
semantics with predicates, p. 18.

On the unavoidability of metastable behaviour, p. 29

Exercises in MUltiprogramming, p. W

A Fonnal Deterministic Scheduling Model for Hard Rea1-Time Executions in
DEDOS, p. 32.

Systems Engineering: a Fonnal Approach
Part I: System Concepts, p. 72.

Systems Engineering: a Formal Approach
Pan II: Frameworks, p. 44.

Systems Engineering: a Formal Approach
Pan ill: Modeling Methods, p. 101.

Systems Engineering: a Fonnal Approach
Pan IV: Analysis Meihods, p. 63.

Systems Engineering: a Formal Approach Part V: Specification Language, p. 89.

On Sequential ComJX)sition, Action Prefixes and
Process Prefix, p. 21.

A Real-Time Process Logic, p. 31.

A Trace-Based Compositional Proof Theory for
Fault Tolerant Distributed Systems. p. 27

Hard Real-Time Reliable Multicast in the DEDOS system,
p. 19.

A congruence theorem for structured operational
semantics with predicates and negative premises. p. 22.

The Design of an Online Help Facility for ExSpect. p.21.

A Process Algebra of Concurrent Constraint Programming, p. 15.

Freeness Analysis for Logic Programs - And Correctness, p. 24

A Typechecker for Bijective Pure Type Systems, p. 28.

Relational Algebra and Equational Proofs, p. 23.

Pure Type Systems with Definitions. p. 38.

A Compositional Proof Theory for Fault Tolerant Real-Time Distributed Systems,
p. 31.

Multi-dimensional Petri nets, p. 25.

Finding all minimal separators of a graph. p. 11.

A Semantics for a fine A-calculus with de Bruijn indices.
p.49.

GOLD. a Graph Oriented Language for Databases, p. 42.

On Vertex Ranking for Permutation and Other Graphs,
p. 11.

93/31 W. Korver

93/32 H. ten Eikelder and
H. van Gcldrop

93/33 L Loyens and 1. Moonen

93/34 J .C.M. Baeten and
J .A. Bergstra

93/35 W. Ferrer and
P. Severi

93/36 I.C.M. Baeten and
I.A. Bergstra

93/37 1. Brunekreef
J-P. Katoen
R. Koymans
S. Mauw

93/38 C. Verhoef

93/39 W.P.M. Nuijlcn
E.H.L. Aarts
D.A.A. van Erp Taalman Kip
K.M. van Hee

93/40 P.D.V. van def Stok
M.M.M.P.I. Claessen
D, Alstein

93/41 A. Bijlsma

93/42 P.M.P, Rambags

93/43 B.W. Watson

93/44 B.W. Watson

93/45 E.l. Luit
I.M.M. Martin

93/46 T. KIoks
D. Kratsch
J. Spinrad

93/47 W. v.d. Aalst
P. De Bra
GJ. Houben
Y. Komalzky

93/48 R. Gerth

94/01 P. America
M. van def Kammen
R.P. Nederpelt
0.5. van Roosmalen
H.C.M. de Swart

94/02 F. Kamareddine
R.P. Nederpclt

94/03 L.B. Hanman
K.M. van Hee

94/04 I.C.M. Baeten
J.A. Bergstra

94/05 P. Zhou
1. Hooman

94/06 T. Basten
T. Kunz
J. Black
M. Coffin
D. Taylor

94/07 K.R. Apt
R. Bol

94/08 O.s. van Roosmalen

94/09 J.C.M. Baeten
I.A. Bergstra

Derivation of delay insensitive and speed independent CMOS circuits, using
directed commands and production rule sets, p. 40.

On the Correctness of some Algorithms to generate Fmite
Automata for Regular Expressions, p. 17.

IUAS, a sequential language for parallel matrix computations, p. 20.

Real Time Process Algebra with Infinitesimals, p.39.

Abstract Reduction and Topology, p. 28.

Non Interleaving Process Algebra, p. 17.

Design and Analysis of
Dynamic Leader Election Protocols
in Broadcast Networks, p. 73.

