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Abstract

The concept of the Fermi surface is at the very heart of our understanding of the metallic state.
Displaying intricate and often complicated shapes, the Fermi surfaces of real metals are both
aesthetically beautiful and subtly powerful. A range of examples is presented of the startling
array of physical phenomena whose origin can be traced to the shape of the Fermi surface,
together with experimental observations of the particular Fermi surface features.
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nesting, quantum oscillations

(Some figures may appear in colour only in the online journal)

1. Introduction

For most of us, our first contact with a Fermi surface is
through the Sommerfeld free electron model, a model in
which it has a spherical shape. In real metals, however, the
Fermi surface can be (and normally is) very different from a
sphere (for example, the Fermi surface of Pb is shown in
figure 1). Indeed, ‘fantasies of a modern artist’ is how Lifshitz
and Kaganov describe the diverse forms that the Fermi sur-
face has been shown to exhibit [1, 2], and the lexicon is full of
exotic sounding names such as superegg and tetracube [3]. In
the 50 years since Allan Mackintosh suggested that defining a
metal as ‘a solid with a Fermi surface’ might be the most
meaningful description that one can give [4], the concept of
the Fermi surface has deservedly achieved great prominence
in undergraduate physics courses, often with substantial focus
on methods which can reveal its shape in real metals (e.g. the
measurement of quantum oscillations [5]). While there is an
appreciation that electrons at (or within an energy ~k TB of)
the Fermi surface are special because of the Pauli exclusion

principle preventing electrons from deep in the Fermi sea
from being easily excited (and thus making any contribution
to the transport properties), many students (and even senior
colleagues) are left wondering about the physical significance
of particular Fermi surface shapes or features.

The importance of the Fermi surface can be extended to
the influence its shape can have on the ability of electrons to
screen perturbations. From the oscillatory exchange coupling
at the heart of giant magnetoresistance through to shape
memory phenomena and even superconductivity, the Fermi
surface can influence a range of fascinating physical phe-
nomena. As Kaganov and Lifshitz put it, the Fermi surface is
‘the stage on which the ‘drama of the life of the electron’ is
played out’ [2]. The purpose of this article is to showcase
some of the drama that can result from particular shapes of the
Fermi surface.

1.1. A potted history of the Fermi surface

Soon after the emergence of quantum mechanics in the 1920s,
the following decade saw its application to the problem of
understanding the behaviour of electrons in solids [7]. The
result, the so-called band theory of solids, stands proudly as
one of the theory’s great early achievements. Beginning with
Sommerfeld’s successful free electron model, a quantum
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version of the earlier classical Drude theory, the next advance
was Bloch’s discovery, obtained by straightforward Fourier
analysis, that letting the electrons feel a periodic potential
resulted in wavefunctions which were still delocalised, but
differed from free-electron plane waves by a modulating
function which had the periodicity of the lattice. These Bloch
electrons, whose wavefunctions were just modulated plane
waves extending over the whole crystal, were described as
being ‘nearly free’. A further consequence of the Bloch theory
was the opening up of energy gaps (due to Bragg reflection of
the electron waves) at the Brillouin zone boundary. It was at
this point that Wilson had the insight to explain the difference
between metals and insulators [8, 9]. Although both contain
electrons which are nearly free, in insulators the electrons are
in fully filled bands, and a fully filled band cannot carry a
current. Wilson was also to explain a semiconductor as an
insulator in which the band gap was comparable to k TB . A
solid with partially filled bands, on the other hand, will be a
conductor—and have a Fermi surface. Thus, while the Bloch
theory explained why electrons feeling a periodic potential
could remain delocalised (nearly free), Wilson could explain
why not all solids are metals by showing that insulators are
qualitatively different from metals, and not merely bad
metals.

The Fermi surface is the surface in reciprocal space
which separates occupied from unoccupied electron states at
zero temperature. The dynamical properties of an electron on
the Fermi surface largely depend on where it is on the Fermi
surface, and the shape of the Fermi surface with respect to the
Brillouin zone can be a guide to the electrical properties of a
metal [10].

