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Abstract

Introduction

Intertidal rock pools where fish and invertebrates are in constant close contact due to limited

space and water level fluctuations represent ideal conditions to promote life cycles in para-

sites using these two alternate hosts and to study speciation processes that could contribute

to understanding the roles of parasitic species in such ecosystems.

Material andmethods

Gall bladder and liver samples from five clinid fish species (Blenniiformes: Clinidae) were

morphologically and molecularly examined to determine the diversity, prevalence, distribu-

tion and host specificity of Ceratomyxa parasites (Cnidaria: Myxozoa) in intertidal habitats

along the coast of South Africa. Phylogenetic relationships of clinid ceratomyxids based on

the SSU rDNA, LSU rDNA and ITS regions were assessed additionally to the investigation

of population genetic structure of Ceratomyxa cottoidii and subsequent comparison with the

data known from type fish host Clinus cottoides.

Results and discussion

SevenCeratomyxa species including previously describedCeratomyxa dehoopi andC. cottoi-

diiwere recognized in clinids. They represent a diverse group of rapidly evolving, closely

related species with a remarkably high prevalence in their hosts, little host specificity and fre-

quent concurrent infections, most probably as a result of parasite radiation after multiple speci-

ation events triggered by limited host dispersal within restricted spaces.C. cottoidii represents

the most common clinid parasite with a population structure characterized by young expanding

populations in the south west and south east coast and by older populations in equilibrium on

the west coast of its distribution. Parasite and fish host population structures show overlapping

patterns and are very likely affected by similar oceanographic barriers possibly due to reduced

host dispersal enhancing parasite community differentiation.While fish host specificity had little
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impact on parasite population structure, the habitat preference of the alternate invertebrate

host as well as tidal water exchangemay be additional crucial variables affecting the dispersal

and associated population structure ofC. cottoidii.

Introduction

Rock pools are unique and complex habitats in intertidal areas. They harbor large numbers of

fishes and invertebrates that are well adapted to life in harsh conditions of strong fluctuations

in water temperature, oxygen levels and salinity [1]. Fishes of the family Clinidae (Blennii-

formes: Blennioidei), locally known as klipfish, are well adapted to such turbulent and unstable

conditions [2, 3]. They are prominent inhabitants of these intertidal and shallow subtidal habi-

tats and represent up to 98% of the total number of fish species in rock pool communities of

South Africa [2, 3]. Distribution and genetic structure of South African clinids are strongly

affected by oceanic circulation, paleoclimate changes, contemporary environmental variables,

specific biological features and habitat preferences [4–6]. Significant biogeographic boundaries

that affect South African marine fauna are created by two very distinct ocean currents that

flank the west and south coasts. The Benguela Current, on the west coast, brings cold nutrient-

rich water to the surface as it moves northwards along the west coast of the country. The Agul-

has Current carries warm, nutrient-poor surface waters southwards along the east and south

coasts of the country. A biogeographical barrier is created over the Agulhas Bank where these

two currents meet (Fig 1) [4]. The latest glaciation events also affected the distribution of inter-

tidal marine organisms in South Africa as a result of changes in sea levels and associated avail-

ability of rocky shore habitats [4–7].

The South African clinid genera Clinus,Muraenoclinus, Blennophis, and Pavoclinus as well

as their sister-related Australian generaHeteroclinus and Cristiceps [8] are viviparous species

giving birth to well-developed postflexion larvae [9]. This is in contrast to North and South

American clinids which are oviparous [9]. Thus, the potential for free dispersal in South Afri-

can live-bearing clinid fishes is highly reduced [10], creating more pronounced population

genetic structures [6, 11, 12]. Clinus cottoides Valenciennes, 1836 (bluntnose klipfish) is a

viviparous fish species with restricted dispersal capacity [10], which is endemic to South Africa

and has a clear population structure with discontinuities along the oceanographic barriers that

influence gene flow patterns. The first main genetic break lies on the southern South African

coast (Gaansbai–Cape Agulhas; HB2 in Fig 1) while the second break is located between the

east coast and other locations on the south (Knysna–Port Alfred; HB3 in Fig 1) [11]. Studies

have also revealed additional pronounced genetic differentiation of C. cottoides populations

between Jacobs Bay and Sea Point (HB1 in Fig 1) [12]. Similar isolation of populations on the

east coast has been documented for the super klipfish Clinus superciliosus (L.) whereas a recent

colonization event of the eastern range distribution has been suggested for the nosestripe klip-

fishMuraenoclinus dorsalis (Bleeker, 1860) [6, 12]. Both of these fish species represent species

complexes showing evidence of cryptic speciation [6, 13].

Rock pools are important habitats in intertidal environments as they support a diverse

assemblage of organisms [14, 15]. Moreover, these habitats represent ideal conditions for para-

site life cycles as, due to the limited space, different host groups are in constant close contact

[16]. The Myxozoa, a group of microscopic cnidarian parasites alternating mainly between the

fish intermediate and annelid definitive hosts, are very common in marine habitats [17]. Rep-

resentatives of five myxozoan generaHenneguya, Ceratomyxa, Myxidium, Ortholinea and
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Sphaeromyxa have so far been described from South African clinids [18–23]. Ceratomyxa is a

species-rich genus characterized by crescent shaped spores with two polar capsules. Individual

species mostly infect gall bladders and bile ducts of marine fishes and generally differ by spore

measurements, host preference and SSU rRNA gene sequences [17, 24]. Ceratomyxids are

highly host specific [25–30] and very few taxa infect more than one host species [25, 30].

Therefore, host as an informative diagnostic character has become particularly valuable for

morphologically and genetically closely related species of Ceratomyxa [25–30]. Even though

ceratomyxids in general cause little harm to their hosts, some species have been documented

to induce severe histopathological damage [31–33] and obstruction and distension of bile

ducts due to the presence of masses of spores and plasmodial stages [20]. The ceratomyxid life

cycle has so far been elucidated only for Ceratomyxa auerbachii Kabata, 1962 which alternates

between a clupeid fish and a marine polychaete [34]. Though globally distributed, the knowl-

edge of Ceratomyxa species diversity in South African clinids is very limited. Ceratomyxa obo-

valis (Fantham, 1930) was found to parasitize blennioids C. cottoides, C. superciliosus, bull

klipfish Clinus taurus Gilchrist & Thompson, 1908 and horned blenny Parablennius cornutus

(L.) from False Bay and Kalk Bay [18, 19]. Ceratomyxa cottoidii Reed, Basson, Van As et

Dyková, 2007 and Ceratomyxa dehoopi Reed, Basson, Van As et Dyková, 2007 were described

from C. cottoides and C. superciliosus, respectively, from De Hoop [20], one of South Africa’s

largest marine reserves. This area is located just east of Cape Agulhas, a dominant genetic

break for marine intertidal organisms [6, 11, 35, 36]. A further undescribed Ceratomyxa spe-

cies, morphologically similar to C. cottoidii, was reported fromM. dorsalis from Kommetjie,

Granger Bay and Jacobs Bay [37]. Interestingly, this species [37] and other ceratomyxids [26,

Fig 1. Map showing the sampling area of clinid fish in this study. The twelve sampling localities, grouped into three geographical regions, are labeled by round
colored circles. The number of samples obtained at each locality is shown in parentheses. Moreover, the major oceanographic features around the South African
coastline, the Benguela and Agulhas Currents, that influence population structuring of Clinus cottoides are shown along with the barriers to gene flow (blue vertical
lines) as HB1: Jacobs Bay–Sea Point (at Cape Town), HB2: Gaansbai–Cape Agulhas, HB3: Knysna–Port Alfred [11, 12]. Agulhas ring eddies and the Agulhas counter-
current are also highlighted.

https://doi.org/10.1371/journal.pone.0194042.g001
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31, 38] display a high degree of morphological spore plasticity. This raises questions whether

the observed variation is determined by deformations of their presumably thin-walled shell

valves, a feature previously documented for some ceratomyxids [39], or alternatively is due to

the concurrent infections of several Ceratomyxa species of different morphology, as mixed

myxozoan infections [17], including those of Ceratomyxa spp. [40], are a common

phenomenon.

