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ABSTRACT

LIFECYCLE PROGRESSION AND SEXUAL DEVELOPMENT OF THE 

APICOMPLEXAN PARASITE CRYPTOSPORIDIUM PARVUM

Jayesh Tandel 

Boris Striepen 

Cryptosporidium has emerged as one of the leading causes of diarrhea induced- 

mortality in children and immunocompromised HIV+ individuals. Other than the acute 

infection, chronic and asymptomatic cryptosporidiosis results in stunted physical and 

mental development in children. Drugs and vaccines are needed to combat 

cryptosporidiosis, and a better understanding of the biology of the parasite will help in 

developing therapeutics against the parasite. Cryptosporidium has a single host 

lifecycle. Ingested meiotic spores called oocysts release invasive sporozoites in gut. 

Sporozoites infect intestinal enterocytes where parasites multiply asexually followed by 

sexual differentiation. Parasites have sex and then undergo sporulation in the host to 

produce mature oocysts. Oocysts re-infect the host or are transmitted via feces. 

Cryptosporidium infection in cancerous cell lines (HCT-8 and Caco-2) lasts for only three 

days but mice stay infected for a month We engineered a strain that allows to discern 

different stages and used it to study the developmental kinetics in HCT-8 cells and mice. 

Parasites replicated asexually in culture followed by sexual differentiation of the 80% of 

the total population after 48 hours. However, parasites failed to fertilize in culture. 

Contrastingly, parasites undergo mating, post-fertilization development and sporulation 

in mice. These studies suggested that sex and renewed production of oocyst is 

necessary to maintain infection in a host. As a result, disruption of sexual development 

or mating should break the cycle of infection in mice. This requires an in-depth 

understanding of sexual stage processes. We identified sexual stage-specific markers 
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and engineered male- and female-specific reporter strains to isolate sexual stages from 

infected mice and culture for RNA sequencing. Sexual stages were enriched for genes 

required for meiosis, oocyst development, gamete recognition and fusion. 

Transcriptional analyses further confirmed four sex specific ApiAP2 genes, and ApiAP2s 

in Plasmodium are involved in stage-specific development. We intend to disrupt sexual 

development by targeting one of these ApiAP2s, and cgd4_1110 was confirmed as an 

essential, female specific ApiAP2. We engineered rapamycin inducible DiCre gene KO 

system to conditionally disrupt AP2-F. Our next step is to conditionally disrupt AP2-F in 

infected mice to test essentiality of sex to maintain infection.   
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Chapter 1: Introduction 

Cryptosporidium, an apicomplexan parasite, recently emerged a leading cause of 

diarrheal illness and mortality in young children and immunocompromised 

individuals.(Khalil et al., 2018a; Kotloff et al., 2013; Liu et al., 2012) Ernest Edward 

Tyzzer was the first to observe Cryptosporidium in the gastric glands of laboratory 

mice(Tyzzer, 1907), and it was initially thought of as a benign commensal frequently 

observed in vertebrates.(Levine, 1980) However, multiple studies confirmed 

Cryptosporidium as the causative agent of acute and chronic enteric disease in 

children(Khalil et al., 2018b; Kotloff et al., 2013; Liu et al., 2012; Shoultz et al., 2016) and 

individuals suffering from  HIV-AIDS(Ma, 1984; Ma and Soave, 1983), respectively. 

Many reports of Cryptosporidium outbreaks(Gharpure, 2019) and findings of longitudinal 

studies(Khalil et al., 2018b; Kotloff et al., 2013; Liu et al., 2012) have confirmed 

Cryptosporidium as one of the major water- and food-borne pathogens. Unfortunately, 

early efforts to develop anti-cryptosporidial drugs(Amadi et al., 2009) and 

vaccines(Lemieux et al., 2018; Mead, 2010, 2014) have been unsuccessful. 

Cryptosporidium has been a difficult pathogen to study in the laboratory, and the lack of 

a culture system and genetic tools have limited our understanding of the biology of the 

parasite and our ability to develop effective countermeasures. 

In 1907, Tyzzer described the morphological appearance and the developmental 

sequence of asexual and sexual stages of Cryptosporidium in the gut of infected 

mice.(Tyzzer, 1907) Many subsequent studies have further characterized asexual and 

sexual stages of Cryptosporidium in a variety of infected hosts in ultrastructural 

detail.(Current and Reese, 1986; Ostrovska and Paperna, 1990) However, limited 

progress has been made in understanding the molecular mechanisms underlying the 
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complex developmental transitions that Cryptosporidium undergoes throughout its 

lifecycle. Recent breakthroughs like the development of genetic tools(Vinayak et al., 

2015) and continuous culture systems(Heo et al., 2018; RePass et al., 2017; Wilke et al., 

2019) have now made it possible to dissect the molecular biology of the Cryptosporidium 

lifecycle. 

Apicomplexan parasites have a complex lifecycle that alternates between an asexual 

and a sexual phase.(Cowman et al., 2016) The associated transformations from one 

lifecycle stage to another require complex molecular changes modulated by 

developmental regulators that change patterns of gene expression.(Hehl et al., 2015; 

Painter et al., 2017) The asexual replication phase allows apicomplexan parasites to 

amplify in numbers and often compete with other pathogens or genotypes for resources. 

Contrastingly, sexual development allows parasites to diversify their gene pools. 

Apicomplexans such as Toxoplasma(Dubey et al., 2011), Eimeria(Graat et al., 1994) 

and Cryptosporidium(Ostrovska and Paperna, 1990) are transmitted through 

environmentally resilient cyst forms. Ingested Eimeria(Graat et al., 1994) oocysts infect 

the gut of a host and initiate asexual replication followed by obligatory sexual 

development. The sexual stages of Eimeria mate and the zygotic stage develops into an 

immature, unsporulated oocyst (not infectious). Unsporulated oocysts are shed through 

feces where they undergo a process of sporogony to produce sporulated oocysts 

(infectious form) with mature sporozoites.(Graat et al., 1994) Toxoplasma in felids 

undergoes a developmental process similar to Eimeria.(Dubey et al., 2011)  

Cryptosporidium undergoes a similar lifecycle development like Eimeria.(Ostrovska and 

Paperna, 1990) However, the zygotic stages of Cryptosporidium mature into infectious, 

sporulated oocysts within the host that reinfect the same host.(Current and Reese, 1986; 
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Tyzzer, 1907) This feature allows sex in Cryptosporidium to serve as the source of 

infection and transmission and raises the following questions about the lifecycle of the 

parasite: 1. Does the parasite undergo obligatory sexual development after limited 

rounds of asexual amplification? 2. If yes then will the disruption of sexual 

development or sex attenuate infection in a host?   

To address these questions in my thesis, I developed and used a variety of molecular 

approaches. I have engineered reporter strains to distinguish different stages of 

Cryptosporidium and to observe the progression of the asexual and sexual phases of the 

parasite. I have exploited sex-specific molecular markers to engineer sex-specific 

reporter strains. This has allowed me to isolate different stages of the parasites and to 

define the molecular processes unique to each of them using transcriptomic approaches. 

Finally, I have developed a conditional gene knockout system and used it to disrupt the 

lifecycle and test whether sex is an obligatory requirement of continued infection in a 

host. These findings have profound implications for how the infection may be best 

treated and prevented. 

1.1. Cryptosporidiosis is a major public health concern. 

Cryptosporidium infection has been observed in a wide range of vertebrate animals 

including rhesus monkeys(Levine, 1980), snakes(Levine, 1980) and cattle(Pohlenz et 

al., 1978). Cryptosporidium was first detected in humans in a 3-year old child suffering 

from acute enterocolitis.(Nime et al., 1976) The rectal biopsy confirmed severe tissue 

changes but was inconclusive as to whether Cryptosporidium was the causative agent of 

the entercolitis.(Nime et al., 1976) A report published in 1980 unequivocally documented 
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human infection and the entire lifecycle of Cryptosporidium by electron microscopy of 

biopsy samples from patients with chronic diarrhea.(Bird and Smith, 1980) 6 of the 7 

Cryptosporidium-positive individuals were found to be immunocompromised.(Bird and 

Smith, 1980). Multiple reports published in the 1980s established Cryptosporidium as a 

causative agent of acute and chronic diarrhea in children and adults (mostly 

immunocompromised).(Tzipori and Widmer, 2008) 

1.1.1 Cryptosporidiosis in immunocompromised individuals. 

Cryptosporidiosis is characterized by watery diarrhea, dehydration, nausea and 

vomiting, and these symptoms in immunocompetent individuals typically last from 1-2 

weeks (but maybe protracted in some).(Mac Kenzie et al., 1994) Consistent with initial 

findings of Cryptosporidium in immunocompromised individuals(Bird and Smith, 1980), 

HIV+ individuals were found to be extensively affected by cryptosporidiosis(Hunter and 

Nichols, 2002). Hunter and Nichols have reviewed the presence of Cryptosporidium in 

individuals immunocompromised due to HIV infection, genetic disorders, cancer 

chemotherapy, malnutrition and organ transplantation.(Hunter and Nichols, 2002)  

Cryptosporidiosis is often found to take a much more chronic course  (>5 weeks) in HIV+ 

individuals.(Blanshard et al., 1992; Manabe et al., 1998) In addition to chronic illness, 

transient and recurring infections have also been reported in HIV+ individuals.(Blanshard 

et al., 1992; Manabe et al., 1998) The severity of the symptoms and prognosis was 

predicted by CD4+ T cell counts. A London-based study of HIV+ individuals established 

that patients with a CD4+ T count of less than 50/mm3 exhibited severe dehydration 

(passage of more than 2L stool/day).(Manabe et al., 1998) Similarly, an American study 

found that HIV+ patients with CD4+ T count >53/mm3 had a median survival of 1,119 
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days compared to 204 days in individuals with CD4+ T count <53/mm3 (relative hazard of 

death, 2.01; 95% CI, 1.38 to 2.93).(Blanshard et al., 1992) Consistently, amelioration of 

CD4+ T count by antiretroviral therapy has resulted in the resolution of symptoms(Maggi 

et al., 2000) and/or complete elimination of the disease(Miao et al., 2000). These 

empirical observations have been replicated in mouse models lacking T-cells(Sateriale 

et al., 2019), and control of the infection has been attributed to interferon-γ (IFN-γ)-

dependent effector function of CD4+ T cells(Hayward et al., 2000; Mead, 2014; Theodos 

et al., 1997). Hence, it can be concluded that the susceptibility of AIDS patients to 

Cryptosporidium is due to the loss of CD4 cells.  

Primary immunodeficiencies are genetic disorders that impair the normal functions of the 

immune system often leading to severely increased susceptibility to infectious 

agents.(McCusker et al., 2018) Since such immune disorders are rare, longitudinal 

studies of cryptosporidiosis prevalence in this population are lacking.(Hunter and 

Nichols, 2002) However, there are reports of Cryptosporidium in patients affected by 

severe and combined immunodeficiency (SCID)(Kocoshis et al., 1984), X-linked hyper-

immunoglobulin M syndrome(Levy et al., 1997), CD4 lymphopenia(Wolska-Kusnierz et 

al., 2007) and immunoglobulin A(Jacyna et al., 1990) deficiencies.  

There does not seem to be strong evidence for higher susceptibility for cryptosporidiosis 

in patients suffering from cancer, but multiple reports suggest that patients receiving 

bone marrow transplantation might be more susceptible to the disease (Hunter and 

Nichols, 2002). An Italian study described cryptosporidiosis in 20 patients suffering from 

hematological malignancies that have undergone chemotherapy and bone marrow 

transplantation.(Gentile et al., 1991) These patients were either asymptomatic or had 

mild to severe diarrhea.(Gentile et al., 1991) Similar to cancer patients, there is no clear 
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evidence of a higher risk of cryptosporidiosis in organ transplant recipients(Hunter and 

Nichols, 2002). However, a Turkish study of 69 renal transplant recipients revealed that 

the organ recipients had a higher incidence of infection.(Ok et al., 1997) 

1.1.2 Cryptosporidiosis in children. 

Infectious diseases accounted for 64% of the total deaths in children under 5 years in 

2010.(Liu et al., 2012) Pneumonia and diarrhea were two of the leading causes of 

mortality in children due to infection.(Liu et al., 2012) The Global Enteric Multicenter 

Study (GEMS) published in 2013 was designed to identify the causative agents of 

diarrhea in children under 5 years.(Kotloff et al., 2013) This large-scale study included at 

least 9000 cases of moderate-to-severe diarrhea along with a case-control sample of 

equivalent size.(Kotloff et al., 2013) GEMS identified rotavirus, Cryptosporidium, 

enterotoxigenic Escherichia coli producing stable toxin (ST-ETEC) and Shigella as the 

leading causative agents of moderate-to-severe diarrhea.(Kotloff et al., 2013) Infection 

with Cryptosporidium was identified to carry a major risk of death in children who are 12-

23 months old (Hazard Ratio 2·3; 95% CI 1·3–4·3).(Kotloff et al., 2013) The negative 

outcome of cryptosporidiosis on children health was also confirmed in a MAL-ED studies 

in multiple country.(Korpe et al., 2018) 

Malnourished children are more susceptible to Cryptosporidium infection and the reason 

is not well understood. A West Indian study published in 1987 was the first to establish a 

link between malnutrition and susceptibility to cryptosporidiosis in children.(Macfarlane 

and Horner-Bryce, 1987) Out of 513 children tested, 77 were found to be 

malnourished.(Macfarlane and Horner-Bryce, 1987) 19.5% of these malnourished 

children were found to be positive for Cryptosporidium, and they exhibited typical 
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symptoms including diarrhea, vomiting, fever and dehydration that lasted for two 

weeks.(Macfarlane and Horner-Bryce, 1987) A similar observation was made in a case-

controlled study in Peru that found more malnutrition among Cryptosporidium-positive 

children than among the non-infected.(Sarabia-Arce et al., 1990) Many other studies 

carried out in Mexico(Javier Enriquez et al., 1997), India(Jaggi et al., 1994), 

Gabon(Duong et al., 1995) and Tanzania(Cegielski et al., 1999) have found a higher 

prevalence of Cryptosporidium in malnourished children.  

Even in the absence of overt disease, cryptosporidiosis can negatively affect the growth 

outcome in children.(Korpe et al., 2018) Asymptomatic cryptosporidiosis results in 

reduced nutritional status (as measured by height and weight) and delayed growth 

catch-up.(Agnew et al., 1998; Checkley et al., 1997, 1998; Korpe et al., 2018) 

Mechanism(s) of cryptosporidiosis induced malnourishment are currently unknown but 

diminished nutrient absorption due to changes in tissue structure and physiology, 

inflammation, and dysbiosis are among the underlying factors currently 

considered.(Korpe and Petri, 2012) Cryptosporidium infection is thus both cause and 

consequence of malnourishment and the cause-and-effect between cryptosporidiosis 

and malnourishment is complex and further studies are needed to unravel this 

relationship.   

1.2. Cryptosporidium outbreaks 

Cryptosporidium oocysts are highly resilient to environmental stresses and they are 

transmitted through contaminated water and food. Cryptosporidium oocysts have a thick 

wall composed of complex macromolecules, including proteinaceous components that 
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are crosslinked via disulfide bridges.(Jenkins et al., 2010; Spano et al., 1997) Chemical 

and ultrastructural analyses of oocysts suggest that the oocyst wall is a tripartite 

structure composed of a surface glycoconjugate layer followed by lipid and 

proteinaceous layers.(Jenkins et al., 2010) Cryptosporidium oocyst walls are enriched 

with mycolipids and fatty alcohols that might prevent the absorption of commonly used 

disinfectants.(Fayer, 1995; Jenkins et al., 2010) Cryptosporidium encodes for genes 

required for trehalose synthesis which might also explain the ability of oocysts to 

withstand desiccation and dehydration.(Elbein et al., 2003)  

The resilience of Cryptosporidium oocysts to different environmental stresses have been 

reviewed systematically(Carey et al., 2004). Many of the standard waste-water treatment 

disinfectants like chlorine, chlorine dioxide and chloramine did not affect the infectivity of 

oocysts.(Korich et al., 1990) However, ozone and U.V. treatments have proven to be 

effective in neutralizing the parasite oocysts.(Keegan et al., 2003) The ability of the 

oocyst to withstand harsh environmental and chemical assaults and to persist for a 

prolonged period in feces(Robertson et al., 1992) allows for easy transmission of the 

parasite leading to outbreaks(Gharpure, 2019).  

1.2.1 Waterborne Outbreaks 

Of all the major cryptosporidiosis U.S outbreaks between 2009-2013, 67.2% were 

waterborne outbreaks.(Gharpure, 2019) Out of 183 waterborne outbreaks documented 

in this period, 156 of them were found to be due to exposure to treated recreational 

water.(Gharpure, 2019) This highlights the ineffectiveness of contemporary water 

treatment procedures to prevent Cryptosporidium transmission. One of the earliest 

reports of recreational waterborne outbreaks was documented in Los Angeles county in 
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1988 where 44 individuals developed the disease.(Porter et al., 1988) The source of the 

Cryptosporidium was found to be an individual who had defecated unintentionally in the 

swimming pool several days before the outbreak.(Porter et al., 1988) Since then many 

such outbreaks have been documented in several states in the United States.(Gharpure, 

2019) 

The 1993 outbreak of Cryptosporidium in Milwaukee, WI was the largest ever 

documented with 403,000 reported cases of diarrhea.(Mac Kenzie et al., 1994) The 

outbreaks was traced to two water-treatment plants that we're unable to filter 

Cryptosporidium oocysts adequately.(Mac Kenzie et al., 1994) The median age of the 

affected individuals was 4 years (ranging from 1-40 years).  Around 90% of the patients 

reported stereotypical symptoms like diarrhea and stomach cramps.(Mac Kenzie et al., 

1994) The symptoms lasted for a median of 14 days (1-30 days).(Mac Kenzie et al., 

1994) Many of the patients affected during the outbreak were children(Mac Kenzie et al., 

1994) but an elderly population of afflicted was also identified(Naumova et al.).  

The total financial cost of the Milwaukee outbreak was estimated to be $96.2 

million.(Corso et al.)  Of that, $31.7 million were incurred as direct medical cost and 

$64.6 million were due to productivity losses.(Corso et al.) Cryptosporidium outbreaks 

due to exposure to recreational water continue to be the major issue in the United 

States(Gharpure, 2019) and Europe(Putignani and Menichella, 2010).  

In certain regions of Africa and Asia, access to safe drinking water is limited, thus 

making it one of the largest sources of Cryptosporidium transmission.(Putignani and 

Menichella, 2010) In Africa, Cryptosporidium is highly prevalent in healthy, 

immunocompetent adults due to a lack of proper water disposal facilities.(Gait et al., 
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2008) However the disease in immunocompetent individuals is rare.(Kotloff et al., 2013) 

A heavy burden of Cryptosporidium oocysts has been documented in effluent discharges 

due to direct contact with the fecal material.(Gait et al., 2008) Cryptosporidium-laden 

discharge is often diluted into open sources of water which are used as a source of 

drinking water.(Gait et al., 2008) Similarly, 72% of the water samples collected from 

potable water sources in Taiwan were found to be Cryptosporidium-positive.(Hsu et al., 

1999) A study in India on the prevalence of Cryptosporidium in calves concluded that the 

infection often peaked in the monsoon and humid summer seasons.(Paul et al., 2009) 

This peak in infection might be due to mixing of the agricultural and livestock runoffs with 

the water sources.(Paul et al., 2009) 

1.2.2 Foodborne Outbreaks 

Foodborne transmission was the fourth largest source (22 out of 444 cases) of 

Cryptosporidium transmission in the U.S. in the period between 2009-2013.(Gharpure, 

2019) Unpasteurized milk, apple cider,and  fresh produce were found to be the common 

sources of foodborne transmission.(Gharpure, 2019)  According to the 2015 WHO 

(World Health Organization) report, there were 8.6 million cases of foodborne 

Cryptosporidium outbreaks in 2010, with 3759 deaths and 296,156 DALYs (disability-

adjusted life years).(WHO, 2015). Around 16 different species of Cryptosporidium have 

been identified for foodborne transmission, with Cryptosporidium hominis and 

Cryptosporidium parvum being the predominant species.(Xiao, 2010) A 2014 CDC 

survey revealed that 65% of the foodborne outbreaks occur in the restaurants(Dewey-

Mattia et al. 2014), and elderly and immunosuppressed individuals being the most 

susceptible populations(Skovgaard, 2009).  
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Two of the major food-borne outbreaks in the U.K. were found to be due to salad 

contamination.(WHO, 2015) Improperly ozonized apple cider(WHO, 2015) and 

contaminated leafy vegetables(Quiroz et al., 2000) were implicated in two different 

foodborne outbreaks in the U.S. affecting 152 and 160 individuals, respectively. Due to 

the complex nature of food chain management, it is often difficult to trace the source of 

the contamination.(WHO, 2015) Use of contaminated water for irrigation and pesticides, 

handling of food by infected employees and use of contaminated currency notes have all 

been identified as sources of Cryptosporidium contamination.(WHO, 2015) 

1.2.3 Zoonotic and Anthroponotic transmissions 

Animals can get infected with multiple species of Cryptosporidium and they can transmit 

the infection to humans. (Xiao et al., 2004) The majority of the cryptosporidiosis cases in 

humans are attributable to C. hominis and C. parvum species that are responsible for 

anthroponotic and zoonotic cases, respectively.(Xiao, 2010) Anthroponotic cases are 

common in nursing homes, child-care settings, schools, colleges, etc.(Gharpure, 2019) 

Contrastingly, zoonotic cases are most prevalent in rural and agricultural settings where 

exposure to farm animals like cattle, goats, sheep, etc. is common.(Gharpure, 2019) 

Many of the Cryptosporidium species have oocysts of similar size and shape, often 

making it difficult to diagnose the species by morphology.(Xiao et al., 2004) Broad host 

range of multiple Cryptosporidium species, the coexistence of different genotypes in the 

same host and abundant sexual recombination often confounds the species and strain 

definition in Cryptosporidium.(Xiao et al., 2004) The classical definition of species is a 

population that interbreeds and is reproductively isolated from other populations.(Hey et 

al., 2005) It has been technically challenging to conduct genetic crossing studies 
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between different Cryptosporidium isolates to define different genotypes as species in 

accordance to the classical definition.(Xiao et al., 2004) Oocyst morphology, multi-locus 

genotyping (using SSU rRNA, HSP-70, TRAP-C1, COWP, gp60, gp900, etc.), cross-

transmission studies, infection site, developmental biology, oocyst shedding, etc. have 

been used in various combinations as criteria to define the species of the genus 

Cryptosporidium.(Xiao et al., 2004) The International Code of Zoological Nomenclature 

(ICZN) has defined the following four criteria to define a species of Cryptosporidium: 

compliance with ICZN guidelines, oocysts features, natural host specificity, and 

molecular genotyping.(ICZN, 1999) Based on this definition, a total of 13 different 

species have been recognized in four different branches of vertebrates. C. parvum, C. 

hominis, C. wrairi, C. andersoni, C. muris, C. canis and C. felis have been recognized as 

mammal-specific species.(Xiao et al., 2004) Non-mammalian species are C. 

meleagridis, C. baileyi and C. galli in birds; C. saurophilum and C. serpentis in reptiles; 

and C. molnari in fishes.(Xiao et al., 2004) 

C. parvum is one of the most ubiquitous species of Cryptosporidium which has been

identified in 150 mammalian species including humans.(Xiao, 2010) It was first identified 

by Tyzzer in 1907 and its infection was exclusively observed in the small intestines(Xiao 

et al., 2001) Morphological and transmission-based validations for C. parvum being 

distinct from C. muris were provided by multiple studies.(Current and Reese, 1986; 

Upton and Current, 1985) C. parvum prominently infected small intestines in calves and 

mice, but the infection was more modest in mice when compared to C. muris.(Current 

and Reese, 1986; Upton and Current, 1985) 