A general conservative extension theorem in process algebra, p. 17.

Job Shop Scheduling by Constraint Satisfaction, p. 22.

A Hierarchical Membership Protocol for Synchronous
Distributed Systems, p. 43.

Temporal operators viewed as predicate transfonners, p. 11.

Automatic Verification of Regular Protocols in Pff Nets, p. 23.

A taxomomy of finite automata construction algorithms, p. 87.

A taxonomy of finite automata minimization algorithms, p. 23.

A precise clock synchronization protocol,p.

Treewidth and Patwidth of Cocomparability graphs of
Bounded Dimension, p. 14.

Browsing Semantics in the "Tower" Model, p. 19.

Verifying Sequentially Consistent Memory using Interface
Refinement, p. 20.

The object-oriented paradigm, p. 28.

Canonical typing and II-conversion, p. 51.

Application of Marcov Decision Processe to Search
Problems, p. 21.

Graph Isomorphism Models for Non Interleaving Process
Algebra, p. 18.

Fonnal Specification and Compositional Verification of
an Atomic Broadcast Protocol, p. 22.

Time and the Order of Abstract Events in Distributed
Computations, p. 29.

Logic Programming and Negation: A Survey, p. 62.

A Hierarchical Diagrammatic Representation of Class Structure, p. 22.

Process Algebra with Partial Choice, p. 16.

94/10 T. verhoeff

94/11 1. Peleska
C. Huizing
C. Petersohn

94/12 T. KIoks
D. Kratsch
H. Muller

94/13 R. Seljee

94/14 W. Peremans

94/15 R.l.M. Vaessens
E.H.L Aarts
l.K. Lenstra

94/16 R.C. Backhouse
H. Doornbos

94/17 S. Mauw
M.A. Reniers

94/18 F. Kamareddine
R. Nederpelt

94/19 B.W. Watson

94/20 R. Bloo
F. Kamareddine
R. Ncderpelt

94/21 B.W. Watson

94/22 B.W. Watson

94/23 S. Mauw and M.A. Reniers

94/24 D.Dams
O. Grumberg
R. Gerth

94/25 T. KIoks

94/26 R.R. Hoogerwoord

94/27 S. Mauw and H. Mulder

94/28 C.W.A.M. van Overveld
M. Verhoeven

94/29 1. Hooman

94/30 J .C.M. Baeten
I.A. Bergstra
Gh. $tefanescu

94/31 B.W. Watson
R.E. Watson

94/32 J.J. Vereijken

94/33 T. Laan

94/34 R. Bloo
F. Kamareddine
R. Nederpelt

94/35 I.C.M. Baeten
S. Mauw

94/36 F. Kamareddine
R. Nederpelt

94/37 T. Basten
R. Bol
M. Voorhoeve

94/38 A. Bijisma
C.S. Scholten

The testing Paradigm Applied to Network Structure. p. 31.

A Comparison of Ward & Mellor's Transfonnation
Schema with State- & Activitycharts, p. 30.

Dominoes, p. 14.

A New Method for Integrity Constraint checking in Deductive Databases, p. 34.

Ups and Downs of Type Theory, p. 9.

Job Shop Scheduling by Local Search, p. 21.

Mathematical Induction Made Calculational, p. 36.

An Algebraic Semantics of Basic Message
Sequence Chans, p. 9.

Refining Reduction in the Lambda Calculus, p. 15.

The petfonnance of single-keyword and multiple-keyword pattern matching
algorithms, p. 46.

Beyond p-Reduction in Church's ,\ --t, p. 22.

An introduction to the Fire engine: A C++ toolkit for Finite automata and Regular
Expressions.

The design and implementation of the FIRE engine:
A C++ toolkit for Finite automata and regular Expressions.

An algebraic semantics of Message Sequence Charts, p. 43.

Abstract Interpretation of Reactive Systems:
Abstractions Preserving 'VCTL*, 3CTL* and CfL*, p. 28.

K],l.free and W4-free graphs, p. 10.