Myxozoans are generally recognized as parasites with an accelerated rate of molecular evo-

lution [41, 42] explained by an extraordinary level of radiation [43, 44]. Such rapid molecular

evolution and associated long-branch attraction (LBA) can greatly obscure the results of phylo-

genetic studies of the Myxozoa [41]. Substitution rates significantly differ among myxozoan

lineages. For example, the Ceratomyxa clade, placed within the marine myxosporean lineage

[45, 46] includes several long-branching taxa sometimes clustering together, most probably

due to LBA [46]. Ceratomyxa spp. from the same fish host family (and sometimes from the

same geographic location) tend to cluster together, however, this is not always the rule [27,

29].

Though population structure of both, host and parasite, is most relevant to co-evolutionary

processes [47–49] and myxozoan evolutionary history has been significantly linked to host-

parasite co-evolution [50, 51], unfortunately, to date, investigations determining the popula-

tion structure of myxozoan parasites in relation to that of their hosts are still missing. For this

purpose, we selected the host-parasite model system of Clinus cottoides, rendering the detailed

knowledge of its biology, distributional range, and population structure [10–12], and Cerato-

myxa cottoidii for which information on its fish host species and distribution was collected

during the previous [20] and this studies. Moreover, an ecological system with geographically

limited host dispersion as seen in C. cottoides is ideal for study.

Our aims were to i) examine diversity, prevalence, distribution and host species spectra of

ceratomyxids from South African clinids, ii) reconstruct the phylogenetic relationships among

clinid ceratomyxids and to other members of the Ceratomyxa clade, and iii) reveal the patterns

of population structuring of C. cottoidii and to investigate if they are linked to geographical or

host-driven isolation of parasite populations. Based on previous knowledge, we hypothesized

that ceratomyxids species in South African clinids are strictly host-specific, closely related and

occur in mixed infections. Finally, we hypothesized that C. cottoidii as a specialist parasite fol-

lows the population structure of its fish host C. cottoides.

Material andmethods

Sample collection, study area and time schedule

In total, 143 fish specimens of the family Clinidae (Perciformes) belonging to Clinus acumina-

tus (Bloch & Schneider), Clinus brevicristatus Gilchrist et Thompson, C. cottoides, C. supercilio-

sus andM. dorsalis were collected from intertidal rock pools using small hand nets, at several

localities in South Africa in March–April 2008, November 2009 and October–November 2012

(Fig 1, S1 Table). Fish were captured and treated under the terms and conditions of the MCM

permit number RES2008/15, 2008/V8/LT and 2009/V1/LT of the Science Faculty Animal Eth-

ics Committee (SFAEC) of University of Cape town (UCT) that approved this study. Captured

fish were identified using Branch et al. [52].

Processing of samples

Fish livers and gall bladders (in total 152 samples; S1 Table) were examined directly in the field

or fixed in 70% ethanol and examined subsequently in the laboratory for the presence of myx-

osporean infections by light microscopy (LM) on Leica DM750 and Olympus BX51

Ceratomyxa parasites in South African clinid fish
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microscopes. Plasmodia and myxospore morphology were documented with an Olympus

DP70 digital camera using differential interference contrast. Samples were stored in 400 μL of

TNES urea buffer (10 mM Tris-HCl with pH 8, 125 mMNaCl, 10 mM EDTA, 0.5% SDS and 4

M urea) or in 90% ethanol for subsequent DNA extraction.

DNA extraction, PCR amplification, cloning and sequencing

Total DNA was extracted from all collected samples using a standard phenol-chloroform pro-

tocol, after an overnight digestion with proteinase K (50 μg mL-1; Serva, Germany), at 55˚C.

DNA was re-suspended in 50–100 μL−1 of DNAse-free water and left to dissolve overnight at
4˚C.

Different regions of molecular markers within the nuclear ribosomal operon (SSU rDNA,

LSU rDNA, ITS region) were amplified in this study with primer combinations as listed in

Table 1. At the beginning we aimed at obtaining the sequence data of all three markers for Cer-

atomyxa parasites using the general Ceratomyxa (SSU rDNA) or general clinid Ceratomyxa

(LSU rDNA, longer ITS region) primers from a random selection of several samples to com-

pare the phylogenetic clustering patterns. Later on, we selected the longer ITS region as the

most suitable marker for species detection based on the highest amount of data informative-

ness and best tree resolution and continued in PCRs of additional samples only for this region.

Using these approaches, seven Ceratomyxa spp. were uncovered (C. cottoidii, C. dehoopi, fur-

ther undescribed species Ceratomyxa sp. 1, Ceratomyxa sp. 2, Ceratomyxa sp. 3, Ceratomyxa

sp. 4 and Ceratomyxa sp. 5). However, amplification of all three loci from samples chosen for

amplification of all markers was not successful in all cases. This situation was further compli-

cated by identification of concurrent infections of multiple Ceratomyxa spp. from clones

placed in different clinid Ceratomyxa subclades (representing species) originating from single

PCR products. To overcome these obstacles, which would bias the exact assessment of diversity

and prevalence of Ceratomyxa spp., we designed seven sets of species- (lineage) specific prim-

ers targeting the shorter ITS region of each Ceratomyxa species (Table 1). This region was

nested within the previously amplified longer ITS region and provides enough interspecific

sequence variation and sufficient number of sequences for primer design. We subsequently

PCR-screened all 152 samples.

PCRs of the first three regions were carried out in a total volume of 25 μl consisting of 1x
Taq Buffer, 250 μM of each dNTP, 10 pmol of each primer, 1 U of Taq-Purple polymerase

(Top-Bio, Czech Republic), 1 μl of DNA (50 to 150 ng) and sterile distilled H2O. For the PCR

screening based on the shorter ITS region, an AmpOne HS-Taq premix (GeneAll Biotechnol-

ogy, South Korea) was used to prepare PCR reactions containing 10 μl of HS-Taq premix,

0.5 μl of each primer (25 pmol), 8 μl of sterile distilled H2O and 1 μl of DNA (50 to 150 ng).

The following cycling parameters were used for these primary/nested PCRs i) SSU rDNA:

95˚C 3 min, 30x (95˚C 1 min, 52˚C/55˚C 1 min, 72˚C 1 min 40s/1 min 15s), 72˚C 7 min, ii)

LSU rDNA: 95˚C 3 min, 30x (95˚C 30 s, 50˚C/55˚C 30s, 72˚C 1 min), 72˚C 7 min, iii) longer

ITS region: 95˚C 3 min, 30x (95˚C 30 s, 50˚C/56˚C 30s, 72˚C 1 min/40 s), 72˚C 7 min, and iv)

shorter ITS region: 95˚C 3 min, 30x (95˚C 30 s, 56˚C/55˚C 30s, 72˚C 40 s/30s), 72˚C 7 min.

PCR products were purified using a Gel/PCR DNA Fragments Extraction Kit (Geneaid Bio-

tech Ltd, USA) and sequenced directly. In most cases, the amplified fragments were cloned

into the pDrive Vector with a PCR Cloning Kit (Qiagen, Germany) and transformed into

TOP10 chemically competent Escherichia coli cells (Life Technologies, Czech Republic). Plas-

mid DNA was extracted using a High Pure Plasmid Isolation Kit (Roche Applied Science, Ger-

many) and up to 1–8 (mostly three) colonies (clones) were sequenced (SeqMe, Czech

Republic).