C. hominis is the major Cryptosporidium species to infect humans.(McLauchlin et al.,

1999) It was initially categorized as C. parvum genotype H, but many studies have 
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validated it as a species of its own. Cross-transmission(Morgan‐Ryan et al., 2002) and 

molecular phenotyping studies(Awad-El-Kariem et al., 1998; Bonnin et al., 1996) have 

confirmed that C. hominis has a narrower host range infecting mostly humans (and 

gnotobiotic piglets as an experimental model). A U.K.-based study of 218 patient 

samples identified that 68% of the patients were affected by C. hominis while the rest 

were positive for C. parvum, suggesting a higher prevalence and/or susceptibility to C. 

hominis.(McLauchlin et al., 1999) Besides, patients affected by C. hominis shed more 

oocysts compared to C. parvum-positive individuals, potentially indicating adaptation of 

C. hominis towards humans.(McLauchlin et al., 1999) This has also been corroborated

by a Peruvian study that concluded that patients affected by C. hominis shed oocysts for 

a longer period (Mean= 13.9 days) compared to C. parvum afflicted individuals (Mean= 

6.4 days).(Xiao et al., 2001) 

Other species of Cryptosporidium like C. hominis, C. canis, C. felis and C. meleagridis 

have been identified in humans(Morgan et al., 1998; Xiao et al., 1999a, 1999b) 

irrespective of the immunological status of the individual(Pedraza-Díaz et al., 2000, 

2001; Xiao et al., 2001). It is hypothesized that the relative prevalence of different 

species of Cryptosporidium can vary depending upon the geographical location, socio-

economic status, season and environmental changes.(Xiao, 2010)  

1.3 The single-host lifecycle of Cryptosporidium 

Cryptosporidium has a single-host lifecycle, and it undergoes asexual replication and 

sexual development in the same host (Fig.1.1). Cryptosporidium is transmitted through 

an extracellular, meiotic spore-like structure called oocyst that harbors four 
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sporozoites.(Current and Reese, 1986; Pohlenz et al., 1978) Sporozoites are released 

from the oocysts presumably due to certain cues signaling arrival in the gut(Feng et al., 

2006; Koh et al., 2014), they then invade enterocytes to establish an intracellular. The 

intracellular vacuole is unique as it lies beneath the host cell membrane but is not 

cytoplasmic.(Bartošová-Sojková et al., 2015; Ostrovska and Paperna, 1990) This initial, 

single nucleus containing stage is known as the trophozoite. Trophozoite stages 

replicate by schizogony (the term merogony is used interchangeably) to produce type I 

meront that contains 6-8 merozoites.(Ostrovska and Paperna, 1990) Type I merozoites 

egress from the vacuole and infect another enterocyte to replicate by type I merogony or 

differentiate into type II meronts which are characterized by 4 nuclei.(Ostrovska and 

Paperna, 1990) Type II merozoites are programmed to differentiate into sexual stages, 

microgamont (males) and macrogamont (females) within the next infected 

cell.(Ostrovska and Paperna, 1990) The microgamont produces 16 miicrogametes which 

egress to find and fertilize intracellular macrogametes. The resulting zygote stage 

undergoes meiosis and sporogony inside the host cells.(Current and Reese, 1986; 

Ostrovska and Paperna, 1990) Sporogony is characterized by the development of four 

sporozoites, and oocyst wall(s) around it produce either a thick-walled (double 

membrane) or thin-walled (single-membrane) oocysts. Thick-walled oocysts are shed in 

the feces to be transmitted while thin-walled oocysts excyst within the gut to further auto-

infect the same host.(Ostrovska and Paperna, 1990)  

1.3.1 Sex as the source of infection and transmission: A phenomenon unique to 

Cryptosporidium 

Toxoplasma is the causative agent of Toxoplasmosis that can result in organ damage 

and congenital birth defects.(Saadatnia and Golkar, 2012) Toxoplasma infects a broad 



15 

range of warm-blooded animals and is transmitted through the food chain by either 

ingesting infected meat or oocysts in the environment transmitted by defecation by cats 

(Fig. 1.2).(Dubey et al., 2011; Saadatnia and Golkar, 2012) The feline phase of the 

lifecycle of Toxoplasma encompasses limited merogony followed by gametogenesis and 

sex in the cat intestine.(Dubey et al., 2011; Saadatnia and Golkar, 2012) Sex results in 

unsporulated oocysts that undergo sporogony (2-3 days post defecation) once outside 

the host.(Dubey et al., 2011) Toxoplasma does thus not cause oocyst-mediated 

autoinfection in cats. The same phenomenon is observed in Eimeria a related 

apicomplexan that infects cattle and poultry. Meiosis and formation of infective 

sporozoites in Eimeria occur after oocysts are shed from the host.(del Cacho et al., 

2010; Mesfin and Bellamy, 1978) 

Lastly, the apicomplexan Plasmodium, causes malaria a disease driven by continuous 

asexual replication of parasites in red blood cells.  A minor population of merozoites 

exits the asexual program and commits to becoming precursor sexual stages known as 

gametocytes (Fig. 1.3).(Cowman et al., 2016; Phillips et al., 2017) Gametocytes are 

taken up by a mosquito where gametocytes become mature gametes and eventually 

mate. Hence, Plasmodium sexual stages have no role in maintaining the infection. This 

has been validated in mutant strains that are deficient in producing 

gametocytes.(Kafsack et al., 2014; Sinha et al., 2014) Hence in the case of Plasmodium, 

Eimeria and Toxoplasma, sex serves solely as the source of transmission but not as a 

source of continued infection. 

Sex in Cryptosporidium is followed by sporulation which occurs within the infected host 

cells.(Current and Reese, 1986; Ostrovska and Paperna, 1990) The sporulated oocyst is 

then released from the host cell and can either be shed with the feces or immediately 
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excyst in the gut lumen to release infectious sporozoites. (Current and Reese, 1986; 

Ostrovska and Paperna, 1990) This unique feature of producing sporulated oocysts 

within the host cells makes it possible for Cryptosporidium to maintain infection through 

successive rounds through the entire lifecycle including sex. For Cryptosporidium, 

asexual replication, and sexual development thus both contribute to parasite 

multiplication and maintenance in the host. 

1.3.2 Two plausible models of Cryptosporidium lifecycle and their translational 

significance 

Formally, Cryptosporidium infection might be sustained through asexual replication, and 

sex is only required for transmission, or sex and oocyst-mediated autoinfection may be a 

necessity for continued infection.  This leads me to consider two models of the lifecycle, 

according to the model A (Fig. 1.4), parasites undergo asexual replication and sexual 

development simultaneously. Under this model, Cryptosporidium sustains the infection in 

a host through asexual amplification and oocyst biogenesis. If this is true, then a 

therapeutic strategy aimed at specifically targeting the sexual stages will only block 

transmission (as observed in Plasmodium). However, as I will detail in this thesis many 

of our experimental findings are inconsistent with this model. We have observed time 

dependent sexual differentiation of essentially the entire parasite population. This 

suggests that a second model (Model B; Fig. 1.4) where all asexual stages follow an 

obligatory developmental path towards sexual differentiation followed by renewed 

initiation of the lifecycle and the infection from newly formed oocysts. This would suggest 

that sex and oocyst biogenesis are crucial for the parasite to maintain infection in a host. 
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The main objective of my dissertation is to understand the role of parasite sex in 

cryptosporidiosis and discern between the two lifecycle models I just outline for 

Cryptosporidium. Through my dissertation work, I will develop genetic and cell biological 

approaches to put both hypotheses and their predictions to a rigorous experimental test. 

1.4 Dissertation aims and questions 

The goal of my dissertation is to understand the lifecycle of Cryptosporidium and in 

particular the role that the sexual phase plays in this infection. My research has 

approached this by addressing three specific questions: 

1.4.1 Why is it not possible to maintain Cryptosporidium continuously in culture 

and may this be related to the developmental biology of the parasite? 

Cryptosporidium cannot be continuously propagated in tissue culture. Transformed cell 

lines derived from intestinal epithelia cells can be infected and sustain parasite growth, 

but this growth is limited to a period of 3 days. We will observe Cryptosporidium lifecycle 

progression in culture and animals and test whether and how continued parasite growth 

is linked to its developmental programming.  

To aide this goal we will engineer genetically encoded reporter strains to discern 

different stages of Cryptosporidium. We will use these reporters in mice and culture to 

observe and compare progression through different stages. In particular, we will be 

interested to study the transition between the asexual and sexual phase of the lifecycle, 

and we will develop a quantitative staging system based on rigorous molecular 

characters. These comparative experiments will provide us with empirical insights into 
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the programming of the lifecycle of Cryptosporidium help us to define whether the 

parasite experiences developmental arrest and if so at which point in the lifecycle this 

prevents the continuous propagation of the parasite.  

1.4.2 Which biological processes are unique to the sexual stages of 

Cryptosporidium? 

The biological processes that unfold over the parasite lifecycle are only poorly defined. 

We plan to use differential gene expression between stages, in particular between 

asexual and sexual stages to discover pathways associated with lifecycle progression. 

We will use reporter parasites developed in Aim1 to isolate specific stages using flow 

cytometry and we will subject them to RNA sequence analysis. We will then compare the 

patterns of relative gene expression to home in on genes that are vital for sexual 

development. We will pay particular attention to the differential expression of Apetala-2 

type transcriptional regulators (ApiAP2) as these have been identified as a stage-specific 

developmental regulators in other apicomplexans. They thus may be candidates to 

perturb the development of specific stages to test our lifecycle hypotheses. 

1.4.3 What is the effect of the perturbation of sexual development on infection in 

mice? 

The central hypothesis that emerged from my research in tissue culture models is that 

the continued growth of the parasite depends on sex and an obligatory developmental 

reset. I will test whether this is also true in vivo in a rigorous genetic experiment. I will 

disrupt genes that encode transcriptional regulators that essential for sexual 

development and I will measure the impact of this disruption in a mouse model of 

infection. As sex is critical to the transmission, I will need to devise an experimental 
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system of conditional gene ablation. Our transcriptional analysis of female gametes has 

identified three female-specific ApiAP2 genes, and conventional perturbation of one of 

these genes (cgd4_1110; AP2-F) was lethal for the parasite.  Hence, a conditional 

(preferably a chemically inducible) gene perturbation strategy is required to rigorously 

approach this specific aim. We aim to develop a rapamycin inducible DiCre recombinase 

system that has been used in other systems.(Knuepfer et al., 2017) We aim to 

specifically target AP2 factors restricted to female gametes to understand their role in 

the development of females, oocyst biogenesis and continued infection.  
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Figure 1.1: The single-host lifecycle of Cryptosporidium. Sporozoites excysted from 
ingested oocysts infect enterocytes and unfold following phases of the lifecycle 
sequentially in the same host: type I merogony, type II merogony, gamogony sex, 
meiosis and sporogony. The ability of the Cryptosporidium to undergo sporogony in the 
host result in mature oocysts that can autoinfect and reset the lifecycle in the same host. 
Hence in the case of Cryptosporidium, sex serves as the source of infection and 
transmission. 
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Figure 1.2: The feline phase of the lifecycle of Toxoplasma. Toxoplasma, though 

promiscuous in its host preference, only undergoes gametogenesis in cats. Cats 

become infected by ingesting tissue cyst (bradyzoites) infested prey. Toxoplasma then 

undergoes merogony, gametogenesis and sex to produce unsporulated oocysts. 

Unsporulated oocysts are then shed through feces where they undergo sporulation to 

produce mature, infectious oocysts that can be transmitted to other hosts. 
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Figure 1.3: Merogony and gametogenesis in Plasmodium. Plasmodium merozoites 

replicate asexually in the RBC of the vertebrate host. After completing merogony, a 

small population of merozoites (1-10%) differentiates into gametocytes that are taken up 

by a mosquito for further transmission. 
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Figure 1.4: Two proposed models of the lifecycle of Cryptosporidium. The two 
proposed models of the lifecycle of Cryptosporidium differ in emphasizing the 
significance of sex (and sporogony) in maintaining the infection in a host.  
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Chapter 2: Materials and Methods 

Plasmid construction. Guide oligonucleotides (Sigma-Aldrich) were introduced into the 

C. parvum Cas9/U6 plasmid16 by restriction cloning. See Pawlowic et al.(Pawlowic et

al., 2017) for a detailed discussion of guide design for C. parvum. Transfection plasmids 

were constructed by Gibson assembly using NEB Gibson Assembly Master Mix (New 

England Biolabs). 

Generation of transgenic parasites. To generate transgenic parasites, 5 × 107 C. 

parvum oocysts Iowa II strain (obtained from Bunchgrass Farms or the University of 

Arizona) were incubated at 37°C for 1 h in 0.8% sodium taurocholate to induce 

excystation. Excysted sporozoites were then transfected using an Amaxa 4D 

Electroporator (Lonza) with parasites suspended in SF buffer using program EH100 and 

50 μg of each Cas9/U6 plasmid and PCR repair construct. The repair encodes the 

neomycin phosphotransferase drug-selection marker fused to a nanoluciferase reporter 

flanked by 50 bp homologous regions to guide insertion into the parasite genome. 

Ifng−/− mice were infected with transfected parasites by oral gavage. Stomach acid was 

neutralized with 100 μl of 8% NaHCO3 solution by gavage before infection. Note that this 

modification replaces surgery-based infection and significantly streamlines the protocol. 

Stable transformants were selected with paromomycin, given to mice ad libitum in their 

drinking water (16 mg/ml) and parasite shedding was monitored by measuring 

nanoluciferase activity in the feces of infected mice. To purify transgenic parasites from 

collected feces, we used sucrose flotation followed by a CsCl gradient48. In brief, 

collected mouse feces were homogenized in tap water using a LabGen 125 

homogenizer (Cole-Parmer) and filtered through a 250 μm mesh filter. This filtrate was 

diluted 1:1 with a saturated sucrose solution (specific gravity, 1.33) and centrifuged at 
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1,000g for 5 min. The supernatant was collected, resuspended in 0.85% saline solution, 

and overlaid onto CsCl solution (specific gravity, 1.15) and centrifuged at 16,000g for 3 

min. Purified oocysts were collected from the saline–CsCl interface and resuspended in 

cold PBS. 

Immunofluorescence assay. HCT-8 cells were infected with bleached and washed 

oocysts. Infected cells were maintained in RPMI-1640 medium (Sigma- Aldrich) 

containing 1% fetal bovine serum. Infected cells were fixed with 4% paraformaldehyde 

(Electron Microscopy Science) in PBS and then permeabilized with PBS containing 

0.25% Triton X-100. Cells were blocked with 3% bovine serum albumin (BSA) solution, 

followed by incubation with primary antibodies. Cells were washed with PBS and then 

incubated with appropriate fluorophore-conjugated secondary antibodies and 

counterstained with DAPI. Coverslips were then mounted on glass slides with fluorogel 

(Electron Microscopy Science) mounting medium. 

For in vivo staining, infected mice were killed, and the small intestine was resected and 

flushed with 10% neutral buffered formalin (Sigma-Aldrich), then ‘swiss-rolled’ and fixed 

overnight in 4% paraformaldehyde followed by overnight incubation in 30% sucrose 

solution. Samples were embedded in OCT medium (Tissue-Tek, Sakura Finetek) and 

cryosectioned. Tissue sections were blocked with 10% BSA and 0.1% Triton X-100 in 

PBS. Sections were stained with antibodies in PBS with 0.1% Triton X-100 as described 

above, counterstained with DAPI and mounted. 

Super-resolution structured illumination microscopy was conducted using a Carl Zeiss 

Elyra (UGA Biomedical Microscopy Core) or a GE OMX (PennVet Imaging Core) 

microscope. Widefield microscopy was performed using a Leica LAS X microscope 
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(PennVet Imaging Core) and images were processed and analysed using Carl Zeiss 

ZEN v.2.3 SP1, GE Softworx, and NIH ImageJ software. 

Cre–loxP-based fertilization assay. To measure sex between two different strains, 

Ifng−/− mice were infected with 50,000 oocysts of either the Cre or COWP1–HA flox 

tdNeon strain or coinfected with both the strains. Oocysts were purified from fecal 

samples that were collected at days 3–10 after infection. Oocysts were fixed with 4% 

PFA, stained with biotinylated Macula pomifera agglutinin49 (Vector Laboratories), 

washed and incubated with Streptavidin-594, and settled onto polyl- lysine (Sigma-

Aldrich) coated coverslips before mounting with fluorogel. The same strains were used 

to infect HCT-8 cells. HCT-8 cells infected with oocysts obtained from Cre × COWP1–

HA flox tdNeon coinfection were used as positive controls. Cells were fixed 48 h and 72 

h after infection and parasites were stained using rabbit anti-TrpB antibodies. 

EdU labelling to detect DNA synthesis. HCT-8 cells were infected with 100,000 

oocysts of the COWP1–HA strain. EdU was added to cultures 36 h after infection to a 

final concentration of 10 μM and cells were fixed 12 h later. A Click-iT EdU Alexa-Fluor 

594 kit (Thermo Fischer Scientific) was used to label incorporated EdU. Parasites were 

stained with anti-HA antibody or fluorescein conjugated Vicia villosa lectin (Vector 

Laboratories). 

Flow sorting of intracellular stages and RNA extraction. HCT-8 cells grown in 6-well 

plates were infected with 300,000 oocysts of eno–tdNeon (constitutive reporter strain) or 

COWP1–tdTomato (female reporter strain) and AP2-14 tdNeon (male-reporter strain). 

Infected cultures were trypsinized with TrypLE Express Enzyme (Thermo Fischer 

Scientific), extensively washed with PBS, passed through a 40 μm filter (BD 
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Biosciences) and pelleted. Cells were resuspended in 400 μl of buffer and sorted using a 

BD FACSJazz sorter (BD Biosciences). Uninfected HCT-8 control cells were used to 

gate on the singlet host cell population. Then, 10,000 positive cells were directly sorted 

into the RLT lysis buffer of the micro RNA extraction kit (Qiagen). 

Four Ifng−/− mice were infected with 200,000 oocysts of COWP1–tdTomato reporter 

strain. Mice were killed 2 d after infection, the small intestine was resected, cut into small 

pieces and incubated in RPMI-1640 medium containing 10% FBS, 25 mM HEPES, 5 

mM EDTA, 50 μM β-mercaptoethanol and 0.145 mg ml−1 dithiothreitol for 20 min. The 

cell suspension was filtered through 70 μm and 40 μm kitchen-mesh filters (BD 

Biosciences). Cells were pelleted, resuspended in buffer, stained with anti-CD45.2 

antibodies and sorted. Intestinal cells isolated from uninfected mice were used as 

controls. Then, 1,000 tdTomato-positive cells from each replicate was sorted directly into 

350 μl of RLT lysis buffer. The Qiagen micro RNA extraction kit was used to extract RNA 

from sorted cells. RNA was finally eluted in RNase-free water and samples were then 

stored at −80 °C. 

RNA sequencing of sorted cells. cDNA was generated using the SMART-Seq v4 Ultra 

Low Input RNA Kit (Takara Bio USA), and barcoded, sequence-ready libraries were 

prepared using the Nextera XT DNA Library Preparation Kit (Illumina). Total RNA and 

libraries were quality checked and quantified on an Agilent Tapestation 4200 (Agilent 

Technologies) and Qubit 3 (Thermo Fischer Scientific), respectively. All the samples 

were pooled, and single-end reads were generated using an Illumina NextSeq 500 

sequencer. 

RNA sequencing of sporozoites and 24 h and 48 h infected bulk cultures. 
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Oocysts from the Sterling laboratory (University of Arizona) were first induced to excyst 

through resuspension in 0.8% sodium deoxytaurocholate and incubation at 37 °C for 2 h. 

RNA from the released sporozoites was then isolated using an RNeasy Mini Kit (Qiagen) 

following the manufacturer’s instructions. Each biological replicate was isolated from 40 

million sporozoites. For the 24 h and 48 h in vitro time points, oocysts from the Sterling 

laboratory (University of Arizona) were first treated with dilute household bleach (1:4 in 

dH2O) for 10 min on ice to sterilize them. The oocysts were then washed twice with cold 

PBS and resuspended in 0.8% sodium deoxytaurocholate and incubated for 10 min on 

ice. Oocysts were washed once more with cold PBS and then used to infect HCT-8 cell 

monolayers grown to 80% confluency in a 24-well plate. For the 24 h time points, 1 

million oocysts were infected into each well with three biological replicates. For the 48 h 

timepoints, 100,000 oocysts were infected into each well with three biological replicates. 

During infection, standard RPMI growth medium was used supplemented with 1% fetal 

bovine serum. RNA from infected cells was isolated using an RNAeasy Mini Kit (Qiagen) 

according to the manufacturer’s protocols. Sequencing libraries for sporozoites and in 

vitro time points were prepared using a Nextera XT DNA Library Preparation Kit 

(Illumina) and 150-bp paired-end reads were collected using an Illumina MiSeq 

(Illumina). 

RNA-sequencing analysis. Raw reads were mapped to the C. parvum Iowa II 

reference (Ensembl, ASM16534v1) using Kallisto v.0.45.0(Bray et al., 2016). All 

subsequent analyses were carried out using the statistical computing environment R 

v.3.6 in RStudio v.1.1.463 and Bioconductor. In brief, transcript-level quantification data

were summarized to genes using the tximport package and data were normalized using 

the TMM method (implemented in EdgeR). Only genes with more than 10 counts per 
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million in at least 3 or samples (depending on the analysis) were carried forward for 

analysis. Precision weights were applied to each gene on the basis of the mean–

variance relationship using the VOOM function in Limma. Linear modelling and Bayesian 

statistics carried out in Limma were used to identify differentially expressed genes with a 

FDR-adjusted P of ≤0.01 and an absolute log2-transformed fold change of ≥1 after 

correcting for multiple testing using the Benjamini–Hochberg procedure. When 

necessary, batch correction was carried out using the empirical Bayes-moderated 

adjustment for unwanted covariates function (empiricalBayesLM) in the WGCNA 

package. All code used in these analyses is available in Supplementary File 7(Tandel et 

al., 2019) and on GitHub(Tandel et al., 2019). For P. berghei, files were downloaded 

from the NCBI Sequence Read Archive BioProject ID: PRJNA374918 (ref. 21) and 

forward reads were mapped as described above for the sorted C. parvum samples to the 

P. berghei reference transcriptome (Ensembl, PBANKA01). For E. tenella, differentially

expressed gametocyte genes were obtained from Walker et al(Walker et al., 2015). 

Cross-species comparisons and orthologue identifications were performed using 

EuPathDB (https://eupathdb.org/). See Supplementary File 7 of Tandel et. al.(Tandel et 

al., 2019) for full details, including a link to all of the code used for the RNA analyses 

performed here. Functional enrichment analysis. GSEA was carried out using GSEA 

software(Bray et al., 2016). Four custom gene signatures for C. parvum were generated 

using Gene Ontology or community datasets available at CryptoDB 

(https://CryptoDB.org). A 28-gene signature for ‘carbohydrate metabolism’ was 

generated using the Gene Ontology term GO:0005975. A 63-gene signature for ‘DNA 

metabolic process’ was generated using GO:0006259. A 48-gene signature for 

‘oxidation–reduction’ was generated using GO:0055114. An 85-gene oocyst signature 

was generated by using CryptoDB to mine a published oocyst wall proteome dataset 

file:///C:/Users/strie/AppData/Roaming/Microsoft/Word/(https:/eupathdb.org/
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from Truong and Ferrari(Truong and Ferrari, 2006) to retrieve only genes that had ≥20 

unique peptide sequences per sample. All four signatures were used for GSEA with 

1,000 permutations of gene sets to generate P values, and multiple testing correction 

was applied to generate FDR-adjusted P values. GSEA results were used to create 

enrichment plots in DataGraph v.4.4 (Visual Data Tools). 

Transient transfection assay for engineering DiCre conditional system. 1X107 C. 

parvum bunchgrass oocysts (University of Arizona) were washed, pelleted, and 

resuspended in 1 ml of 0.8% sodium taurocholate and incubated at 37°C for an hour. 