A comprehensive and highly influential review by
Sommerfeld and Bethe on the electron theory of metals was
published in the Handbuch der Physik [11]. This article,
described by Mott as ‘astonishingly complete’ [12] contained
a number of sketches of ‘Flächen konstanter Energie in Raum
der Wellenzahlen’, surfaces of constant energy in the space of
wavevector components. Bethe later recalled [13]: ‘It was
clear to me K that it made a great difference whether the
Fermi surfaces were nearly a sphere or were some interesting
surface.’ At the University of Bristol, Mott had recently been
appointed to the chair of theoretical physics, and considered it
his job to apply quantum mechanics to the experimental work
that was in progress there [12]. Mott, and his Bristol collea-
gues, Jones and Skinner, began to wonder about those energy
surfaces, and whether they were merely a ‘mathematical fic-
tion’ given that the nearly free electron theory ignored the
Coulomb interaction between electrons [12]. In a real metal,
would these energy surfaces be smeared out? Skinner’s
measurements of x-ray emission, performed with O’Bryan,
answered that question by showing very sharp cut-offs in the
emission intensity at high energy, indicating that the energy
surface did remain sharp [14]. At the same time, the termi-
nology in a paper by Jones and Zener [15] evolves from a
purely mathematical concept (‘the surface of the Fermi dis-
tribution function’) at the beginning of the article to the more
physically tangible ‘Fermi surface’ by the end. The term
‘Fermi surface’ stuck. It would, however, take another twenty

years before Landau’s theory of the Fermi Liquid and the
experimental observation of the Fermi surface of Cu would
put the existence of a sharp Fermi surface on firm ground.
Today, the observation of a Fermi surface is perhaps the most
important signature of the existence of Fermi liquid quasi-
particles in a material.

1.2. Quantum oscillations and the Fermi surface of Bi

Oscillations as a function of magnetic field in the magnetic
susceptibility of Bi were observed by de Haas and van Alphen
in 1930 [16]. Now known as the de Haas–van Alphen (dHvA)

effect, the observation of such oscillations has evolved into
one of the most powerful probes of the Fermi surface, but at
the time there was no theory to understand this behaviour.
Using Landau’s ideas about energy levels in a magnetic field
[17], Peierls was able to develop a quantitative theory based
around these ‘Landau levels’ passing through the chemical
potential [18]. In 1938, Schoenberg’s detailed measurements
of quantum oscillations in Bi performed during a stay in
Moscow with Kapitza, interpreted with the aid of ‘in-house’
theoretical insight from Landau, delivered the first determi-
nation of a Fermi surface [19]. This did not, however,
immediately lead to an explosion of results in other metals,
the widely held belief being that in practice the effect would
only be observable in Bi. It was not until 1947, and Marcus’
observation of quantum oscillations in Zn [20], that Schoen-
berg and others started to look for the effect in other metals.
The results, however, were incompatible with an ellipsoidal
Fermi surface model, which was sufficiently good for Bi. It
was Onsager who first published a simple interpretation of the
periodicities of the dHvA oscillations which could be related
to the size of the Fermi surface [21]; although he had not
published, the same idea had been developed by Lifshitz
independently, and the theory was presented in greater detail
together with Kosevich [22]. Looking forward more than half
a century, this theory has enabled the Fermi surface of
unconventional superconductors such as Sr2RuO4 [23, 24]
and UPt3 to be determined [25, 26], mapping not only their
complex shapes but also revealing the quasiparticle masses
for comparison with thermodynamic measurements such as
specific heat. Back in the 1950s, a new and exciting age of
discovery—a golden age of fermiology—was about to begin.

1.3. The experimental determination of the Fermi surface of Cu

The crystalline state is not isotropic, and the presence of a
finite potential (from the electron–ion interaction, and the
effective Coulomb repulsion between electrons) modifies the
shape of the bands so that their energies no longer have to
depend quadratically on the wavevector, and the Fermi sur-
face can distort from the free-electron sphere. Indeed, as
previously emphasised, the Fermi surfaces of real metals are
not spherical.