On the foundations of functional programming: a programmer's point of view. p.
54.

Regularity of BPA-Systems is Decidable, p. 14.

Stars or Stripes: a comparative study of finite and
transfinite techniques for surface modelling, p. 20.

Correctness of Real Time Systems by Construction, p. 22.

Process Algebra with Feedback, p. 22.

A Boyer-Moore type algorithm for regular expression
pattern matching, p. 22.

Fischer's Protocol in Timed Process Algebra, p. 38.

A fonnalization of the Ramified Type Theory, pAD.

The 13arendregt Cube with Definitions and Generalised
Reduction, p. 37.

Delayed choice: an operator for joining Message
Sequence Charts, p. 15.

Canonical typing and II-conversion in the Barendregt
Cube, p. 19.

Simulating and Analyzing Railway Interlockings in
ExSpect, p. 30.

Point.free substitution, p. 10.

94/39 A. Blokhuig
T. KIoks

94/40 D. Alstein

94/41 T. KIoks
D. Kratsch

94/42 1. Engelfriet
1.J. Vereijken

94/43 R.C. Backhouse
M. Bijsterveld

94/44 E. Brinksma J. Davies
R. Gerth S. Graf
W. Janssen 8. Jonsson
S. Katz G.Lowe
M. Poel A. Poucli
C.Rwnp J. Zwicrs

94/45 GJ. Houben

94/46 R.81oo
F. Kamareddine
R. Nederpe.lt

94/47 R. Bloo
F. Kamareddine
R. Nederpelt

94/48 Mathematics of Program
Construction Group

94/49 I.C.M. Baeten
I.A. BergsLTa

94/50 H. Geuvers

94/51 T. KIoks
D. KraLSch
H. Muller

94/52 W. Penczek
R. Kuiper

94/53 R. Gerth
R. Kuiper
D. Peled
W. Penczek

95/01 I.I. Lukkien

95/02 M. Bezem
R. Bol
J.P. Groole

95/03 I.C.M. Baeten
C. Verhoef

95/04 1. Hidders

95/05 P. Severi

95/06 T.W.M. Vossen
M,G.A. Verhoeven
H.M.M. ten Eikeldcr
E. H. L. Aarts

95/07 G.A.M. de BTUyn
0.5. van Roosmalen

95/08 R. Bloo

95/09 J .C.M. Baeten
I.A. Bergstra

95/10 R.e. Badmousc
R. Verhoeven
O.Weber

On lhe equivalence covering number of splitgraphs, p. 4.

Distributed Consensus and Hard Real-Time Systems, p.34.

Computing a perfect edge without venex elimination
ordering of a chordal bipartite graph, p. 6.

Concatenation of Graphs, p. 7.

Category TheQry as Coherently Constructive Lattice
Theory: An illustration, p. 35.

Verifying Sequentially Consistent Memory, p. 160

Tutorial voor de ExSpect-bibliotheek voor "Administratieve Logistiek", p. 43.

The),. -cube with classes of tenns modulo conversion,
p. 16.

On TI-conversion in Type Theory, p. 12.

Fixed-Point Calculus, p. II.

Process Algebra with Propositional Signals, p. 25.

A short and flexible proof of Strong Nonnalazation
for the Calculus of Constructions, p. 27.

Listing simplicial vertices and recognizing
diamond-free graphs, p. 4.

Traces and Logic, p. 81

A Panial Order Approach to
Branching Time Logic Model Checking, p. 20.

The Construction of a small CommunicationLibrary, p.16.

Fonnalizing Process Algebraic Verifications in the Calculus
of Constructions, p.49.

Concrete process algebra, p. 134.

An Isotopic Invariant for Planar Drawings of CotUlccted Planar Graphs, p. 9.

A Type Inference Algorithm for Pure Type Systems, p.20.

A Quantitative Analysis of Iterated Local Search, p.23.

Drawing Execution Graphs by Parsing, p. 10.

Preservation of Strong Nonnalisation for Explicit Substitution, p. 12.