Parasites were pelleted and transfected using an Amaxa 4D Electroporator (Lonza) with 

parasites suspended in SF buffer using program EH100 and 10 μg of the plasmid. 

Transfected parasites were resuspended in RPMI-1640 media containing 1% FBS and 

then split into three equal volumes to infect three 24 well plates containing HCT-8 cells. 

Nanoluciferase activity was measured after 48 hours of infection by resuspending cell 

monolayer in 200 µl of 1:50 NanoGlo substrate (Promega Corporation). Luciferase 

activity was measured by using the NanoGlo assay on Promega luciferase reader. For 

measuring the DiCre activity, 10 µg each of DiCre and floxed plasmids were transfected. 

Rapamycin-induced activation of DiCre in stable transgenics. Parasites were 

washed, pelleted, and then used to infect HCT-8 cells. DiCre activity was induced by 

incubating cells with 100nM rapamycin in RPMI-1640 media containing 1% FBS. Control 

samples were only maintained in RPMI-1640 media containing 1% FBS. For PCR assay, 

cells were washed and used for DNA isolation by using Quick-Start Protocol DNeasy® 

Blood and Tissue Kit (Qiagen). 50,000 oocysts were used for infection for PCR analysis. 

For IFA assay, 20,000 oocysts were used to infect HCT-8 cells grown on coverslips in 96 

well plates. Cells were fixed with 4% paraformaldehyde solution and then stained. 
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Statistical methods. GraphPad PRISM was used for all statistical analyses. When 

measuring the difference between the two populations, we used a standard Student’s t-

test. No statistical tests were used to predetermine sample size and no animals were 

excluded from results. ANOVA was used to compare the means of multiple groups 

followed by Tukey’s post hoc test for pair-wise comparisons.  

Animal ethics statement. All the protocols for animal experimentation were approved 

by the Institutional Animal Care and Use Committee of the University of Georgia 

(protocol A2016 01-028-Y1-A4) and/or the Institutional Animal Care and Use Committee 

of the University of Pennsylvania (protocol number 806292). Four-week-old Ifng−/− and 

Rag1 knockout female mice strains of Mus musculus were used for all the experiments. 

No statistical tests were used to predetermine the sample size of mice used for 

experiments. Mice were not randomized, and investigators were not blinded before any 

of the experiments. 

Data availability RNA-sequencing data generated in this study are available from GEO 

database repository under accession number GSE129267.(Yeoh et al., 2017)  

Code availability All code used in these analyses is available in Supplementary File 7 

of Tandel et. al.(Tandel et al., 2019)  and on GitHub. 
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Table 1: Primers used in this study 

Primer 

name 5'-3' Sequence 

tkintgbb

sf  gttggaagtaaatacttattagca 

tkintgbb

sr  aaactgctaataagtatttacttc 

tkguide#

4f  gttggaagaatacaatttctaagg 

tkguide#

4r  aaacccttagaaattgtattcttc 

cgd6_20

90g4858

f  gttggttgtttcatatgacacaat 

cgd6_20

90g4858

r  aaacattgtgtcatatgaaacaac 

cgd8_22

20g2bbsf

gttggagccaagaaagtttaagtca 

cgd8_22

20g2bbs

r  aaactgacttaaactttcttggctc 

enotkintf tccagtactatgctatggtttgagaacagactttaagggaaatttatttgatggggaaactaaatatactgaaattcg

gt  

tkinteno

3r tagcttttttgccacagcgacaaatagttttgatttcagtaagtttatcaccatagctgcgccaaattttgc  

c13utrtkf tccagtactatgctatggtttgagaacagactttaagggaaatttatttgaaagtagtttggccttttctagataatttt 

eno3utrt

kr 

 tagcttttttgccacagcgacaaatagttttgatttcagtaagtttatcaaattaagataaaaagaaaaacttaatcg

atactatcctacac   

cowp1 li

cf 

gacaatacagaaaaaactagtacaggttgcgtcaagaaagttataacgacccctatcgtatcctacgagacgacgt

gcatcggaccgacctgcaatgccgccaaaattggaagtggaggacgggaattc  

cowp1 li

cr 

agttaaaattctatcagattaaactatcaaagtagtttggccttttctagaattaagataaaaagaaaaacttaatcg

atactatcctacacgcc  

hap2licf3  gaactacgtaaaaataagaaaattgaaacaaggataattaataatagccaagagagcttgagccagggcatcaa

c  

h2lic3'fla

nkr2 

tttttcagctaggcccatattaattaacttttaatatactttcattgcttcaattaagataaaaagaaaaacttaatcga

tactatcctacacg  

tk 

oe repair

r 

tagcttttttgccacagcgacaaatagttttgatttcagtaagtttatcatcatatttctatttaagttgcaatacgtatct

g  

eno3'utr

-tag-r aattaagataaaaagaaaaacttaatcgatactatcctacacgcc 
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atubpre

nof tagtatcgattaagtttttctttttatcttaattacttgcagagataaagaaaaattcaatcaagaactta 

atub5'ut

rr gtttaacgaataactgtttaacgaataactttaac 

h2baof taaacagttattcgttaaacatggccccaaaaatgtcttcaaagaa 

h2b1r ggtggcgaccggtggatccttttgtcctccagtgaacttggtaa 

ttmnh2b

aggatccaccggtcgccaccatggtttctaagggtgaagaagataacatgg 

ttnmactr

actccaagaacaatattgatttacttgtataattcatccatacccataacatcagtgaaa 

3' actin 

utr-f atcaatattgttcttggagttgttcttaacagcttatttc  

cplicbbf 

 aacagcttatttcctgaacacagatacgtattgcaacttaaatagaaatatgaactagtaccaatcagtttaaacgc

gatg  

creatubf taaacagttattcgttaaacatgcccaagaagaagaggaagg 

creatubr actccaagaacaatattgatctagacagatctaaggccgcta 

neo2ar ccgcaagtcaacaatctacccctgccctcaccgaagaattcgtcaagaagacgatagaag 

ttmneon

2af  ggggtagattgttgacttgcggtgacgttgaggagaaccccggcccgatggtttctaagggtgaagaagata 

ttmneon

2ar gctagccttgtataattcatccatacccataacatcagtg 

crmnoen

2af atgaattatacaaggctagcgtgtccaagggcgaggaggacaac 

crmneon

2ar aattttgccttaattaatcacttgtacagctcgtccatgcccatc 

tkf tgattaattaaggcaaaatttggcgcagctatggc 

p2ar aacgtcaccggcctgcttcaacaagctga 

loxptub3

utrf 

gaagcaggccggtgacgttgaggagaaccccggcccgataacttcgtatagcatacattatacgaagttatagtgat

aattatccttgttcattgaattctctagatttaggaggtttggtttaccgc  

loxptub3

utrr 

gcggtaaaccaaacctcctaaatctagagaattcaatgaacaaggataattatcactataacttcgtataatgtatgc

tatacgaagttatcgggccggggttctcctcaacgtcaccggcctgcttc  

loxptub3

utr2f 

taggaggtttggtttaccgcccggcgggctcgtgtagattagtatcttaatctatggaattttccctaataacttcgtat

agcatacattatacgaagttatctgctacaaatttcagtttgcttaagcaagccggagacgttgaagagaaccctggc

ccg  

loxptub3

utr2r 

cgggccagggttctcttcaacgtctccggcttgcttaagcaaactgaaatttgtagcagataacttcgtataatgtatg

ctatacgaagttattagggaaaattccatagattaagatactaatctacacgagcccgccgggcggtaaaccaaacc

tccta   

ttmng-

2af  ttgaagagaaccctggcccggtttctaagggtgaagaagataacatggct 

c1futr in

tr taggtgtatcctcgaattattgtttttcc 

cowp1in

tinsf  aacaaaaccagatagtagatgccca 
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creinsf  gctggaccaatgtaaatattgtcatg 

crmneon

intr  ttcaggttcagctcctcgtagc 

h2binsf  atgcagtttctgagggtactaagg 

hap2insr

tgaaaataatgaaatcgtattggtatccc 

hape9ins

f  caataatttctgatgtagtagtgaatcaaact 

tdneonin

sf tacctgaagaaccagccgatg 

tdtomint

ernal ins

f acaccaagctggatatcacatcc 

tkinsf  agcaatgaatgctggaaaatcaacg 

tkinsr  ccgccttagaaattgtattcttcac 

ttneonin

tinsr  accttgaccaaccatatcgaaatc 

enointr  atgacgcaatatagaactaagtgtgtg 

neorcr  ccgattctcaacgtatcgccttcta  

6_2090d

sr2 acttggcaaacgaaactcggagttg 

ap25utrr 

10371 cgcctataacaagagaaggataaagtc 

4_11105

'utrintf 

8424 gagcagagtttgtgaagaattattttgaaaacaaga 

ap2-f 

n2gr 

10855 aaacgtttctaatttttcctccatc 

ap2-f 

n2gf 

10854 gttggatggaggaaaaattagaaac 

ap2fnter

g2f 8199 gttggcaagaagatacaccaacatg 

4_1110 

nterr 

7906 accaacttcaacttcgttagatttatcaaaattttcacc 

ap2-

fnterintr 

8423 gagattggacttgttgaattttactattaccaac 

ap2koup

sf 10647 gagcagaattatatagaagttcagaaccaagag 
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ap2fintg

bbsr 

8861 aaacctttgatgttctgctcttctc 

ap2fintg

bbsf 

8860 gttggagaagagcagaacatcaaag 

ap2fint2

bbsf 

9088 gttggtcaaagatggattgctcag 

ap2fint2

bbsr 

9087 aaacctgagcaatccatctttgac 

ap2fkods

r 10646 catcttccctgtaagactagtttcatgtaac 

4_1110i

ntf 6840 atctggaaaaaattgacccattaagagaagaaatg 

ap2f 

ctrem ko 

guide 

10518 gttggaagactagagatcaagaat 

ap2f 

ctrem 

kogr 

10517 aaacattcttgatctctagtcttc 

4_1110c

terf 8418 ggaagacggaggagattgtctcaatact 

4_1110d

sr 8419 gcaatgactacatgtactttcccgctc 

tkctermf 

9257 tggaagtggaggacgggaattcgataagctaaatattccagtactatgctatggtttgaga 

tk511f 

9255 tccagtactatgctatggtttgagaacagactttaaggtaagtttaaaataactacaatttttaaccattgc 

tk511r 

9254 gcaatggttaaaaattgtagttattttaaacttaccttaaagtctgttctcaaaccatagcatagtactgga 

tk511f2 

9256 

ctacaatttttaaccattgcctataacttcgtataatgtatactatacgaagttatcttgtttataacgtctccaaattatt

attctgatag 

tk511r2 

9259 

ctatcagaataataatttggagacgttataaacaagataacttcgtatagtatacattatacgaagttataggcaatg

gttaaaaattgtag 

intrr 

8181 ctatcagaataataatttggagacgttataaaca 

tkrccf 

9247 ctccaaattattattctgatagggtaacttgttcgagggtagcaagt 

hah2r  

10374 aaatgaagatgcatcccgggttaggcataatctggaacatcgtaagga 
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atubf 

10564 acttgcagagataaagaaaaattcaatcaagaac 

dicreatu

bf 7713 acagttattcgttaaacatggcaccaaagaaaaagagaaaagtaa 

dicreintf 

10530 gatatgtttagagatagacaagcatttagtg 

diccrec1

3utrr 

10565 ccaatagatgtttttagcgataataaaattattattcattgaaattcagattaatttaatttacaccatgctgcccaac 

ap2fcflox

f 10856 

tagtcattttgatatttaaataaggcaatttttttgagtgaattctcaaaaattaagataaaaagaaaaacttaatcga

tactatcc 

diccrec1

3utrr 

10565 ccaatagatgtttttagcgataataaaattattattcattgaaattcagattaatttaatttacaccatgctgcccaac 

dicreintf 

10530 gatatgtttagagatagacaagcatttagtg 

atubc1fl

oxr 

10859 

tgcaataaattaaaatattgaataacttcgtatagtatacattatacgaagttatacttgcagagataaagaaaaatt

caatcaag 

c15utrf 

10400 tcaatattttaatttattgcaaagcgatagtttattatcatatg 

promflox

linf 7586 atggtaagtttaaaataactacaatttttaaccattgcc 

tk511f2 

9256 

ctacaatttttaaccattgcctataacttcgtataatgtatactatacgaagttatcttgtttataacgtctccaaattatt

attctgatag 

tk511r2 

9259 

ctatcagaataataatttggagacgttataaacaagataacttcgtatagtatacattatacgaagttataggcaatg

gttaaaaattgtag 

intrr 

8181 ctatcagaataataatttggagacgttataaaca 

ap2fcflox

r2 10858 agtagtatactgactccagtctacaacttctttatcaataaaaacctttcctgtctccaacttctcttcggcat 

enonlucr

2 7267 gctagcggctaaacttcaatacaaaaatctc 

dicre2af 

7265 agtttagccgctagcatggcaccaaagaaaaagagaaaagtaagtagaa 

dicre2ar 

7264 ctacacgccacgaacttaatttaatttacaccatgctgcccaacttc 

enonlucf

2 7266 ttcgtggcgtgtaggatagtatcgat 

nlucintr 

6539 catttgatctcctgataatccttcatatggaataat 

1320intl

oxp2638

f 7195 

ggattatcaggagatcaaatggtaagtttaaaataactacaatttttaaccattgcctcttgtttataacgtctataact

tcgtatagcatacattatacgaagttatccaaattattattctgatagggacaaatagaaaaaatattca 
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1320intl

oxp2638

r 7194 

tgaatattttttctatttgtccctatcagaataataatttggataacttcgtataatgtatgctatacgaagttatagacg

ttataaacaagaggcaatggttaaaaattgtagttattttaaacttaccatttgatctcctgataatcc 

nlucintf 

6538 ggacaaatagaaaaaatattcaaggttgtatatccagtt 

11320 

intronnc

r 6953 

aatattttttctatttgtccctatcagaataataatttggagacgttataaacaagaggcaatggttaaaaattgtagtt

attttaaacatttgatctcctgataatc 

1320 

intron 

ncf 6954 

gattatcaggagatcaaatgtttaaaataactacaatttttaaccattgcctcttgtttataacgtctccaaattattatt

ctgatagggacaaatagaaaaaatatt 

enonlucr 

7275 catgctagcggctaaacttcaatacaaaa 

1320intl

oxpf1 

7273 gaagtttagccgctagcatggtaagtttaaaataactacaatttttaaccattgcct 

1320intl

oxp1r 

7354 agctcctcgcccttgctcacctatcagaataataatttggagacgttataaacaag 

yfpl1320

loxf 7353 aggtgagcaagggcgaggagct 

3'aldo13

20intr 

7271 aaataaagtaaagtttatcgacctaagatactaaatgaagatgc 

1320intl

oxp2f 

7296 cgataaactttactttatttgcttaaaataactacaatttttaaccattgcctataa 

1320intl

oxpr2 

7269 aaatcttctaatgtaaatacctatcagaataataatttggagacgttataaacaag 

enonlucf 

7274 gtatttacattagaagattttgtaggagattggagacaa 
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Chapter 3: Comparison of lifecycle progression and sexual development of 

Cryptosporidium parvum in culture and mice. 

The contents of this chapter are published as: Tandel, J. et al. Life cycle progression and 

sexual development of the apicomplexan parasite Cryptosporidium parvum. Nat 

Microbiol 4, 2226–2236 (2019). 
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3.1 Abstract 

Cryptosporidium is one of the leading causes of diarrhea-induced mortality in children. 

Therapeutic intervention against cryptosporidiosis is lacking. Cryptosporidium undergoes 

asexual replication and sexual development in the same host. However, the molecular 

programming of the single-host lifecycle of Cryptosporidium is poorly understood. 

Cryptosporidium parvum cannot be cultured continuously by infecting intestinal 

epithelial, cancerous cell lines like HCT-8 and Caco-2. Previous studies suggest the 

presence of asexual and sexual stages in the culture but rigorous studies to identify the 

lifecycle block in vitro are lacking. Identifying aspects of the Cryptosporidium lifecycle 

that are blocked in vitro can help us gain insights on the programming of the lifecycle of 

the parasite. Hence to rigorously study the kinetics of lifecycle progression, we 

developed a reporter strain that allows us to discern district stages of Cryptosporidium. 

Kinetic studies in culture show robust sexualization (>80%) of the parasite population. 

However, fertilization, sporogony and oocyst development are not observed in culture. 

Contrastingly, parasites undergo successful mating, post-fertilization development and 

oocyst biogenesis in infected mice. Transcriptional analyses of females sorted from mice 

show upregulation of glideosome-associated genes (required for sporogony) when 

compared to females sorted from HCT-8 infected cells. Hence, the transcriptional 

analyses corroborate our finding that sex and post-fertilization development are lacking 

in the culture. To rigorously test for fertilization, we devised a two-component genetic-

crossing assay using a reporter that is activated by Cre recombinase. Our findings 

suggest obligate developmental progression towards sex in Cryptosporidium, which has 

important implications for the treatment and prevention of the infection.  
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3.2 Introduction 

Diarrheal diseases account for 9% of global child mortality(Liu et al., 2012) and infection 

with Cryptosporidium is a leading cause of severe pediatric diarrhoea(Kotloff et al., 

2013). Malnourished children are particularly susceptible to cryptosporidiosis, which 

results in recurrent or persistent infection and death.(Checkley et al., 2015; Kotloff et al., 

2013; Platts-Mills et al., 2015) Cryptosporidium is also an important cause of 

malnutrition(Korpe and Petri, 2012), and infection can result in lasting growth 

defects(Scallan et al., 2011). Even in high-income countries, outbreaks are frequent and 

more than 50% of waterborne infections in the United States are due to 

Cryptosporidium(Painter et al., 2015; Scallan et al., 2011). The current treatment of 

cryptosporidiosis is of limited efficacy for those patients who have the most urgent need 

of treatment(Amadi et al., 2009).  

Cryptosporidium is a member of the eukaryotic phylum Apicomplexa and has a life cycle 

that alternates between asexual and sexual reproduction. However, in contrast to most 

other apicomplexans, the entire cycle occurs in a single host. Sex results in the 

production of oocysts, which are environmentally hardy meiotic spores. Sex and 

production of oocysts are therefore essential to transmission but may also play a role in 

the continued infection of the host.(Current and Reese, 1986) The chronic infection 

could be sustained by asexual replication with facultative sex, driving the host-to-host 

transmission. Alternatively, progression to sexual stages might be obligatory. 

Cryptosporidium oocysts are unique in that they mature within the host tissue and are 

autoinfective. Thus, they could reset the developmental cycle and maintain infection. 

Which of these two models applies is a fundamental, yet unanswered, question that has 

important implications for the disease and the development of drugs and vaccines. Here 
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we develop molecular markers to observe and analyze the progression of the 

Cryptosporidium life cycle and use these markers to demonstrate that a block in 

fertilization limits parasite growth in culture, supporting a model of obligate sexual 

developmental progression to maintain infection. 
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3.3 Results 

Using a reporter parasite to track Cryptosporidium life cycle progression. 

In the absence of adaptive immunity, humans and mice develop long-lasting 

Cryptosporidium infections and the parasite replicates continuously (Fig. 3.1a). 

Immortalized epithelial cell lines such as Caco2, HT-29, and HCT-8 are readily infected, 

but growth ceases after 3 d and the infection cannot be maintained by serial 

passage(Upton et al., 1994) (Fig. 3.1b). During this period, morphological stages that are 

consistent with asexual and sexual development have been observed, and different sets 

of genes appear to be expressed in succession(Current and Reese, 1986; Mauzy et al., 

2012; Wilke et al., 2018). However, rigorous stage-specific markers are lacking. We, 

therefore, sought to engineer transgenic parasites that delineate life cycle progression 

and took advantage of well-documented changes in the nuclear morphology of the 

parasites(Current and Reese, 1986; Ostrovska and Paperna, 1990). We introduced a 

fusion of Cryptosporidium parvum histone H2B (cgd5_3170) with the fluorescent reporter 

mNeon16 (Supplementary Fig. 3.1). HCT-8 cells infected with these parasites were fixed 

after 24 h and 48 h and then imaged by super-resolution structured illumination 

microscopy. All of the parasites showed nuclear fluorescence. We recorded 

morphometric data for each parasite and its nucleus (Fig. 3.1d) and were able to 

distinguish multiple stages. At 24 h, we observed trophozoites, which are small rounded 

intracellular stages with a single nucleus, and stages of increasing size with an 

unsegmented cytoplasm and two or four nuclei that we interpret as intermediate stages. 

We also observed mature meronts with eight nuclei, before and during egress, as well 

as free merozoites (Fig. 3.1c).  



43 

At 48 h, we observed sexual stages (we use the terms male and female gametes 

according to the convention of the extensive literature on sex in the malaria parasite 

Plasmodium(Josling and Llinás, 2015)). Female or macrogametes had a single nucleus 

that was significantly larger (0.89 μm2) than the nuclei of asexual stages (0.43 μm2; P < 

0.0001, unpaired Student’s t-test) and male or microgametes, which had dense, bullet-

shaped nuclei (0.15 μm2; P < 0.0001, unpaired Student’s t-test). We found up to 16 of 

these nuclei in males or microgamonts (the precursor stage of the male gamete). We 

next conducted time-course experiments and assigned a stage to all of the parasites 

observed using the morphometric characteristics that are defined above. Initially, all 

parasites in culture were asexual meronts and trophozoites. After 36 h, the culture 

rapidly sexualizes, with gamonts and gametes representing >80% of all stages after 72 h 

(Fig. 3.1e). 

Post-fertlization stages and oocyst development are only observed in vivo but not 

in vitro. 

We infected HCT-8 cells with a strain that has its Cryptosporidium Oocyst Wall Protein-1 

(COWP1, cgd6_2090; detailed in chapter 4) tagged with 3XHA to look for oocyst 

development in vitro. Oocysts made only 0.1% of the total population at 48h post-

infection. To determine whether these oocysts were produced de novo, we labelled 

newly synthesized DNA using the thymidine kinase analogue, EdU. As reported 

previously, C. parvum readily incorporates thymidine-kinase-activated tracers(Striepen 

et al., 2004). In vitro, none of the oocysts observed at 48 h after infection were labelled 

(Fig. 3.2a-b), indicating that these were from the inoculum and not formed in culture. We 
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next studied whether male gametes mature and go on to fertilize females in culture. At 

48 h after infection, we found that 10.6 ± 0.8% of all male gametes are released from 

gamonts and we frequently observed them to be attached to female gametes (Fig. 3.2c). 

At this time point, 16.1 ± 2.2% of all females identified by H2B–mNeon featured an 

attached male. Note that attachment was polar with the HAP2 (cgd8_2220; male-specific 

fusogen detailed in chapter 4)-marked end oriented towards the female. However, we 

did not observe female gametes with an internalized male gamete. To investigate how 

this compares with in vivo infection, in which we know that fertilization occurs, segments 

of the small intestine were recovered from infected mice, cryosectioned and processed 

for immunofluorescence. When using the H2B–mNeon line we rarely observed males 

attached to females, yet we frequently observed parasites that contained both an 

identifiable female and male nucleus (~5% of all stages; Fig. 3.2d). In vivo, zygotes and 

various intermediates of meiosis with one, two and four nuclei were readily observable 

and these post-fertilization stages accounted for 35% of all parasites (Fig. 3.2e). As 

these stages mature, they grow, and their size significantly exceeds that of the female 

gametes observed in culture (P = 0.0023; Fig. 3.2f). We made very similar observations 

when studying the COWP1–HA (female-specific marker; detailed in chapter 4) strain in 

vivo. Meiotic divisions precede and partially overlap with the deposition of the oocyst wall 

(Fig. 3.2g). We also observed strong labelling of these stages with RAD51 (cgd5_410), a 

DNA repair protein that has an important role in homologous cross-over during meiosis 

(Fig. 3.2h). 
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Genes required for post-fertilization development are upregulated in in vivo 

females but not in in vitro females 

Fertilization of females in vivo and lack thereof in culture should result in transcriptional 

differences between in vitro and in vivo females. Hence, we specifically isolated female 

stages (tdTomato-positive) by flow cytometry from infected mice and HCT-8 culture (Fig. 