Ceratomyxa parasites in South African clinid fish
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A table with detailed information on sample localities and fish species, DNA extracted,

numbers of PCR products and clones sequenced for each locus of a particular Ceratomyxa spe-

cies is supplemented (S1 Table).

Sequence alignments

Five datasets were created for the phylogenetic analyses and the haplotype network: i) Cerato-

myxa-SSU rDNA dataset (1176 bp) composed of 70 sequences representing seven newly

sequenced Ceratomyxa spp. from clinids (2 sequences for each species, in total 14 sequences),

other selected members of the Ceratomyxa clade retrieved from the GenBank (54 sequences)

and two outgroup sequences (basal ceratomyxids Ceratomyxa leatherjacketi andMyxodavisia

bulani) ii) clinid-Ceratomyxa-SSU rDNA dataset (1465 bp) including 106 SSU rDNA sequences

of seven newly sequenced Ceratomyxa spp. from clinids (104 sequences) and two outgroup

sequences (Ceratomyxa longipes and Ceratomyxa barnesi), iii) clinid-Ceratomyxa-LSU rDNA

Table 1. Primers used to amplify target regions of the nuclear ribosomal operon of clinid Ceratomyxa spp.

Primer name Primer sequence Target group/species PCR type/ Amplicon length (bp) Reference

SSU rDNA

ERIB1 ACCTGGTTGATCCTGCCAG Universal eukaryotic Primary PCR� 1900–2050 [53]

ERIB10 CTTCCGCAGGTTCACCTACGG Universal eukaryotic [53]

18S-cerF CTWGTTGGTADGGTAGTG All Ceratomyxa Nested PCR� 1300–1450 [46]

18S-cerR GTACAAGAGGCAGAGACGTAT All Ceratomyxa [46]

LSU rDNA

NLF-CerCot-out ACCGTGATTGTCCCAGTAACTGCG Clinid Ceratomyxa Primary PCR� 1050–1150 This study

NLR-CerCot-out AAAGTGGCCCACTTGGAGCGC Clinid Ceratomyxa This study

NLF-CerCot-in ACAAGAGCCCGTAGTCGAATCGC Clinid Ceratomyxa Nested PCR� 950–1050 This study

NLR-CerCot-in TTAGGAGCCTGCTCGCCGGTTGGG Clinid Ceratomyxa This study

Longer ITS region (last 50 bp of SSU rDNA, full ITS1, full 5.8S rDNA, full ITS2, first 85 bp of LSU rDNA)

CerCot_ITS_for CACGGCGACGGTGTGAAAACG Clinid Ceratomyxa Primary PCR� 700–1050 This study

C_cot-ITS-R-out GCGATTCGACTACGGGCTCTTGT Clinid Ceratomyxa This study

C_Cot-ITS-F-in GAAGTAAAAGTCGTAACAAGG Clinid Ceratomyxa Nested PCR� 500–850 This study

C_Cot-ITS-R-in CGCAGTTACTGGGACAATCACGGT Clinid Ceratomyxa This study

Shorter ITS region (cca 60–300 bp of ITS1 + 5.8S rDNA + cca 60–100 bp of ITS2)

C_Cot-ITS-F-in GAAGTAAAAGTCGTAACAAGG Clinid Ceratomyxa Primary PCR� 500–850 This study

C_Cot-ITS-R-in CGCAGTTACTGGGACAATCACGGT Clinid Ceratomyxa This study

CCotITS162-for TACGRKWRVARGTACTKTGAGGATG C. cottoidii Nested PCR� 300 This study

CCotITS730-rev TTTTMCGGCAGAGTAACC C. cottoidii This study

CDehITS154-for AGAGTRCGTWTGGTGCGTTGAAG C. dehoopi Nested PCR� 300 This study

CDehITS789-rev TCGAGTCGGGTCAGTTGTTGTTC C. dehoopi This study

Csp1ITS223-for AGTGTAAATATATGSCTACMTG Ceratomyxa sp. 1 Nested PCR� 300 This study

Csp1ITS801-rev TTCATCAAGGGCAAATGTCGTC Ceratomyxa sp. 1 This study

Csp2ITS315-for AAGAGTAAAGATGAATGCCTAC Ceratomyxa sp. 2 Nested PCR� 350 This study

Csp2ITS824-rev TTGTAATTTACAGGGGTCTAGG Ceratomyxa sp. 2 This study

Csp3ITS198-for TGAACGAAAGATGAAWTWAAGC Ceratomyxa sp. 3 Nested PCR� 350–550 This study

Csp3ITS785-rev TGTTACTTGGTTGCCAGTCAG Ceratomyxa sp. 3 This study

Csp4ITS199-for AKGTRGACTGTGCTGCTTGCAG Ceratomyxa sp. 4 Nested PCR� 350 This study

Csp4ITS798-rev TTCTAGTTGTCGGGYTTGTACCG Ceratomyxa sp. 4 This study

Csp5ITS151-for AGGTGAAATGGTGCAGTCTATC Ceratomyxa sp. 5 Nested PCR� 350 This study

Csp5ITS782-rev TTCACCGTAACCATCATTCAC Ceratomyxa sp. 5 This study

https://doi.org/10.1371/journal.pone.0194042.t001
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dataset (1068 bp) including 122 LSU rDNA sequences of five newly sequenced Ceratomyxa spp.

from clinids (118 sequences) and four outgroup sequences (Ceratomyxa appendiculata, Cerato-

myxa cardinalis, Ceratomyxa vikrami, Ceratomyxa verudaensis), iv) clinid-Ceratomyxa-ITS

dataset (908 bp) including 173 ITS sequences of seven newly sequenced Ceratomyxa spp. from

clinids (170 sequences) and three outgroup sequences (Ceratonova shasta, Cystodiscus australis,

Parvicapsula sp.), and v) Ceratomyxa cottoidii-ITS haplotype dataset (264 bp) including 76 new

ITS sequences of C. cottoidii. This dataset, prepared for the haplotype networks and population

genetics analyses, contained sequences from both the longer and the shorter ITS region that

were trimmed to the length of the shortest ones (see Table 1). Nucleotide sequences in each

dataset were aligned in MAFFT v7.017 algorithm [54] implemented in Geneious v8.0.5 [55]

using the E-INS-i multiple alignment method, with a gap opening penalty (–op) of 1.53 and gap

extension penalty (–ep) of 0.123. The alignments were manually edited and highly variable sec-

tions were removed manually in Geneious.

Phylogenetic analyses

Maximum parsimony (MP) analysis was performed in PAUP� v4.b10 [56], using a heuristic

search with random taxa addition, the ACCTRAN option, TBR swapping algorithm, all char-

acters treated as unordered and gaps treated as missing data. Maximum likelihood (ML) analy-

sis was performed in RAxML v7�0�3 [57] using the GTR + Γ model of nucleotide substitution.

Bootstraps were based on 1000 replicates for both analyses. Bayesian inference (BI) analysis

was performed in MrBayes v3.0 [58], using the GTR + Γ + I model of evolution. Analyses were

initiated with random starting trees, four simultaneous MCMC chains sampled at intervals of

100 trees and posterior probabilities estimated from 1 million generations for the Ceratomyxa-

SSU rDNA dataset (burn-in 100,000), 3 million generations for the clinid-Ceratomyxa-SSU

rDNA dataset (burn-in 600,000), 3.5 million generations for the clinid-Ceratomyxa-LSU

rDNA dataset (burn-in 350,000) and the clinid-Ceratomyxa-ITS dataset (burn-in 710,000).

