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Abstract

For a component or a system subject to stochastic degradation with sporadic jumps that

occur at random times and have random sizes, we propose to model the cumulative

degradation with random jumps using a single stochastic process based on the

characteristics of Lévy subordinators, the class of non-decreasing Lévy processes. Based on

an inverse Fourier transform, we derive a new closed-form reliability function and

probability density function for lifetime, represented by Lévy measures. The reliability

function derived using the traditional convolution approach for common stochastic models

such as gamma degradation process with random jumps, is revealed to be a special case of

our general model. Numerical experiments are used to demonstrate that our model

performs well for different applications, when compared with the traditional convolution

method. More importantly, it is a general and useful tool for life distribution analysis of

stochastic degradation with random jumps in multi-dimensional cases.
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1. Introduction

Engineering systems (e.g., mechanical devices, subsea pipelines) usually deteriorate and

lose their intended functionality due to wear, fatigue, erosion, corrosion and aging. The

continuous deteriorating process commonly experiences sporadic jumps due to discrete

damages caused by random external shocks, e.g., sudden crack increase due to collision on

pipelines. Stochastic processes are typically used to represent the inherent statistical

uncertainty of a degradation process, e.g., compound Poisson process, gamma process,

Wiener process. However, there is a lack of research on using a single stochastic process to

describe degradation with random jumps. Degradation with random jumps is a process of

stochastically continuous degradation with sporadic jumps that occur at random times and

have random sizes. In this paper, we intend to model the overall change volume of

degradation with random jumps using one stochastic process based on the characteristics

of Lévy subordinators, the class of non-decreasing Lévy processes. Based on an inverse

Fourier transform, we derive a new closed-form reliability function and probability density

function for lifetime of a component or a system subject to a degradation process with

random jumps. The reliability function is constructed and represented by a certain Lévy

measure corresponding to a certain Lévy degradation process.

For systems subject to sporadic jump damages, a compound Poisson process, a

stochastic process with independent and identically distributed (i.i.d) jumps that occur

according to a Poisson process, is one of the appropriate candidates to model the

cumulative damages. Mohamed [20] and Gottlieb [8] introduced the life distribution and its

properties for systems subject to pure jump damage process. Due to the lack of failure



time data for highly reliable systems, degradation data can be used to improve reliability

analysis and failure prognosis. Different mathematical models have been studied for

degradation-based reliability in the literature. Singpurwalla [27] provided a comprehensive

survey to describe some stochastic failure models that can be applied to systems operated

in dynamic environments, such as Wiener process, gamma process, and a deterministic

diffusion process for system wear. Kharoufeh [10,11] used a Markov process to model the

dynamic operating environment for wear-based reliability. Random coefficient regression

models were first constructed by Lu and Meeker [13] to fit the degradation data from a

population of units with normally-distributed measurement errors, and it was later

extended in Lu, Park and Yang [14].

For degradation due to wear only, gamma process and Wiener process are good

candidates to model wear processes. Gamma process is suitable for modeling degradation

that progresses in one direction due to its property of independent and nonnegative

increments. Mohamed [19] was the first study to use a gamma process for modelling wear

process. Lawless and Crowder [15] later presented a gamma process model incorporating a

random effect for degradation. Liao et al. [16] proposed a maintenance policy for gamma

degrading systems. Detailed discussions were given in Noortwijk [22] that provided an

overview and survey for applying gamma processes to model wear. Wiener process is

appropriate for modeling degradation that changes non-monotonically because it can have

non-negative and negative increments alternately. To derive the reliability function from a

Wiener process, the failure time needs to be defined as the first passage time to the failure

threshold [4,5,17]. Whitmore [35] used Wiener process to model wear process considering



the normally distributed measurement errors. Si et al. [28,29] modeled the degradation

process using Wiener process for remaining useful life (RUL) estimation. Tang and Su [33]

presented a modified maximum likelihood estimator for failure time distribution derived

based on Wiener process. Park and Padgett [24,25] proposed a generalized approach using

stochastic processes to describe cumulative degradation volume, where gamma process and

Wiener process are the two cases that were conveniently used. More details about choosing

gamma or Wiener process are in Tsai [34]. Besides gamma and Wiener processes, Ebrahimi

[7] suggested a non-stationary stochastic process to model wear and derived the reliability

function, where the underlying process is gamma process.