3.3a) for transcriptional analyses (detailed in chapter 4). Both in vitro and in vivo females 

were found to have similar levels of expression of genes required for amylopectin 

synthesis (carbohydrate, GO:0005975), meiosis (DNA; GO:0006259), redox processes 

(redox; GO:0055114) and oocyst wall biogenesis(Truong and Ferrari, 2006) as 

confirmed by Gene Set Enrichment Analysis (GSEA, Fig. 3.3c) and PCA analysis (Fig. 

4.2c). This suggests that developmental competence of in vitro females is normal. We 

also transcriptionally profiled sporozoites released from oocysts and infected bulk culture 

after 24 h and 48 h for comparison, and we found that sporozoites are moderately more 

similar to females in vivo than females in vitro (Fig. 4.2c and Supplementary Fig. 4.8). 

Overall, we conclude that a fraction of in vivo sorted cells moved beyond fertilization to 

the production of sporozoites. This is consistent with the expression of the protein 

components of the gliding machinery required for the motility of invasive stages that is 

only observed in vivo females (Fig 3.3e). 

A genetic two-component assay demonstrates gamete fusion in vivo but not in 

vitro.  

Our experiments suggested a lack of fertilization in vitro. To test this rigorously, we 

devised a genetic assay for Cryptosporidium gamete fusion. We engineered a two-
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component system that produces a reporter signal only after cytoplasmic fusion of two 

strains. The first component is a driver strain that expresses Cre recombinase 

(Supplementary Fig. 3.2), an enzyme that excises DNA segments flanked by loxP 

recognition sequences (the 34 bp loxP sequence is absent from the C. parvum genome). 

Cre is driven by a constitutive promoter and detected in transgenics using a specific 

antibody. The second component is a strain carrying a tdNeon reporter in the COWP1 

locus linked by a 2A skip peptide. A terminator sequence flanked by loxP sites blocks 

expression, Cre-mediated excision will release the block (Fig. 3.4a). Mice were infected 

with each strain of parasite individually or with both in equal proportion. Only infection 

with both strains resulted in the shedding of green fluorescent oocysts (~10% of total 

oocysts from days 3–10 after infection; Fig. 3.4b–d). We next performed this assay in 

vitro and tested for tdNeon expression at 48 h and 72 h after infection. In contrast to 

mice, we did not detect expression of tdNeon in HCT-8 cells that were coinfected with 

Cre and floxed strains (Fig. 3.4b, c; P = 0.0002). Fluorescence was readily detected in 

our positive control, HCT-8 cells infected with oocysts obtained by Cre–loxP coinfection 

in mice. We conclude that gamete fusion occurs in vivo but not in vitro, and this block in 

fertilization prevents the formation of new oocysts and continued growth in culture. 
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Fig. 3.1 Cryptosporidium life cycle stages revealed by the H2B–mNeon transgene. a,b, C. 
parvum infection was monitored by luciferase activity in mice lacking mature T and B cells (a; 
faeces were measured every 3 d) and HCT-8 cultures (b). Data are mean ± s.d. from three 
independent biological replicates. c, HCT-8 cultures were infected with H2B–mNeon transgenic 
parasites and fixed at 24 h (‘Oocyst’, ‘Trophozoite’, ‘Meront’, ‘Late meront’ and ‘Egressing 
merozoites’), 36 h (‘Merozoite’) and 48 h (‘Early females’, ‘Late females’, ‘Male gamont’ and ‘Male 
gametes’) time intervals. Green, nuclei; red, cytoplasm (antibody against tryptophan synthase B 
(TrpB), cgd5_4560). This experiment was performed three times with similar results. Scale bar, 1 
μm. d, Morphometric analyses of the size (n = 25) and number (n = 100) of nuclei and the area 
for each stage (n = 75) on the basis of the markers shown in c.The nuclear area (left) and total 
area (middle) of parasites stages are shown as mean ± s.d. of individual values represented as 
dots. The number of nuclei at particular parasite stages are represented as box plots (right). The 
box shows median and quartile range and whiskers represent extreme values. e, A time-course 
experiment in which stages were scored using the parameters defined in d revealed abrupt 
sexualization of cultures at 48 h into culture. Data are mean ± s.d. from three independent 
biological replicates. 
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Fig. 3.2 Cryptosporidium males locate females in culture, but fertilization and meiosis only 
occur in vivo. a,b, HCT-8 cells were infected with COWP1–HA C. parvum and after 36 h of 
infection, the nucleotide analogue EdU was added to the medium. Then, 12 h later, cells were 
click labelled and counterstained with anti-HA antibodies or Vicia villosa lectin (VVL; a). Cells 
were scored for nuclear EdU labelling (b); 100 stages were quantified for three biological 
replicates, and the experiment was performed twice. Data are mean ± s.d. c, Representative 
images of encounters between male and female gametes in culture; gametes were identified 
using the indicated transgenes or antibodies, and attached males are highlighted by arrowheads. 
YFP, yellow fluorescent protein. d–h, Ifng−/− mice were infected with H2B–mNeon-expressing (d) 
or COWP1–HA-expressing (g,h) parasites, and intestines were sectioned and prepared for 
immunofluorescence assays and counterstained with anti-TrpB, anti-H3K9Ac or anti-RAD51 
antibodies. Representative micrographs show progression of events following fertilization. Post-
fertilization stages are abundant in vivo (e) and these stages were significantly larger than those 
found in vitro (f); each symbol represents a parasite, n = 25. For e, data are mean ± s.d. from 
three independent mice. For f, data are mean ± s.d.; the statistical analysis was performed using 
a two-sided Student’s t-test comparing cultured females with in vivo females (**P = 0.0023) or 
with in vivo oocysts (****P = 0.0001). All of the microscopy experiments shown in d–h were 
performed twice with similar results. Scale bars=1 μm. 
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Fig 3.3 Isolation of in vivo and in vitro female stages by cell sorting and RNA sequencing. 
a,b Flow cytometry of infected cells with the indicated markers and origins. Gates used for sorting 
are shown as boxes. This experiment was performed twice. SSC, side scatter. c, Gene set 
enrichment analysis (GSEA) with multiple testing correction comparing cultured in vitro and in 
vivo females. Custom gene signatures were generated using Gene Ontology or community 
datasets available at CryptoDB. Processes annotated as ‘oocysts’, ‘carbohydrates’ ‘redox’ and 
‘DNA’ are upregulated in females when compared to asexual stages (detailed in the figure 4.2 of 
the chapter 4). Note, that these female-specific processes do not show significant enrichment 
between in vitro and in vivo females (NS= not significant). n = 4 biological replicates per group. d, 
Volcano plots showing C. parvum genes that were differentially expressed between in vitro and in 
vivo females. n = 4 biological replicates per group. Each symbol represents a C. parvum gene, 
those genes representing the leading edge from b are indicated by the colour according to the 
pathway that they act in. The horizontal dashed line shows an FDR-adjusted P value of 0.01; the 
vertical dashed lines indicate a log2-transformed fold change of −1 and 1, respectively. e, A heat 
map of glideosome components, which are indicated in yellow in d. n = 4 biological replicates per 
group 
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Fig. 3.4 A genetic fusion 
assay demonstrates 
fertilization in vivo but 
not in vitro. a, To detect 
gamete fusion, we 
engineered two C. parvum 
strains, one that 
constitutively expresses 
Cre recombinase 
(Supplementary Fig. 3.2) 
and a second that carries a 
tdNeon reporter flanked by 
loxP at the COWP1 locus. 
b, Cre-mediated excision of 
a terminator results in 
reporter expression. HCT-8 
cultures and Ifng−/− mice 
were infected with each 
strain individually or in 
combination. This 
experiment was performed 
twice. Cultured parasites 
were counterstained with 
anti-TrpB antibodies, 
oocysts with Macula 
pomifera agglutinin (both 
red) and scored for tdNeon 
expression. Scale bars, 10 
μm. c, Three replicates 
were quantified for green 
fluorescence and 1,000 
cells were counted for each 
replicate. Data are mean ± 
s.d. Green fluorescence
was only observed after in
vivo infection and only
when both strains were
present (****P = 0.0002,
two-sided Student’s t-test).
As a positive control, cells
were infected with parasites
that were crossed in vivo
(indicated in b). d, PCR
mapping of the floxed

(diagnostic) and α-tubulin (control) loci using the primer pair shown in a. Genomic DNA was 
isolated from wild-type parasites as well as oocysts from the mouse infection experiments. 
Crossing resulted in a new amplicon that was consistent with precise Cre excision. This 
experiment was performed twice with similar results. e, Schematic model of the C. parvum life 
cycle that highlights the model of obligate progression to sex and the fertilization block in HCT-8 
culture. We do not show type II meronts here, which are often depicted as an obligate step 
towards gametes. Although we observed meronts with four and eight nuclei, we did not find a 
quantitative link between the meronts with four nuclei and gametes (Supplementary Fig. 3.3).  
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Supplementary Figure 3.1: Construction of a C. parvum strain expressing Histone H2B-
mNeon. (a) Map of native C. parvum TK locus, the targeting construct and the modified locus 
indicating the CRISPR/Cas9 induced break and areas of homologous recombination. (b) PCR 
analysis demonstrating successful insertion into the TK locus mapping the regions of 5’ and 3’ 
cross over, see (a) for the respective sizes of the predicted amplicons. This experiment was 
performed two times with similar results. 
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Supplementary Figure 3.2: Construction of a C. parvum strain expressing Cre 
recombinase. (a) Maps of PCR repair construct for Cre expression, TK locus and modified TK 
locus post insertion. (b) PCR analysis for integration of the Cre cassette in the TK locus. (c) IFA 
of the transgenic strain emerging from drug selection with antibody to Cre confirms expression of 
Cre recombinase. Parasites were counterstained with VVL (Scale Bar= 1 μm). PCR mapping 
experiment and microscopy experiments each were performed twice. 
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Supplementary Figure 3.3: Abundance of different meront types in culture over time. HCT-
8 cell cultures were infected with H2b mNeon parasites and fixed at 24, 36, 48 and 72 hours. 
Cultures were scored for meronts with either eight (type I) and four (type II) nuclei which are 
represented here as % of all observed parasite stages. Three independent biological replicates 
were used for this experiment and the data is represented as mean ± SD. Note that we do not 
find a temporal association between the emergence of meronts with four nuclei and the 
(subsequent) emergence of sexual stages. 
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3.4 Discussion 

The complex life cycles of parasites are among the most fascinating aspects of their 

biology. Cryptosporidium is a minute protist with a highly reduced genome, and yet it 

continuously transforms itself into a menagerie of specialized stages that amplify 

asexually, transform into male and female gametes, undergo fertilization and build a 

resilient spore. Here we trace and analyze this life cycle, label and isolate specific 

stages, and discover the genes that define these stages to provide a road map for the 

molecular dissection of parasite sex. We rigorously demonstrate that Cryptosporidium 

undergoes sexual differentiation in HCT-8 culture, but a block in gamete fusion prevents 

the development of new oocysts and the parasite cultures ultimately arrest (Fig. 3.4e). 

The cause of this block remains to be elucidated but seems to be linked to the host 

rather than the physiology of the parasite. This may be overcome partially by culture 

modalities that provide structured environments to transformed cells(Heo et al., 2018; 

Morada et al., 2016) or by using stem-cell-derived models that self-organize into more 

complex organoids(Heo et al., 2018; Wilke et al., 2019). It is unclear whether this is due 

to differences in the infected host cells themselves or due to factors secreted by more 

complex assemblages. In all cases, improved growth is linked to appearance of oocysts. 

Overall, this is consistent with a model of obligate developmental progression and 

suggests that interventions targeting sex could potentially not only block transmission 

but also cure ongoing infection. 

However, this proposed model of the lifecycle requires rigorous testing and validation in 

a mouse model. This can be achieved by specifically disrupting the transition phase from 

gametogenesis to sporogony to specifically block oocyst biogenesis. Amelioration of 

infection in mouse model because of the disruption of sexual development (and oocyst 

development) would strongly support the model of obligate requirement of sex to 
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maintain infection. Multiple processes like gametogenesis, male gamete motility, gamete 

interaction and post-fertilization development can be potentially targeted to test the 

proposed model. A comprehensive transcriptomics study of the sexual stages will 

provide us with a repository of gene targets that might be involved in different processes 

mentioned above. Such a study will also reveal potential drug and vaccine targets to 

specifically block sexual development and to potentially cure individuals.  
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Chapter 4: Defining the transcriptomes of the sexual stages of 

Cryptosporidium 

Partial contents of this chapter are already published as: Tandel, J. et al. Life cycle 

progression and sexual development of the apicomplexan parasite Cryptosporidium 

parvum. Nat Microbiol 4, 2226–2236 (2019). 
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4.1 Abstract 

Cryptosporidium is the leading cause of diarrhea-induced mortality in children after 

rotavirus. Cryptosporidium has a single-host lifecycle, and the parasite undergoes 

asexual replication and sexual development in the same host. However, the molecular 

mechanisms underlying this single-host lifecycle program are unknown. A 

comprehensive understanding of genes expressed in asexual and sexual stages of the 

parasite is required. The presence of a complex mixture of asexual and sexual 

populations of Cryptosporidium in infected culture and mice makes it technically 

challenging to delineate transcriptomes of asexual stages, males, and females. We thus 

identified stage-specific markers and developed reporter parasites that allowed us to 

isolate cells in a stage-specific fashion. Populations enriched in this way were analyzed 

by mRNA sequencing and we compared expression profiles between stages to define 

the transcriptome of asexual, male, and female parasites. The female transcriptome was 

found to be enriched for structural and enzymatic components required for oocyst wall 

synthesis, meiosis, and amylopectin (glycogen-like polysaccharide) synthesis. Males 

were enriched for uncharacterized transmembrane proteins, secreted and 

transmembrane proteases that might be involved in male-female interactions and 

gamete fusion. An evolutionarily conserved copper transporter was found to be enriched 

in males, and its Plasmodium ortholog is required for male exflagellation. Additionally, 

our transcriptional analyses have identified four sex-specific ApiAP2-DNA binding 

proteins that might be involved in regulating sexual stage-specific processes. Many of 

the sexual stage processes identified by our transcriptional analyses represent important 

drug and vaccine targets to block oocyst development.  
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4.2 Introduction 

Cryptosporidium is one of the major contributors to global childhood mortality.(Kotloff et 

al., 2013; Liu et al., 2012) Cryptosporidium infection in its chronic and asymptomatic 

form contributes to poor developmental outcomes in children.(Agnew et al., 1998; 

Checkley et al., 1997, 1998) Drug(Amadi et al., 2009) and vaccines(Lemieux et al., 2018; 

Mead, 2010, 2014) against cryptosporidiosis are currently lacking and a detailed 

understanding of molecular profiles of different stages of the parasite will provide crucial 

therapeutic targets. A detailed molecular map of asexual and sexual stages will provide 

key insights into mechanisms of stage differentiation in Cryptosporidium. These 

mechanistic insights will help identify specific lifecycle stages that can be therapeutically 

targeted to block transmission and infection. 

Our previous work has demonstrated that Cryptosporidium cannot grow continuously in 

HCT-8 cells due to a lack of parasite mating in vitro. We observed infection, asexual 

replication, and robust sexual development (~80%) but no fertilization and post-

fertilization development was documented in HCT-8 cells.(Tandel et al., 2019) 

Contrastingly, fertilized and post-fertilized stages make up to ~35% of the total parasite 

population in infected mice.(Tandel et al., 2019) We have validated lack of parasite 

crossing in culture by using a Cre-reporter assay for sex.(Tandel et al., 2019) Our 

findings suggest that to grow continuously the parasite has to pass through a phase of 

obligate sexual differentiation, gamete mating, and sex, followed by meiosis and the 

formation of a new generation of the oocyst. We hypothesize that this progression which 

involves a regular reset of the lifecycle essentially every three days may also be an 

obligatory requirement for Cryptosporidium to maintain the continuous infection of a 
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host.(Tandel et al., 2019) As a result, disrupting sexual development or mating in 

Cryptosporidium break the cycle of infection.  

A detailed understanding of sexual-stage specific processes is required for disrupting 

sex. We believe that stage-specific gene expression and the regulatory elements that 

control it would be most suitable as targets for such intervention. However, at this point, 

we know very little about these processes and the specific genes involved. Some 

insights have been obtained by following infected cultures longitudinally.(Mauzy et al., 

2012) The simultaneous presence of multiple parasite stages in cultures and mice  

however complicates the isolation of pure populations of sexual stages for 

transcriptomics analyses. Here we define transcriptome of sexual stages by first 

identifying sex-specific molecular markers and then we use these markers to engineer 

sex-specific fluorescent reporter strains. We enrich sexual stages by flow cytometry and 

define their transcriptome by mRNA sequencing and comparative analyses.  
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4.3 Results 

Cryptosporidium Oocyst Wall Protein-1 (COWP1) is a female-specific gene and its 

promoter drives female-specific expression of a reporter 

The female gamete produces and stores components of the oocyst wall in wall-forming 

bodies that were previously described in related parasites, and earlier studies identified 

Cryptosporidium oocyst wall protein-1 (COWP1).(Spano et al., 1997) We tagged the 

COWP1 protein (cgd6_2090) by C-terminal insertion of either a fluorescent protein or a 

haemagglutinin (HA) epitope into the native locus (Supplementary Figs. 4.1a,b and 4.2). 

Transgenic parasites showed strong labeling of the oocyst wall (Fig. 4.1a). When 

infected cell cultures were examined, no expression was apparent at 24 h, but numerous 

fluorescent parasites were observed at 48 h. These parasites had a single large nucleus 

and multiple small foci of COWP1 consistent with wall-forming bodies (Fig. 4.1b). We 

next observed COWP1 expression in parasites throughout a detailed time course in vitro 

using the HA-tagged COWP1–HA strain. Parasites expressing COWP1–HA closely 

matched the stages that we identified for female gametes using H2B–mNeon in terms of 

morphology and the proportion of the overall parasite population at the observed time 

points (Fig. 4.1d, Supplementary Fig. 4.2). To study what controls the stage specificity of 

gene expression, we placed fluorescent protein reporters under the control of the 

presumptive COWP1 promoter region and ectopically expressed these constructs (Fig. 

4.1 c,d, Supplementary Fig. 4.1c-e). Fluorescence (now cytoplasmic) was exclusively 

associated with female gametes and temporal expression matched that of the native 

locus, demonstrating that promoters, and thus probably transcription initiation, control 

stage specificity of gene expression (Fig. 4.1d). 
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Defining the C. parvum female transcriptome   

To discover the genes associated with sex in C. parvum, we sought to isolate specific 

parasite stages. We developed flow cytometry protocols to sort infected cells based on 

the expression of fluorescent proteins by the parasite (Supplementary Fig. 4.3). Figure 

4.2a shows sorts from cell culture and mice, in which infected and uninfected cells are 

readily discernible. Next, we conducted mRNA sequencing experiments using cells 

sorted for eno promoter-driven tdNeon (eno–tdNeon; Supplementary Fig. 4.4) and 

COWP1 promoter-driven tdTomato (COWP1–tdTomato) from 24 h or 48 h cultures to 

isolate asexual and female stages, respectively, as well as females from infected mice 

(Supplementary Fig. 4.5). We obtained between 5 million and 35 million reads for each 

sample, with 50,000 to 7,000,000 mapping to the C. parvum transcriptome, representing 

2,500–3,400 of the 3,885 C. parvum genes (see Methods; Supplementary File 4.6). The 

analysis revealed robust transcriptional differences between asexual and female 

parasites. The transition to female gametes was accompanied by a two-fold or greater 

increase (false discovery rate (FDR)-adjusted P < 0.01) in the expression of 673 genes 

including COWP1 (Fig. 4.2d, 451 genes are downregulated). We compared these genes 

with those that are associated with female gametogenesis in Plasmodium berghei(Yeoh 

et al., 2017) (this particular dataset was most comparable to our experiment) and found 

72 shared orthologue groups that encompass 73 C. parvum genes and 81 P. berghei 

genes (~31% of the female C. parvum genes with an identifiable P. berghei homologue) 

as well as 595 C. parvum-specific genes. We also compared female-specific genes from 

C. parvum and P. berghei to gametocyte genes in Eimeria tenella(Walker et al., 2015)

and identified a set of 41 orthologue groups that contained 42 C. parvum genes, 49 P. 

berghei genes, and 55 E. tenella genes.   
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The functional annotation of the C. parvum genome using Gene Ontology is very limited. 

We, therefore, assembled pathways using the Gene Ontology terms for DNA, 

carbohydrate, and oxidase and reductase metabolism, as well as a candidate oocyst 

wall proteome(Truong and Ferrari, 2006), to conduct enrichment analysis (Fig. 4.2b). We 

found significant enrichment when comparing females with asexual parasites (FDR-

adjusted P < 0.005). Figure 4.3 shows additional clustering based on literature-based 

pathway annotation, those genes that were also found in the leading edge of the 

enrichment analysis are highlighted in red. Cryptosporidium is a haplont and meiosis is 

presumed to follow fertilization. Consistent with this view, we found that conserved 

eukaryotic factors of meiotic recombination— including DMC1, Spo11, HORMA, and 

HOP2—were preferentially expressed in females as well as proteins with a probable role 

in meiosis-associated DNA repair, including the mismatch repair protein MutL and DNA 

ligase (Figs. 4.2b and 4.3a). We also note chromosome segregation and cell-division 

factors, including condensins, cohesins, stage-specific cyclins, cyclin-dependent and 

NIMA kinases, and cytoskeletal proteins. Overall, we identified 37 genes in this meiosis 

category and many of these are shared among apicomplexan females (Supplementary 

Fig. 4.6).  

Cryptosporidium oocysts remain infectious for months(Fayer et al., 1998) and female 

transcription provides candidate mechanisms of this resilience. Twenty-two enzymes 

that are required for the metabolism of amylopectin and trehalose are upregulated in 

females (Fig. 4.3c). Amylopectin is consumed(Fayer et al., 1998) by the sporozoites and 

the disaccharide trehalose may play a role in energy storage as well as serving to 

moderate osmotic stress(Elbein et al., 2003). Cryptosporidium oocysts are also highly 

resistant to chemical assault, including water chlorination(Korich et al., 1990), due to a 

complex multilayered wall made of proteins, carbohydrates, and lipids(Samuelson et al., 
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2013). We identified 69 genes that are preferentially expressed in females and encode 

proteins with a probable role in oocyst wall synthesis, most of which have a predicted 

signal peptide. These include previously identified oocyst wall proteins and their 

homologues, numerous proteases (aspartic peptidases, serine proteases, and 

subtilases) and protein modifiers, such as amine oxidases(Walker et al., 2015), that 

serve to build or modify the proteinaceous components of the wall (Fig. 4.3b). Many 

protozoans have chitin and glucan cyst walls and the Cryptosporidium wall is labeled by 

various lectins, but no wall polysaccharide has been identified(Bushkin et al., 2012; 

Samuelson et al., 2013). Similarly, we did not find stereotypical chitin or glucan 

synthase; however, among female transcripts, there are numerous glycosyltransferases. 