For a sufficiently pure metal at low temperature, high
frequency oscillations of an electric field and the resulting
current are confined to a layer within the surface to a depth
much less than the mean free path [27]. For a given (constant)
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high frequency, the surface resistance tends to a constant
value (the so-called extreme anomalous limit) which can be a
complicated function of orientation for an anisotropic metal.
Sondheimer and Pippard were able to show how the aniso-
tropy of the high-frequency surface resistance of a metal
could be related to the curvature of the Fermi surface [28–30].
Subsequently, Pippard went on to determine the Fermi sur-
face of Cu (chosen for its ‘metallurgical convenience’) from
measurements made on twelve carefully cut and polished
single crystal samples [31]. Shortly afterwards, Garcia-Moli-
ner showed that the Fermi surface was compatible with a
tight-binding energy band for a face-centred cubic lattice
which included next-nearest-neighbour interactions [32].
Early band structure calculations by Segall and Burdick
[33, 34] were broadly consistent with Pippard’s results, and
with the subsequent measurement of dHvA oscillations by
Schoenberg [35], which were quickly parameterised by
Roaf [36].

Today there is a wide range of techniques for measuring
the Fermi surface. Being able to map out the shapes of Fermi
surfaces in disordered alloys and at higher temperatures [37–
39], positron annihilation [40] (including spin-resolved posi-
tron annihilation [41]) and Compton scattering [42] have
come a long way since the pioneering experiments of Berko
and Plaskett [43]. The rise of angle resolved photoemission
spectroscopy (ARPES) in recent years has also broadened the
fermiologist’s arsenal, beautifully revealing both Fermi sur-
faces and band dispersions [44], and including the possibility
of spin-polarised measurements [45].

2. Why is the shape of the Fermi surface important?

2.1. The Fermi surface interaction with the Brillouin zone

boundary

Reminiscing about the early 1930s in Bristol, Mott observed:
‘It was a revelation to me that quantum mechanics could

penetrate into the business of the metals industry’ [46]. What
is the significance of the Fermi surface approaching and
making contact with the boundary of the Brillouin zone? A
Brillouin zone can hold two electrons (one of each spin) per
primitive unit cell, and thus within the free electron model it is
straighforward to calculate the Fermi wavevector kF for a
given number of electrons (and thus how close it comes to the
Brillouin zone boundary).

In 1933, Jones heard Bragg speak about the structure of
metallic alloys and in particular about the work of the Oxford
metallurgist, Hume-Rothery [47] who had made a connection
between the structures of some brasses and bronzes and their
valence electron per atom ratios (denoted as e/a) [48]. Jones
began to think about explaining this in terms of the proximity
of the Fermi sphere to the Brillouin zone boundary; at the
zone boundary, there is the well-known energy gap associated
with the Bragg reflection of the electrons, and the gradient of
energy band flattens out as it approaches the faces of the
Brillouin zone [49]. By making model calculations of the
density of states for some fcc and bcc alloys, and evaluating

the band energies, Mott and Jones went on to show that fcc
would be favoured for electron per atom ratios e a 1.44

and bcc for larger ratios. Thus the proximity of the Fermi
sphere to a Brillouin zone will lower the band energy of the
metal. In 1937, Jones made some more sophisticated calcu-
lations using a nearly free electron model [50]. These calcu-
lations predicted the fcc/bcc transition would be at

=e a 1.41, but the e/a ratios corresponding to peaks in the
nearly free electron density of states were well away from the
critical ratio, undermining the appealingly intuitive arguments
of the original Mott–Jones theory [51].

It was after Pippard discovered the necks in the Fermi
surface of Cu (revealing the real, non-spherical Fermi surface
had already made contact with the zone boundary at an e/a
ratio of 1.0) that the problem with the Mott–Jones model
became even more apparent. Fermi surfaces of real metals are
not spherical, and the rigid band model (where the Fermi
energy is rigidly moved up or down depending on the elec-
tron concentration) is crude and often widely inappropriate
[52]. Indeed, given the strong deviation of the real Fermi
surface of Cu from the free-electron sphere, it is astonishing
how well the Mott–Jones theory, of Fermi spheres touching
the Brillouin zone boundary, worked. There is no special
significance to the e/a ratio at which the real Fermi surface
touches the Brillouin zone boundary, but the e/a ratio at
which the free-electron sphere touches the boundary provides
a useful indication [51].

