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Study of life history strategies may help predict the performance of microorganisms in nature by organizing the complexity of
microbial communities into groups of organisms with similar strategies. Here, we tested the extent that one common application of
life history theory, the copiotroph-oligotroph framework, could predict the relative population growth rate of bacterial taxa in soils
from four different ecosystems. We measured the change of in situ relative growth rate to added glucose and ammonium using
both 18O–H2O and 13C quantitative stable isotope probing to test whether bacterial taxa sorted into copiotrophic and oligotrophic
groups. We saw considerable overlap in nutrient responses across most bacteria regardless of phyla, with many taxa growing slowly
and few taxa that grew quickly. To define plausible life history boundaries based on in situ relative growth rates, we applied
Gaussian mixture models to organisms’ joint 18O–13C signatures and found that across experimental replicates, few taxa could
consistently be assigned as copiotrophs, despite their potential for fast growth. When life history classifications were assigned
based on average relative growth rate at varying taxonomic levels, finer resolutions (e.g., genus level) were significantly more
effective in capturing changes in nutrient response than broad taxonomic resolution (e.g., phylum level). Our results demonstrate
the difficulty in generalizing bacterial life history strategies to broad lineages, and even to single organisms across a range of soils
and experimental conditions. We conclude that there is a continued need for the direct measurement of microbial communities in
soil to advance ecologically realistic frameworks.
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INTRODUCTION
The concept of copiotrophy and oligotrophy in microbial
communities offers the potential for an organizing principle to
describe the complexity of microbial systems. As such, it has been
discussed for decades in relation to marine environments [1] and
soils [2]. The framework is a direct descendent of r-K selection
theory, which has long been applied to larger organisms [3]. If
successful, life history strategy frameworks should support
inferences about processes from patterns in taxonomic composi-
tion. The copiotroph-oligotroph framework posits that micro-
organisms, facing strong selective pressure from their
environment, adapt strategies defined by two endpoints along a
continuum: either growing and reproducing quickly in the
presence of abundant nutrients (copiotrophs), or specializing in
resource-poor niches to escape from competition (oligotrophs)
[4, 5]. Evidence for this framework in soils was first presented from
greater relative abundance of some bacterial phyla in response to
sucrose addition, indicating copiotrophic strategies, whereas other

bacterial phyla were either unresponsive or responded negatively,
suggesting oligotrophic strategies [6]. An expansion of growth-
trait associated strategies centers around the trade-off between
maintenance energy, growth efficiency (i.e., yield), and growth
rate [7, 8] or in the investment in resource acquisition [9, 10].
The copiotroph-oligotroph framework is commonly used for the

interpretation of 16S rRNA gene bacterial community data
[11–13]. Fierer et al. explicitly emphasized continuous and
taxon-specific behavior, “These results do not suggest that every
member of the Acidobacteria, β-Proteobacteria, and Bacteroidetes
phyla are distinctly copiotrophic or oligotrophic” [6]. Thus, the
proposed framework in microbial ecology describes a continuum
of nutrient responses. Viewed as a continuum, the copiotroph-
oligotroph hypothesis holds that the traits associated with these
two life history strategies are negatively correlated—not mutually
exclusive—and that a continuous range of responses is expected.
Additionally, factors beyond the physiological potential of the
microorganism or available resources can influence population
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growth. Factors such as viral predation [14] or soil structure
[15, 16] are relevant to understanding microbal behavior in the
soil habitat but may lead to a higher frequency of intermediate
responses to nutrient addition (Fig. 1A). Such an outcome would
raise serious objections to the usefulness of a dichotomous
categorization scheme as a tool to understand and predict
microbial communities in soil.
It is also possible that the pressure to select for either

copiotrophic or oligotrophic strategies is strong in soils but that
the current practice of assignment of bacterial phyla to one
strategy or the other is inaccurate (Fig. 1B) or imprecise (Fig. 1C).
For example, classifying individual phyla as oligotrophic or
copiotrophic may not be correct or useful given the behavior of
the majority of their constituent taxa (i.e., categorization is
inaccurate). Further, taxa within a given phylum may show a
mix of response types (i.e., categorization is imprecise) according
to previous publications [17, 18]. For example, if we assume that
microorganisms must invest in one or the other growth strategy
exclusively, we would expect to observe a bimodal distribution of