In practice, however, few systems experience pure sporadic jump damage process or

degradation only. Due to random environments, a degradation process is typically

impacted by sporadic jump damages. By considering degradation with random jumps, a

typical approach to calculate reliability is using convolution formula as in Peng, Feng, and

Coit [26]. However, when the wear process has little common properties with the random

jump damages, the calculation becomes complex. For example, when we use a Wiener

process (or a gamma process) for wear and a compound Poisson process for sporadic jumps

with normally-distributed jump sizes (or gamma-distributed jump sizes), it is

straightforward to derive the reliability function by using convolution; however, the

calculation becomes more complex when we consider a Wiener degradation process with

gamma jumps. Noortwijk et al. [23] used a gamma process to model wear and a Poisson

process with jump sizes following a peaks-over-threshold distribution to model random

loads, and the computation of reliability is extensive. In addition, the traditional



gamma-Wiener-based models may not be suitable enough to fit the general degradation

data, especially when there are complex jump mechanisms that cannot be well described

by gamma or normal distributions.

In order to overcome the aforementioned problems, we propose to use a single Lévy

process to describe a degradation process with random jumps. Lévy process has been

explored by researchers for degradation processes due to its properties such as independent

and stationary increments. Mohamed [21] used Lévy processes to model wear and studied

its life distribution properties where the threshold is assumed to be random. Yang and

Klutke [37] used special cases of Lévy process to model degradation process and jump

damages: gamma process for wear and compound Poisson process for random jump

damages, respectively. They assumed that the threshold is exponentially distributed, which

leads to a closed-form lifetime distribution.

In this paper, we assume the degradation process with random jumps is nondecreasing,

and a single Lévy subordinator is proposed to construct our models. In our model, we can

specify different Lévy measures to describe different jump mechanisms in degradation,

which makes our methods general and can fit many different types of degradation data sets.

By using inverse Fourier transform, we further derive the closed-form reliability function

and probability density function of lifetime for a system or a component subject to a

degradation process with random jumps, represented by the Lévy measure. The calculation

for reliability is simple enough to be implemented in practice. More importantly, based on

mathematical theories in multi-dimensional Lévy measures, our work in this paper provides

a new framework to analyze multi-degradation processes in multi-component systems.



The organization of the paper is as follows. Section 2 begins with the key notions of

the general Lévy process, and then introduces the special cases of Lévy processes typically

used in the literature. In Section 3, we derive the reliability function and probability density

function of lifetime for systems subject to degradation with random jumps described by the

Lévy subordinators, based on the Fourier inversion theorem. Section 4 studies the reliability

of temporally homogenous gamma degradation with different random jumps, a special case

of Lévy subordinators. Numerical examples are developed in Section 5, and conclusions are

given in Section 6.

Notation

• Euclidean space: Rd, d ∈ N

• The inner product on Euclidean space: (x, y) =
d∑
i=1

xiyi

• Euclidean norm: |x| = (x, x)1/2 =

(
d∑
i=1

x2
i

)1/2

• The set of all Borel probability measures on Euclidean space: M1

(
Rd
)

• Indicator function: IA (x)

• Borel σ algebra on Euclidean space: B
(
Rd
)

• The convolution of finite measures: µ1 ∗ µ2

• Min {a, b}: a ∧ b

• Lévy processes: X (t)

• Lévy subordinators: Xs (t)



• Characteristic function: φX (u)

• Lévy measure: ν

• Lévy symbol: η (u)

• Standard Brownian motion or Wiener process: B0 (t)

• Temporally homogeneous gamma process: G (t)

• Compound Poisson process: C (t)

2. Preliminaries of Lévy processes

Lévy processes are stochastic processes whose increments in nonoverlapping time intervals

are independent and stationary in time. Their importance in modelling degradation processes

stems from [30,1]: 1) they are analogues of random walks in continuous time; 2) they form

special subclasses of Markov processes, for which the analysis is much simpler and provides a

valuable guidance for the general case; 3) they are the simplest examples of random motion

whose sample paths are right-continuous and have a number (at most countable) of random

jump discontinuities occurring at random times, on each finite time interval; and 4) they

include a number of important processes as special cases, such as Wiener process/Brownian

Motion, compound Poisson process, gamma process and stable process. Therefore, Lévy

process can serve as an important tool for the study of degradation-based reliability theory.

In this section, we introduce Lévy processes along with their properties and characteristics

on Euclidean space, where the increments can be positive or negative.



2.1. Characteristics

To make our model general, and provide a framework for multi-degradation processes,

we introduce Lévy processes on Euclidean space.