Current ideas about the microscopic origin of the Hume-
Rothery rules can be traced to the speculations of Blandin,
Heine, Ashcroft and Stroud that there will be a particular
stability associated with the Fermi surface approaching the
Brillouin zone boundary due to the band energy dropping
rapidly as the Fermi surface caliper k2 F, changing with e/a,
passes through a reciprocal lattice vector [53–56]. These ideas
were later put on a firm mathematical foundation by Evans
et al [57]. To understand the connection with k2 F, it is
essential to appreciate how the shape of the Fermi surface can
influence the screening properties of electrons.

2.2. Screening and the shape of the Fermi surface

One of the most important ways in which the shape of the
Fermi surface has a particular influence on physical properties
of a metal is through its impact on electron screening. The
response of the electrons to a perturbation of wavevector q
and frequency ω can be encapsulated in a bare dynamical
susceptibility, c wq,0 ( ):
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In effect, c wq,0 ( ) determines how effective the electron
screening response will be for a particular frequency ω and
wavevector q. The presence of a Fermi surface, a dis-
continuity in the occupation of the Brillouin zone, will
introduce singularities into c wq,0 ( ), and these singularities
will be reflected in the abilitiy of electrons to screen
pertubations.

The bare static (w = 0) susceptibility ratio c cq 00 0( ) ( )
for a one-, two- and three-dimensional free electron gas are
shown in figure 2. While the singularities in one- and two-
dimensions are clear to see, in three-dimensions there is a
logarithmic singularity in its derivative (i.e. the slope diver-
ges) with respect to q [58]. Of course, the energy bands of real

metals deviate from the free electron parabolæ, and the Fermi
surfaces are not spheres.

In many cases, the matrix elements are not included in
the evaluation of c wq,0 ( ) (or set to be constant) and this is
known as the constant matrix element approximation. The
consequences of such an approach can be surprisingly severe
(an example can be found below in the context of the spin-
density wave; SDW antiferromagnetism of Cr) [59].

2.3. Electrons and phonons

One can imagine that a phonon with a wavevector q estab-
lishes a potential which the electrons will then try to screen so
that the ions are effectively interacting with each other
through this screened potential, modifying the forces between
them and hence the frequency. Kohn pointed out that singu-
larities in the electronic response c wq,( ) may show up in
phonon spectra [60], and suggested that the shape of the
Fermi surface could be inferred from the locations of singu-
larities in the vibrational spectra. Soon afterwards, Brock-
house et al measured such ‘images of the Fermi surface’ in
their phonon spectra for Pb [61, 62], interpreting their spectra
in terms of a Fermi surface topology which appeared rather
like that of free electrons [63]. However, although electron–
phonon coupling is rather strong in Pb, in general these so-
called ‘anomalies’ turn out to be quite weak for most metals.

It is not just the phonons, of course, that the electrons will
attempt to screen. The indirect exchange interaction between
localised magnetic moments via conduction electrons is
described by the Ruderman–Kittel–Kasuya–Yosida (RKKY)

mechanism [64–66]. Within a free electron picture, the k2 F

singularity in the bare susceptibility gives rise to oscillatory
exchange coupling as a function of distance R from the
magnetic moment being screened (characterised by a peri-
odicity of p p=k k2 2 F F) and decaying as R1 3.

What happens away from the free electron model with its
spherical Fermi surfaces? Taylor [67] examined the effect of
the curvature of the Fermi surface on Kohn anomalies, and
Afanas’ev and Kagan [68] examined the case of flat, that is to
say nested Fermi surfaces. More generally, Fermi surface
nesting describes the situation in which different sheets of
Fermi surface, or different parts of the same sheet can be
made to coincide through a translation of some particular
q-vector. The work of Roth et al, focused on the general-
isation of the RKKY interaction to anisotropic Fermi surfaces
[69], showing that for a nested Fermi surface, the interaction
falls off more slowly with distance [69] as R1 (rather than
R1 3). Fehlner and Loly showed that the logarithmic diver-

gence in the bare susceptibility (coming from perfectly nested
planar Fermi surfaces) evolves into a smooth peak for finite
curvature.