growth responses in copiotrophic and a bimodal distribution in
oligotrophic taxa. Although microbial ecologists typically organize
their conclusions at the phylum level – it is well understood that
bacterial lineages within phyla can have distinct metabolic and
ecological roles and that finer taxonomic resolution may be
necessary for assigning strategies accurately [17, 19–23]. This
would indicate that current categorizations should be updated
based on new methods for measuring taxon-specific growth rate
or nutrient response, or that finer levels of taxonomic organization
are more appropriate for making life history assignments as
recommended by Ho and colleagues (based on references
therein) [23]. By contrast, if the life history strategy is coherent
at the phylum level, and current classifications are correct, we
expect to see a clear distinction in the distributions of growth
response between copiotrophic and oligotrophic phyla (Fig. 1D).
Here, we analyzed published quantitative stable isotope

probing (qSIP) data [21, 24, 25] on the growth of bacterial taxa
within the complex and heterogenous soil environment. Because
microbial activity is strongly dependent on resource stoichiometry
[26–28], we analyzed data from two experimental treatments –
labile carbon (C) or carbon + ammonium (N) addition. This design
was meant to minimize N limitation in at least one treatment. We
applied phylum-level assignments of life history strategy from the
microbiological literature (Table 1) and compared the expected
responses of individual bacterial taxa to their growth responses
measured by isotopic enrichment. Given previous findings of
taxon-specific responses [17, 18], we compared nutrient responses
at different levels of taxonomic organization from the level of
phylum to genus. Our hypotheses were (see Fig. 1):
H0, Null: No bimodality in nutrient response of taxa to nutrient

addition (i.e., no clear selection for one strategy or the other exists,
Fig. 1A)
H1, misclassification: Bimodality in nutrient responses to

nutrient addition within each life history category (i.e., phyla
show inherent tendencies for one strategy or the other, but have
been misclassified, Fig. 1B)
H2, taxonomic resolution: Bimodality in nutrient responses to

nutrient addition within each life history category (i.e., groups of
taxa show inherent tendencies for one strategy or the other, but
only at a finer taxonomic resolution than the phylum level, Fig. 1C)
H3, phylum-level traits: Significant differences in nutrient

response to nutrient addition between life history strategies (i.e.,
clear tendencies for one strategy or another; current phylum-level
assignments of life history strategies are supported, Fig. 1D)

Fig. 1 Hypothesized patterns of nutrient response across micro-
bial lineages and associated life history strategy distributions.
Points at the bottom represent a measure of centrality of nutrient
responses across taxa within a phylum while lines represent a measure
of spread. Phylum-specific responses are summarized by an expected
density distribution of each life history strategy above. Note that the
heights of density distributions for each strategy were made equal
only for visibility. Panels show nutrient response under different
hypotheses. A H0 a continuum of responses exists across all phyla.
B H1 bimodality across the community will occur regardless of life
history strategy due to differences across phyla (i.e., phyla-level
classifications are inaccurate). C H2 bimodality across the community
will occur regardless of life history strategy due to differences across
taxa within each phylum (i.e., phyla-level classifications are imprecise).
D H3 that phyla show clear tendencies for one strategy or another.

Table 1. Classification of microbial life history strategies of major microbial lineages.

Representative phylum or subphylum Times cited as copiotroph Times cited as oligotroph Expected life history

Alphaproteobacteria 3 4 Oligotroph

Betaproteobacteria 4 0 Copiotroph

Gammaproteobacteria 6 1 Copiotroph

Deltaproteobacteria 0 1 Oligotroph

Acidobacteria 0 8 Oligotroph

Firmicutes 3 1 Copiotroph

Bacteroidetes 5 2 Copiotroph

Actinobacteria 4 2 Copiotroph

Verrucomicrobia 0 5 Oligotroph

Planctomycetes 0 5 Oligotroph

Chloroflexi 0 1 Oligotroph

Gemmatimonadetes 1 0 Copiotroph

Cyanobacteria 0 1 Oligotroph

Classifications of expected behavior are based off the frequency that lineages within a given representative phylum (or subphylum) was cited as following
copiotroph-associated behavior or oligotroph-associated behavior as summarized by Ho et al. [23]. https://doi.org/10.1093/femsec/fix006.
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MATERIALS AND METHODS
Data were analyzed from samples collected, processed, and published
previously [21, 25, 29] and have been summarized here. The present
analysis, which consisted of sequence data processing, the calculation of
taxon-specific isotopic signatures, and subsequent analyses, reflects
original work.