Definition 1 [1] {X (t) , t ≥ 0} is a Lévy process defined on a probability space

(Ω,F, P ) ,Ω ∈ Rd, F ∈ B
(
Rd
)
, P ∈ M1

(
Rd
)
, if:

• X (0) = 0 with probability of 1;

• X (t) has independent and stationary increments: for n ∈ N and 0 ≤ t1 < t2 <

· · · tn+1 < ∞ , the random variables (X (ti+1)−X (ti) , 1 ≤ i ≤ n) are independent

and the distribution of X (s+ t)−X (s) does not depend on s;

• X (t) is stochastically continuous: for all ε > 0, s > 0,

lim
t→s

P (|X (t)−X (s) | > ε) = 0.

Characteristic functions are a primary tool for analysis when the distributions have no

analytic forms, especially for Lévy processes. On Euclidean space, let

φX (u) =
∫
Rd
ei(u,x)PX (dx) = E

(
ei(u,X)

)
denote the characteristic function of a random

variable X, where PX is the distribution function of X, and u ∈ Rd. More generally, if

µ ∈ M1

(
Rd
)
, the set of all Borel probability measures on Rd, then

φµ (u) =

∫
Rd
ei(u,y)µ (dy) . (1)



Characteristic functions have many useful properties, and readers can refer to [18] for

more details. One important property that can be used to analyze the sum of independent

variables is described in Definition 2.

Definition 2 [1] The convolution µ of two finite measures µ1 and µ2 on Rd, denoted by

µ = µ1 ∗ µ2 is a measure defined by

µ (B) =

∫∫
Rd×Rd

IB (x+ y)µ1 (dx)µ2 (dy) , B ∈ B
(
Rd
)
,

where B
(
Rd
)

is Borel σ algebra on Euclidean space.

If X ∼ µ1, Y ∼ µ2, and X and Y are independent, then X + Y ∼ µ , and

φX+Y (u) = φX (u)φY (u) , (2)

which implies that the characteristic function of the sum of independent random variables

is the product of the characteristic functions of individual random variables.

Characteristic functions of Lévy processes are characterized by Lévy measures or Lévy

symbols. Next we give the definition of Lévy measure, and a Lévy symbol can be represented

by a Lévy measure.

Definition 3 [1] A Borel probability measure on Rd, ν, is a Lévy measure if

∫
Rd

(
1 ∧ |x|2

)
ν (dx) <∞, ν ({0}) = 0.

Based on Lévy Khintchine formula, Lévy process X (t) has a specific form for its

characteristic function. More precisely, for all t ≥ 0, u ∈ Rd,



φX(t) (u) = E
(
ei(u,X(t))

)
= etη(u), (3)

where

η (u) = i (b, u)− 1

2
(u, au) +

∫
Rd

(
ei(u,x) − 1− i (u, x) I0<|x|<1 (x)

)
ν (dx)

is Lévy symbol, in which ν is Lévy measure, b is a constant on Rd, and a is a positive definite

symmetric d× d matrix.

Lévy measure is the most important element of a Lévy process, in a sense that if we

specify a Lévy measure, we can get the corresponding Lévy process and its characteristic

function.

Lévy subordinators [1] form the class of nondecreasing Lévy processes, taking values in

[0,∞). Based on (3), a one-dimensional Lévy subordinator Xs (t) has the characteristic

function:

φXs(t) (u) = E
(
eiuXs(t)

)
= etηs(u), (4)

where

ηs (u) = ib∗u+

∫
R+

(
eiux − 1

)
ν (dx) ,

is Lévy symbol, b∗ = b −
∫

0<x<1
xν (dx), ν is a Lévy measure satisfying an extra condition∫

R+(1 ∧ x) ν (dx) <∞, and b∗ is a constant on R+.



2.2. Special cases of Lévy processes

Lévy processes are stochastic processes with independent and stationary increments over

time. Some special Lévy processes have been widely used to model degradation processes in

the literature, such as Wiener process and gamma process for wear, and compound Poisson

process for pure jump damages. The Lévy measures and Lévy symbols for these common

special cases are introduced in this section.

2.2.1. Linear process

When a = ν = 0, b 6= 0, Lévy symbol in (3) becomes η (u) = i (b, u), and the characteristic

function in (3) is φX(t) (u) = eit(b,u), indicating that X (t) = bt, where b is a constant and

usually called the drift. Therefore, X (t) is a deterministic linear process, which is not

suitable for modeling stochastic degradation process.

2.2.2. Brownian motion/Wiener process

When a 6= 0, b 6= 0, ν = 0, Lévy symbol becomes η (u) = i (b, u)− 1
2

(u, au) and φX(t) (u) =

et[i(b,u)− 1
2

(u,au)], which is the characteristic function of Brownian motion with drift b. The

case a = I, b = 0, ν = 0 is usually called standard Brownian motion or Wiener process

B0 = (B0 (t) , t > 0) , which has a Gaussian density

ρt (x) =
1

(2πt)
d
2

e−
|x|2
2t .