The idea of mapping out the Fermi surface from these
anomalies was explored by Weymouth and Stedman who
investigated some particular calipers (extremal vectors) in the
Fermi surface of Al [70]. They concluded that as a procedure
for determining the Fermi surface, results would be difficult to
interpret without access to any additional information, and

Figure 1. The Fermi surface of Pb, inspiration for Tony Smith’s
sculpture For Dolores (also called Flores para los muertos) [6].

Figure 2. c cq 0( ) ( ) for a one-, two- and three-dimensional free
electron gas.
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that (of course) strong electron–phonon coupling and large
flat nested areas would make the anomalies easier to observe.

2.4. SDW antiferromagnetism and spin excitations

Overhauser predicted that the electron gas would be unstable
with respect to the formation of a SDW with a wavevector
=Q k2 F and suggested that the antiferromagnetic ground

state of Cr is in fact such a SDW [71, 72]. Indeed, the elec-
tronic structure calculations of Lomer showed that Cr had a
Fermi surface in which two of the sheets, an electron octa-
hedron at the Γ-point and a hole octahedron at the H point,
were almost perfectly nested [73]. The fact that the sizes of
the two octahedra are slightly different gives rise to the small
incommensurability of the SDW which can be described by

d= p
Q 1 , 0, 0

a

2 ( ) [74]. The inclusion of matrix elements
in the bare susceptibility calculations was shown to be rather
important, as both Cr and Mo have very similar Fermi surface
topologies (suggesting that they might both support SDWs),
but the inclusion of matrix elements strongly suppresses the
peak at the nesting vector in Mo [75]. Doping Cr with small
concentrations of Mn (which adds electrons, growing the
electron octahedron to reduce the mismatch in size) reduces δ,
while doping with small concentrations of V increases δ

(since V has fewer electrons and thus worsens the mismatch
in octahedron size) [76]. This behaviour was reproduced in
the bare susceptibility calculations of Schwartzman et al [75].

Even when there is no long range magnetic order, the
Fermi surface can play a role in promoting spin fluctuations.
A good example of a material where this is thought to be
important is Sr2RuO4, which has been proposed as a chiral p-
wave superconductor (see [77] for a review). The bare sus-
ceptibility, calculated by Mazin and Singh, shows four peaks
connected by weaker ridges [78] due to the nested Fermi
surface topology, and incommensurate peaks and ridges of
magnetic fluctuations have been observed by inelastic neutron
scattering [79].

2.5. Friedel oscillations

Just as the RKKY indirect exchange interaction describes the
oscillatory behaviour of the screening electron spins, Friedel
oscillations refer to the characteristic oscillations in the
screening charge around a charge impurity [80].

With the development of scanning-tunnelling miscro-
scopes (STMs), it has been possible to observe Friedel
oscillations on metallic surfaces. It is worth noting that the
lower dimensionality of the surface enhances the suscept-
ibility singularity, making the oscillations easier to observe.
The ‘surface’ Fermi surface of a Cu 111( ) surface (as distinct
from the bulk Fermi surface) is a circle with a radius of
kF=0.215 Å−1 [81]. Thus one would expect to see oscilla-
tions with a spatial period of p kF or »15Å, and such
oscillations were observed around point defects on a Cu 111( )
surface by Crommie et al in their STM images [82].

Weismann et al exploited the anisotropy of the Friedel
oscillation created by Co impurities on Cu surfaces (due to the
variation of curvature over the Fermi surface) to make

inferences about the shape of the Fermi surface, in effect
‘seeing the Fermi surface in real space’ [83, 84].

2.6. Charge-density waves (CDWs)

The Peierls transition is an electronic instability at zero
temperature in a one-dimensional crystal which occurs
because of the perfect nesting in a one-dimensinal Fermi
‘surface’. For a long time, CDWs in metals were commonly
interpreted within the Peierls picture, associating the appear-
ance of CDWs in metals with the presence of nesting in the
Fermi surface. A very important contribution of Mazin and
Johannes [85] cast doubt on whether, in anything other than
one-dimension (which was where Peierls first made his
observation), Fermi surface nesting could be responsible for
the formation of CDWs. They pointed out that even in one-
dimension, the Peierls mechanism is very weak. Recently Zhu
et al [86] have suggested a reclassification of CDWs based on
the mechanism behind their formation. Within this scheme,
type I CDWs would fit the Peierls picture with Fermi surface
nesting behind the transition, whereas type II would be
associated with q-dependent electron–phonon coupling.