Sample collection and isotope incubation
To generate experimental data, three replicate soil samples were collected
from the top 10 cm of plant-free patches in four ecosystems along the C.
Hart Merriam elevation gradient in Northern Arizona. From low to high
elevation, these sites are located in the following environments: desert
grassland (GL; 1760 m), piñon-pine juniper woodland (PJ; 2020m),
ponderosa pine forest (PP; 2344m), and mixed conifer forest (MC;
2620m). Soil samples were air-dried for 24 h at room temperature,
homogenized, and passed through a 2mm sieve before being stored at
4 °C for another 24 h. This produced three distinct but homogenous soil
samples from each of the four ecosystems that were subject to
experimental treatments. Three treatments were applied to bring soils to
70% water-holding capacity: water alone (control), water with glucose (C
treatment; 1000 µg C g−1 dry soil), or water with glucose and a nitrogen
source (CN treatment; [NH4]2SO4 at 100 µg N g−1 dry soil). To track growth
through isotope assimilation, both 18O-enriched water (97 atom %) and
13C-enriched glucose (99 atom %) were used. In all treatments isotopically
heavy samples were paired with matching “light” samples that received
water with a natural abundance isotope signatures. For 18O incubations,
this design resulted in three soil samples per ecosystem per treatment
(across four ecosystems and three treatments, n= 36) while 13C
incubations were limited to only C and CN treatments (n= 24). Previous
analyses suggest that three replicates is sufficient to detect growth of 10
atom % 18O in microbial DNA with a power of 0.6 and a growth of 5 atom
% 18O with a power of 0.3 (12 and 6 atom % respectively for 13C) [30]. All
soils were incubated in the dark for one week. Following incubation, soils
were frozen at −80 °C for one week prior to DNA extraction.

Quantitative stable isotope probing
The procedure of qSIP (quantitative stable isotope probing) is described
here but has been applied to these samples as previously published
[17, 21, 25]. DNA extraction was performed on soils using a DNeasy
PowerSoil HTP 96 Kit (MoBio Laboratories, Carlsbad, CA, USA) and
following manufacturer’s protocol. Briefly, 0.25 g of soils from each sample
were carefully added to deep, 96-well plates containing zirconium dioxide
beads and a cell lysis solution with sodium dodecyl sulfate (SDS) and
shaken for 20min. Following cell lysis, supernatant was collected and
centrifuged three times in fresh 96-well plates with reagents separating
DNA from non-DNA organic and inorganic materials. Lastly, DNA samples
were collected on silica filter plates, rinsed with ethanol and eluted into
100 µL of a 10mM Tris buffer in clean 96-well plates. To quantify the
degree of 18O or 13C isotope incorporation into bacterial DNA (excess atom
fraction or EAF), the qSIP protocol [31] was used, though modified slightly
as reported previously [21, 24, 32]. Briefly, microbial growth was quantified
as the change in DNA buoyant density due to incorporation of the 18O or
13C isotopes through the method of density fractionation by adding 1 µg
of DNA to 2.6 mL of saturated CsCl solution in combination with a gradient
buffer (200mM Tris, 200 mM KCL, 2 mM EDTA) in a 3.3 mL OptiSeal
ultracentrifuge tube (Beckman Coulter, Fullerton, CA, USA). The solution
was centrifuged to produce a gradient of increasingly labeled (heavier)
DNA in an Optima Max bench top ultracentrifuge (Beckman Coulter, Brea,
CA, USA) with a Beckman TLN-100 rotor (127,000 × g for 72 h) at 18 °C.
Each post-incubation sample was thus converted from a continuous
gradient into approximately 20 fractions (150 µL) using a modified fraction
recovery system (Beckman Coulter). The density of each fraction was
measured with a Reichart AR200 digital refractometer (Reichert Analytical
Instruments, Depew, NY, USA). Fractions with densities between 1.640 and
1.735 g cm−3 were retained as densities outside this range generally did
not contain DNA. In all retained fractions, DNA was cleaned and purified
using isopropanol precipitation and the abundance of bacterial 16S rRNA
gene copies was quantified with qPCR using primers specific to bacterial
16S rRNA genes (Eub 515F: AAT GAT ACG GCG ACC ACC GAG TGC CAG
CMG CCG CGG TAA, 806R: CAA GCA GAA GAC GGC ATA CGA GGA CTA CVS
GGG TAT CTA AT). Triplicate reactions were 8 µL consisting of 0.2 mM of
each primer, 0.01 U µL−1 Phusion HotStart II Polymerase (Thermo Fisher
Scientific, Waltham, MA), 1× Phusion HF buffer (Thermo Fisher Scientific),
3.0 mM MgCl2, 6% glycerol, and 200 µL of dNTPs. Reactions were