Wiener process and Brownian motion with drift are not suitable for modeling

monotonically increasing/decreasing wear processes, because their increments are not

always positive.

2.2.3. Temporally homogeneous gamma process

When a = 0, b 6= 0, ν 6= 0, if ν is a finite measure, we have

η (u) = i (b∗, u) +

∫
Rd

(
ei(u,x) − 1

)
ν (dx) ,

where b∗ = b−
∫

0<|x|<1
xν (dx). Next, We find the special form for ν to obtain the temporally

homogeneous gamma process.

For a gamma process, if the shape parameter, α (t) = αt, t > 0 (i.e., the second condition

in Definition 1 is satisfied), it is a temporally homogeneous gamma process, G(t). On R1,

G (t) has a density fG(t) = Ga (x|αt, β) = βαtxαt−1e−βx

Γ(αt)
, x > 0, t > 0. Then the characteristic

function of G (t) can be expressed as

φG(t) (u) =

(
β

β − iu

)αt
= exp

(
αt ln

β

β − iu

)
= exp

(
αt

∫ ∞
0

(
eiux − 1

) e−βx
x

dx

)
. (5)

Therefore, the temporally homogeneous gamma process is a special case of Lévy

process, and its Lévy measure is ν(dx) = αx−1e−βxdx, and Lévy symbol is

η (u) = α
∫∞

0
(eiux − 1) e−βx

x
dx, with a = 0, b∗ = 0. The temporally homogeneous gamma

process is a Lévy process that is always positive and strictly increasing, and it is suitable



for modeling strictly increasing wear processes with a linear mean path, αt/β.

2.2.4. Compound Poisson process

For a Poisson process with parameter λ, N (t) ∼ Poisson(λt), and P (N(t) = n) =

e−λt(λt)n

n!
, for n = 0, 1, 2, · · · . Let (J (n) , n ∈ N(t)) be the jump size described by a sequence of

independent and identically distribution (i.i.d.) random variables taking values in Rd, d ∈ N

with distribution µJ , and independent of N(t). The compound Poisson process C (t) is

defined as follows:

C (t) = J (1) + · · ·+ J (N (t)) .

Based on Definition 2, we obtain the characteristic function of compound Poisson process:

φC(t) (u) = E
(
eiuC(t)

)
=
∞∑
n=0

P (N (t) = n)E

(
e
i

(
u,

n∑
k=1

J(k)

))
=
∞∑
n=0

e−λt(λt)n

n!
φJ

n (u)

= exp (λt (φJ (u)− 1)) = exp

(
λt

∫
Rd

(
ei(u,x) − 1

)
µJ (dx)

)
. (6)

Therefore, for a compound Poisson process C (t), Lévy measure is ν(dx) = λµJ (dx), and

Lévy symbol is

ηC (u) =

∫
Rd

(
ei(u,x) − 1

)
λµJ (dx) .

The sample paths of C (t) are piecewise constant on finite intervals with jump



discontinuities at random times. It is suitable for modeling pure jump damages.

3. Life distribution analysis based on Lévy subordinators

We use the Lévy subordinator Xs(t) to represent the monotonically non-decreasing

volume of a degradation with random jumps up to time t. A component or a system fails

when Xs(t) exceeds a failure threshold x, assuming that it subjects to one degradation

process that begins with Xs(t) = 0. To simplify the formula, we assume the failure

threshold is a constant, and it is easy to extend the model when the failure threshold is a

random variable.

The lifetime of the device is defined as

Tx = inf{t : Xs(t) > x}

Since Xs(t) is nondecreasing, we have

{Tx ≥ t} ≡ {Xs(t) ≤ x}.

Then the reliability function can be defined as

R (t) = P (Tx > t) = P (Xs (t) 6 x) = FXs(t) (x) . (7)

In this section, we present a method based on inverse Fourier transform to derive the

reliability function for systems subject to a degradation process with jumps that can be

described by Lévy subordinator. Temporally homogeneous gamma process and compound



Poisson process are the special Lévy processes commonly used in degradation-based

reliability analysis. For systems only subject to wear, temporally homogeneous gamma

process can be used; for systems subject to pure jump damages, compound Poisson process

can be used. It is straightforward to derive the reliability function for one of these special

processes. For degradation processes exhibiting both wear and jump damages, convolution

formula has been typically used to analyze reliability for these cases. However, when the

wear process has little common properties with the jump process, it is difficult to calculate

reliability in (7). A Lévy process can conveniently represent wear process with random

jumps.