Interestingly, this set contains two polysaccharide pyruvyl transferases (cgd7_2583 and 

cgd6_1450) and a UDP-glucose dehydrogenase (cgd8_920) that were all recently linked 

to capsule synthesis in pathogenic Acinetobacter(Kasimova et al., 2018), as well as 

proteins with lectin domains including chitin-binding proteins, which suggests a 

proteoglycan structure (Fig. 4.3b). Finally, we found that the two giant lipid synthases—

polyketide synthase(Zhu et al., 2002) (cgd4_2900) and type I fatty acid synthase 

(cgd3_2180)—that were acquired by horizontal transfer from bacteria are specifically 

expressed in females. In Mycobacterium tuberculosis, these enzymes work in series to 

produce mycolic acids, which are key components of the mycobacterial wall. We chose 

two previously uncharacterized genes for experimental validation that were identified 

here as likely to be female-specific (cgd7_4810 and cgd7_5140) and used CRISPR–

Cas9 to attach a c-Myc epitope tag. Transgenic oocysts reacted strongly with the anti-c-

Myc antibodies, and in the culture, we noted exclusive staining of female gametes 

(Supplementary Fig. 9 of Tandel et. al.(Tandel et al., 2019)). 
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Among the genes for which expression is unique to females in vivo are also 

cgd5_2570 and cgd8_3130, which encode apetala2 (AP2)-domain proteins (Fig. 

4.3d). AP2-type transcriptional regulators have been demonstrated in other 

apicomplexans to bind to specific genome features(De Silva et al., 2008; Kafsack 

et al., 2014), including promoters, and emerged as master regulators of life cycle 

progression. Cryptosporidium encodes a comparably small set of 

AP2s(Oberstaller et al., 2014) and many of these genes seem to be 

developmentally regulated, with expression patterns that differ greatly between 

asexual and sexual parasites and between in vitro and in vivo (Fig. 4.3d). 

HAP2 is a male-specific maker but its promoter does not drive the expression of 

fluorescent reporters 

Male gametes in most apicomplexans move with the aid of flagella, and the exclusive 

presence of these flagella in males provides numerous marker proteins. Cryptosporidium 

male gametes lack flagella but have a peculiar set of microtubules that are associated 

with and run along the length of their spindle-shaped nuclei(Ostrovska and Paperna, 

1990) that we visualized using super-resolution microscopy (Fig. 4.4a). We also 

identified a C. parvum homologue of hapless2 (HAP2; Supplementary Fig. 4.7), a class 

II membrane fusion protein that is required for gamete fusion in a range of organisms 

including Plasmodium falciparum and Chlamydomonas reinhardtii, and is expressed by 

the male or minus gamete, respectively.(Liu et al., 2008) We epitope-tagged the C 

terminus of HAP2 and infected cell cultures with transgenic parasites. HAP2–HA labeling 

was found exclusively in 



65 

male gamonts (Fig. 4.4b) and gametes and was restricted to one end of the polarized 

male gamete (Fig. 4.4c). Time-course experiments demonstrated the appearance of 

males after 42 h of culture (Fig. 4.4d). We note that both sexes emerge at the same time 

and a male to female ratio of 1:2 for gamonts and 6:1 for gametes. We did not observe 

the expression of mCherry in males or any other stage when presumptive HAP2 

promoter was used. This can be attributed to weak strength of the promoter or due to the 

presence of an unusually high number of introns (Supplementary Figs 4.7a-b and d) 

suggesting cryptic, post-transcriptional regulation of HAP2.  

Identification of an ‘early’ male developmental stage and an ApiAP2 gene that is 

uniquely expressed in this stage 

In addition to stages that we readily identify as male gamonts, we also noted HAP2 in a 

minor population of multinucleated parasites that become apparent in culture after 48 

hours of infection (Figs. 4.5b and 4.4 b-c). The nuclei in these stages were round and 

closely clustered into a central rosette, while the nuclei of mature male gamonts are 

elongated and dispersed (Figs. 4.5b and 4.4 b-c). HAP2 appeared to surround the 

nuclei, a localization that might coincide with the endoplasmic reticulum. Overall, we 

concluded that these stages are likely early developmental forms of males. We identified 

an ApiAP2 gene with a similar temporal expression pattern to HAP2(Mauzy et al., 2012) 

(Supplementary fig 4.9a). We tagged this gene with an mCherry reporter 

(Supplementary fig 4.9b). The protein was specifically expressed in stages with nuclear 

morphology and timing resembling that of HAP2 ‘rosette’ stages (Fig. 4.5a). AP2-14 

(cgd6_2670) was localized to the nucleus. Note that DAPI staining pattern of the AP2-14 

expressing stages resembles that of HAP2 ‘rosette’ stages. We rarely observed the 

protein in mature male gamonts where it appeared cytoplasmic (Fig. 4.5a) and it is not 
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found in egressed male gametes (Fig. 4.5a). AP2-14-expressing stages had a median of 

6 nuclei (ranging from 4-8 nuclei), and the total nuclear area of these stages (Fig. 4.5c; 

1.829 ± 0.33 μm2) was similar to that of HAP2 rosette stages (Fig. 4.5c; 1.46 ± 0.32 μm2; 

*p< 0.03) but significantly different to that of meronts (Fig. 4.5c; 4.12 ± 0.83 μm2; ****p<

0.0001). Based on the morphological similarities between HAP2 rosette stages and AP2-

14 expressing stages, we hypothesized that AP2-14 is expressed in early males, but its 

expression is lost in mature males.  

To test whether AP2-14 is a gene specifically expressed in males, we engineered a 

strain in which we HA-tagged HAP2 and simultaneously introduced a tdNeon reporter 

under the transcriptional control of the presumptive promoter of the AP2-14 gene 

(Supplementary fig 4.9c; 382 bp of noncoding sequence 5’ to the start codon). We 

observed tdNeon expression in male gamonts and male gametes (Fig. 4.5d). 97% of the 

tdNeon-expressing stages were found to be positive for HAP2 (Fig. 4.5c). Unlike the 

reporter, the AP2-14 protein is not observed in mature male gametes. This is most likely 

due to a post-translational mechanism that ensures the proteasomal decay of the AP2-

14 protein once early males mature into gametes. However, experimental data are 

needed to confirm this hypothesis. 

Defining the C. parvum male transcriptome 

We infected HCT-8 cells with AP2-14 tdNeon parasite strain and sorted 10,000 male 

gamont-infected cells after 48 hours. We sequenced the RNA of the sorted male 

population (Fig 4.6a) and obtained between 18 million and 29 million reads per sample 

out of those 500,000 to 1.2 million aligning to the C. parvum genome (the remainder 

represents human transcripts as we sequence infected cells and not just parasites). We 

compared this male transcriptome to pre-existing transcriptomes of females (the in vitro 
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dataset) and asexual stages. We identified 546 and 1,271 genes being differentially 

expressed between males and females and males and asexual stages, respectively 

(false discovery rate (FDR)-adjusted P < 0.01, see Fig 4.6b and supplementary fig 4.10). 

263 and 720 genes were found to be at least two-fold upregulated in males when male-

female and male-asexual transcriptomes were compared, respectively (Fig 4.6b).  

We identified genes that are commonly upregulated in males between male-female and 

male-asexual comparisons. This revealed a total of 116 genes unique to male gametes 

(Fig 4.6b). 51 genes (out of the 116 genes) were defined as uncharacterized proteins 

and only 4 of them had an ortholog in other apicomplexan parasites. Out of the 48 non-

conserved uncharacterized proteins, 19 genes are predicted transmembrane proteins 

(Fig 4.6c) and 5 genes contain a signal peptide but no transmembrane domain (Fig 

4.6d). 

Molecular mechanisms of gamete fusion have been well studied in higher 

eukaryotes.(Rothmann and Bort, 2018) Mammalian sperm contain ‘acrosome’ secretory 

vesicles that contain key mediators like proteases, ion channels, transmembrane 

receptors, etc. which enable gamete fusion.(Rothmann and Bort, 2018) Sperm-specific 

proteases are needed to dissolve the extracellular zona pellucida proteinaceous layer to 

access female gametes in mammals.(Rothmann and Bort, 2018) We identified a total of 

six proteases that were upregulated in male gametes, and of these 4 proteases 

(cgd1_2240, cgd1_3690, cgd7_2850, and cgd2_3560)  are either secreted or a 

membrane proteins (Fig 4.6e). These proteases might be involved in interacting with the 

female gamete. cgd1_2240 (aspartly peptidase A1 family protein is the homology of 

Plasmodium plasmepsin V protein (OG5_132039), which is involved in protein export to 

the host cell.(Boddey et al., 2010) Unlike the Plasmodium falciparum homolog(Boddey et 

al., 2010) (PF13_0133), cgd1_2240 lacks a transmembrane protein(Abrahamsen et al., 
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2004). Contrastingly, cgd1_3690 is a signal-peptide containing aspartly protease that 

lacks apicomplexan orthologs (OG5_194978). This suggests that cgd1_2240 and 

cgd1_3690 are most likely to be secreted proteases with novel functions.  

Cryptosporidium males express a signal peptide-containing kazal domain protein (Fig 

4.6f; cgd5_3380) and its homologs are absent in other apicomplexan parasites 

(OG5_195310). Kazal domain-containing proteins are inhibitors of a variety of 

proteases(Thélie et al., 2019) and are one of the critical components of acrosome 

mixture to maintain sperm fertility by preventing premature activation of the acrosin 

protease(Rothmann and Bort, 2018; Thélie et al., 2019; Zheng et al., 1994). The 

Cryptosporidium kazal domain-containing protein might have a role in maintaining male 

fertility in a similar fashion. 

Ions like Cu2+ and Ca2+ are important for the development of male 

gametes(Kenthirapalan et al., 2014; Ogórek et al., 2017) and are required for signaling 

during fertilization (Correia et al., 2015). Multiple ion transporters have been identified 

that play crucial roles in maintaining ion homeostasis in male gametes.(Correia et al., 

2015; Kenthirapalan et al., 2014; Shukla et al., 2012) We identified a total of five genes 

(cgd1_700, cgd1_2550, cgd1_3200, cgd2_1310 and cgd7_670) upregulated in males 

that have been annotated as transporters (Fig 4.6g). Of these genes, cgd1_2550 is a 

broadly conserved copper transporter (OG5_139232). The Plasmodium berghei ortholog 

(PBANKA_130290) of cgd1_2550, a copper transporter, was found to be expressed in 

asexual blood stages and gametocytes, but its deletion severely affected male gametes 

exflagellation.(Kenthirapalan et al., 2014)  

Overall, we have identified male-specific genes that might be required for interaction and 

fusing with female gametes. 
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Fig.  4.1 Exclusive molecular marker for females of C. parvum. a–d, C. parvum were 
engineered to express COWP1–mNeon (a,b) and COWP1–HA (Supplementary Fig. 4.2) from the 
native locus or COWP1promoter-driven tdTomato from the ectopic TK locus (c). Note the mNeon 
labeling of the wall in oocysts purified from infected mice and punctate labeling in female gametes 
observed in infected HCT-8 cells. Labeling becomes apparent after 42 h of culture and is never 
observed in asexual meronts or male gametes (b,d). The COWP1 promoter alone is sufficient to 
confer female-specific expression to a reporter protein (c,d). Anti-H3K9Ac antibodies were used 
to label the nuclei of females because they stain poorly with 4,6-diamidino-2-phenylindole (DAPI). 
For the time intervals in d, cultures were infected with the indicated transgenic strains and 
triplicate coverslips were fixed and processed for immunofluorescence assays. Parasite stages 
were scored for HA staining, the mean ± s.d. percentage of HA-positive stages among all of the 
parasites is shown for three independent biological replicates. All the scale bars are 1 μm in 
length.  
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Fig. 4.2 Isolation of asexual and female stages by cell sorting and RNA sequencing. Flow 
cytometry of infected cells with the indicated markers and origins. Gates used for sorting are 
shown as boxes. This experiment was performed twice. SSC, side scatter. b, Gene set 
enrichment analysis (GSEA) with multiple testing correction comparing cultured asexual and 
female parasites. Custom gene signatures were generated using Gene Ontology or community 
datasets available at CryptoDB (b; carbohydrate (GO:0005975; normalized enrichment score 
(NES) = 1.67, FDR-adjusted P = 0.004), DNA (GO:0006259; NES = 1.68, FDR-adjusted P = 
0.005), redox (GO:0055114; NES = 1.99, FDR-adjusted P = 0) and oocyst wall proteome(Truong 
and Ferrari, 2006) dataset (NES = 1.76, FDR-adjusted P = 0.001)). ***P ≤ 0.005. n = 4 biological 
replicates per group. c, Principal component analysis of all RNA-sequencing datasets generated 
during this study (Supplementary Fig. 4.6). d, Volcano plots showing C. parvum genes that were 
differentially expressed between asexual and female parasites from culture. n = 4 biological 
replicates per group. Each symbol represents a C. parvum gene, those genes representing the 
leading edge from b are indicated by the color according to the pathway that they act in. The 
horizontal dashed line shows an FDR-adjusted P-value of 0.01; the vertical dashed lines indicate 
a log2-transformed fold change of −1 and 1, respectively.  
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Fig. 4.3 Female gametes express genes that are required for genetic recombination and 
oocyst formation. a–c, Heat maps illustrating expression of genes associated with specific 
molecular functions that are upregulated in females (generally results from in vivo and in vitro 
females concur, although there are some exceptions). Genetic recombination (a), oocyst 
environmental resilience (b) and energy storage (c); n = 4 biological replicates per group. d, the 
Expression heat map for all C. parvum AP2 DNA-binding proteins. Note the pronounced 
difference identifying four genes upregulated in all females and two only in vivo females. As we 
were unable to sequence males, we cannot formally exclude that some genes that show high 
female-specific expression may be upregulated in all sexual stages. Expression values are given 
as row z-scores and annotated genes list are provided as Supplementary Files. Genes from the 
leading edge in Fig. 3b are highlighted in red text. 
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Fig. 4.4 HAP2 is a male-specific fusogen. a. Male gametes show a characteristic array of 
microtubules around the nucleus after staining with anti-tubulin antibodies. When parasites were 
engineered to express HAP2–HA from the native locus, antibody staining revealed exclusive 
labeling of free gametes (c) and male gamonts (b). HAP2 labels a single pole per mature gamete. 
This staining becomes apparent after 42 h of culture (d, blue). e. No expression of mCherry was 
observed in males or any other stages when 662 bp of HAP2 5’UTR was used. All of the 
microscopy experiments shown in this figure were performed independently three times. Scale 
bars in b-c and e is 1 μm; scale bar in a is 0.5 μm. 
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Fig. 4.5 AP2-14 (cgd6_2670) is an ‘early’ male-specific gene. a. Nuclear localization of AP2-14 
has presumed ‘early’ males and cytosolic localization in rare male gamonts. Egressed male 
gametes lack the expression of AP2-14. b. Rosette and polar localization of HAP2-HA in ‘early’ 
and mature males, respectively. c. The number of nuclei in AP2-14 positive stages (n=30), and 
total nuclear area of asexual meronts, HAP2 ‘rosette’ stages and AP2-14 stages were quantified 
(n=9 each). AP2-14 presumed promoter drives the expression of tdNeon specifically in males (d) 
and ~97% of the tdNeon-expressing population was positive for HAP2 (e). Scale bars in all the 
images are 1 μm in length.  
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Fig. 4.6 Isolation of male gamonts by cell sorting and RNA sequencing. a. Flow cytometry of 
male gamonts from a 48-hour infected HCT-8 cultures with the indicated markers and origins. 
Gates used for sorting are shown as boxes. This experiment was performed twice. SSC, side 
scatter. b. 116 genes (highlighted by a black box) commonly upregulated (at least 2-fold) 
between in vitro male-in vitro female and in vitro male-in vitro asexual comparisons were selected 
to identify male-specific genes. Custom gene signatures (FDR p< 0.01) of ‘uncharacterized 
transmembrane proteins’ (c), ‘uncharacterized secreted proteins’ (d), ‘secreted and 
transmembrane proteases’ (e), ‘secreted kazal domain protein’ (f) and ‘transporters’ (g) were 
generated from 116 male-specific genes. The expression is given as row Z-score. 
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Supplementary Figure 4.1: Construction of C. parvum COWP1-mNeon and COWP1-
tdTomato strains. (a and c) Maps depict the native loci, repair constructs, and modified loci for 
generating respective strains. (b and d) PCR analyses confirming successful insertions of repair 
constructs for COWP1-mNeon and COWP1 tdTomato respectively (see plasmid maps in (a) and 
(c)) for amplicons for the predicted 5’ and 3’ insertion sites. This experiment was performed two 
times with similar results. The presumptive promoter sequence used to drive the expression of 
tdTomato is represented in e (247 bp upstream of the ‘start’ codon).  
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Supplementary Figure 4.2: Immunofluorescence analysis of female-specific expression of 
COWP1-HA. Note the localization of COWP1-HA to the wall of oocysts and punctate structures in 
female gametes. No staining is observed in asexual meronts or male gamonts. Female gametes 
were counterstained with an H3K9Ac antibody highlighting the nucleus. Males and meronts were 
identified by DAPI staining. Note that the large transcriptionally active nucleus of female gametes 
which stains poorly with DAPI (Scale Bar= 1 μm). This experiment was performed three times 
with similar results. 
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Supplementary Figure 4.3: Microscopic validation of the flow cytometry protocol to isolate 
parasite-infected cells. Initial experiments used parasites expressing mCherry under the tubulin 
promoter. Cells were sorted form infected cultures (a) and infected IFNg-/- mice (b). Gates used 
for sorting are shown in red. Sorted cells were imaged without further staining (cells from mice 
were stained with antibodies to EPCAM prior to sorting). The images show merge DIC and 
fluorescence channels (Scale Bar= 1 μm). We constructed numerous strains using different 
fluorescent protein genes (mCherry, GFP, YFP, mRuby, mScarlet, tdNeon and tdTomato) to 
identify those that produce the brightest fluorescence and the most robust sorting differential. We 
find tdNeon and tdTomato to yield the strongest green and red fluorescence, respectively. This 
experiment was performed three times with similar results. 
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Supplementary Figure 4.4: Construction of eno tdNeon reporter strain. (a) The eno tdNeon 
constitutive reporter strain was constructed by linking the Nluc-Neo expression cassette with two 
copies of the mNeon Green fluorescent reporter gene in tandem. A viral T2A skip peptide linker 
was introduced between the tdNeon and Nluc-Neo cassettes. The expression construct was 
incorporated in the TK locus of the parasite and integration of the construct was validated by PCR 
(b). (c) Expression of tdNeon reporter in the transgenic strain in a 24-hour infected culture (Scale 
Bar= 10 μm). This experiment was performed twice with similar results. 
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Supplementary Figure 4.5: Sampling of different parasite stages for RNA sequencing 
analysis. Schematic overview of RNA sequencing experiments conducted in this study indicating 
the C.parvum strain, the respective transgene, the source of parasites or infected cells 
(sporozoites freshly excysted from oocysts, infected HCT-8 cell cultures, or the resected small 
intestine of infected IFNg-/- mice), the time point of parasite harvest following infection (in hours 
highlighted in blue), whether or not cells were subjected to fluorescence-activated cell sorting. 
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Supplementary Figure 4.6: Differential gene expression of asexual and female C. parvum 
sorted from HCT-8 cultures and infected mice. (a) A heatmap of cluster analysis of 
differentially expressed genes between the sorted cells (see Fig. 3a for further detail on sorted 
populations). Expression is given as a row z-score. Clusters are available for download as 
Supplementary File 3 (n= 4 biological replicates per group). (b) Venn diagram of all genes 
expressed 2-fold or higher in female (or in the case of Eimeria tenella gametocyte) stages over 
asexual stages. Numbers are given as ortholog groups containing one or more genes from the 
indicated species. See Supplementary File 4 for a complete list of ortholog groups and stage 
specific genes within each group for each species. (c) Venn diagram of the 500 most abundantly 
expressed genes for each parasite stage (n= 4 biological replicates per group). See 
Supplementary File 5 for complete lists of overlapping and unique genes. 
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Supplementary Figure 4.7: Construction of an HA-tagged C. parvum HAP2. (a) Only a 
fragment of the HAP2 gene (cgd8_2220) is annotated in the publicly available C. parvum genome 
sequence (https://cryptodb.org/). We used RNA sequencing data and RT-PCR analysis to correct 
the gene model. While most C.parvum genes lack introns (d and highlighted in lower case in a), 
they are abundant in HAP2 as shown by the locus map in (b). The protein was tagged with an HA 
epitope in the native locus. (c) PCR analysis confirmed successful epitope tagging of the HAP2 
gene. This experiment was performed two times with similar results. (d) Graph depicting the 
distribution of annotated C. parvum Iowa II strain genes concerning the number of exons per 
gene (https://cryptodb.org/).  

https://cryptodb.org/
https://cryptodb.org/
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Supplementary Figure 4.8: Differential gene expression of excysted sporozoites and 
infected HCT-8 cultures. (a) Volcano plot of differentially expressed C. parvum genes between 
24 and 48 hours in vitro (n=3 biological replicates per group). Each point represents a single C. 
parvum gene. The horizontal dashed line indicates an FDR of 0.01. Vertical dashed lines indicate 
log2 fold change of -1 and +1. Genes from the leading edge of gene enrichment analysis (Figs. 
3.3c and 4.2b) are shown in red, carbohydrate (GO:0005975), green, DNA (GO:0006259), purple, 
redox (GO:0055114), and blue, oocyst wall proteome dataset(Truong and Ferrari, 2006). (b) 
Heatmap and clustering analysis of C. parvum genes differentially expressed between 
sporozoites and infected HCT-8 cultures at 24- and 48-hours post infection (n= 3 biological 
replicates per group). Expression is given as row z-scores. (c and d) Venn diagrams comparing 
genes expressed by sporozoites (found in clusters 3 and 4 in (c) to genes expressed 2-fold or 
higher by in vivo females over in vitro females (c) or expressed 2-fold or higher by in vitro females 
over in vivo females (d). Complete list of shared genes in Supplementary File 6. Note that 40% of 
genes of this category in vivo females are also upregulated in sporozoites. No such enrichment is 
obvious in in vitro females. 



83 

Supplementary Figure 4.9: Approach to validate the male-specific expression of AP2-14. a. 
Comparison of the temporal expression of cgd6_2670 (AP2-14) and cgd8_2220 (HAP2) 
transcripts in HCT-8 culture at different time points. The data has been graphed from Mauzy et. 
al..(Mauzy et al., 2012) Strategies to engineer AP2-14 mcherry tag (b) strain and AP2-14 tdneon 
male reporter line (c) have been represented. 
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Supplementary Figure 4.10: Differential gene expression between male gamonts, females, 
and asexual stages from HCT-8 cultures. Male gamonts were isolated from the 48-hour 
infected HCT-8 cells by flow cytometry for RNA-sequencing (fig 4.6a) and transcriptional datasets 
were compared to preexisting in vitro female and asexual transcriptomes (n=4). Differentially 
expressed genes between (2-fold change; FDR p< 0.01) in vitro males, in vitro females, and in 
vitro asexuals are represented by a heatmap. The expression is represented as a row Z-score. 



85 

4.4 Discussion 

The single-host lifecycle of Cryptosporidium has been studied at an ultrastructural by 

electron microscopy in a variety of infected host species.(Current and Reese, 1986; 

Ostrovska and Paperna, 1990) Molecular mechanisms underlying complex 

transformations from asexual to sexual stages, fertilization, pots-fertilization 

development and sporulation in Cryptosporidium are uncharacterized. Comprehensive 

understanding of genes expressed in asexual stages, males and females will help 

identify molecular orchestrators involved in complex transformations form one stage to 

another. The presence of a complex mixture of Cryptosporidium intracellular stages in in 

vivo(Current and Reese, 1986; Ostrovska and Paperna, 1990) and culture(Tandel et al., 

2019) makes it technically challenging to enrich a specific stage for a downstream 

molecular analysis. We overcame this challenge by designing stage-specific fluorescent 

reporter strains and flow sorting them for RNA sequencing. 