performed on a CFX384 Touch Real-Time PCR Detection System (Bio-
Rad, Hercules, CA, USA) under the following cycling conditions: 95 °C at
1 min and 44 cycles at 95 °C (30 s), 64.5 °C (30 s), and 72 °C (1 min). Separate
from qPCR, retained sample-fractions were subject to a similar amplifica-
tion step of the 16S rRNA gene V4 region (515F: GTG YCA GCM GCC GCG
GTA A, 806R: GGA CTA CNV GGG TWT CTA AT) in preparation for
sequencing with the same reaction mix but differing cycle conditions –
95 °C for 2 min followed by 15 cycles at 95 °C (30 s), 55 °C (30 s), and 60 °C
(4min). The resulting 16S rRNA gene V4 amplicons were sequenced on a
MiSeq sequencing platform (Illumina, Inc., San Diego, CA, USA). DNA
sequence data and sample metadata have been deposited in the NCBI
Sequence Read Archive under the project ID PRJNA521534.

Sequence processing and qSIP analysis
Independently from previous publications, we processed raw sequence
data of forward and reverse reads (FASTQ) within the QIIME2 environment
[33] (release 2018.6) and denoised sequences within QIIME2 using the
DADA2 pipeline [34]. We clustered the remaining sequences into amplicon
sequence variants (ASVs, at 100% sequence identity) against the SILVA 138
database [35] using a pre-trained open-reference Naïve Bayes feature
classifier [36]. We removed samples with less than 3000 sequence reads,
non-bacterial lineages, and global singletons and doubletons. We
converted ASV sequencing abundances in each fraction to the number
of 16S rRNA gene copies per gram dry soil based on qPCR abundances and
the known amount of dry soil equivalent added to the initial extraction.
This allowed us to express absolute population densities, rather than
relative abundances. Across all replicates, we identified 114 543 unique
bacterial ASVs.
We calculated the 18O and 13C excess atom fraction (EAF) for each

bacterial ASV using R version 4.0.3 [37] and data.table [38] with custom
scripts available at https://www.github.com/bramstone/. Negative enrich-
ment values were corrected using previously published methods [17]. ASVs
that appeared in less than two of the three replicates of an ecosystem-
treatment combination (n= 3) and less than three density fractions within
those two replicates were removed to avoid assigning spurious estimates
of isotope enrichment to infrequent taxa. Any ASVs filtered out of one
ecosystem-treatment group were allowed to be present in another if they
met the frequency threshold. Applying these filtering criteria, we limited
our analysis towards 3759 unique bacterial ASVs which accounted for a
small proportion of the total diversity but represented 68.0% of all
sequence reads, and encompassed most major bacterial groups (Supple-
mentary Fig. 1).

Analysis of life history strategies and nutrient response
All statistical tests were conducted in R version 4.0.3 [37]. We assessed the
ability of phylum-level assignment of life history strategy to predict growth
in response to C and N addition, as proxied by the incorporation of heavy
isotope during DNA replication [39, 40]. Phylum-level assignments (Table 1)
were based on the most frequently observed behavior of lineages with a
representative phylum (or subphylum) as compiled previously [23]. We
averaged 18O EAF values of bacterial taxa for each treatment and
ecosystem and then subtracted the values in control soils from values in
C-amended soils to determine C response (Δ18O EAFC) and from the 18O
EAF of bacteria in CN-amended soils to determine C and N response (Δ18O
EAFCN). Because an ASV must have a measurable EAF in both the control
and treatment for a valid Δ18O EAF to be calculated, we were only able to
resolve the nutrient response for 2044 bacterial ASVs – 1906 in response to
C addition and 1427 in response to CN addition.
We used Gaussian finite mixture modeling, as implemented by the