Although the probability density function of Lévy process is not readily available, we

have the expression of its characteristic function. Since there is a one-to-one correspondence

between the cumulative distribution function (cdf) and the characteristic function, we can

obtain one of them if the other one is known. Based on Fourier inversion theorem, Shephard

[31] provided the following remarkable theorem describing the cdf as the function of φ(u) for

a random variable.

Lemma 1 [31] If the probability density function f and the characteristic function φX (u)

are integrable in the Lebesgue sense, then under the assumption that the mean for the

random variable of interest exists, the following equality holds:

FX (x) =
1

2
− 1

2π

∫ ∞
0

∆
u

(
e−iux

iu
φX (u)

)
du,

where ∆
u
ρ (u) = ρ (u) + ρ (−u).

The following Lemma 2 is the multivariate generalization of Lemma 1.



Lemma 2 [31] If the probability density function f and the characteristic function φX (u)

are integrable in the Lebesgue sense, then under the assumption that the mean for the

random multi-dimensional variable of interest exist, the following equality holds:

(−2)d

(2π)d

∫ ∞
0

· · ·
∫ ∞

0
∆
u1

∆
u2
· · ·∆

ud

(
e−i(u,x)

iu1iu2 · · · iud
φX (u)

)
du = z∗ (x) ,

where

z∗ (x) = 2dF (x1, · · ·xd)− 2d−1 (F (x2, x3, · · · , xd) + · · ·+ F (x1, · · · , xd−2, xd−1))

+2d−2 (F (x3, x4, · · · , xd) + · · ·+ F (x1, · · · , xd−3, xd−2)) + · · ·+ (−1)d .

Lemma 1 turns out to be a special case of Lemma 2 that deals with multi-dimensional

variables. For an example of two-dimensional variables, if we know the characteristic function

φX (u), we can get the expression of z∗ (x) = 4F (x1, x2) − 2F (x1) − 2F (x2) + 1 based on

Lemma 2. If we know the characteristic function of each variable, φX1 (u) and φX2 (u), we can

have F (x1) and F (x2) based on Lemma 1. Finally we can solve for the joint distribution

function F (x1, x2) of X1, X2. Integration rules for the computation of the multivariate

distribution function are derived in [32].

In this paper, we focus on the one-dimensional Lévy degradation process. When d = 1,

for all t ≥ 0, u ∈ R1, the characteristic function of a Lévy subordinator Xs(t) is expressed

in (4). For Xs(t), if the probability density function and the characteristic function are

integrable in the Lebesgue sense, and the mean exists, then we derive the reliability function

and pdf of lifetime in the following corollaries.



Corollary 1 For systems subject to stochastic degradation with random jumps that can be

described by Lévy subordinators, assuming the failure threshold value is x, the reliability

function represented by Lévy measure is

R (t) = P (T > t) = P (Xs (t) 6 x) = FXs(t) (x)

=
1

2
− 1

2π

∫ ∞
0

∆
u

(
e−iux

iu
exp

(
t

(
ib∗u+

∫
R+

(
eiux − 1

)
ν (dx)

)))
du,

(8)

where b∗ = b−
∫

0<x<1
xν (dx), a > 0, and ∆

u
ρ (u) = ρ (u) + ρ (−u).

Corollary 2 For systems subject to stochastic degradation with random jumps that can be

described by Lévy subordinators, assuming the failure threshold value is x, the probability

density function of lifetime represented by Lévy measure is

f (t) = −∂R (t)

∂t

=
1

2π

∫ ∞
0

∆
u

(
e−iux exp

(
t
(
ib∗u+

∫
R+ (eiux − 1)ν (dx)

))
iu
(
ib∗u+

∫
R+ (eiux − 1)ν (dx)

)−1

)
du,

(9)

where b∗ = b−
∫

0<x<1
xν (dx), a > 0, and ∆

u
ρ (u) = ρ (u) + ρ (−u).

For systems subject to degradation with random jumps that can be described by Lévy

subordinators, we can first specify a certain Lévy measure and then calculate the reliability

function and pdf using Equations (8) and (9). Kharoufeh [10] gave explicit results for

wear processes in Markovian environment, which requires to use multi-inverse algorithms

to calculate. Although they are not explicit, our results in (8) and (9) can be computed

comparatively cheap based on [31].

The advantages of our results in (8) and (9) are twofold: 1) They are general because

we can specify different Lévy measures to fit different types of degradation data sets, while



the models in the literature become special cases of our models; and 2) they provide a

methodology to deal with complex random jumps in degradation processes, and our methods

can solve the problems that the traditional convolution method cannot solve, i.e., when the

distributions of jumps size are not additive.