Suitable burn-in levels were chosen in Tracer v1.4.1 [59].

Distances

The intraspecific and interspecific divergences were determined from proportional distances

(in %) which were calculated in Geneious from the datasets previously used for the phyloge-

netic analyses. These datasets were additionally adjusted by excluding the very short sequences

and by trimming the 5’ and 3’ ends of the remaining sequences to achieve their same length.

The intraspecific cut-offs for the studied markers in the group of long branching ceratomyxids

from clinid hosts were as follows: SSU rDNA–7.5%, LSU rDNA–10%, ITS region–20%.

Haplotype networks, AMOVA and population genetic statistics

The ITS region (Ceratomyxa cottoidii-ITS haplotype dataset, 76 sequences) was selected for

haplotype networks, analysis of molecular variance (AMOVA) and population genetic statis-

tics, as it provides enough sequence variability to distinguish the population structure patterns

in myxozoans [60].

To examine the evolutionary relationships among haplotypes in populations of C. cottoidii

from different localities and clinid fish species statistical parsimony networks (TCS) based on

pairwise differences were constructed using PopART v1.7 [61]. Sampling localities were set as

traits for the haplotype network which grouped the sequences (number of sequences = n) with

regard to geography (Cape Columbine n = 6, Jacobs Bay n = 2, Granger Bay n = 1, Mouille

Point n = 4, Kommetjie n = 1, Kalk Bay n = 24, False Bay n = 1, De Hoop n = 14, Jongensfon-

tein n = 2, Herolds Bay n = 19, Jeffreys Bay n = 2). Fish host species were set as traits for the

Ceratomyxa parasites in South African clinid fish

PLOSONE | https://doi.org/10.1371/journal.pone.0194042 March 21, 2018 7 / 26

https://doi.org/10.1371/journal.pone.0194042


haplotype network which grouped the sequences with regard to host specificity (C. cottoides

n = 61, C. superciliosus n = 9, C. acuminatus n = 1, C. brevicristatus n = 1,M. dorsalis n = 4).

Population structure was estimated by AMOVA in PopART. Individuals represented by

ITS region sequences were grouped by sampling locality to populations and then nested within

groups delimited by putative oceanographic barriers and host-driven isolation. We performed

AMOVAs at three different levels to quantify how much variation is partitioned: (i) among

individuals within populations, (ii) among populations within groups, and (iii) among groups

of populations. A priori groupings were as follows: i) “Geographic groups” formed according

to the geographic separation of the South African coastline [11]: “West coast group” (n = 14):

localities Cape Columbine, Jacobs Bay, Granger Bay, Mouille Point, Kommetjie; “South west

coast group” (n = 25): Kalk Bay, False Bay; “South east coast group” (n = 37): De Hoop, Jon-

gensfontein, Herolds Bay, Jeffreys Bay, ii) “Barrier groups” formed in accordance with the

main barriers to gene flow recognized for the populations of the type fish host Clinus cottoides

(HB1, HB2 and HB3 in Fig 1) [11, 12] with an exception that the most eastern locality, Jeffreys

Bay, was not analyzed as a separate group due to low sample size (n = 2), so it was merged into

a single group with the south coast localities De Hoop, Jongensfontein and Herolds Bay: “B1

group” (n = 8): Cape Columbine, Jacobs Bay; “B2 group” (n = 31): Kalk Bay, False Bay,

Granger Bay, Mouille Point, Kommetjie; “B3 group” (n = 37): De Hoop, Jongensfontein, Her-

olds Bay, Jeffreys Bay, and iii) “Host groups” formed according to fish host species: “Clinus

cottoides” (n = 61): C. cottoides from Kalk Bay, De Hoop, Jongensfontein, Herolds Bay, Jeffreys

Bay; “Clinus superciliosus” (n = 9): C. superciliosus from Cape Columbine, Mouille Point,

Kommetjie; and “Muraenoclinus dorsalis” (n = 4):M. dorsalis from Jacobs Bay, Granger Bay

and Mouille Point. The variation was not quantified for C. acuminatus and C. brevicristatus

due to small sample size (1 sequence for each host species).

To characterize the diversity of populations and their demographic history we performed

several population genetic statistics for C. cottoidii groups that showed significant variation

among the groups tested in the previous AMOVA (i.e. above defined geographic and barrier

groups). DNA polymorphism statistics (number of haplotypes, number of segregating sites,

nucleotide genetic diversity, haplotype diversity) and statistical tests aiming at detection of

population size changes (Tajima’s D, Fu & Li’s F and D and Ramos-Onsins and Rozas R2)

were calculated using DNAsp v6.10.04 [62]. The significance of all tests was determined by

10,000 coalescent simulations implemented in DNAsp. Highly significant negative values of Fs

and small positive values of R2 indicate population growth whereas positive Fs values can

result from balancing selection, population bottlenecks or the presence of population structure

[63, 64]. Significantly negative values of Tajima’s D indicate recent range expansion (excess of

low frequency polymorphisms), whereas significantly positive values are a signature of bottle-

neck or selection. A non-significant D is consistent with a population at drift-mutation equi-

librium [64, 65].

Results

Ceratomyxa diversity as observed by light microscopy

Myxospores (Fig 2A–2E) and/or plasmodia (Fig 2F) of the genus Ceratomyxa were found in

40% of examined samples with the majority represented by infected gall bladders (58/152),

and with few of them (3/152) found in bile ducts (liver). High morphological plasticity of Cera-

tomyxa spores was commonly observed in our samples with spore morphotypes similar to pre-

viously described C. cottoidii (Fig 2A) and C. dehoopi (Fig 2B) typical for their slender spores,

however, oval round spores suggestive of novel species were also frequently seen (Fig 2C and

2D). Spore shape and size (length and thickness) varied even within single fresh samples.

Ceratomyxa parasites in South African clinid fish
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Aberrant Ceratomyxa spores with three polar capsules and three valves were occasionally

observed (Fig 2E). Concurrent infections of Ceratomyxa with other myxozoan genera, Sphaer-

omyxa and Kudoa were also detected.

Phylogenetic positioning of clinid ceratomyxids within the Ceratomyxa
clade

The Ceratomyxa clade is an assemblage of diverse groups that evolved initially at different sub-

stitution rates and some of them have undergone subsequent radiation events [46]. This pat-

tern is evident in ceratomyxids from South African clinids that clustered into a single well-

supported long-branched lineage (“Ceratomyxa group from clinid fish“) which further split

into several short-branched species (Fig 3). The whole lineage grouped with other extremely

long-branching taxa with various scenarios in tree topology, most probably due to LBA arti-

facts. In ML and BI analyses (Fig 3), clinid ceratomyxids grouped with Ceratomyxa aegyptiaca

from soleid fish from a Mediterranean coastal lagoon in northern Africa and Ceratomyxa long-

ipes from a gadid fish sampled in the North Sea. The whole group then clustered either with a

group including Ceratomyxa ayami and Ceratomyxa sp. M0304 (ML analysis, Fig 3) or formed

a polytomy with two groups (Ceratomyxa ayami and Ceratomyxa sp. M0304; C. anko, C.

appendiculata, C. pantherini, C. vikrami and Pseudalataspora kovalevae, BI analysis, BI poste-

rior probability = 0.81). Another alternative in tree topology was observed in MP analysis,

where clinid ceratomyxids grouped with C. longipes and then with the group formed by C.

anko, C. appendiculata, C. pantherini, C. vikrami and Pseudalataspora kovalevae (MP bootstrap

support<50%).