mclust R package [41], to demarcate plausible multi-isotopic signatures for
oligotrophs and copiotrophs. For each treatment, we calculated average
per-taxon 13C and 18O EAF values. To compare both isotopes directly, we
divided 18O EAF values by 0.6 based on the estimate that this value
(designated as µ) represents the fraction of oxygen atoms in DNA derived
from the 18O-water, rather than from 16O within available C sources [42].
Two mixture components, corresponding to oligotrophic and copiotrophic
growth modes, were defined using the Mclust function using ellipsoids of
equal volume and shape. We observed several microorganisms with high
18O enrichment but comparatively low 13C enrichment, potentially
indicating growth following the depletion of the added glucose, and that
were reasonably clustered as oligotrophs in our mixture model.
We tested how frequently mixture model clustering of each micro-

organism’s growth (based on average 18O–13C EAF in a treatment) could
predict its growth across replicates (n= 12 in each treatment—although
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individual). We applied the treatment-level mixture models defined above
to the per-taxon isotope values in each replicate, recording when a
microorganism’s life history strategy in a replicate agreed with the
treatment-level cluster, and when it didn’t. We used exact binomial tests to
test whether the number of “successes” (defined as a microorganism being
grouped in the same life history category as its treatment-level cluster) was
statistically significant. To account for type I error across all individual tests
(one per ASV per treatment), we adjusted P values in each treatment using
the false-discovery rate (FDR) method [43].
To determine the extent that life history categorizations may be

appropriately applied at finer levels of taxonomic resolution, we
constructed several hierarchical linear models using the lmer function in
the nlme package version 3.1-149 [44]. To condense growth information
from both isotopes into a single analysis, 18O and 13C EAF values were
combined into a single variable using principal components analysis
separately for each treatment. Across the C and CN treatments, the first
principal component (PC1) was able to explain – respectively – 86% and
91% of joint variation of 18O and 13C EAF values. In all cases, we applied PC1
as the response variable and treated taxonomy and ecosystem as random
model terms to limit the potential of pseudo-replication to bias significance
values. We used likelihood ratio analysis and Akaike information criterion
(AIC) values to compare models where life history strategy was determined
based on observed nutrient responses at different taxonomic levels (Eq. 1)
against a model with the same random terms but without any life history
strategy data (Eq. 2). Separate models were applied to each treatment. To
reduce model overfitting, we removed families represented by fewer than
three bacterial ASVs as well as phyla represented by only one order. In
addition, we removed bacterial ASVs with unknown taxonomic assignments
(following Morrissey et al. [21]). This limited our analysis to 1 049 ASVs in the
C amendment and 984 in the CN amendment.

PC118O�13C � strategyþ 1jphylum=class=order=family=genus=eco (1)

PC118O�13C � 1þ 1jphylum=class=order=family=genus=eco (2)

Here, life history strategy was defined at each taxonomic level using the
mixture models above and based on the mean 18O and 13C EAF values of
each bacterial lineage (Supplemental Fig. 2). We compared these models
with the no-strategy model (Eq. 2) directly using likelihood ratio testing.

RESULTS
Bacteria with strongly positive short-term nutrient response
represent a small proportion of diversity within a limited
number of phyla
When comparing the difference in isotope assimilation of bacterial
taxa in response to nutrients, we observed substantial overlap
between the response of expected oligotrophs and expected
copiotrophs and little bimodal tendency either across all phyla or
within phyla (Fig. 2), aligning with hypothesis H0 (Fig. 1A).
Accounting for shared taxonomy and differences across sites
using hierarchical linear models, expected life history strategies
(copiotrophic, oligotrophic, or undefined; Table 1) were a non-
significant predictor of individual bacterial responses to nutrients
regardless of treatment or isotopic tracer (Δ18O C: F2, 8= 0.94,
P= 0.43; Δ18O CN: F2, 8= 1.80, P= 0.23; 13C: F2, 8= 1.49, P= 0.28;
13CN: F2, 8= 2.81, P= 0.12). However, we did observe ASVs with
strong positive responses to C and CN addition, despite the
prevailing unimodal pattern (Fig. 2B, D); and these ASVs tended to
come from lineages with expectations for copiotrophic growth
[23]. Bacterial ASVs with strongly positive nutrient response were
constituents of the Gammaproteobacteria, Alphaproteobacteria,
Actinobacteria, Firmicutes, and Bacteroidetes although they made
up small proportions of each phylum (with the exception of the
Firmicutes) (Fig. 2). The differential response of ASVs within some
phyla suggests support for hypothesis H3 (Fig. 1C).