4. Life distribution analysis for temporally homogeneous gamma process with

random jumps

To demonstrate the advantages of our models, we present the reliability analysis by

specifying a Lévy measure to model degradation with random jumps. As presented in

Section 2.2, temporally homogeneous gamma process is a special Lévy subordinator that

can be used to model strictly increasing degradation process, which is often the case in

practice; and compound Poisson process can be used to model random jumps due to

external or internal impacts. We present the life distribution analysis for temporally

homogeneous gamma process with random jumps.

4.1. Reliability function using traditional convolution approach

We first present the reliability function derived from the traditional convolution approach

for temporally homogeneous gamma process with random jumps. If a degradation process

with sporadic jumps can be well described by the sum of a temporally homogeneous gamma

process and a compound Poisson process, assuming these two processes are independent, the

traditional convolution approach to derive reliability function is:



R (t) = P (Xs (t) 6 x) = P

G (t) +

N(t)∑
i=0

Ji 6 x


=
∞∑
n=0

P

G (t) +

N(t)∑
i=0

Ji 6 x |N (t) = n

P (N (t) = n)

=
∞∑
n=0

P

(
G (t) +

n∑
i=0

Ji 6 x

)
e−λt(λt)n

n!
.

(10)

If the jump size follows a gamma distribution, Ji ∼ Gamma(α∗, β∗), then

n∑
i=0

Ji ∼ Gamma(nα∗, β∗). If the scale parameter of G (t) is the same as β∗, i.e., β = β∗,

then G (t) +
n∑
i=0

Ji ∼ Gamma(αt+ nα∗, β). The reliability function for this special case is

R (t) = P (Xs (t) 6 x) =
∞∑
n=0

P

(
G (t) +

n∑
i=0

Ji 6 x

)
e−λt(λt)n

n!

=
∞∑
n=0

(
1− Γ (αt+ nα∗, xβ)

Γ (αt+ nα∗)

)
e−λt(λt)n

n!
,

(11)

where Γ (αt+ nα∗) =
∫∞
y=0

yαt+nα
∗−1e−ydy , Γ (αt+ nα∗, xβ) =

∫∞
y=xβ

yαt+nα
∗−1e−ydy, and x

is the threshold value.

We can see that Equation (11) is derived based on two assumptions: 1) the distribution

of jump size is additive, i.e., gamma distribution is additive; and 2) the scale parameters

are the same. However, if β 6= β∗, or if Ji follows a different distribution than gamma

distribution (such as inverse Gaussian distribution, Lévy distribution, Pareto distribution,

exponential distribution, or lognormal distribution), it becomes complex to calculate the

reliability function in (11) based on Definition 2. Our approach in Corollary 1 is capable to

deal with these cases by using Lévy measure.



4.2. Reliability function using Lévy measure

In this section, we present the reliability function and pdf derived from our new approach

in Corollaries 1 and 2 using Lévy measure for temporally homogeneous gamma process with

random jumps.

As given in Section 2.2.3, for a temporally homogeneous gamma process, Lévy measure

is ν1(dx) = αx−1e−βxdx. As given in Section 2.2.4, for a compound Poisson process, Lévy

measure is ν2(dx) = λµJ(dx). Then for a Lévy subordinator called temporally homogeneous

gamma process with compound Poisson jumps, the characteristic function is derived based

on (2):

φXs(t) (u) = φG(t)+C(t) (u) = φG(t) (u)φC(t) (u) = exp

(
t

∫
R+

(
eiux − 1

)(αe−βx
x

+ λµ′J

)
dx

)
,

where µ′J is the probability density function of the jump size. Therefore, we can model the

gamma degradation with random jumps by specifying a Lévy measure as ν = ν1 + ν2 =

αx−1e−βxdx + λµJ(dx). Based on Corollary 1 and 2, the reliability function and pdf are

derived.

R (t) = P (Tx > t) = P (Xs (t) 6 x) = FXs(t) (x)

=
1

2
−
∫ ∞

0
∆
u

(
e−iux

2πiu
exp

(
t

(∫
R+

(
eiux − 1

)(αe−βx
x

+ λµ′J

)
dx

)))
du.

(12)

The probability density function of lifetime is



f (t) = −∂R (t)

∂t

=

∫ ∞
0

∆
u

e−iux exp
(
t
(∫

R+ (eiux − 1)
(
αe−βx

x
+ λµ′J

)
dx
))

2πiu
(∫

R+ (eiux − 1)
(
αe−βx

x
+ λµ′J

)
dx
)−1

du. (13)

The results in (12) and (13) can be applied to the jump size following a general

distribution µJ defined on [0,∞), as listed in Section 4.1. In the following, we derived the

reliability function and pdf for three different jump types.