2.7. The shape of the Fermi surface and superconductivity

In the Bardeen–Cooper–Schrieffer theory of super-
conductivity, the attractive pairing interaction between elec-
trons is mediated by phonons [87]. However, it was soon
pointed out (e.g. [88]) that pairing could occur in higher
angular momentum channels than l=0 (not s). For these
channels, the long-range attractive part of the interaction can
dominate the short-range repulsion, providing a route to
superconductivity. In 1965, Kohn and Luttinger [89] pointed
out that a sharp Fermi surface will result in an oscillatory
interaction potential (just as in the case of the RKKY inter-
action or Friedel oscillations discussed earlier), suggesting
that the electrons could make use of the attractive parts of the
interaction to form Cooper pairs and exhibit super-
conductivity. The key ingredient is that if the super-
conductivity has an unconventional gap function which
changes sign, then the repulsive Coulomb interaction can be
minimised.

Moving away from interactions between charges, Berk
and Schrieffer began to consider pairing interactions between
electron spins [90], and the possibility of superconductivity
mediated by spin-fluctuations. Imagine that the first electron,
let us say a spin-up electron, antiferromagnetically polarises
the electrons around it creating a local region of spin-down
electrons. Then a spin-down electron can lower its energy by
being in that region of electrons with the same spin. By
having a pairing wavefunction which has a node at the origin
(e.g. -dx y2 2, pertinent to the cuprates [91]), the Coulomb
repulsion is minimised; whereas the retarded electron–phonon
interaction keeps electrons apart in time, here they are kept
apart in space. The Fermi surface shape (and any nesting) is
important for superconductivity, and enters through a pairing
interaction that depends on c q( ) [92–94].
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In the case of the Fe-pnictide superconductors, where
there is more than one sheet of Fermi surface [95], the pos-
sibility of nesting between electron and hole sheets means that
a pairing state which retains s-wave symmetry can exist
provided that the gap function has different signs on the two
sheets; this is known as an extended s-wave or +-s state
[96–98].

2.8. Compositional and magnetic short-range order

A powerful example of the impact of Fermi surface nesting is
in the compositional short-range order found in some dis-
ordered alloys. Compositional order within an alloy refers to
periodicities in the occupation of sites by particular species of
atoms. Such correlations may be long range (for example, an
ordered Cu3Au structure) or short range. Moss pointed out
that there should be a phenomenon, equivalent to the Kohn
effect in the phonon dispersion, which gives rise to compo-
sitional short-range order in concentrated disordered alloys
[99]. In what is known as the Krivoglaz–Clapp–Moss theory
[100–103], the singularity in the bare susceptibility will also
appear in the Fourier transform of the pairwise interatomic
potential, driving concentration waves. The short-range order
gives rise to diffuse scattering (i.e. scattering not associated
with a Bragg peak) in the electron diffraction patterns in
disordered Cu -x1 Pdx alloys [104, 105]. At this point it is
appropriate to pause and consider whether the Fermi surface
remains a meaningful concept in a substitutionally disordered
alloy. In a periodic potential, the Bloch wavevector k is a
good quantum number and the lifetime of a Bloch electron is
infinite. Disorder means additional scattering (which will
change the wavevector) and thus the wavevector k is no
longer a good quantum number and the lifetime becomes
finite. There is, however, substantial theoretical (see, for
example, [106, 107]) and experimental evidence that the
concepts of Brillouin zones and Fermi surfaces remain robust
in such alloys. Although the Fermi surfaces in substitutionally
disorded alloys can be rather smeared (due to the disorder),
the Krivoglaz–Clapp–Moss theory was able to explain the
observed diffuse scattering in terms of a nested Fermi surface
[99, 100]. Later, Györffy and Stocks were able to quantita-
tively connect the observed short-range order with the nesting
of the Fermi surface [108], and Wilkinson et al were able to
observe the nested regions (figure 3) using positron annihi-
lation [109]. The Fermi surface, through its nesting influen-
cing the electronic screening, is determining the
compositional ordering of the atoms.