Cryptosporidium Oocyst Wall Protein-1 (COWP1; cgd6_2090) gene has been confirmed 

as a female-specific gene(Spano et al., 1997), and its 247 bp of 5’ UTR drove the 

expression of tdTomato specifically in females. We identified HAP2 (cgd8_2220) and 

AP2-14 (cgd6_2670) as male-specific genes. Our detailed analysis of male development 

revealed the presence of an early (rosette nuclei) and late (bullet-shaped nuclei) 

developmental stages of males. HAP2 was expressed in both early and late 

developmental stages with different localization patterns. However, AP2-14 was 

expressed in early male stages with nuclear localization but was either absent or present 

in the cytoplasm of late male gamonts. This implies that there exists a post-translational 

mechanism to ensure decay of AP2-14 in mature male gamonts. Only the promoter of 

AP2-14 (382 bp of the 5’UTR), but not that of HAP2 (647 bp of the 5’UTR), drove the 

expression of tdNeon reporter in males. HAP2 gene contains nine introns while ~85% of 
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the Cryptosporidium genes lack a single intron (Supplementary fig. 4.9d). This might 

suggest that additional post-transcriptional mechanisms guided by introns(Rose, 2019) 

regulate HAP2 expression, which cannot be recapitulated by its promoters alone.   

Genes required for meiosis, oocyst wall biogenesis and amylopectin metabolism were 

upregulated in females. The expression of meiosis genes like DMC1, HOP2, and Spo11 

is only observed in females, and these unilaterally contribute to meiotic development 

after fertilization. Similar meiotic mechanisms have been observed in green 

algae(Triemer and Jr, 1977) and fungi(Sherwood and Bennett, 2009) that undergo 

zygotic meiosis.  

Cryptosporidium female gametes express proteinaceous components (COWPs) of the 

oocyst wall. Oocyst wall proteins are further processed proteolytically and cross-

linked.(Samuelson et al., 2013; Walker et al., 2015) Proteases and oxidoreductases 

required for proteolytic processing and crosslinking of oocyst wall proteins were also 

upregulated in female. Additionally, we observed expression of enzymes required for 

incorporating lipid and sugar components to the oocyst walls in females. Many of the 

enzymatic components identified in females required for oocyst wall biogenesis are 

absent in humans, which makes them potential drug targets.(Bakheet and Doig, 2009) 

Polyketide synthase enriched in female is well characterized biochemically(Weng and 

Noel, 2012) and many drugs have been designed against it(Aggarwal et al., 2017). Many 

of these PKS inhibitors can be tested against their anti-cryptosporidial activity. In a cyst-

forming coccidia, Eimeria, the genes necessary for the oocyst wall biogenesis are 

expressed in the female stages.(Walker et al., 2015) 

Cryptosporidium female gametes were enriched in genes required for synthesis and 

catabolism of glycogen-like amylopectin polysaccharide. Amylopectin might serve as an 

energy source for developing sporozoites.(Harris et al., 2004) Amylopectin might 
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additionally serve as a precursor for synthesis of trehalose required for tolerating 

osmotic stress.(Elbein et al., 2003) 

Genes involved in gamete-gamete interactions and communications are potential 

vaccine and drug targets.(Chaturvedi et al., 2016) Robust sexual differentiation of 

Cryptosporidium in cultures makes it a convenient model system to study mechanisms 

by which male and female gametes communicate and initiate events leading to 

fertilization. Cryptosporidium male gametes might be guided to female gametes through 

pheromone or transmembrane receptors. Female gametes might deploy a receptor(s) on 

the host cell membrane to ‘bait’ male gametes. The mechanism of deploying a 

transmembrane protein on the host cell membrane already exists in 

apicomplexans.(Smith, 2014) 

Cryptosporidium male gametes have to traverse host cell membranes, intracellular 

membrane, and female membrane to undergo fusion.(Ostrovska and Paperna, 1990) 

This suggests that Cryptosporidium male gametes might deploy additional sets of 

complex mechanisms to undergo karyogamy. Mammalian male gametes have an 

acrosomal compartment that releases proteases and membrane receptors to traverse 

the zona pellucida layer surrounding the egg.(Rothmann and Bort, 2018) We have 

identified multiple secreted and transmembrane proteases that are upregulated in males 

that might be involved in fusion with females. Kazal domain-containing proteins are 

required to maintain sperm fertility(Thélie et al., 2019) by preventing premature 

activation of acrosomal proteases(Zheng et al., 1994). Cryptosporidium kazal-domain 

protein (cgd5_3380) upregulated in male gametes might be involved in a synonymous 

process to prevent premature activation of male proteases. The presence of kazal-

domain protein (absent in other apicomplexans) and secreted proteases in male 

gametes suggest that Cryptosporidium male gametes and mammalian 
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sperms(Rothmann and Bort, 2018) have evolved similar mechanisms to traverse 

multiple barriers to access female gametes.  

The entrance of multiple sperm in eggs (polyspermy) results in abnormal zygotic 

development.(Gilbert, 2000) Proteases play an important role in the prevention of 

polyspermy by degrading membrane receptors on the surface of eggs.(Gilbert, 2000) 

Proteases from both sperm and eggs are known to remodel egg membranes to release 

any attached extra sperm to prevent polyspermy(Gilbert, 2000). Cryptosporidium male 

gametes outnumber females by a ratio of 6:1 and hence it is not hard to envision that 

Cryptosporidium might have evolved similar mechanisms to block polyspermy. Some of 

the identified male- and female-specific proteases might be involved in the remodeling 

membrane of female gametes to block secondary fertilization. Other than proteases, 

oxidases remodel fertilized mammalian eggs by crosslinking the proteinaceous 

components.(Gilbert, 2000)  

Copper has been identified as an important trace element required for exflagellation in 

Plasmodium male gametes(Kenthirapalan et al., 2014) and mammalian 

spermatogenesis(Ogórek et al., 2017). Impairment of copper homeostasis might cause 

dysfunction of copper-dependent enzymes and production of free radicals that damage 

DNA.(Ogórek et al., 2017) cgd1_2550 copper transporter might be involved in 

maintaining copper homeostasis in Cryptosporidium male gametes. 

Expression of male- and female-specific genes identified are regulated by the promoter 

regions. ApiAP2 DNA-binding proteins might be involved in regulating the expression by 

binding the promoter regions of stage-specific genes.(Kafsack et al., 2014; Kaneko et 

al., 2015; Sinha et al., 2014) We have identified three female-specific (cgd8_810, 

cgd2_3490 and cgd4_1110) and one male-specific (cgd6_2670) ApiAP2 genes in 
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Cryptosporidium. Sex-specific ApiAP2s might be involved in regulating expression of 

many of the sex-specific genes that we have identified.  

Our transcriptional analyses of male and female gametes have revealed multiple genes 

that might be involved in sexual stage development, mating, gamete fusion, meiosis, 

post-fertilization development, sporulation, and oocyst wall biogenesis. Mechanistic 

studies of these genes will reveal their potential roles in sexual development and sex. 

These genes represent a repository of drug and vaccine targets to block oocyst 

biogenesis to prevent transmission and autoinfection.  

Our previous work has shown that Cryptosporidium cannot be maintained in transformed 

cell line, HCT-8 cells, because parasites fail to mate.(Tandel et al., 2019) We 

hypothesize that sex, and subsequently renewed production of oocysts is required to 

maintain infection in a host. As a result, disruption of sexual development or sex should 

break the cycle of infection in an infected animal model. Many of the identified sex-

specific genes represent candidates to test essentiality of sex to maintain infection in 

mice. 
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Chapter 5: Conditional gene knockout in Cryptosporidium enables ablation of 

an essential transcriptional regulator expressed in female gametes 
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5.1 Abstract 

Cryptosporidium has emerged as one of the leading causes of childhood mortality. 

Drugs and vaccines against the parasite are lacking due to the scant understanding of 

the biology of the parasite. Understanding the biology of the lifecycle of the parasite will 

be important to identify key stages that can be targeted to block infection and 

transmission. We have demonstrated that Cryptosporidium cannot be maintained 

continuously in transformed cell lines because they fail to undergo fertilization.(Tandel et 

al., 2019) Consequently, we hypothesize that sex and renewed generation of oocyst are 

required to continuously maintain infection in a host. Selective perturbation of sexual 

development or sex should break the cycle of infection in a host. We aim to genetically 

disrupt sexual development by targeting sex-specific ApiAP2 genes which have been 

identified as master regulators of stage-specific development in apicomplexans. We 

have identified a female-specific ApiAP2 gene, cgd4_1110 (termed as AP2-F), which is 

essential for the growth of the parasite. We further developed a rapamycin inducible 

DiCre recombinase system to conditionally delete essential genes in Cryptosporidium. 

We have successfully demonstrated the utility of the DiCre recombinase system to 

conditionally ablate the expression of the AP2-F gene by excising the floxed 5’ UTR and 

the ‘start’ codon. We further aim to use this engineered strain to demonstrate the role of 

AP2-F in female development and maintaining infection in vivo.   
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5.2 Introduction 

Cryptosporidium undergoes asexual replication and sexual development in a single 

host.(Current and Reese, 1986; Tandel et al., 2019; Tyzzer, 1907) Parasite sex results 

in the production of meiotic spores called oocysts. In most apicomplexan parasites that 

feature fecal-oral transmission, oocysts shed with the feces are not immediately infective 

but undergo meiosis and sporogony in the environment.(del Cacho et al., 2010; Dubey 

et al., 2011) Cryptosporidium is unique in that its oocysts mature within the host cell, 

which enables autoinfection through sexual development.(Current and Reese, 1986; 

Tyzzer, 1907) This could suggest two plausible models of the lifecycle of this parasite. 

Cryptosporidium, like Plasmodium(Phillips et al., 2017), might undergo asexual 

replication and sexual differentiation simultaneously. Contrastingly, Cryptosporidium 

might undergo limited rounds of asexual replication followed by obligatory 

gametogenesis like Eimeria.(Mesfin and Bellamy, 1978) Our work has shown that when 

grown in HCT-8 tissue culture Cryptosporidium undergoes asexual replication for a 

limited number of generations followed by robust sexual differentiation.(Tandel et al., 

2019) Cryptosporidium gametes form but fail to have productive sex in culture and do 

not sporulate, the inability to form new oocysts may thus explain the lack of continuous 

infection of transformed cell lines.(Tandel et al., 2019) In contrast, Cryptosporidium 

parasites mate and undergo sporogony in mice and, in the absence of effective host 

immunity, grows without limit.(Tandel et al., 2019) Based on these observations, we 

wonder whether sex might be an obligatory requirement to sustain infection. To test this 

hypothesis, we aim to selectively perturb sexual development, sex, or sporogony to 

block the development of oocysts and evaluate the consequence of such treatment in a 

mouse model of infection. Our transcriptomic studies of sexual stages have revealed key 
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genes that are likely involved in gametogenesis and the formation, survival, and 

infectiousness of the oocysts. These genes can be targeted to specifically disrupt sexual 

development, fertilization, and oocyst development to test the hypothesis of the 

essentiality of sex to maintain infection in a host. 

Recently, ApiAP2 DNA binding proteins(De Silva et al., 2008) have been identified as 

stage-specific transcriptional modulators involved in the regulation of development of 

gametocytes(Kafsack et al., 2014; Sinha et al., 2014), liver stages(Iwanaga et al., 2012), 

ookinetes(Kaneko et al., 2015; Yuda et al., 2009) and sporozoites(Yuda et al., 2010) in 

Plasmodium; and tissue cyst-stage(Radke et al., 2013) in Toxoplasma. The 

Cryptosporidium genome encodes 17 putative ApiAP2 proteins. Several of these 

proteins were found to specifically bind to DNA motifs present in the promoter regions of 

co-expressed genes(Oberstaller et al., 2014), suggesting that Cryptosporidium ApiAP2 

genes might have a similar role in transcriptional modulation of stage-specific 

development. We have identified a set of four ApiAP2 genes that are upregulated in 

sexual stages. Perturbation of these factors might disrupt gene expression in a fashion 

specific to sexual stages and could thus ablate the sexual part of the lifecycle while 

leaving the asexual portion intact. This suggests sex specific ApiAP2s as strong 

candidates to test the importance of sex for lifecycle progression and infection. 

Here we have identified an ApiAP2 gene (cgd4_1110) that is expressed only in female 

gametes. In multiple attempts, we have been unable to disrupt its locus, and thus 

presume is essential. To be able to rigorously test the function of essential genes we 

designed, engineered, and validated a conditional gene ablation model using an 

inducible version of Cre-recombinase. Importantly, this new system established gene 

regulation in a single transfection. Using this system, we engineered a mutant parasite in 
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which cgd4_1110 here is regulatable and test the impact of the loss of this protein on 

parasite development in vitro and in vivo. 
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5.3 Results 

AP2-F is a female-specific ApiAP2 gene and is essential for the parasite. 

To specifically block the sexual development, we decided to disrupt sex specific ApiAP2 

transcriptional developmental modulators. We have identified a set of four ApiAP2 genes 

(cgd4_1110, cgd2_3490, cgd8_810, and cgd6_2670) that are transcriptionally 

upregulated in females (Tandel et al., 2019) (Note of these genes, cgd6_2670 has been 

demonstrated to be male-specific in the chapter. 4). Of these genes, we tagged 

cgd4_1110 with a mNeon-Green reporter (or 3XHA tag) and infected HCT-8 cells with 

this strain. Parasites were counterstained with an antibody to tryptophan synthase 

B(Tandel et al., 2019) (TrpB) and DAPI and were imaged by Structured Illumination 

Super-Resolution Microscopy (SR-SIM). We detected the expression of cgd4_1110 

exclusively in females and localized the protein to the nucleus (Fig. 5.1a). We further 

confirmed the female-specific expression of cgd4_1110 by demonstrating its co-

expression with the female marker DMC1 (Fig. 5.1a).(Jumani et al., 2019)  

Sequence analyses predict an N-terminal (D1, aa 150-198) and a C-terminal AP2 DNA 

binding domain (D2, aa 1000-1053) for AP2-F.  To test whether AP2-F is essential for 

parasite propagation, we set out to engineer three different strains. One in which we 

inserted the selection marker into the N-terminus D1 domain resulting in the disruption of 

the entire gene, a second strain in which we targeted only the C-terminus D2 domain 

and left remainder of the gene intact, and third, a strain in which we attached 3XHA tag 

at the C-terminal end without any deletion. We were only able to retrieve transgenic 

parasites in which we disrupted D2 or appended the 3XHA tag. We attempted to ablate 

the D1 domain five times using three different guide RNA sequences but failed 

consistently. We conclude that the locus can be modified (confirmed by PCR insertion 

mapping; Fig. 5.1d) and that D2 appears dispensable for the function of AP2-F and the 
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growth of the parasites (Fig 5.1b). In contrast, failure to achieve full ablation of the gene 

suggests that AP2-F is required for growth (Fig 5.1c). 

An inducible DiCre recombinase system for gene ablation in Cryptosporidium 

While failure to ablate a gene is consistent with an essential function of the encoded 

protein it is not proof of such a function. To test this relationship more rigorously, we 

sought to develop an experimental model to conditionally ablate gene function in 

Cryptosporidium. Several approaches have been applied to the related apicomplexans 

T. gondii and P. falciparum to modulate transcription initiation(Meissner et al., 2001),

mRNA(Ganesan et al., 2016; Goldfless et al., 2014; K et al., 2020) or protein 

stability(Armstrong and Goldberg, 2007; Brown et al., 2018; Nishimura et al., 2009), or to 

excise genes using recombinase genes(Combe et al., 2009; Knuepfer et al., 2017).  

Here we describe our efforts to use an inducible Cre-recombinase to excise a sequence 

flanked by LoxP recognition site, often referred to as a floxed sequence. Two aspects of 

genetic engineering in C. parvum imposed significant technical limitations. Only a single 

selection marker is currently available, target gene modification and introduction of Cre 

thus must occur in a single transfection. Secondly, recombination frequency drops off 

sharply for inserts larger than 5000 bp. We thus designed a miniaturized single insertion 

modification system. The ‘single-hit’ approach for simultaneous floxing of a gene and 

expression of DiCre has been described in detail in the supplementary figure 5.1. 

To be able to introduce LoxP sites into the coding sequence without disrupting 

translation we explored the use introns. We searched the C. parvum genome for introns 

and shortlisted several small introns prior to settling on a 73 bp sequence from gene 

cgd1_1320. This gene is shows robust constitutive expression in different lifecycle 

stages(Mauzy et al., 2012; Tandel et al., 2019)  and the intron features a readily 
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identifiable the 5’ donor (Ggtaag), a 3’ acceptor consisting of a polypyrimidine 

stretch.(Abrahamsen et al., 2004) We engineered a plasmid in which this intron was 

inserted into the middle of the coding region of the nanoluciferase (Nluc) gene. Transient 

transfection of this reporter into sporozoites followed by infection of HCT-8 cells resulted 

in a level of luciferase activity (Fig. 5.2a) that was indistinguishable (p> 0.05) from that of 

the Nluc gene without any introns (positive control). We did not detect luciferase activity 

when engineering a Nluc gene containing an intron lacking the 5’ donor site (Fig. 5.2a; 

p< 0.0001). We next introduced loxP sequences at various positions of this intron and 

found most of them not to disrupt luciferase activity (Fig. 5.2b; p> 0.05 when comparing 

insertion at 53 bp from the 5’ end with loxP free control). We conclude that the chosen 

intron is faithfully spliced when introduced in trans and that it tolerates a well-placed loxP 

site. 

We next developed a plasmid to overexpress an inducible version of Cre recombinase 

(DiCre)(Mesén-Ramírez et al., 2019), in this model the enzyme is split into two inactive 

fragments that dimerize and regain activity in the presence of the drug rapamycin. The 

detailed arrangement of this construct is shown in Supplementary Fig. 5.1. To test 

whether DiCre is rapamycin inducible when expressed in C. parvum, we designed a 

transient assay in which the expression of the nanoluciferase gene is disrupted by a stop 

sequence containing a YFP reporter gene floxed by artificial introns. The transfection of 

either floxed or DiCre plasmid alone did not result in luciferase activity. However, when 

parasites were co-transfected with both constructs and rapamycin was present in the 

culture medium nanoluciferase was detected (Fig 5.2c). No luciferase activity was 

observed in the absence of rapamycin (Fig 5.2c; p< 0.0001). Note that the concentration 

of rapamycin used for induction here (100 nM) is well within the range tolerated by the 

parasite (Supplementary fig 5.2a). 
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DiCre triggers rapamycin-inducible knockout of a dispensable gene 

Next wanted to test the ability of the DiCre system to excise a floxed sequence from the 

C. parvum genome in a stably transformed parasite. We targeted the well-characterized

and dispensable thymidine kinase gene (TK)(Vinayak et al., 2015), replacing the last 222 

bp of the native sequence with a recodonized version preceded by an artificial intron 

carrying a loxP site (Fig 5.3a). We also appended a 3XHA epitope tag to be able to 

detect the protein as well as cassettes for expression of DiCre and Nluc-Neo. (Fig 5.3a-

b). When these parasites were used to infect HCT-8 cells expression of the HA tagged 

TK protein was detected (Supplementary fig 5.2c). Suggesting that the placement of the 

artificial intron within the coding sequence of a gene did not affect its expression. PCR 

mapping confirmed successful modification of the TK gene, a product of 1280 bp was 

confirmed by Sanger sequencing as the targeted flanked by loxP sites (Fig 5.3b).  A 

smaller band consistent with the 743 bp expected after Cre meditated excision was also 

detectable. This suggests that stable expression of DiCre recombinase results in some 

‘leaky’ activity even in the absence of rapamycin (Supplementary fig 5.2b).  

We next infected HCT-8 cells with the TK DiCre strain and cultured them in the presence 

and absence of rapamycin. Cultures were harvested after 12, 24, 36, and 48 hours, and 

genomic DNA was isolated and analyzed by PCR. In control samples, we detected both 

the full-length floxed and the smaller excised band (Fig 5.3c). Rapamycin treatment 

resulted in the progressive loss of the full-length band beginning at 24 hpi.  We also 

scored parasites for the presence of the protein and conducted IFA experiments using 

the anti-HA antibody to detect TK expressed from the modified locus and Vicia villosa 

lectin (VVL) to visualize all parasites. As expected from the PCR mapping, we detect 

both tagged and untagged parasites in cultures grown in the absence of rapamycin 

suggesting some background Cre activity.  When rapamycin was added to cultures 
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during growth we detected robust inducible loss of HA staining at 48 hpi (Fig 5.3d-e; 

Control versus Rapamycin= 40.72 ±  6.5% v/s 12.53 ± 4.67%; p< 0.01), differences at 24 

hpi were modest but detectable (Figs 5.3d-e; p< 0.05). 

To independently assess DiCre mediated excision we measured TK activity, using a 

previously established EdU incorporation assay(Pawlowic et al., 2019; Vinayak et al., 

2015) with and without rapamycin induction (see supplementary figure 5.2b). WT 

parasites and a previously established TK KO(Vinayak et al., 2015) strain were used as 

positive and negative controls, respectively. 53.64% ± 6.5% of the WT parasites were 

EdU-positive, no staining was observed in the TK KO (Figs 5.3g-f).  In the TK DiCre 

strain 24.98 ±, 8.7% of the untreated sample was found to be EdU-positive, this number 

dropped to 4.7 ± 5.94% upon rapamycin treatment (Figs 5.3g-f; p< 0.05).  We conclude 

that in C. parvum genes can be floxed and maintain activity, that there is some 

backrgound DiCre excision that results in accumulation of the modified locus over time, 

and that treatment with rapamycin produces inducible loss of the targeted gene and the 

activity of its product. 

DiCre Conditionally ablates the expression of AP2-F by excision of its promoter 

We next sought to impose rapamycin inducible ablation on the AP2-F gene. However, 

our initial attempts to flox both DNA-binding domains and introduce DiCre at the 3’ end 

of the genes failed. AP2-F is a significantly larger gene than TK (3,480 bp) requiring a 

more expansive repair construct. We have experienced difficulty using inserts larger 

than 5 kb in many independent genes targeting attempts. We decided to disrupt the 

expression of the gene by floxing the much smaller promoter and the start codon, which 

should disrupt transcription and translation of the gene (Figs 5.4a-b). Modifying the 

endogenous promoter of the AP2-F gene is technically challenging because we cannot 
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prevent undue recombination through recoding, an approach typically used for coding 

sequences. Therefore we replaced the endogenous promoter with a floxed promoter of 

Cryptosporidium oocyst wall protein 1 (COWP1) a promoter that we have established to 

drive transcription specifically in females gametes.(Tandel et al., 2019) Note that we 

positioned the downstream intron with a loxP site downstream of the COWP1 promoter 

and the ‘start’ codon (Fig 5.4b). We engineered two strains with floxed AP2-F, one 

containing the 3XHA epitope tag and one lacking it. Transfection with these constructs 

resulted in a successful selection of drug-resistant parasites. PCR and Sanger 

sequencing confirmed modification of the AP2-F gene (Figs 5.4b-c) and we focused on 

the epitope-tagged strain in a subsequent experiment. (Fig 5.4e).   

We infected HCT-8 cells with the AP2-F floxed strains and incubated for 24, 36, and 48 

hours with and without 100 nM rapamycin. PCR analysis using primers spanning both 

loxP sites we found the promoter fully intact when parasites were grown in the absence 

of rapamycin (Figs 5.4b, d, and f). Rapamycin resulted in promoter excision that 

increased over time.  