Mixture models produce plausible delinations of life history
strategy, but identify few consistently copiotrophic taxa
Bivariate Gaussian finite mixture modeling of joint 18O-13C growth
signatures of bacterial ASVs produced clusters with similar

configurations in both treatments (Fig. 3A). Slow-growing (i.e.,
oligotrophic) ASVs had mean enrichment values under 0.15
(x18O= 0.12, x13C= 0.07) while fast-growing (i.e., copiotrophic)
ASVs had mean enrichment values greater than 0.3 (x18O= 0.32,
x13C= 0.38). In both the C and CN treatments, most bacterial ASVs
(>90%) were clustered into the oligotrophic growth category
defined by the mixture model (as based on their treatment-
averaged 13C and 18O enrichment values) (Fig. 3B).
Bacteria generally behaved consistently across replicates, but

few ASVs could be identified as soley copiotrophic or oligotrophic
with a high degree of statistical confidence. Nevertheless, assign-
ment of bacterial ASVs into different life history clusters, based on
groupings from mixture models (Fig. 3A), provided a clearer
demarcation of behavior than expectations of life history strategy
from the literature (Fig. 3B). Although, the vast majority of ASVs
either clustered into some mix of copiotrophic and oligotrophic
responses, or occurred too infrequently to assign a single life
history strategy that was statistically significant. Per-replicate
behavior significantly matched with treatment-level expectations
for only 28 ASVs based on exact binomial tests (Supplemental
Table 1). Of those, only three ASVs could be significantly grouped
into the copiotrophic cluster (Firmicutes: Paenibacillus and an
unclassified genus within the order Bacillales, Actinobacteria: an
unclassified genus within the Micrococcaceae) while the remain-
ing occurred in the oligotrophic cluster.

Life history strategy at fine taxonomic levels is necessary to
accurately describe taxon-specific nutrient response
Comparison of hierarchical linear models with life history
categorizations at different taxonomic resolution indicated that
finer levels were more predictive of nutrient response behavior.
Assignment at the phylum and class levels, based on multi-
isotopic mixture modeling clusters (Fig. 3A), produced nearly
identical models that were both significantly better than site and
taxonomic information alone (likelihood ratio tests; C response:
L= 12.5, P < 0.001; CN response: L= 10.0, P= 0.0015), providing
evidence against hypothesis H0 (Table 2). In both the phylum-level
and class-level models, the Firmicutes and Bacilli (as a class within
the Firmicutes) were the only respective lineages designated as
copiotrophic, despite many ASVs showing strongly positive
enrichment (Fig. 4A). At finer taxonomic resolution, the number
of lineages designated as copiotrophic broadened, and models
were stronger predictors of bacterial growth (Table 2) (Fig. 4). The
strongest improvement was at the genus level (likelihood ratio
tests; C response: order L= 39.7, P < 0.001; family L= 54.7,
P < 0.001; genus L= 105.0, P < 0.001; CN response: order
L= 39.3, P < 0.001; family L= 64.3, P < 0.001; genus L= 168.8,
P < 0.001). This provides strong support for hypothesis H2 (Fig. 1C)
in that life history assignments of bacterial genera may be useful
in predicting nutrient response (Supplemental Figs. 3, 4) (Supple-
mental Data 1).

DISCUSSION
Our results indicate that microbial life history strategies, as
currently conceptualized, do not provide a strong predictive
framework on the behavior and activity of most microorganisms
in the soil environment. Rather, under the conditions of this
experiment, microorganisms exhibited a continuous distribution
from copiotrophic to oligotrophic strategies as represented from
high to low growth rates, with most microorganisms showing low
to intermediate growth rates. While this suggests support for our
null hypothesis, H0, we found evidence for bimodality when
considering the growth rates of a small subset of ASVs in the
community which in several cases were also highly abundant.
With the exception of the Firmicutes, we observed little evidence
distinguishing any bacterial phylum as strongly copiotrophic or
oligotrophic (as expected under hypotheses H1 and H3), indicating
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Fig. 2 Bacterial response to nutrient addition across phyla and life history groups. Each point represents the mean isotopic enrichment
(excess atom fraction or EAF) for an individual bacterial taxon across three soil replicates, organized by bacterial phylum. Phyla are colored by
the categorical assignment of life history strategy applied at the phylum level taken from published literature [23]. Density distribution plots
represent the proportion of taxa in each category exhibiting a given nutrient response and are based on number of unique taxa in each life
history strategy category. A The difference in 18O enrichment between carbon-amended soils (1000 μg-C-glucose per g dry soil) and control
soils (Δ18O EAFC). B The Δ18O EAF between carbon and nitrogen-amended soils (glucose + 100 μg-N [NH4]2SO4 per g dry soil) and control soils
(Δ18O EAFCN). C The 13C EAF of C-amended soils (13C EAFC). D The 13C EAF of CN-amended soils (13C EAFCN).
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that assumptions about the behavior of any particular taxon
cannot be made on the basis of its representative phylum. Fierer
et al. note as much in their seminal work [6].
Copiotrophic and oligotrophic modes are roughly analogous to