Fig 2. Light microscopy pictures of Ceratomyxa spp. spores of different morphotypes and plasmodia from clinid fish as seen in nomarski differential
interference contrast. (A) Ceratomyxa cottoidii from Clinus cottoides from Herolds Bay. (B) Ceratomyxa dehoopi from Clinus superciliosus from Jacobs Bay. (C)
Ceratomyxa sp. from Clinus cottoides from Jongensfontein. (D) Ceratomyxa sp. fromMuraenoclinus dorsalis fromMouille Point. (E) Aberrant spore of
Ceratomyxa sp. from Clinus cottoides from De Hoop. (F) Plasmodia of Ceratomyxa sp. from Clinus cottoides from Jongensfontein. Scale bar 5 μm (A–E), 20 μm
(F).

https://doi.org/10.1371/journal.pone.0194042.g002
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Fig 3. SSU rDNA-based maximum likelihood phylogenetic tree showing the position of clinid ceratomyxids within the Ceratomyxa clade.Nodal supports are
shown for maximum likelihood and maximum parsimony bootstraps and Bayesian inference posterior probabilities. Branches of Ceratomyxa ayami and Ceratomyxa sp.
M0304 were shortened to 50% of their original length. Ceratomyxa leatherjacketi andMyxodavisia bulani were used as outgroups.

https://doi.org/10.1371/journal.pone.0194042.g003
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Phylogenetic relationships within the clinid Ceratomyxa group

In this study, we amplified almost 400 clinid Ceratomyxa sequences belonging to different

molecular markers of the nuclear ribosomal operon (SSU rDNA: n = 104; LSU rDNA: n = 118;

Longer and shorter ITS region: n = 170, S1 Table) that were all used for subsequent phyloge-

netic analyses. After performing the analyses, unique sequence data representing each Cerato-

myxa species from different fish hosts and localities were selected for GenBank submission (74

sequences, S2 Table). All other sequences are available in the S1 Dataset containing the

untrimmed and trimmed fasta datasets of all molecular markers analyzed in this study. Blast-

ing of newly obtained sequences against GenBank entries has shown that our data represent

the first publicly available sequences of Ceratomyxa spp. from clinids. Phylogenetic analyses of

SSU rDNA (S1 Fig) and ITS data (Fig 4) recognized seven well-supported novel lineages of

Ceratomyxa, likely species, from South African clinids, whereas only five lineages were recov-

ered in the LSU rDNA-based tree (S2 Fig) due to missing data from the two remaining lineages

(Ceratomyxa sp. 2 and Ceratomyxa sp. 3). Based on the consensus of biological data (type host

species and type locality) and, wherever possible, morphological data two of the lineages are

considered to represent the previously described species C. cottoidii and C. dehoopi. The

remainder of the sequences likely represents novel species (see paragraph “PCR screening,

prevalence, distribution, co-infections and morphological remarks”). In the ITS-based tree, C.

cottoidii clustered with a well-supported clade of Ceratomyxa sp. 1, Ceratomyxa sp. 2 and Cera-

tomyxa sp. 3 to create a common sister group to C. dehoopi (Fig 4). However, positioning of C.

cottoidii and C. dehoopi varied depending on the marker used (S1 and S2 Figs). Another stable

clade in all single gene analyses was formed by Ceratomyxa sp. 4 and Ceratomyxa sp. 5. Some

members, i.e. Ceratomyxa dehoopi and Ceratomyxa sp. 3, created long branches to their sister

taxa within the clinid Ceratomyxa group (Figs 3 and 4, S1 and S2 Figs).

Species distances

SSU rDNA sequence variability among clinid ceratomyxids ranged from 7.8 to 15.7% whereas

intraspecific divergence ranged from 0.4% in Ceratomyxa sp. 5 to the significantly higher level

(7%) in C. cottoidii (Fig 5A). A similar trend was observed for the LSU rRNA gene with inter-

specific variation of 18.2–28.3% and intraspecific variation ranging from 4.7 to 9% (Fig 5B).

The highest variation was calculated for the ITS region showing 20.9–33.6% interspecific

divergence and 1.7–18.4% intraspecific distance (Fig 5C).

PCR screening, prevalence, distribution, co-infections and morphological
remarks

Species-specific PCR screening revealed 100% of samples positive at least for one Ceratomyxa

species compared to only 40% parasite prevalence determined based on morphological obser-

vations (see paragraph “Ceratomyxa diversity as observed by light microscopy”). By species-

specific PCR, C. cottoidii was recognized to be a true generalist with a high prevalence in all

fish host species including its type host C. cottoides, while general clinid Ceratomyxa PCR

revealed its presence in four out of five fish host species (Table 2). It is widely distributed from

the west (Cape Columbine) to the east coast (Sea View) of South Africa with almost 100%

prevalence at all studied localities. The only exception is its lower prevalence in Jacobs Bay

(west coast) (Fig 6) where it was missing in all C. superciliosus and present in 80% ofM. dorsalis

samples. However, C. superciliosus was a common host of C. cottoidii at other localities

(Table 2). On the other side, C. dehoopi is a parasite with a narrower host range (three out of

five clinid species) and with the highest prevalence in C. superciliosus (Table 2). Its
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distributional range spans from Cape Columbine (west coast) to Herolds Bay (south coast). It

was not detected at any of the two east coast localities (Fig 6). The remainder of Ceratomyxa

spp. is represented by generalists, present in 4–5 examined fish species and distributed from

the west to the east coast of South Africa with variable prevalence at each locality (Table 2, Fig

6). Importantly, the application of species-specific PCR was especially crucial for the assess-

ment of the fish host species spectra of C. dehoopi, Ceratomyxa sp. 1 and Ceratomyxa sp. 5 for

which general clinid Ceratomyxa PCR amplification was suggestive of their strict host specific-

ity only in one fish species (Table 2).

Co-infections of single fish host samples by several Ceratomyxa species were extremely

common and occurred in 71% of all samples. One sample from C. superciliosus from Cape Col-

umbine even contained all Ceratomyxa spp. which was confirmed by variable shapes and

dimensions of myxospores observed in this sample. On the other hand, many samples with

single spore morphotype observed by LM showed multiple species infections. Single infections

(29% of all samples) were mainly represented by C. cottoidii (42 samples) and only two samples

exclusively contained C. dehoopi or Ceratomyxa sp. 5.

We were not able to draw any conclusions regarding the measurements of C. cottoidii

spores from the original species description (Reed et al. 2007) and from our samples with sin-

gle infections, for which LMmeasurements were taken, as the comparison would be biased by

potential spore shrinkage of our ethanol-fixed material (details on spore measurements in S3

Table). Unfortunately, the lack of any samples with single infections of C. dehoopi and Cerato-

myxa sp. 1–5 accompanied by spore measurements prevented analysis of spore morphometry

for species comparison/descriptions. Therefore, Ceratomyxa sp. 1–5 currently represent phylo-

genetic lineages and remain undescribed species.

Haplotype networks of Ceratomyxa cottoidii populations

The haplotype network of C. cottoidii ITS region sequences with traits defined as geographic

localities was represented by 39 haplotypes and showed a considerable complexity of haplotype

grouping (Fig 7A). Isolates of C. cottoidii fell into six main haplotype groups. Haplotype group

A, separated from the rest of the network by 11 mutations (nucleotide changes), was repre-

sented by samples from Cape Columbine, the most western locality of our sampling range.