To assess the impact of rapamycin treatment on the AP2-F protein, HCT-8 cells were 

infected with the floxed parasites and stained with antibodies to HA (AP2-F) and DMC1 

as a marker of female gametes.(Jumani et al., 2019) Replacement of the endogenous 

promoter with the floxed COWP1 5’UTR still resulted in female-specific expression of 

AP2-F when compared to AP2-F 3XHA strains. Note, that only 60% of the females in the 

AP2-F flox strain expressed AP2-F compared to 100% of the females in the AP2-F 

3XHA strain (Supplementary fig 5.1c). However, under rapamycin, the percentage of 

female gametes staining for AP2-F dropped to 7.62 ± 3.38% from 60.22 ± 18% in 

untreated controls (Fig 5.4g; p< 0.01). We conclude that rapamycin treatment results in 

promoter excision and loss of AP2-F expression. 
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Figure 5.1 AP2-F is an essential gene and it localizes to the nucleus of female gametes. a. 
AP2-F-mNeon Green (cgd4_1110) is specifically expressed in females and localizes to the 
nucleus. Parasites were counterstained with TrpB antibody (red) and DAPI (Scale bar= 1 μm). 
Female-specific expression of 3XHA-tagged AP2-F (red) was confirmed with DMC1 staining 
(green) of female stages (Scale bar= 5 μm). b. PCR repair constructs and guides used to for 
AP2-F KO, AP2-F C-terminus DNA binding domain (D2) KO, and 3XHA-tagging of AP2-F. 
Recovery of transgenic parasites from drug selection was estimated by measuring the fecal 
nanoluciferase activity (Mean ± S.D.; n= 3). d. PCR map representing the successful deletion of 
the C-terminus DNA binding domain (D2) of the AP2-F gene. The primers used in mapping 5’ and 
3’ insertions have been represented in b. 
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Figure 5.2 Reporter assays to test the functionality of the artificial intron and DiCre 
recombinase tool. Nanoluciferase-based transient reporter assay was used to determine the 
normal functioning of cgd1_1320 intron (a), intron lacking 5’ donor site (a) and intron with a loxP 
site (b). Nanoluciferase gene lacking the intron was used as the positive control (a). c. The 
regulated activity of DiCre was measured by transfecting parasites with either DiCre or floxed 
plasmids or in combination (with and without 100 nM rapamycin). The mean of three replicates 
and S.D. has been represented in the graph. One-way ANOVA was used to measure the 
difference between the groups followed by Tukey’s multiple comparison test to measure 
differences between different pairs of groups.  
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Figure 5.3. DiCre-mediated functional KO of the thymidine kinase gene. a. The C-terminal 
region of the thymidine kinase gene was floxed with the artificial intron. DiCre recombinase and 
Nluc-Neo drug resistance marker was expressed ectopically via α-tubulin and enolase promoters, 
respectively. Successful floxing of the gene was confirmed by Sanger DNA sequencing (b). 
Rapamycin inducible KO of the TK gene was measured by PCR in vitro at different timepoints (b-
c). Functional loss of TK was measured by IFA (d-e) and EdU-labelling assay (f-g). Parasites 
were counterstained with VVL. Experiments were performed in triplicates and student’s t-test 
used for the statistical analysis. The schematic of the EdU experiment is represented as 
supplementary figure 5.2b. 



104 

 Figure 5.4. DiCre-mediated conditional KO of the AP2-F gene. a. The endogenous promoter 
of the AP2-F gene was replaced by a floxed COWP1 5’UTR. The artificial intron was inserted 
after the ‘start codon’ followed by a 3XHA epitope tag. Successful transfection was assessed by 
measuring fecal nanoluciferase activity to score for transgenic parasites (e). Sanger DNA 
sequencing confirmed the successful floxing of the AP2-F gene (c). PCR analysis confirmed 
rapamycin-induced loss of the floxed segment in vitro at respective timepoints (b,d and f). Loss 
of AP2-F expression was measured by IFA after 48-hour induction. Females were counterstained 
with the DMC1 antibody. Experiments were performed in triplicates and student’s t-test used for 
the statistical analysis. 
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Supplementary Figure 5.1. ‘One-hit’ strategy for simultaneous floxing of a gene and 
overexpression of DiCre in Cryptosporidium. Cryptosporidium currently has a single drug 
selection marker. Hence, we designed a single-delivery strategy that will simultaneously flox the 
gene-of-interest and overexpress DiCre recombinase. A single targeting construct containing the 
floxed segment, DiCre, and drug selection cassette is incorporated in the desired region by using 
the CRISPR/Cas9 system. The targeted region is floxed by an intron-containing a LoxP one side 
and another LoxP on the other side. Two physically separate Cre-FRB and Cre-FKB components 
are expressed from one DiCre cassette. The DiCre components remain inactive in the absence of 
the rapamycin, thus do not disrupt the floxed locus. Rapamycin triggers the dimerization of the 
DiCre, resulting in recombination and disruption of the floxed region.  
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Supplementary Figure 5.2. Auxiliary figures for the development of the DiCre-based 
knockout system to study the AP2-F gene. a. IC50 of rapamycin (Rap) was measured by 
treating HCT-8 cells infected with Nluc-expressing C. parvum. Cells were treated with rapamycin 
concentrations ranging from 1 nM- 100 µM. Nitazoxanide (NTZ) was used as a positive control. 
The experiment was performed in triplicates. The IC50 was found to be 8.33 µM which was a log 
higher than that of nitazoxanide (IC50= 1.22 µM). b. PCR map confirming the floxing of the C-
terminal 222bp of the thymidine kinase gene. c. Expression of 3XHA tagged thymidine kinase 
(red) in the TK flox strain at 24- and 48-hours post-infection. Parasites were counterstained with 
VVL (green). d. Female-specific expression of AP2-F in a strain with C-terminus 3XHA tag on 
AP2-F (AP2-F HA) and AP2-F HA DiCre strain (AP2-F Flox). The scale bars in all the 
micrographs are 5 μm. e. Graphical depiction of the EdU-labelling experiment to assess the 
rapamycin-induced loss of the thymidine kinase activity.  
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5.4 Discussion 

ApiAP2 DNA binding proteins have been identified as key transcriptional regulators of 

stage differentiation(Kafsack et al., 2014; Radke et al., 2013; Sinha et al., 2014) and 

development(Iwanaga et al., 2012; Kaneko et al., 2015; Yuda et al., 2010) in 

apicomplexans. ApiAP2 proteins modulate the expression of stage-specific genes and 

their disruption results in the misregulation of stage-specific processes.(Kafsack et al., 

2014; Kaneko et al., 2015; Sinha et al., 2014) Instead of targeting individual sexual 

stage-specific processes, we aimed to disrupt ApiAP2 genes to specifically disrupt 

sexual or post-fertilization development to test whether sex is essential to maintain 

infection in a host. We identified an ApiAP2 gene, cgd4_1110 (AP2-F), as a female-

specific ApiAP2, and its disruption was not tolerated by the parasite.  In Plasmodium 

falciparum knockout of ApiAP2 genes regulating the development of 

gametocytes(Kafsack et al., 2014; Sinha et al., 2014), liver stages(Iwanaga et al., 2012), 

sporozoites(Yuda et al., 2010), and ookinetes(Kaneko et al., 2015) are technically 

possible because disruption of these stage does not affect the asexual blood cultures. 

However, a similar approach cannot be taken to study sexual-stage specific AP2s in 

Cryptosporidium, as it would disrupt the development of oocyst (oocyst are the stages 

that can be recovered from mice and much of our experimentation relies oocyst isolation 

and manipulation(Vinayak et al., 2015)). 

We developed a DiCre conditional knockout system to allow for controlled disruption of 

the AP2-F gene stimulated by the addition of a small molecule.(Knuepfer et al., 2017) 

Typically such systems are built in multiple steps to introduce the recombinase and to 

flank the target gene with loxP sites. The limitations of the C. parvum transfection 

system forces us to deliver a complex regulatory system in a single insertional event and 
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imposed size restrictions forced us to miniaturize all aspects of the single hit cassette. 

Our strategy relies on short floxed introns and we show that those are well tolerated and 

efficiently excised using two genes, TK, and AP2-F, as examples.  In our first approach, 

we floxed a portion of the TK gene from the 3’ end. This is feasible for genes in which 

the encoded protein harbors a domain essential to activity close to the C-terminus (100 

aa or less). For AP2-F conditional KO, we rendered its expression conditional by 

replacing the endogenous promoter with a floxed promoter. Intergenic regions are 

typically very small in the C. parvum genome offering short promoters as targets for 

excision. Importantly, this allows modulation irrespective of the size of the gene or the 

position of critical elements within the gene. When implementing this strategy, it is 

important though to use a surrogate promoter appropriate for the timing and strength of 

expression of the native gene. Expanding transcriptomic data of all lifecycle stages now 

provide a repository of matching genes and promoters.  

As other authors before(St-Onge et al., 1996; Utomo et al., 1999) us we observed ‘leaky’ 

DiCre activity when targeting a dispensable gene, we documented some excision in the 

TK gene even in the absence of rapamycin. We did not conduct extended serial passage 

experiments, but it is likely that the floxed segment is successively lost over time. In 

contrast, we did not observe such a sub-population of floxed AP2-F parasites prior to 

rapamycin induction. This difference may be linked to differences in the expression of 

DiCre or the relative accessibility of the LoxP sites in these two genes. A third, and 

maybe most likely explanation is that AP2-F is an essential gene and undue excision of 

the promoter will result in a strong counter selection eliminating mutant parasites from 

the population.  
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When rapamycin was added to cultures infected with mutant parasites, we observed 

robust induction of excision in both strains with similar kinetics. DiCre activity was 

detectable after 24 hours and reached a plateau at 48 hours. Rapamycin induction of the 

floxed TK strain in vitro resulted in the complete transition to the excised population. 

However, for AP2-F we observed a small population that retained the floxed promoter 

after 48 hours. A similar phenomenon was observed for the excision of an essential, 

blood-stage gene in P. falciparum.(Knuepfer et al., 2017) There DiCre activity was 

detected as early as 4 hours and plateaued at 36 hours after 36 hours leaving around 

20% of the population unchanged.(Knuepfer et al., 2017)  The cause of recalcitrance to 

recombination in a small population is unknown. In future experiments, we plan to 

sequence the unexcised fragments to detect potential mutations in lox sites that might 

prevent recombination.  

AP2-F expression in the floxed strain was observed in ~60% of females compared to 

100% in C-terminus 3XHA-tagged AP2-F strain. This can be explained by utilization of 

COWP1 promoter or the loxP intron in the floxed strain which might be result in delay in 

AP2-F protein expression in females. 

Rapamycin-induced DiCre excision reduced the percentage AP2-F expression in 

females by ~90%. The loss of AP2-F expression did not affect the number and overall 

morphological appearance of female gametes. This demonstrates that AP2-F is not 

required for the growth of asexual stages or the commitment to develop into female 

gametes. Typically,  ApiAP2 genes that commit parasites to differentiation are expressed 

in the stage preceding that event.(Kafsack et al., 2014; Radke et al., 2013; Sinha et al., 

2014) We, therefore, hypothesize that AP2-F  has a role in the later maturation of female 

gametes or is required for events that unfold during or following fertilization. As 
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fertilization does not occur in culture(Tandel et al., 2019), we cannot observe the 

phenotypic consequence of loss of AP2-F in HCT-8 cells. We further aim to test the 

effect of loss of AP2-F on infection in mice. Treatment of mice providing orally or 

intraperitoneal has been shown to activate DiCre activity in vivo. Our next aim is to 

measure the effect of loss of AP2-F on post-fertilization development and oocyst 

biogenesis in infected mice. We further plan to test whether AP2-F disruption affects the 

overall infection in mice. These experiments will test whether sex is essential in driving 

infection in a host.  

Overall, we have demonstrated the functionality of DiCre system to conditionally disrupt 

essential genes. This system will be important to validate potential drug targets. 

Alternately, DiCre system can be used to conditionally overexpress transcription 

factors(Kent et al., 2018) involved in male/female determination and asexual fate 

maintenance. For example, conditional overexpression of a potential repressor of sexual 

differentiation provides an opportunity to engineer a strain that can be maintained 

asexually in HCT-8 cultures perpetually. DiCre expressed under specific promoters can 

be used for lineage tracing to identify certain asexual populations that are primed to 

differentiate into males or females.(He et al., 2017)  

DiCre system has a significant use studying functionality of genes, testing potential drug 

targets, manipulating the parasite lifecycle and for lineage tracing. 

 

 

 



111 

 

Chapter 6: Conclusion and Future Directions 

Apicomplexan parasites have evolved complex lifecycles to replicate(Auld and Tinsley, 

2015; Meissner, 2013), disseminate(Brancucci et al., 2017; Lyons et al., 2002; Yuda et 

al., 2009), escape immune recognition(Casares and Richie, 2009; Lyons et al., 2002), 

and to diversify by mating with different genotypes(Brown et al., 2001). The 

developmental mechanisms that underlie these complex morphological and molecular 

transformations between different life stages have been intriguing to me. The molecular 

mechanisms underlying the differentiation of pluripotent stem cells into a wide variety of 

different fates have been well characterized in higher eukaryotes.(Hwang et al., 2008) 

Most of the well-known mammalian developmental transcription factor-like 

homeo(Duverger and Morasso, 2008), bZip(Lin et al., 1997), bHLH(Dennis et al., 2019), 

and forkhead domain(Hannenhalli and Kaestner, 2009) are absent in 

apicomplexans.(Balaji et al., 2005) This implies that apicomplexans have developed 

unique modulators for stage differentiation.(Balaji et al., 2005) Differentiated cells 

originating from stem cells maintain their fates permanently(Hwang et al., 2008) with 

only a few exceptions(Kamada et al., 2016). However, as single cell organisms, 

apicomplexan parasites must adopt their different life stages iteratively. This suggests 

that apicomplexans have evolved molecular mechanisms to ensure reversible plasticity. 

Many of these intriguing questions about the developmental biology of apicomplexans 

remain to be answered. 

In the last ten years, AP2 DNA binding proteins have been identified as regulators of 

stage-specific development of apicomplexan parasites.(Iwanaga et al., 2012; Kafsack et 

al., 2014; Radke et al., 2013; Sinha et al., 2014; Yuda et al., 2009, 2010) The only 

exception has been a Myb-1 gene that modulates the development of the Toxoplasma 
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cyst stage.(Waldman et al., 2020) In addition to the identification of developmental 

regulators, molecular cues that help parasite sense host species(Dubey et al., 2011; 

Phillips et al., 2017), host nutrient status(Price et al., 1999), immune response(Brancucci 

et al., 2017; Skariah et al., 2010), and tissue location(Dubey et al., 2011; Genova et al., 

2019) have been identified. A sampling of the host environment to control differentiation 

is an intuitive feature of Toxoplasma and Plasmodium that develop into different stages 

depending upon the host species. But are these mechanisms of environmental sampling 

for differentiation relevant in a single-host apicomplexan like Cryptosporidium? Or are 

single-host parasites programmed for stage-differentiation that follows internal cues (like 

the number of asexual cycles) rather than environmental ones? These broad 

developmental questions led me to study the lifecycle of a single-host parasite like 

Cryptosporidium.  

No experimentally tractable model of a single-host lifecycle apicomplexan is currently 

available, and I was particularly drawn to develop such a system in Cryptosporidium 

because of its importance in infecting humans. Eimeria remains the closest single-host 

lifecycle apicomplexan analog for Cryptosporidium. However,ability of the 

Cryptosporidium to sporulate within the host sets it apart from Eimeria (where 

sporulation outside the host), leading to different consequences of sexual development 

on parasite amplification in both these parasites. The preliminary discovery of the 

inability of Cryptosporidium to mate in HCT-8 cells provided empirical support to the 

hypothesis that sex might be essential for the parasite to maintain infection. This 

suggests that a therapeutic strategy targeting sex would block transmission and infection 

in a host. To a molecular biologist like me the pursuit of these questions was 

intellectually stimulating. To be able to test my hypotheses on the critical importance of 
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sex for infection with this parasite, I required more in-depth knowledge of processes that 

control the lifecycle and a genetic strategy to conditionally disrupt them. To this end I 

identified sex-specific markers, engineered sex-specific fluorescent reporter strains, 

defined transcriptomes of sexual stages, and designed a DiCre conditional KO tool for 

Cryptosporidium. I believe that these resources will allow me to test my central 

hypothesis in a mouse model. I have proposed immediate experimental plans in the 

following section. I will also discuss further questions regarding the possible 

mechanisms of sexual differentiation, sex determination and mating in Cryptosporidium 

that might be intellectually stimulating for the Cryptosporidium research community. I 

believe that solutions to the challenges of developing anti-cryptosporidial therapeutics 

and vaccines lie in answering questions about the basic biology of Cryptosporidium.  
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Conclusion 

Overall, this work has increased our understanding of the potential model of the lifecycle 

of the parasite. In vivo and in vitro comparison of lifecycle progression of 

Cryptosporidium has revealed that sex might be an obligatory step in maintaining 

infection in a host. Understanding the effect of conditional perturbation of AP2-F 

(cgd4_1110) on oocyst development and infection in a mouse model will be crucial in 

testing the such a model (Fig. 6).  

Our work has further provided insights into molecular processes that are unique to 

sexual stages. Studying these processes will further contribute to the understanding of 

sexual development, fertilization, and post-fertilization development. Furthermore, many 

of these processes represent key drug and vaccine targets to block transmission and 

autoinfection. This work has demonstrated successful conditional ablation of an 

essential gene in Cryptosporidium. Conditional gene knockout can be further leveraged 

together with sexual stage transcriptomics to develop a mechanistic understanding of 

sexual development and to validate drug and vaccine targets. 
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Figure 6. Proposed model of the lifecycle of Cryptosporidium parvum. Cryptosporidium 
parvum infects HCT-8 cells, replicate asexually, and undergo robust sexual differentiation. 
However, the parasites fail to fertilize in HCT-8 cells, thus blocking oocyst development. 
Contrastingly, parasites fertilize in mice and undergo oocyst development. Hence, a lack of 
continuous amplification in HCT-8 cells can be explained by the failure to fertilize and produce 
oocyst. These observations hint towards a model of an obligatory sexual development to maintain 
infection in a host. An approach to specifically disrupt sexual development (conditional KO of 
AP2-F) and testing its effect on infection will be needed. 
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Future Directions 6.1 Investigate the role of AP2-F in the Cryptosporidium lifecycle 

and chronicity of infection in mice 

Our experiments so far suggest that AP2-F is essential for the continued propagation of 

the parasite and that it is required for the sexual part of the lifecycle. However, 

conditional disruption of AP2-F in vitro did not affect female development in a fashion 

that we were able to detect. AP2-F thus most likely is required for later developmental 

steps that follow fertilization. We aim to mechanistically understand the role of AP2-F in 

oocyst development and maintenance of infection in an animal host by pursuing the 

following lines of investigation: 

6.1.1 Identify the processes that are regulated by AP2-F 

Conditional disruption of AP2-F in culture did not affect the development of asexual 

stages or female development. This implies that AP2-F might be involved in modulating 

post-fertilization processes like meiosis and sporulation. AP2-F might also be involved in 

producing females that are competent for fertilization. Alternatively, AP2-F might also be 

a repressor acting to prevent the undue expression of asexual of male genes in female 

stages. In Plasmodium, AP2-G2 has been identified as a repressor that downregulates 

the expression of asexual phase genes in gametocytes.(Sinha et al., 2014; Yuda et al., 

2015) Disruption of AP2-G2 results in abnormal gametocyte development.(Sinha et al., 

2014; Yuda et al., 2015) Pulldown of AP2-F 3XHA and ChIP sequencing(Kaneko et al., 

2015; Waldman et al., 2020) of the AP2-F bound DNA sequence will help identify target 

genes.  Similarly, we aim to induce disruption of AP2-F in HCT-8 cells infected with the 

floxed AP2-F strain to identify genes that show expressions change upon AP2-F 

depletion. AP2-F might also be involved in the maturation of females by modulating 
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genes that are needed for successful fertilization and post-fertilization development. We 

have already proven that genes required for meiosis, amylopectin synthesis, and oocyst 

wall biogenesis are transcribed prior to fertilization. While the phenotypic effect of 

disruption of these processes on fertilization and sporulation cannot be gauged in HCT-8 

cells, RNA-sequencing after disruption could be informative in identifying pre-fertilization 

female-specific processes regulated by AP2-F. It is also possible that AP2-F might be 

fully or partially functional only after fertilization. Since fertilization is not observed in 

HCT-8 cells (chapter 3), mice or organoid systems(Heo et al., 2018; Wilke et al., 2019) 

will have to be used to address this issue. The murine model system is technically 

challenging as it requires the flow-sorting of intracellular stages from mice. The current 

AP2-F floxed strain lacks a fluorescent marker, and we cannot reengineer the same 

strain with an extra expression cassette for a fluorescent reporter (maximal 5 kb repair 

limit). Intestinal organoids can be infected with the AP2-F floxed strain and can be 

transcriptionally profiled in bulk. Another advantage of using the organoid host system is 

that any effect of AP2-F disruption on post-fertilization or oocyst development can be 

captured by transcriptional profiling. Comparison of transcriptomes of in vitro and in vivo 

female stages have helped us identify gene signature that is upregulated uniquely in 

post-fertilization stages (chapter 3). Misregulation of genes unique to the post-

transcriptional gene-signature would suggest a role of AP2-F in post-fertilization 

development. 

6.1.2 Investigate possible roles of AP2-F in the fertilization, post-fertilization 

development, and oocyst biogenesis 

For this study, we aim to use organoid systems as they sustain the post-fertilization 

development of Cryptosporidium.(Heo et al., 2018; Wilke et al., 2019) It is possible to 
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quantify females and different post-fertilization stages by microscopy in organoids. It is 

thus an ideal host system to quantify the developmental effect of AP2-F conditional 

depletion on females to oocyst transition. Antibody reagents that can discriminate 

between females, post-fertilization stages, and oocysts can be used to quantify different 

stages. We have already demonstrated that staining the nucleus of the parasites can 

distinguish between females, zygotes, and oocysts. Alternatively, staining with the 

COWP1 antibody will help in distinguishing females (vesicular) and oocyst (wall).(Spano 

et al., 1997; Tandel et al., 2019) We hypothesize that AP2-F depletion would result in 

reduced oocyst development. 

6.1.3 Investigate the effect of AP2-F disruption on oocyst shedding and 

autoinfection in mice 

The experiments outlined above will help us understand the role of AP2-F in modulating 

the transition from female to oocyst. Should we find such disruption of development, we 

would expect that conditional disruption of AP2-F in infected mice would block oocyst 

shedding. This would afford us to test whether sex and formation of oocysts are required 

to maintain infection in mice. To test these hypotheses, we aim to infect mice with AP2-F 

floxed strain and treat mice with or without rapamycin. We aim to measure changes in 

oocyst shedding and intracellular parasitic burden upon AP2-F disruption. We expect 

that AP2-F disruption should reduce the shedding of the oocysts, which in turn should 

decrease the infection in mice. 

Both intraperitoneal and oral administration of rapamycin in mice results in the 

distribution of rapamycin in a variety of organs including the small intestine.(Komarova et 

al., 2012; Leontieva et al., 2014) This suggests that rapamycin  administered to in 
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infected mice is likely available to parasites in the intestine. Similarly, rapamycin has 

been successfully used in DiCre-mediated activation of reporters in mice.(Jullien et al., 

2003, 2007) We will optimize the rapamycin-induced DiCre activity in parasites in vivo by 

infecting mice with the TK floxed strain and measuring excision of the floxed segment 

after rapamycin treatment. 

 

Future Directions 6.2: Understanding male-female gamete interactions in 

Cryptosporidium 

6.2.1 Mechanisms involving surface protein-protein interactions between male and 

female gametes 

In Chapter 3 we have demonstrated that Cryptosporidium undergoes robust gamete 

production in HCT-8 cells and IFN-γ KO mice and in mice gametes undergo fertilization 

in vivo. We have also show that HAP2 is a male-specific transmembrane protein in 

Cryptosporidium. The role of HAP2 in fusion of male and female gametes has been 

demonstrated rigorously in Chlamydomonas and Plasmodium.(Liu et al., 2008) 

Immunization of individuals with a P. falciparum HAP2 synthetic, subunit vaccine 

resulted in the generation of anti-HAP2 antibodies that blocked fertilization in 

Plasmodium.(Angrisano et al., 2017) The role of HAP2 in mediating fusion of males with 

females still needs to be investigated in Cryptosporidium. 