nutrient acquisition or stress tolerance strategies (respectively)
within the yield-acquisition-stress tolerance framework [10]. The
assumptions of the YAS framework indicate that more complex
substrates may be better suited to differentiating nutrient

acquisitive microorganisms (copiotrophs) from others. While the
labile nutrients supplied in this study, glucose and ammonium
sulfate, were intended to serve as a proxy for plant root exudates
in a priming experiment [45], they did not truly represent the
diversity and complexity of native substrates that would be
expected in a copiotrophic soil environment. Thus, the ability of
this study to address broad hypotheses about life history
strategies across the bacterial tree of life may be limited.

Fig. 3 Consistency of nutrient responses across microbial life history strategies. A Points represent multi-isotopic excess atom fraction
(EAF) of individual bacterial taxa, based on parallel seven-day 13C and 18O incubations, and averaged across all replicates in a given treatment
(n= 12). Colors represent approximations of ecological life history strategies generated from bivariate Gaussian finite mixture models and
specifying two components. Ellipsoides represent 95% confidence intervals around cluster centroids while black lines indicate principal
coordinates axes of clusters. Soil treatments (C and CN) represent a carbon amendment (1000 μg glucose per g dry soil) and a carbon and
nitrogen amendment (glucose + 100 μg-N [NH4]2SO4 per g dry soil) respectively. For direct comparison with 13C, EAF values of 18O were
divided by 0.6 (µ) to account for multiple oxygen sources utilized during bacterial growth. B Number of times bacterial taxa across replicates
were clustered into the copiotrophic category (positive values) or into the oligotrophic category (negative values). Bars are colored by life
history classifications made from the most frequent classification of phyla in the literature as collected by Ho et al. [23] (top) or made from
mixture model clusters in part A (bottom).
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We saw significant improvement in hierarchical linear models of
nutrient response when life history strategy was estimated at finer
levels of taxonomic resolution (e.g., family and especially genus)
which indicates strong support for hypothesis H2. Therefore, while
we refute the continued use of categorical assumptions of
oligotrophic or copiotrophic life histories for bacterial phyla, our

in situ findings suggest that such representations could be useful
if made at the genus level (although perhaps only in the context
of artificial resource amendment) – in agreement with previously
reported conclusions [23].
Despite the best performance of the genus-level models to

estimate nutrient responses, we had difficulty confidently
characterizing the growth of individual ASVs; few could be
consistently labeled as copiotrophs because many grew both
quickly and slowly across the replicates in our experiment. Such
indeterminancy is partially due to the low sample size of our
experiment, but also likely stems from the inherent stochasticity of
the soil environment. This context-dependency of bacterial
responses (either by nutrient complexity and character or by
local ecosystem characteristics) is another argument against
categorical application of life history strategy at a broad
taxonomic level. For example, it will be difficult to predict the
growth of a “copiotroph” if its behavior depends on a complex
arrangement of soil characteristics, nutrient availability, and local
biotic interactions rather than more relatively static traits such as
16S rRNA gene copy number or genome size.
The soils used in the current experiment were subject to