Haplotype groups B and C were mainly created by samples from Kalk Bay (south west coast)

mixed with samples from the western localities. Haplotype group D was mainly represented by

samples from De Hoop and Herolds Bay (south east coast) mixed with samples from the

south-western locality Kalk Bay. Haplotype group E contained exclusively samples from the

south-eastern coast. Two haplotypes from the south-eastern coast locality Jeffreys Bay formed

haplotype group F separated from haplotype group E by two mutations. Haplotype groups B–

E showed a radial branching pattern with the main haplotype surrounded by satellite low fre-

quency haplotypes which is typical for young expanding populations. Due to small sample size

(4 and 2 sequences, respectively), existence of a similar burst pattern cannot be excluded for

haplotype groups A and F (Fig 7A).

The separation of haplotypes according to the fish host species was not evident in our analy-

ses. Haplotypes from different fish species mixed with each other and the only two unmixed

groups of parasite haplotypes were biased by their exclusive origin from a single host species

Fig 4. Maximum likelihood phylogenetic tree of the ITS region showing the relationships of Ceratomyxa spp.
from South African clinids.Nodal supports are shown for maximum likelihood and maximum parsimony bootstraps
and Bayesian inference posterior probability. Cystodiscus australis, Ceratonova shasta and Parvicapsula sp. were used as
outgroups; branches of the first two outgroup taxa were shortened to 50% of their original length. Host species and
localities are shown with colored symbols.

https://doi.org/10.1371/journal.pone.0194042.g004
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(C. cottoides) sampled in Kalk Bay, De Hoop, Jongensfontein, Herolds Bay, and Jeffreys Bay,

localities from which data from other host species were not available (Fig 7B).
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https://doi.org/10.1371/journal.pone.0194042.g005
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Table 2. Prevalence of studied Ceratomyxa spp. in the fish host samples identified by PCR with general Ceratomyxa SSU rDNA, LSU rDNA and longer ITS region
primers and species-specific shorter ITS-based PCR screening.

Myxozoan species Marker Clinus cottoides Clinus superciliosus Clinus acuminatus Clinus brevicristatus Muraenoclinus dorsalis

Ceratomyxa cottoidii SSU rDNA 80% (31/39) 22% (2/9) 100% (4/4) 0% (0/1) 67% (2/3)

LSU rDNA 86% (18/21) 14% (1/7) 100% (2/2) 0% (0/1) 100% (1/1)

ITS region 71% (20/28) 14% (1/7) N/A 0% (0/1) 100% (1/1)

Screening 98% (110/112) 67% (12/18) 100% (6/6) 100% (1/1) 93% (14/15)

Ceratomyxa dehoopi SSU rDNA 0% (0/39) 33% (3/9) 0% (0/4) 0% (0/1) 0% (0/3)

LSU rDNA 0% (0/21) 29% (2/7) 0% (0/2) 0% (0/1) 0% (0/1)

ITS region 0% (0/28) 43% (3/7) N/A 0% (0/1) 0% (0/1)

Screening 6% (7/112) 56% (10/18) 17% (1/6) 0% (0/1) 0% (0/15)

Ceratomyxa sp. 1 SSU rDNA 21% (8/39) 0% (0/9) 0% (0/4) 0% (0/1) 0% (0/3)

LSU rDNA 38% (8/21) 0% (0/7) 0% (0/2) 0% (0/1) 0% (0/1)

ITS region 32% (9/28) 0% (0/7) N/A 0% (0/1) 0% (0/1)

Screening 55% (61/112) 39% (7/18) 17% (1/6) 100% (1/1) 13% (2/15)

Ceratomyxa sp. 2 SSU rDNA 3% (1/39) 33% (3/9) 0% (0/4) 0% (0/1) 0% (0/3)

LSU rDNA 0% (0/21) 0% (0/7) 0% (0/2) 0% (0/1) 0% (0/1)

ITS region 0% (0/28) 14% (1/7) N/A 0% (0/1) 0% (0/1)

Screening 12% (13/112) 83% (15/18) 17% (1/6) 100% (1/1) 13% (2/15)

Ceratomyxa sp. 3 SSU rDNA 10% (4/39) 0% (0/9) 0% (0/4) 0% (0/1) 33% (1/3)

LSU rDNA 0% (0/21) 0% (0/7) 0% (0/2) 0% (0/1) 0% (0/1)

ITS region 7% (2/28) 14% (1/7) N/A 0% (0/1) 100% (1/1)

Screening 29% (32/112) 22% (4/18) 0% (0/6) 100% (1/1) 47% (7/15)

Ceratomyxa sp. 4 SSU rDNA 3% (1/39) 11% (1/9) 0% (0/4) 100% (1/1) 0% (0/3)

LSU rDNA 10% (2/21) 29% (2/7) 0% (0/2) 100% (1/1) 0% (0/1)

ITS region 7% (2/28) 43% (3/7) N/A 100% (1/1) 0% (0/1)

Screening 14% (16/112) 67% (12/18) 17% (1/6) 100% (1/1) 7% (1/15)

Ceratomyxa sp. 5 SSU rDNA 0% (0/39) 22% (2/9) 0% (0/4) 0% (0/1) 0% (0/3)

LSU rDNA 0% (0/21) 43% (3/7) 0% (0/2) 0% (0/1) 0% (0/1)

ITS region 0% (0/28) 43% (3/7) N/A 0% (0/1) 0% (0/1)

Screening 9% (10/112) 61% (11/18) 33% (2/6) 0% (0/1) 20% (3/15)

N/A: PCR not done.

https://doi.org/10.1371/journal.pone.0194042.t002
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Fig 6. Prevalence of clinid Ceratomyxa spp. at each locality based on the PCR-screening of the shorter ITS region of all samples.
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Population genetic structure of Ceratomyxa cottoidii

Approximately half (55.4%) of the variation in C. cottoidii was attributable to highly significant

differences within populations whereas about 42.6% was associated with significant differences

among geographic groups. On the other hand, very low variation was observed among popula-

tions (2.6%). The second AMOVA showed slightly higher variation among the barrier groups

(50.0%) with highly significant covariance components. The within population variation was

comparable with the one from the previous analysis. The lowest level of among group variation

was found for AMOVA of host groups (26.0%), the analysis reaching highly significant levels

only within and among populations (Table 3). In summary, our a priori AMOVA settings
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dividing C. cottoidii populations into groups delimited by major oceanographic barriers, espe-

cially if followed by the separation according to host gene flow barriers, explained significant

amount of variation, however, additional factors except of fish host species, seem to impact

population structuring of C. cottoidii. As revealed by AMOVA and haplotype networks, calcu-

lations of population genetics statistics for C. cottoidii using the dataset of parasite sequences

from different fish species and their subsequent comparison with the population data from the

type host C. cottoides is not a problem due to the lack of significant structuring of C. cottoidii

populations according to fish host species.

Sequence diversity indices and demographic history of Ceratomyxa
cottoidii populations

The differences between C. cottoidii populations based on geographic separation observed in

haplotype networks and AMOVA were also evident in their population genetics statistics

(Table 4). Results of DNA polymorphism statistical analysis showed generally high values of

haplotype diversity with small differences between the analyzed groups. From the total of 39

haplotypes, the highest number of haplotypes was found in the south west (n = 20) and south

east coast (n = 20) for the geography-related groups and in B2 (n = 22) for barrier groups. The

nucleotide diversity was the lowest for the south east coast (resp. B3 group). Tajima’s test

showed significant negative values only for south east and B3 populations whereas Fu and Li’s

tests revealed significant negative values for the south west, south east coast, B2 and B3 popula-

tions. The R2 test was significant only for the south east coast and B3 group populations

(Table 4). The results indicate that the south west, south east coast, B2 and B3 populations are

expanding with the evidence of recent expansion in south east coast and B3 populations. In

contrast, equilibrium and no population growth are suggested for the west and B1 populations

at the edge of the distributional range of C. cottoidii.