Interaction of gametes is a multi-step process involving activation, binding, and 

fusion.(Mori et al., 2015) HAP2 is only required for the final fusion step as 

Chlamydomonas HAP2 mutants remain attached without undergoing fusion(Liu et al., 

2008) This suggests that additional proteins remain to be identified in Cryptosporidium 
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that are responsible for activation and attachment. Cryptosporidium female gametes are 

intracellular, which requires the male gamete to cross the host cell membrane to access 

the female.(Ostrovska and Paperna, 1990; Tandel et al., 2019) Cryptosporidium female 

gametes might export a unique transmembrane protein onto the host cell membrane to 

‘bait’ male gametes. Protein machinery to translocate membrane proteins on the host 

cell surface already exists in other apicomplexans.(Smith, 2014) My colleague, Jennie 

Dumaine, has identified a protein that is exported by intracellular Cryptosporidium 

parasites into the host cells (unpublished observations). This implies that protein-export 

machinery exists in Cryptosporidium. Further studies in the Cryptosporidium model with 

an intracellular female gamete, could thus provide insight into a novel aspect of parasite 

biology. 

Targeting proteins involved in male-female interactions through active or passive 

immunization could produce neutralizing antibodies and might be exploited to prevent 

transmission (as in Plasmodium(Chaturvedi et al., 2016)) and block auto-infection. Our 

transcriptional analyses detailed in Chapter. 4 revealed multiple male- and female-

specific transmembrane proteins providing candidates for the molecules that enable 

gamete interactions. Alternatively, we can use our reporter assay for sex detailed in 

Chapter. 3 to screen for peptides that physically block gamete interactions.(Saw and 

Song, 2019) Candidate peptides conjugated with affinity tags can be used in a pull-down 

experiment to identify gamete-specific interacting partners.(Wysocka, 2006) Candidates 

identified in these experiments can be rigorously tested using our DiCre conditional gene 

KO tool.  

Passive immunization of children younger than 2 years old through maternal vaccination 

might be an attractive approach for the delivery of such a vaccine.(Vojtek et al., 2018) 
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Colostrum obtained from cows immunized with C. parvum p23 antigen when 

administered to newborn calves reduced oocyst shedding by 99.8% compared to calves 

given colostrum from cows that were not immunized.(Perryman et al., 1999) This result 

highlights the importance of studying genes involved in Cryptosporidium gamete 

interactions from a biological and translational perspective. 

6.2.2 Mechanisms involving priming of male gametes prior to fusion with females 

Vertebrate and invertebrate sperm undergo an acrosomal reaction (AR) after 

encountering eggs.(Rothmann and Bort, 2018; Yanagimachi, 2011) During the AR, the 

outer membranous component (acrosomes) of the sperm head undergoes Ca+2-

dependent exocytosis to release their enzymatic contents that include glycosidases and 

proteases that degrade the extensive glycocalyx of the egg.(Rothmann and Bort, 2018; 

Yanagimachi, 2011) This lytic process results in an opening in the protective coat of the 

egg, providing an access route for the sperm cell.(Rothmann and Bort, 2018; 

Yanagimachi, 2011) This process is followed by the exposure of sperm receptors on the 

inner acrosomal membrane which interact with egg membrane receptors to undergo 

membrane fusion.(Rothmann and Bort, 2018; Yanagimachi, 2011) 

Cryptosporidium male gametes have a polarized structure with an electron-dense ‘basal 

body’ at its apical end.(Ostrovska and Paperna, 1990) The apical end is surrounded by 

membrane projections called ‘adhesive zones’.(Ostrovska and Paperna, 1990) As it is 

this end of the gamete that undergoes fusion with the female,(Ostrovska and Paperna, 

1990) it might be functionally analogous to the sperm acrosome. The apical end might 

contain the male-specific proteases that we describe in chapter. 4 as well as other 

enzymes involved in attacking proteins and glycoproteins(Pelaseyed et al., 2014) on the 
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surface of the host cell membrane or the female membrane in preparation of fusion. 

Cryptosporidium male gametes express a unique, secreted kazal-domain protein 

(cgd5_3380). Kazal domain-containing proteins are protease inhibitors and some of 

them are known to prevent premature activation of sperm-specific proteases.(Rothmann 

and Bort, 2018; Thélie et al., 2019; Zheng et al., 1994) cgd5_3380 kazal domain protein 

might be prepackaged with male-specific proteases in vesicles to prevent untimely 

activation of male proteases. These ideas are immediately testable. 

Plasmodium male gametes are elongated and lack a Cryptosporidium-like ‘basal body’ 

structure.(Straschil et al., 2010) and fertilize female gametes that are free of their host 

cell in the mosquito midgut.(Aly et al., 2009) These differences suggest that 

Cryptosporidium male gametes have evolved distinct structural and molecular 

mechanisms to fertilize with an intracellular female, which requires them to overcome 

multiple membranous barriers to access females.  

6.2.3 Mechanisms to prevent fertilization by multiple male gametes (polyspermy) 

In addition to mechanisms enabling physical interaction with sperm, eggs have evolved 

strategies to avoid fertilization with multiple male gametes. Abnormal fertilization of an 

egg with multiple sperm (polyspermy) can impair the development of an embryo.(Gilbert, 

2000) Mammalian eggs avoid polyspermy via two successive mechanisms: ‘fast block’ 

and ‘slow block’. ‘Fast block’ occurs 0.1s after the initial sperm-egg contact. During this 

process, Na+ ion channels in the eggs open to depolarize the egg membrane from its 

resting potential of -70 mV.(Gilbert, 2000) ‘Slow block’ occurs 10-60 seconds after the 

sperm has entered the egg. During this process, proteases and oxidases stored in the 

egg in vesicles are secreted to strip away membrane receptors required for sperm 
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recognition and fusion.(Gilbert, 2000) The sperm receptors-containing vitelline 

membrane is further removed by pumping water into the space between the egg 

membrane and the vitelline membrane.(Gilbert, 2000) Lastly, the egg membrane is 

rendered impenetrable by crosslinking membrane proteins by secreted 

oxidases.(Gilbert, 2000)  

Cryptosporidium male gametes outnumber females by 6:1. This might ensure the 

fertilization of most of the female gametes. However, an encounter of a female gamete 

with a cluster of male gametes could lead to polyspermy and the parasite might have 

evolved mechanisms to avoid polyspermy. Secreted proteases and oxidases expressed 

by females might be involved in remodeling the female membrane to prevent a 

secondary fertilization event.  In addition, secretion of oocyst wall proteins from wall 

forming bodies(Spano et al., 1997) immediately after fertilization might provide a 

structural barrier that prevents further access of male gametes.  

 

Future Directions 6.3: Understanding potential mechanisms of chemotaxis 

between Cryptosporidium gametes 

Chemotaxis of gametes towards each other through the  release of diffusible 

chemoattractants termed pheromones has been observed in a wide variety of organisms 

including algae, fungi, worms, insects and mammals.(Gomez-Diaz and Benton, 2013; 

Kochert, 1978) The mechanisms of chemotactic movement of gametes are still 

uncharacterized in the apicomplexans including the well-studied Plasmodium and 

Toxoplasma. However, the molecular basis of chemotaxis in algal(Kochert, 1978), 

fungal(Kochert, 1978), and mammalian gametes(Sun et al., 2017) can provide a 
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blueprint to investigate mechanisms of chemotaxis in apicomplexans. We have 

documented robust sexual differentiation of Cryptosporidium in infected HCT-8 cells 

(chapter. 3), which is followed egress of male gametes, and we frequently observed 

females surrounded by male gametes. This makes Cryptosporidium an ideal 

apicomplexan model to study the chemotactic motility of male gametes towards females.  

The chemistry of pheromones has been extensively studied in algal and fungal 

systems.(Kochert, 1978) A wide variety of chemicals like cAMP, lipids, peptides, and 

hydrocarbons have been identified as chemoattractants for male gametes.(Kochert, 

1978) However, most of the algal and fungal pheromones are cyclic, conjugated 

hydrocarbons, and steroids.(Kochert, 1978) Since the nature of metabolites and genes 

involved in the chemotaxis of gametes is unknown, an unbiased approach is likely 

required to identify them. We have already developed a variety of stage-specific 

fluorescent reporter strains that can be used to measure chemotaxis in response to 

chemical cues via live microscopy. Pheromones derived from sexual stages should be 

secreted in the extracellular environment and can be identified by comparing 

‘secretomes’ of asexual and sexual cultures. Fractionated secretomes derived from the 

sexual culture can be further tested for activity on male egress and motility. Alternatively, 

a library of synthetic chemical compounds can be tested for their effects on male egress 

and motility. A similar approach has been used to measure chemotaxis in the nematode 

Strongyloides in response to multiple host-derived cues like heat and odorants.(Safer et 

al., 2007)  

Chemotaxis in apicomplexan gametes has not been studied yet but it has been 

observed in Plasmodium blood stages(Mantel et al., 2013; Regev-Rudzki et al., 2013) 

and hemolymph- and oocyst-derived Plasmodium sporozoites(Akaki and Dvorak, 2005). 
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Exosomes and exosome-like vesicles released from Plasmodium-infected RBCs contain 

parasite-derived proteins that communicate survival and transmission cues between 

parasites.(Mantel et al., 2013; Regev-Rudzki et al., 2013) Exosomes derived from 

Cryptosporidium sexual cultures can be tested for their chemotactic activity and protein 

content.  

Molecular mechanisms of sensing chemotactic signals by male gametes have been well 

characterized in the mammalian system. CatSpers (cation ion channels of sperm) Ca+2 

ion channels in the mammalian sperm are activated by a variety of inducers including 

progesterone (female hormone), egg-specific membrane receptors, and cyclic 

nucleotides (cAMP and cGMP).(Sun et al., 2017) Influx of Ca+2 through CatSper results 

in the activation of a variety of signaling cascades that affect sperm hypermotility, 

acrosome reaction, and egg penetration.(Sun et al., 2017) Cryptosporidium male-

specific ion channels  described in chapter. 4 can be investigated for their potential role 

in sensing female-derived pheromones. Male-specific ion channels can be expressed in 

a heterologous Xenopus oocyte model system and then be stimulated by ‘secretome’ 

from a sexual culture to test their activity to transport ions.(Papke and Smith-Maxwell, 

2009)  

 

Future Directions 6.4: Identifying the barrier(s) that prevent fertilization in culture 

Identifying factors or their lack thereof that prevent fertilization in HCT-8 cells will be 

crucial in developing an ‘easy’ culturing platform for Cryptosporidium. Currently, only 

intestinal organoids-based culture systems can be used to maintain parasites 

continuously in vitro.(Heo et al., 2018; Wilke et al., 2019) However, organoids systems 
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require a lot of labor to isolate crypts from mice and establishing them in culture(Heo et 

al., 2018; Wilke et al., 2019), making it an inconvenient system for routine passaging of 

the parasite.  

The lack of fertilization in culture can be attributed to Cryptosporidium sexual stage 

developmental competency or host-derived factors. For example, it is possible that 

sexual stages in HCT-8 cells develop abnormally, which makes them fertilization 

incompetent. Transcriptomes of sexual stages derived from HCT-8 and mice can be 

compared to pinpoint potential fertilization defects. In chapter. 4 we have compared the 

transcriptomes of female gametes derived from HCT-8 and mice. Most of the genes 

were commonly shared between in vitro and in vivo females. However. genes required 

for post-fertilization (like glideosome genes) development are upregulated in in vivo 

female datasets, which confounds identification of genes that might be involved in 

making females fertilization competent. We still must compare transcriptomes of males 

from culture and mice. We intend to infect mice with AP2-14 tdNeon male reporter strain 

and isolate males by flow cytometry for transcriptional analyses. 

Other than comparing transcriptomes, gametes from mice can tested for their fertilization 

competency in HCT-8 cells. Females isolated from mice are challenging for this 

experiment because isolated female-infected enterocyte might not survive when 

transplanted in culture. Secondly, we do not have female reporter strains that distinguish 

between unfertilized and fertilized females. Accidental isolation of fertilized females will 

not help distinguishing whether fertilization happened in mice or culture. Male gametes 

from mice can be added in a 48-hour infected HCT-8 cells to test for their ability to 

fertilize females in vitro. AP2-14 tdNeon male reporter strain can be used to isolate male 

gametes from infected mice.  
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Host- or microbiome-derived metabolites, proteins, etc. in the intestinal environment 

might be required for fertilization. Parasite fertilization happens in mouse and human-

derived intestinal organoids.(Heo et al., 2018; Wilke et al., 2019) This suggests that 

microbiome- and extra-intestinal tissue derived factors (like pancreatic proteases) have 

no role in parasite fertilization. ‘Secretomes’ of uninfected organoids can be tested for 

promoting fertilization in infected HCT-8 cells. Intestinal organoid ‘secretomes’ can be 

further fractionated to identify an active component that might promote fertilization in 

HCT-8 cultures. The reporter assay for sex described in chapter.3 can be used to screen 

potential factors that trigger fertilization in HCT-8 cells. 

Besides secreted factors, enterocytes membrane receptors might be involved in 

mediating fusion between Cryptosporidium gametes. This potential receptor might be a 

primary recognition factor for males to fuse with females. Such a receptor must be 

lacking in HCT-8 cells. Ectopic expression of such a receptor in HCT-8 cells might 

promote Cryptosporidium sex in culture. McConnell et. al.(McConnell et al., 2011) have 

defined the proteome of murine enterocyte brush border. This work provides a repository 

of potential transmembrane protein that might aid Cryptosporidium sex.  Candidates can 

be further shortlisted by applying following criteria: 1. Genes should be conserved 

between human and mice. 2. Gene must be only expressed in enterocytes but not in 

HCT-8 cells. 3. Gene should be a potential transmembrane protein. A genetic screen 

can be devised to identify gene candidates (from the filtered list) that permit 

Cryptosporidium fertilization in HCT-8 cells. Selected candidates can be overexpressed 

using an overexpression library in HCT-8 cells.(Parekh et al., 2018) The overexpression 

plasmid consists of a drug selection marker and a barcode that is unique to the gene 

being overexpressed.(Parekh et al., 2018)  HCT-8 cells overexpressing this library can 
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be then coinfected with Cre and floxed tdNeon strains described in chapter. 3. An HCT-8 

clone that is permissive for parasite sex will be infected with a tdNeon reporter-positive 

(fertilized) parasite. Such a permissive clone can be flow sorted and sequenced(Tandel 

et al., 2019) for its candidate barcode.(Parekh et al., 2018) Quantifying barcodes from 

the sorted population with unsorted population should identify gene candidates that are 

enriched in HCT-8 population that is permissive for sex. A multiplexed approach of 

screening candidates will be useful in identifying a membrane receptor that is required 

for Cryptosporidium fertilization. 

 

Future Directions 6.5: Understanding the mechanisms of sexual commitment in 

Cryptosporidium 

In recent years, tremendous progress has been made in deciphering mechanisms of 

stage differentiation in apicomplexans.(Kafsack et al., 2014; Sinha et al., 2014),(Iwanaga 

et al., 2012)-(Radke et al., 2013) ApiAP2 DNA binding proteins have emerged as master 

regulators of stage differentiation(Kafsack et al., 2014; Sinha et al., 2014),(Iwanaga et 

al., 2012)-(Radke et al., 2013), but additional factors include the Myb-1-like 

transcriptional regulator of bradyzoite development in Toxoplasma(Waldman et al., 

2020).  

AP2-G is a transcriptional activator required for gametocyte development in 

Plasmodium.(Kafsack et al., 2014; Sinha et al., 2014) Plasmodium blood-stage parasites 

replicate asexually as a default state with stochastic differentiation (1- 10% of the total 

population) into sexual stages. Gametocyte development is affected by a variety of hosts 

and parasite-specific factors including host anemia status(Price et al., 1999), parasite 
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density(Brancucci et al., 2017; Mantel et al., 2013; Regev-Rudzki et al., 2013), anti-

malarial drugs(Buckling et al., 1999), ER stress(Chaubey et al., 2014), host cell 

age(Peatey et al., 2013), and extracellular vesicles153,154. The Plasmodium parasite has 

evolved a strategy to modulate gametocyte development frequency by gauging the 

external host environment. This has been corroborated by the identification of host-

derived lysophosphatidylcholine (LysoPC) as a repressor of gametogenesis in 

Plasmodium.(Brancucci et al., 2017) Levels of LysoPC in the blood and tissue 

microenvironment act as a molecular indicator for immune status(Drobnik et al., 2003; 

Ollero et al., 2011) and parasitemia(Lakshmanan et al., 2012; Orikiiriza et al., 2017) for 

Plasmodium parasites, providing the environmental molecular cue for the parasite to 

escape the host. LysoPC was found to repress Plasmodium gametogenesis by reducing 

the expression of the AP2-G transcript.(Brancucci et al., 2017) However, the molecular 

pathway that links LysoPC induction with AP2-G transcript repression remains to be 

deciphered. It is thus assumed that the Plasmodium parasite is programmed to undergo 

sexual differentiation by sampling its external environment.  

Unlike Plasmodium, Cryptosporidium parasites undergo robust sexual differentiation 

(~80%) after three rounds of merogony. Our unpublished data suggest that a single 

round of merogony requires ~12 hours. We observe sexual stages somewhere between 

42- 48 hours post-infection. Hence it can be assumed that by 36 hours the parasite 

undergoes three rounds of merogony. The ability of Cryptosporidium to sexualize in 

response to external cues like stress, host immune status, etc. remain to be fully 

investigated. However, based on our observations, we hypothesize that Cryptosporidium 

is programmed by an internal ‘molecular clock’ that triggers sexual differentiation after 

sensing the completion of three rounds of merogony.(Smith et al., 2002) Such a 
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‘molecular clock’ mechanism could be achieved by the expression of a repressor of 

gametogenesis during the first merogony. Subsequent rounds of merogony will result in 

dilution of the repressor, and after the third round of merogony, the levels of repressor 

should fall to a level that will trigger gametogenesis. A similar ‘clock mechanism’ has 

been identified in budding yeast that gauges cell size as a proxy for time to initiate the 

G1 cell cycle.(Schmoller et al., 2015) Whi5, a transcriptional repressor of the G1 phase, 

is synthesized in the preceding G2/M phase and inhibits G1 activation.(Schmoller et al., 

2015)  Increase in the cell size results in the dilution of Whi5, thus relieving the cells from 

transcriptional repression to activate the G1 state.(Schmoller et al., 2015) Contrasting to 

the Whi5 model of dilution at the behest of an increase in cell size, the dilution of the 

Cryptosporidium gametogenesis repressor must happen by asexual replication.  

A forward genetic approach can be implemented to identify the regulator(s) of sexual 

commitment in Cryptosporidium. Since the HCT-8 cells only support asexual replication 

but not mating of Cryptosporidium, it can be used to select for a ‘vegetative strain’ that 

has lost its ability to sexualize. Such a vegetative strain should continuously persist in an 

asexual state. Serial passaging(Sinha et al., 2014) of parasites in HCT-8 cells or 

chemical mutagenesis of parasites may help in selecting for such a mutant. Alternatively, 

a more biased approach investigating ApiAP2 proteins specifically expressed in asexual 

stages can be taken to identify a potential repressor of sexual development. Our work 

has demonstrated the role of AP2-F in oocyst development and its potential 

involvement(Oberstaller et al., 2014) in regulating genes required for post-fertilization 

(chapter. 5). We have already identified three ApiAP2 proteins (cgd5_4250, cgd8_3230, 

and cgd8_3130) that are exclusively expressed in asexual stages by transcriptomics 

studies (chapter.4) and by gene tagging approach (data not shown). A DiCre-based 
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conditional overexpression of such candidates should result in repression of sexual 

development in Cryptosporidium. 

 

Future Directions 6.6: Understanding the mechanisms of sex determination in 

Cryptosporidium 

The ability of Cryptosporidium to undergo sexual differentiation in HCT-8 cells makes it a 

convenient apicomplexan model system to study the mechanisms of sex determination. 

Sex determination occurs using a diverse set of mechanisms and varies among 

organisms, sex can be intrinsically determined by inheritance, inherited but changing 

over the lifetime, or driven by the environment. Sex in mammals and birds is determined 

by the composition of sex chromosomes. Sex-determining genes like SRY(Koopman et 

al., 1991) (mammals) and DMRT1(Ca and Ah, 2004) (birds) are located on sex 

chromosomes that activate a developmental program of a specific sex. For example, 

mammalian males and females have a XY or XX sex chromosome configuration, 

respectively. The SRY gene is present only on the Y chromosome and encodes a 

transcription factor that stimulates testosterone production, which in turn triggers the 

development of male sexual organs.(McLaren, 1991) In females, who lack SRY genes, 

the default ovary-forming pathway is activated.(McLaren, 1991)  

Contrary to the mammalian sex-determination system that is genetically hardwired, the 

sex determination mechanism in reptiles is dependent on environmental cues like 

temperature. In the case of the European pond turtle, Trachemys scripta, egg incubation 

temperature below 25°C produces only males, while a temperature above 30°C 

produces only females.(Crews et al., 1995) This environmental mechanism of sex 
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determination has been deciphered in the European turtles, Emys orbicularis.(Pieau et 

al., 1994) An aromatase enzyme in this organism catalyzes the conversion of 

testosterone into estrogens.(Pieau et al., 1994) The aromatase activity is enhanced at 

higher temperature thus producing more estrogen, resulting in higher frequency of 

female offspring.(Pieau et al., 1994) 

Since both male and female gametes of apicomplexan parasites are derived from the 

same clone, the presence or absence of sex chromosomes cannot explain sex 

determination in apicomplexans. Both male and female gametes of apicomplexan 

parasites carry genetic cargo for sex determination of both sexes but they these are 

differentially activated in respective gametes. I therefore propose that the mechanisms of 

sex determination in apicomplexan parasites should have the two following features: 1. 

Activation of a genetic program to commit an asexual clone to one of the two sexes. 2. 

Concomitant repression of the molecular program required for the differentiation into the 

opposite sex. Many molecular mechanisms of concomitant activation and repression of 

two different genetic programs to adopt two different cell fates exist in viruses(Griffiths et 

al., 2000), bacteria(Griffiths et al., 1999), and in higher eukaryotes(Zaret, 2008). For 

example, lambda bacteriophage after infecting its bacterial host can replicate to produce 

and release more infective phages (lytic cycle) or can integrate itself in the host genome 

to persist in a dormant state (lysogeny phase).(Griffiths et al., 2000) Lytic cycle is 

maintained by the phage Cro repressor protein that represses the expression of cI 

repressor required for the onset of the lysogeny phase.(Griffiths et al., 2000) Similarly, 

the cI repressor downregulates the expression of Cro during the lysogeny 

phase.(Griffiths et al., 2000) 
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Beyond a mechanism of concomitant activation and repression of genetic programs, an 

additional mechanism may be required to communicate fates between cells 

differentiating into the opposite sex. In certain species of fungi and green algae, 

vegetative cells differentiate into one of the sexes followed by the release of a diffusible 

‘developmental pheromone’ that triggers the differentiation of asexual cells in the vicinity 

into the opposite sex.(Kochert, 1978) Other than the diffusion of signaling molecules, cell 

fates can also be communicated by cell-cell contact. For example, the Notch signaling 

pathway in mammals is used to convey fates between two different cells that are in 

physical contact with each other through transmembrane Notch receptors and 

ligands.(Andersson et al., 2011) Notch signaling e.g. ensures that two brain stem cells in 

contact with each other adopt neuronal and glial fates, respectively.(Andersson et al., 

2011) A similar mechanism can be envisioned in the case of terminally differentiated 

merozoites in a meront that communicate their sexual fates with each other through 

physical contact.  

Identifying sex determination factors in Cryptosporidium will require molecular analysis 

at the level of an individual cell. Single-cell RNA sequencing has been successfully 

implemented to identify molecular profiles of individual cells in a heterogeneous 

population.(Buenrostro et al., 2018) A similar technique can be used to sort individual 

meronts or merozoites to identify the molecular determinants of sex in Cryptosporidium 

at a single cell level. 
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6.7 Concluding Remarks 

The work described in this dissertation lays the foundation for understanding the 

relationship between the programming of the lifecycle of Cryptosporidium pathogen and 

infection in a host. The insights we gained into stage specific gene expression combined 

with the new genetic tools we have developed for Cryptosporidium can now be used to 

unravel the biology of sex in Cryptosporidium.  
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