In PdCrO2, a rare example of a two-dimensional trian-
gular lattice antiferromagnetic metal, the magnetic interac-
tions are frustrated [110]. The presence of nesting in its
paramagnetic Fermi surface is likely to be at least partly
responsible for the diffuse magnetic scattering observed
above the Néel temperature [111] i.e. the Fermi surface can
also promote magnetic short-range order with the electrons
screening the magnetic interactions.

2.9. The RKKY interaction and oscillatory exchange coupling

All the heavy rare-earths with partially filled 4f bands have
magnetic moments which order in periodic arrangements
which are in general incommensurate with the lattice [112],
and it was Williams et al [113] who first made explicit the
connection between the magnetic order and a particular part
of the Fermi surface (known as the ‘webbing’), building on
earlier ideas [114, 115]. The exception is Gd, which does not
have the ‘webbing’ and orders ferromagnetically, but the
other heavy rare-earth elements display a fascinating range of
antiferromagnetic ordering [116].

The idea is that the 4f electrons form very localised
magnetic moments (which are too far apart for there to be any
signficant direct exchange between the 4f wavefunctions).
However, these moments are then screened by the conduction
(s–d) electrons, giving rise to an exchange coupling which
oscillates as a function of distance from the magnetic
moment. Neighbouring magnetic moments then experience
(and are influenced by) an effective magnetic field carried by
the s–d conduction electrons (figure 4).

The electronic structure of the two elements Y and Sc are
often closely linked with the heavy rare earths, as they pos-
sess the same hcp structure as them and very similar Fermi
surfaces. The first calculation of the Fermi surface of Y was
by Loucks [117]. An experimentally determined Fermi sur-
face of Y, obtained by positron annihilation measurements
[118] is shown in figure 5, with the nested region coined the
‘webbing’ indicated by a double-headed arrow.

For dilute concentrations of Tb in Y–Tb alloys (between
2 and 7 at% Tb), the 4f Tb moments order in helical anti-
ferromagnetic arrangement. The interlayer turn angle of the
helix (which describes the rotation of the moment between
successive moments along c) tends towards a value of 50°
[119] (see figure 5). The interlay turn angle in degrees, θ, is
related to the magnitude of the wavevector q (expressed as a
fraction of p c2 ) of the modulation by q = ´q 180. Thus a
q vector of p´ c0.28 2 will give an interlayer turn angle of
about 50°. Caudron et al were able to measure the ordering of
Er moments within a dilute (0.5–3 at% Er) Y–Er alloy [120].
Long range incommensurate antiferromagnetic order was
observed, with a modulation vector of p´ c0.27 2 .

Moving towards a microscopic theory of the magnetic
ordering in the heavy rare earths, by making calculations of
the bare static susceptibility using realistic band structures,
Evenson and Liu were able to show that the ‘webbing’ Fermi
surfaces generated peaks in c q0 ( ) at wavevectors which were
close to the observed magnetic ordering vectors [121, 122].

The ‘webbing’ was clearly observed in the positron
annihilation measurements of Dugdale et al [118], a study
which was subsequently extended to the Gd–Y alloy system.
By measuring the Fermi surface of a series of disordered
alloys, a connection could be made between the presence of
such a ‘webbing’ and antiferromagnetic order [123]. The
induced spin polarisation on the Y electrons (which are
communicating the RKKY-like coupling between Gd
moments) was later observed through magnetic Compton
scattering [124]. The ‘webbing’ has also been observed by
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Figure 3. Top: two planes through the Fermi surface of Cu0.6Pd0.4. The experimental data are shown as solid lines within the first Brillouin
zone, and the crosses are from KKR-CPA calculations. Bottom: Fermi surface reconstructed from positron annihilation data, on which the
shading indicates the nested regions. For details of the experiments and calculations, see [109].