Discussion

This is the first study to determine myxozoan diversity, distribution, prevalence and host spec-

ificity in a variety of clinid fish species, typical inhabitants of intertidal environments in South

Africa. Moreover, the evolutionary history of the rapidly evolving clinid ceratomyxids has

been assessed within this group as well as within the Ceratomyxa clade. Lastly, the most com-

mon clinid parasite in South Africa, Ceratomyxa cottoidii, has been subjected to population

genetics analyses and its population structure has been compared with the data known for its

type fish host, Clinus cottoides. This is a novel approach in myxozoan research as none of the

Table 3. AMOVA partitioning of genetic variance for shorter ITS region within populations and groups of Cera-
tomyxa cottoidii. A priori groupings followed the separation of C. cottoidii sequences according to the i) geography of
South African coastline (geographic groups), ii) main barriers to gene flow recognized for the populations of the fish
host Clinus cottoides (barrier groups) and iii) fish host species (host groups).

% variation Geographic groups Barrier groups Host groups

Among groups 42.58� 50.04�� 26.02

Among populations 2.55 -3.06 25.35��

Within populations 55.36�� 53.02�� 48.63��

The covariance components are indicated as
�� for highly significant (P< 0.01) and
� for significant (P< 0.05).

https://doi.org/10.1371/journal.pone.0194042.t003
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previous studies compared the host-parasite genetic structure as they were solely focused on

parasite population structuring [60, 66–69] and phylogeography [70–72].

We have revealed a high degree of species diversity represented by seven closely related Cer-

atomyxa spp. from the intertidal fishes Clinidae along the coast of South Africa. Such parasite

radiation is probably the result of multiple speciation events triggered by limited host dispersal

within this endemic area. Future application of a holistic approach in species descriptions

based on detailed LM examination, proper photographic documentation and in-depth molec-

ular identification is a good direction in accounting myxozoan species diversity, which cur-

rently seems to be underestimated [30, 73–76].

PCR screening with species-specific primers was crucial for the discovery of the remarkably

high prevalence of ceratomyxids in clinid fish, with all examined samples infected with at least

one parasite species and with some ceratomyxids even reaching 100% prevalence in certain

hosts and at certain sites. Our findings underpin the rock pools as ideal habitats for promoting

myxozoan life cycles and for the establishment of a diverse assemblage of organisms as

reported previously for other animal groups [14–16]. Specific PCR assays were also essential

for the exact assessment of Ceratomyxa spp. diversity in clinids, as frequent mixed infections,

indeed common in myxozoans [17, 40], complicated such evaluation. Present evidence of mul-

tiple Ceratomyxa spp. infections indicates that the extreme spore variability observed in our

samples, most likely resulted from concurrent infections of closely related species of different

morphology. This may also be a case for Ceratomyxa sp. fromM. dorsalis [37]. Moreover, high

rates of mixed Ceratomyxa spp. infections encountered in such a restricted organ space are

suggestive of a low or even lacking within-host competition in this niche. Nevertheless, a tem-

poral and spatial separation of the infections during the host’s development may still occur

similarly as reported for two competing marine myxozoan species [77].

In this study, we have unexpectedly revealed that Ceratomyxa spp. from South African clin-

ids are not strictly host-specific parasites as a general rule for other ceratomyxids [25–30]. This

may be caused by the close evolutionary relationships of South African clinids [8] and associ-

ated likely similar immune system traits of these fish as well as by generally low host immune

response to coelozoic myxozoan parasites [78, 79]. We assume that several clinid fish species

are true hosts for individual Ceratomyxa spp. as spores have been observed in the site of

Table 4. Results of population genetics statistics of ITS region for Ceratomyxa cottoidii.

Statistic tests Geographic groups Barrier groups

West coast South west coast South east coast B1 B2 B3

Number of sequences (n) 14 25 37 8 31 37

Number of haplotypes (h) 7 20 20 5 22 20

Number of segregating sites (S) 27 38 20 23 38 20

Haplotype diversity (Hd) 0.901 0.983 0.908 0.857 0.972 0.908

Nucleotide diversity (π) 0.043 0.042 0.015 0.045 0.038 0.015

Tajima’s D (D) 1.233 0.259 -0.688� 1.470 0.040 -0.688�

Fu and Li’s D� (D�) 0.968 -1.030�� -1.512�� 0.260 -1.743�� -1.512��

Fu and Li’s F� (F�) 0.893 -0.785� -1.453�� 0.363 -1.408�� -1.453��

Ramos-Onsins & Rozas’ (R2) 0.197 0.125 0.086� 0.227 0.112 0.086�

The total number of unique haplotypes for all groups is 39; some haplotypes are shared by the groups. The statistical significance of covariance components is indicated

as
�� highly significant (P< 0.05) and
� significant (P< 0.1)

https://doi.org/10.1371/journal.pone.0194042.t004
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sporogony (gall bladder) at least in several samples in which the parasite has been molecularly

detected.

The phylogenetic relationships of clinid Ceratomyxa spp. with other ceratomyxids were

provided in this study. However, their accurate assessment was difficult due to their unstable

clustering and weak nodal supports within the Ceratomyxa clade most probably due to LBA

artifact. Nevertheless, increased taxon sampling with some closely related species, possibly

from other blenniiform fishes, would facilitate to break the long-branch [46, 80] and thus

improve inferring the exact positioning of this fast-evolving parasite group.

There is no universal criterion regarding what constitutes a sufficient level of sequence vari-

ation to represent distinct species in the genus Ceratomyxa. The intraspecific threshold values

used for clinid ceratomyxids in present study are higher than commonly reported in other

myxozoan clades [17] but they have been carefully evaluated with regard to the fast evolution

of the studied molecular markers in this long-branched parasite group and we recommend

using these cut-offs for this specific group of ceratomyxids in future studies. For example, rela-

tively low values of maximum SSU rDNA intraspecific divergences were reported for cerato-

myxids from Indian (up to 0.8%) [81], Australian (up to 1.3%) [26, 27, 30] and North Atlantic

fishes (up to 1.6%) [46], whereas wide ranges up to 7% in C. cottoidii were encountered for

South African clinid ceratomyxids (present study). Such large intraspecific variability of C. cot-

toidiimay be a result of fast evolution of its genes concordant with increased substitution rates

and associated tree branch lengths [82]. Therefore, settings of the intraspecific cut-offs and the

following assessment of intraspecific and interspecific variation of a molecular marker have to

be taken into account in relation to the substitution rate in a particular Ceratomyxa group. As

evolutionary rates also vary for other myxozoan lineages, investigations into the sequence vari-

ation for a particular phylogenetic group are crucial for the assessment of the species concept

in the Myxozoa. Moreover, it would be desirable to assess the intragenomic variation of ribo-

somal sequences for each myxozoan species from one individual (spore), however, low DNA

yields associated with single spore extractions are limiting factors for such approach. Informa-

tion about the intragenomic variation would be of interest also in the present population

genetics analysis of C. cottoidii, however, distinguishing of multiple haplotype infections from

the real intragenomic variability was not possible due to the fact that DNA was extracted from

hundreds of spores from each infected fish individual. Moreover, spores in each host specimen

may have been a genetic mixture that developed after an infection from a mixed pool of inver-

tebrate alternate hosts harboring different C. cottoidii haplotypes. It is highly probable that

intragenomic variation exists in C. cottoidii but this would only have a significant effect on

“within individual level of variation” that was not assessed in our analyses. An alternative how

to get around the intragenomic variability issue would be the use of mitochondrial (maternally

inherited) genes, for example cytochrome c oxidase I or cytochrome b, but this approach was

unfortunately not feasible in our case as such genes are difficult to amplify in myxosporeans in

general and lead to several misinterpretations due to occurrence of pseudogenes (numts) [73].