4.2.1. Gamma-distributed jump sizes

If the jump size follows a gamma distribution,

µ′J = Ga (x|α∗, β∗) =
βα
∗
xα
∗−1e−β

∗x

Γ (α∗)
, x > 0

then the characteristic function for the compound Poisson process is

φC(t) (u) = exp

(
λt

(∫
R+

(
eiux − 1

)βα∗xα∗−1e−β
∗x

Γ (α∗)
dx

))
= exp

(
λt

(∫
R+

eiux
βα
∗
xα
∗−1e−β

∗x

Γ (α∗)
dx−

∫
R+

βα
∗
xα
∗−1e−β

∗x

Γ (α∗)
dx

))
= exp

(
λt

(∫
R+

eiux
βα
∗
xα
∗−1e−β

∗x

Γ (α∗)
dx− 1

))
= exp

(
λt

((
β∗

β∗ − iu

)α∗
− 1

))
.

Then the reliability function in (12) is

R (t) =
1

2
−
∫ ∞

0
∆
u

(
e−iux

2πiu

(
β

β − iu

)αt
exp

(
λt

((
β∗

β∗ − iu

)α∗
− 1

)))
du. (14)

Equation (14) is a general formula for reliability function for a gamma process with gamma-



distributed jumps, regardless of β = β∗ or not, while Equation (11) is only for the case of

β = β∗.

The probability density function of lifetime in (13) is derived to be

f (t) = −∂R (t)

∂t

=

∫ ∞
0

∆
u

(
e−iux

2πiu

(
β

β − iu

)αt
e
λt

((
β∗

β∗−iu

)α∗
−1

)(
ln

(
β

β − iu

)α
+ λ

((
β∗

β∗ − iu

)α∗
− 1

)))
du

4.2.2. Lévy-distributed jump sizes

If the jump size follows a different distribution than gamma distribution, we can also

derive the reliability function and pdf using (12) and (13). When the jump size follows a

Lévy distribution, the probability density function is given as [2]

µ′J (x;ω, ξ) =



√
ξ

2π
exp(− ξ

2(x−ω)
)

(x− ω)
3
2

for x > ω

0 otherwise

Lévy distribution is a continuous probability distribution of a non-negative random

variable when ω ≥ 0. It has little common properties with gamma distribution, leading to

complex calculation in the convolution approach. Since the characteristic function of Lévy

distributed variable is eiuω−
√
−2iuξ [9], the reliability function of gamma degradation with

Lévy-distributed jumps is derived from (12) to be

R (t) =
1

2
−
∫ ∞

0
∆
u

(
e−iux

2πiu

(
β

β − iu

)αt
exp

(
λt
(
eiuω−

√
−2iuξ − 1

)))
du. (15)



The probability density function of lifetime in (13) is

f (t) = −∂R (t)

∂t

=

∫ ∞
0

∆
u

(
e−iux

2πiu

(
β

β − iu

)αt
eλt(e

iuω−
√
−2iuξ−1)

(
ln

(
β

β − iu

)α
+ λ

(
eiuω−

√
−2iuξ − 1

)))
du.

4.2.3. Inverse Gaussian-distributed jump sizes

The inverse Gaussian distribution is used to describe positive continuous random

variables. Its probability density function is

µ′J (x; ς, ϑ) =


√

ϑ

2πx3
exp{−ϑ(x− ς)2

2ς2x
} for x > 0

0 otherwise

where ς > 0 is the mean, and ϑ > 0 is the shape parameter. It also has little common

properties with gamma distribution. Since the characteristic function of an inverse Gaussian-

distributed variable is e
ϑ
ς

(
1−
√

1− 2iuς2

ϑ

)
, the reliability function of gamma degradation with

inverse Gaussian-distributed jumps in (12) is

R (t) =
1

2
−
∫ ∞

0
∆
u

e−iux

2πiu

(
β

β − iu

)αt
exp

(
λt

(
e
ϑ
ς

(
1−
√

1− 2iuς2

ϑ

)
− 1

))
du. (16)

The probability density function of lifetime in (13) is

f (t) = −∂R (t)

∂t

=

∫ ∞
0

∆
u

 e−iux

2πiu

(
β

β − iu

)αt
e

λt

eϑς
(
1−
√

1− 2iuς2
ϑ

)
−1

(
ln

(
β

β − iu

)α
+ λ

(
e
ϑ
ς

(
1−
√

1− 2iuς2

ϑ

)
− 1

))du.