Discrete Time Process Algebra, p. 20

MatWpad: A System for On-Line Prepararation of Mathematical
Documents, p. 15

95/11

95/12

95/13

95/14

95/15

95/16

95/17

95/18

95/19

95{l0

95fll

95fl2

95{l3

95{l4

95{l5

95{l6

95{l7

95fl8

95{l9

95130

95i31

95132

95/33

95134

95135

96/01

96/02

96/03

96/04

96/05

R. SeJjee

S. Mauw and M. Reniers

B.W. Watson and G. Zwaan

A. Panse, C. Verhoef,
S.F.M. Vlijmen (eds.)

P. Niebert and W. Penczek

D. Dams, O. Grumberg, R. Genh

S. Mauw and E.A. van def Meulen

F. Kamareddine and T. Laan

I.C.M. Baeten and I.A. Bergstra

F. van Raamsdonk and P. Severi

A. van Deurscn

B. Arnold, A. v. Deursen, M. Res

W.M.P. van def Aalst

EP.M. Dignum, W.P.M. Nuijtcn,
LM.A. Janssen

L Feijs

W.M.P. van def Aalst

P.D.V. van def Stok, J. van def Wal

W. Fokkink, C. Verhoef

H. Jurjus

1. Hidders, C. Hoskens, J. Paredaens

P. Kelb, D. Dams and R. Gerth

W.M.P. van def Aalst

J. Engelfriet and n. Vereijken

1. Zwanenburg

T. Basten and M. Voorhoeve

M. Voorhoeve and T. Basten

P. de Bra and A. Aerts

W.M.P. van dec Aalst

S. Mauw

T. Basten and W.M.P. v.d. Aalst

Deductive Database Systems and integrity constraint checking, p. 36.

Empty Interworkings and Refinement
Semantics of Interworkings Revised, p. 19.

A taxonomy of sublinear multiple keyword pattern maLChing algorithms, p. 26.

De proceedings: ACP95, p.

On the Connection of Partial Order Logics and Partial Order Reduction Methods.
p. 12.

Abstract Interpretation of Reactive Systems: Preservation of CTL *, p. 27.

Specification of tools for Message Sequence Chans, p. 36.

A Reflection on Russell's Ramified Types and Kripke's Hierarchy of Truths,
p.14.

Discrete Time Process Algebra with Abstraction, p. 15.

On Normalisation, p. 33.

Axiomatizing Early and Late Input by Variable Elimination, p. 44.

An Algebraic Specification of a Language for Describing Fmancial Products,
p. 1 I.

Petri nct based scheduling, p. 20.

Solving a Time Tabling Problem by Constraint Satisfaction, p. 14.

Synchronous Sequence Charts In Action, p. 36.

A Class of Peui nets for modeling and analyzing business processes, p. 24.

Proceedings of the Real-Time Database Workshop, p. 106.

A Conservative Look at tenn Deduction Systems with Variable Binding, p. 29.

On Nesting of a Nonmonotonic Conditional, p. 14

The Formal Model of a Pattern Browsing Technique, p.24.

Practical Symbolic Model Checking of the full .u-calculus using Compositional
Abstractions, p. 17.

Handboek simulatie, p. 51.

Context-Free Graph Grammars and Concatenation of Graphs, p. 35.

Record concatenation with intersection lypes, p. 46.

An algebraic semantics for hierarchical prr Nets, p. 32.

Process Algebra with Autonomous Actions, p. 12.

Multi-User Publishing in the Web: DreSS, A Document Repository Service
Station, p. 12

ParaUel Computation of Reachable Dead States in a Free-choice Petri Net, p. 26.

Example specifications in phi-SOL.

A Process-Algebraic Approach to Life·Cycle Inheritance
Inheritance = Encapsulation + Abstraction, p. 15.

• j

	Abstract
	1. Introduction
	2. Labeled Petri Nets
	3. Object Life Cycles
	4. Life-Cycle Inheritance
	5. Inheritance-Preserving-Transformation Rules on Petri Nets
	6. Concluding Remarks
	References