C. cottoidii was shown to represent the most common parasite of clinids with a widespread

distribution along the South African coastline. Investigation of a potential host-driven isola-

tion of C. cottoidii populations, impelled by the newly discovered generalist life history of this

parasite, showed no evidence for separation of parasite haplotypes by fish hosts. However, a

certain bias may exist as the largest haplotype groups were characterized by a single host spe-

cies. On the other hand, population structuring based on geography-related groupings (geo-

graphic and barrier groups) showed important overlapping patterns with fish host population

structure [11, 12] consistent with the hypothesis that reduced host dispersal, as typical for C.

cottoides [10], enhances parasite community differentiation. C. cottoidii population structure is

formed by young expanding populations as well as by older populations in equilibrium. The

Ceratomyxa parasites in South African clinid fish
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older populations are represented by haplotypes from B1 group, which includes the most west-

ern localities, most probably at the edge of the distributional range of C. cottoidii. In these

peripheral populations, no haplotype mixture is evident in the associated haplotype group A,

likely representing the populations under recent speciation, which further supports the cluster-

ing of Cape Columbine sample (nr. 1462) as a separate lineage within (Fig 4) or at the base of

the Ceratomyxa clade (S1 and S2 Figs). The young expanding populations of C. cottoidii are

mainly represented by haplotypes from groups B2 and B3 covering western, south-western and

south-eastern South African localities. Though some of the western localities are present in geo-

graphically mixed haplotype groups B and C (west + south west coast) and D (south west

+ south east coast), the west coast haplotypes never mixed with south east coast haplotypes. This

pattern of population mixing does imply existence of some gene flow barriers on one side along

with still ongoing migration between south west coast and south east coast locations on the

other side, which is most probably facilitated by Agulhas ring eddies between Cape of Good

Hope and Cape Agulhas in the zone of contact of Agulhas and Benguela current (Fig 1). Haplo-

type network suggests that some additional barrier to gene flow may exist within the south east

coast populations (separation of haplotype group F), however, analysis of this hypothesis by

splitting the south east group into south coast (De Hoop, Jongensfontein, Herolds Bay) and east

coast (Jeffreys Bay) groups was not feasible due to low sample size from the eastern locality.

Therefore, a more efficient fish taxon sampling, especially from the peripheral eastern and west-

ern localities, and following haplotype sequencing are necessary to support our conclusions

which would additionally provide more data for detailed gene flow and migration analyses.

Our data suggest that oceanographic barriers around Cape Point, Cape Agulhas and east of

Jeffreys Bay (east of Algoa Bay) region play important roles in the distribution and population

structuring of the parasite as they do for the fish host Clinus cottoides [6, 11, 83]. This may be

caused by closely linked host-parasite co-evolution in these space-limited habitats as genetic

structure and co-divergence of host-parasite populations is higher in parasites infecting hosts

with limited dispersal abilities [84]. However, only 43–50% of molecular variation in C. cottoi-

dii sequences was ascribed to differences among groups associated with geography (Table 3)

while a higher percentage of variation among groups (localities) was encountered for C. cot-

toides populations exhibiting significant oceanographic separation [11]. Such difference in var-

iation may be linked to the complex myxozoan life cycle involving a vertebrate (intermediate)

and an invertebrate (definitive) host, which adds another variable to the dispersal and associ-

ated population structure of C. cottoidii, a myxozoan with a presumably two-host life cycle

[34]. C. cottoides is most commonly associated with mid-shore areas [2, 12], and while this fish

host shows strong site fidelity, its ceratomyxid parasites may have a high dispersal capacity by

distributing spores to other rock pools via tidal water exchange or wave splashes. An inverte-

brate host can be present in these rock pools or alternatively, it can inhabit other terrestrial or

planktonic habitats and thus contributing further to the gene flow in C. cottoidii populations.

The high infection prevalence in fish, however, suggests that the invertebrate host habitat over-

laps with that of C. cottoides. Excellent candidates that are common in the intertidal rocky

shore habitats are sedentary polychaetes (Annelida: Polychaeta) from the families Cirratulidae,

Spionidae, Orbiniidae, Arenicolidae, Flabelligeridae, Sabellariidae, Terebellidae, Sabellidae,

Serpulidae and Spirorbidae [52, 85]. A systematic approach specifically targeting the species

present in rock pools in order to find myxozoan parasites within these is needed.

Conclusions

We show that ceratomyxid species from South African clinids are a diverse group of fast evolv-

ing closely related parasites with high prevalence in their fish hosts, little host specificity and
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frequent concurrent infections, most probably as a result of radiation and no competition

within the space limited host niche. Ceratomyxa cottoidii shows overlapping population struc-

ture with its type fish host, C. cottoides, however, data on the definitive host is required to

unravel the complex network.

Several genetic studies of marine organisms, including C. cottoides, have shown that the sec-

tions of South African coastline coined as marine protected areas, representing hotspots of

species richness and endemism and including a high diversity of habitats [86], require more

protection [11, 83]. As both parasite diversity and distribution are closely linked to that of the

host, any change in the conservation status and distribution of the host directly impacts that of

the parasite and vice versa [87]. As Ceratomyxa parasites of clinid fishes are well represented in

the South African marine fauna (present study), they may significantly impact their fish host

populations. Investigations into the aquatic parasite biodiversity and distribution are of highest

priority, as global climate change can shift the balance in healthy parasite-rich ecosystems

where parasites represent one of the most susceptible groups to environmental change [87].

Besides the implications of global climate change for fish populations, a more detailed research

of myxozoan life cycles as well as the roles of these parasites in food webs and trophic transfers

and their impact on the health of fish hosts are desirable not only from a South African [23]

but also from a global perspective.
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S1 Table. List of clinid fish samples molecularly examined on the presence of Ceratomyxa

spp. A detailed information on the host species and organ, locality, result of species-specific

ITS-based PCR screening (+/-) and number of SSU rDNA, LSU rDNA and ITS PCR ampli-

cons and/or clone sequences are available for each Ceratomyxa species along with the Gen-

Bank accession numbers (corresponding to those present in the phylogenetic trees). gb = gall

bladder.
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S2 Table. GenBank accession numbers of newly amplified Ceratomyxa sequences.
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from the original species description.
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S1 Dataset. The fasta datasets of untrimmed and trimmed molecular markers used for the

phylogenetic analyses.
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S1 Fig. Maximum likelihood phylogenetic tree of the SSU rDNA sequences showing the

relationships of Ceratomyxa spp. from South African clinids.Nodal supports are mapped

for maximum likelihood and maximum parsimony bootstraps and Bayesian inference poste-

rior probabilities. Ceratomyxa barnesi and Ceratomyxa longipes, for which the branches were

shortened to 50% of their original length, were used as outgroups. Host species and localities

are shown with colored symbols.

(EPS)

S2 Fig. Maximum likelihood phylogenetic tree of the LSU rDNA sequences showing the

relationships of Ceratomyxa spp. from South African clinids.Nodal supports are mapped

for maximum likelihood and maximum parsimony bootstraps and Bayesian inference poste-

rior probabilities. Ceratomyxa appendiculata, Ceratomyxa vikrami, Ceratomyxa cardinalis and
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Ceratomyxa verudaensis, for which the branches were shortened to 50% of their original

length, were used as outgroups. Host species and localities are shown with colored symbols.
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Data curation: Pavla Bartošová-Sojková, Alena Lövy.
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Visualization: Pavla Bartošová-Sojková, Alena Lövy.
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