considerable disturbance including physical disruption, dry-down,
and sudden wet-up, inducing a strong pattern of microbial
turnover, activity, and respiration from new organic matter made
available to the soil community [25, 45–47]. As such, we employed
13C-glucose additions to track its utilization specifically. We found
high shared variation between 18O and 13C EAF values, suggesting
that most microorganisms utilized the added glucose. Further, 18O
and 13C EAF values covaried more strongly in the CN treatment,
suggesting that N limitation may have limited glucose uptake in
the C treatment. Thus, microorganisms with high 18O signatures
but low 13C signatures may be those with high N demand who
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Fig. 4 Classification of bacterial nutrient response based on averages at different taxonomic levels. Outlined points represent the isotopic
enrichment (13C and 18O) of bacterial lineages at specified taxonomic levels over a 7-day incubation, based on the mean excess atom fraction
(EAF) of their constituent taxa (shown by small points with lines to their representative group). Colors represent approximations of ecological
life history strategies generated from bivariate Gaussian finite mixture models and specifying two components. Panels show classification of
bacterial taxa based on isotopic composition of: A Classes, B Orders, C Families, and D Genera. Black lines represent the first axes generated
from principal components analyses of 18O and 13C EAF values in each treatment, expressing a composite measure of bacterial growth. Lines
perpendicular to the principal component represent average growth of representative lineages while smaller lines parallel to the principal
component represent the differences between growth of representative lineages and individual amplicon sequence variants. Soil treatments
(C and CN) represent a carbon amendment (1000 μg glucose per g dry soil) and a carbon and nitrogen amendment (glucose + 100 μg-N
[NH4]2SO4 per g dry soil) respectively. For direct comparison with 13C, EAF values of 18O were divided by 0.6 (µ) to account for multiple oxygen
sources utilized during bacterial growth.

Table 2. Comparison of models explaining microbial nutrient
response with microbial life history strategy defined at different
taxonomic levels.

Assignment of life history
strategy

df ΔAICC-trt ΔAICCN-trt

Genus 9 0 0

Family 9 50.3 104.5

Order 9 65.3 129.5

Class 9 92.5 158.8

Phylum 9 92.5 158.8

No life history strategy 8 103.0 166.8

Results from the hierarchical linear models on the responses of bacterial
amplicon sequence variants (ASVs) to carbon (C-trt) and carbon and
nitrogen (CN-trt) addition. ΔAIC represents the model fit of hierarchical
models describing the relationship between joint 18O–13C enrichment
(condensed via principal components analysis) and life history strategy
(i.e., whether organisms were identified as oligotrophic or copiotrophic).
Life history strategy of ASVs was inferred based on whether the average
measured nutrient response of a taxonomic group was clustered into a
high or low growth category as determined by gaussian finite mixture
models. Life history strategies were made at increasingly finer levels of
taxonomic organization (i.e., phylum, class, order, family, and then genus).
df indicates model degrees of freedom.
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prioritized the decomposition of native soil organic matter to
meet their needs. However, the presence of microorganisms with
high 18O but low 13C signatures in the CN treatment suggests that
N limitation alone may not explain why some microorganisms did
not utilize the added glucose. Besides mixing, successional
dynamics across the incubation may also explain differences in
isotopic signatures of bacteria. Thus, we took this into account in
our mixture model specifications such that these microorganisms
(high 18O but low 13C EAF values) were clustered as oligotrophic,
based on the possibility that they grew after the depletion of
added glucose.
Our results do suggest that – in our aerobic mineral soils at

least – the potential for quick growth in response to labile
nutrients exists within a small portion of the bacterial community
and that this potential seems to be phylum-specific. Among these
phyla, however, it is more accurate to understand nutrient
response as a continuum rather than a dichotomous classification.
If classification is necessary for statistical or narrative purposes, we
recommend to restrict life history designations to the family or
genus level. These findings (produced by qSIP) were measured by
within the context of microbial community interactions which is
an important line of inference to better understand microbial trait
adaptations. In keeping with other ecological frameworks (e.g.,
C-S-R and Y-A-S [10, 48]), stress treatments are a priority for future
studies in order to understand the diversity of stress tolerance
strategies and their effect on growth. The utilization of both
simple and complex nutrient sources across the community
(as well as from both plant and microbial origin) will also be a key
point of inquiry, and designs that explore this difference will refine
our thinking of microbial ecology in the soil realm (e.g., Dang et al.
[49]). Lastly, the relatively short timescales inherent to nutrient
pulse-type experiments mean that such incubations must be
placed into longer-term studies strategically. For example,
repeated or long-term amendments with both qSIP and
complimentary 16S rRNA gene surveys can show how well
short-term growth rates relate to stable community adaptation.
Plant ecologists have embraced trait-based approaches, such as
the application of leaf economic spectrum as an important
predictor of global carbon flux within a larger framework of
interrelated trait dimensions and trade-offs [50]. Correspondingly,
future trait explorations in microbial ecology should also be paired
with measures of nutrient and energy fluxes to link community
composition with ecosystem dynamics.

DATA AVAILABILITY
DNA sequence data and sample metadata have been deposited in the NCBI
Sequence Read Archive under the project ID PRJNA521534. Experimental data have
been included as a supplement to this publication.
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