Besides the Lévy measures used in this section, we can specify other Lévy measures for

model construction in order to fit the corresponding degradation data. Some interesting

Lévy measures have been studied in [3], such as ν(dx) =
δγ−2κκx−κ−1 exp(− 1

2
γ2x)

Γ(κ)Γ(1−κ)
dx, x, δ >

0, 0 < κ < 1, γ ≥ 0 for the positive tempered stable process PTS(κ, δ, γ).

5. Numerical examples

We consider the crack growth process in a device, which is subject to degradation due

to fatigue and a variety of overloads that can occur in manufacturing, deployment, and

operation phases. We use a Lévy subordinator Xs(t) to represent the growth of a crack at

time t, specifically, a temporally homogeneous gamma process with random jumps. Then

the Lévy measure is ν = αx−1e−βxdx + λµJ(dx). In particular, we consider three different

distributions to model the jump size: gamma, Lévy and inverse Gaussian. The specific

values for the parameters are given in Table 1. A device fails when the crack length exceeds

the threshold x.

Table 1: Values for parameters

Parameters Values Parameters Values

α 5 ω 1

β 0.8 ξ 0.002

λ 3 ς 1

α∗ 10 ϑ 1

β∗ 15 x 50

Figure 1 shows the reliability over time of devices subject to a gamma degradation with

gamma-distributed jumps. When the parameter β∗ = β = 0.8, both traditional convolution



Figure 1: Reliability for gamma degradation with gamma-distributed jumps

Figure 2: Reliability for gamma degradation with three jump types



Figure 3: Pdf of lifetime for gamma degradation with three jump types

Figure 4: Hazard rate for gamma degradation with three jump types



(11) and our proposed method (14) can solve the problem, showing the same curve of R(t).

When β∗ 6= β, the reliability curve is provided by our model in (14), and the convolution

approach becomes complex in this case.

Figure 2 shows the reliability over time of devices subject to a gamma degradation with

three different jump distributions. It demonstrates that for Lévy and Inverse Gaussian

distributed jump sizes, whose probability density functions have little common properties

with gamma, we can readily calculate the reliability by using our proposed model in (14).

Figure 3 and Figure 4 illustrate the probability density function and hazard rate for the

lifetime of the devices. We can see that the hazard rates increase over time for all three

cases.

6. Conclusions and discussion

One of the challenging aspects in reliability analysis is how to formulate the reliability

function from the degradation process that a system or a component experiences. In this

paper, we presented a novel model concerning the stochastic mechanism of a complex

degradation process that also subjects to random jumps. Based on inverse Fourier

transforms, the reliability function and pdf of lifetime were derived. Our model is general

because we can specify many different Lévy measures to fit many different types of

degradation data sets, and the models in the literature become special cases of our model.

In addition, by providing a methodology to deal with complex random jumps in

degradation processes, our method can solve the problems that the traditional convolution

method cannot solve, i.e., when the distribution of jumps size is not additive. Our new

method provides a convenient and general way to evaluate the system reliability. The



calculation for reliability is simple enough to implement in practice.

More importantly, the model provides a framework for reliability analysis of

multi-degradation processes in multi-component systems. To derive the reliability function

for multi-Lévy degradation processes on Rd, d ∈ N , we need to construct multi-dimensional

Lévy measures ν ∈ M1

(
Rd
)
. If the multi-degradation processes are dependent, the

construction of the multi-dimensional Lévy measures can refer to Lévy copula theory

[12,6]. In order to apply the model to degradation data analysis, statistical inference on

Lévy measures is another potential research topic.
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[30] K. Sato, Lévy processes and infinitely divisible distributions, Cambridge University

Press, Cambridge, 1999.

[31] N.G. Shephard, From characteristic function to distribution function: A simple

framework for the theory, Econometric Theory 7 (1991), 519-529.

[32] N.G. Shephard, Numerical integration rules for multivariate inversions, J. Statist.

Comput. Simul. 39 (1991), 37-46.



[33] J. Tang and T. Su, Estimating failure time distribution and its parameters based on

intermediate data from a Wiener degradation model, Naval Research Logistics 55 (2008),

265-276.

[34] C. Tsai, S. Tseng, and N. Balakrishnan, Mis-specification analyses of gamma and Wiener

degradation processes, Journal of Statistical Planning and Inference 141 (2011), 3725-

3735.

[35] G.A. Whitmore, Estimating degradation by a Wiener diffusion process subject to

measurement error, Lifetime Data Analysis 1 (1995), 307-319.

[36] L.A. Waller, B.W. Turnbull, and J.M. Hardin, Obtaining distribution functions

by numerical inversion of characteristic functions with applications, The American

Statistician 49 (1995), 346-350.

[37] Y. Yang and G. Klutke, Lifetime-characteristics and inspection-schemes for Lévy
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