Figure 4. Schematic of the RKKY indirect exchange interaction between localised 4f moments. Around each 4f moment the itinerant s–d
electrons will attempt to screen the localised magnetic moment, resuling in an oscillatory spin density.
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ARPES in Tb and Dy [125, 126], and its absence observed in
Gd [127].

More recently, Hughes et al have been able to explain the
magnetic ordering in the heavy rare earths, within a first-
principles framework, through the influence of the c/a ratio
of the hcp lattice and the cell volume on the bare suscept-
ibility as a result of the propensity towards Fermi surface
nesting [128].

Antiferromagnetic exchange coupling was observed by
Majkrzak et al in Gd–Y [129] and by Grünberg in Fe/Cr
[130], with an RKKY-like interaction mooted as a possible
mechanism. These discoveries led swiftly to that of giant
magnetoresistance [131] in 1988 [132]. In 1990, Parkin et al

made the surprising discovery of long range oscillatory
exchange coupling which depended on the thickness of the
non-magnetic spacer layer [133]. The strong resemblance to
RKKY oscillations guided Bruno and Chappert to propose
[134] and develop a model [135] to explain the observations.
Their model was based on an RKKY interaction between the
ferromagnetic layers through the spacer layers, with the key
point that the spacer layer thicknesses were discrete. By
mapping the Fermi surface topologies of a range of Cr, Cr–V
and Cr–Mo alloys, Hughes et al were able to track the
evolution of one particular piece of Fermi surface (the hole
ellipsoids located at the N points) and show its relationship to
the periodicity of the oscillatory exchange coupling [136], as
previously predicted by Lathiotakis et al [137].

2.10. Electronic topological transitions

Lifshitz was the first to point out that there would be anom-
alous behaviour in thermodynamic, elastic and transport
properties if, by varying some thermodynamic variable, the
chemical potential passes through a stationary point in the
band structure (a van Hove singularity [138]). At such a point,
the connectivity of the Fermi surfaces changes [139]. The

transition could, for example, be achieved by changing the
electron per atom ratio by alloying, or by applying pressure or
uniaxial stress. The four basic types of change in connectivity
are the opening up or closing of electron or hole pockets, or
the formation or pinching off of a neck [140]. Within the
Ehrenfest scheme, Lifshitz classified such a transition at
T=0 as a 2

1

2
order phase transition, but it should be noted

that it is not a phase transition at finite temperature; both
temperature and disorder would turn any divergences in
quantities such as the thermopower into finite peaks [140].

For a general review, see [140] and for some examples of
Fermi surfaces undergoing ETTs, see [141]. Another couple
of illustrative examples are related to metamagnetic transi-
tions [142] which can be empirically defined as a supralinear
rise in the magnetisation at some particular value of applied
magnetic field. In some heavy fermion systems, the Fermi
surface appears to evolve under an applied magnetic field
(see, e.g. [143, 144]) which is to say that there are Zeeman-
driven ETTs. URhGe is worthy of attention because super-
conductivity and ferromagnetism appear to coexist [145],
suggesting triplet equal-spin Cooper pairs. Application of a
magnetic field initially kills the superconductivity, but it
reappears at high field [146]. Its Fermi surface was measured
by Yelland et al [147], and by tracking how it evolved as a
function of applied magnetic field they concluded that the
field was inducing an ETT, and were able to follow the dis-
appearance of a minority spin Fermi surface pocket with a
Fermi velocity (vF) which also falls to zero at the ETT. Hall
coefficient changes at the re-entrant magnetic field agree with
this picture of the disappearance of a heavy (small vF) sheet at
the re-entrant field [148].

Sr3Ru2O7 also exhibits metamagnetic behaviour [149],
and there appears to be an intimate connection between field-
induced changes in the Fermi surface across the metamag-
netic transition (most likely due to a van Hove singularity
close to the Fermi energy) and the presence of a SDW [150].
It is likely that the presence of a SDW could be associated
with appearance of a nested Fermi surface.

In the Fe-pnictide superconductors, the Fermi surface
plays a significant role in the relationship between magnetism
and superconductivty [95]. In CaFe2As2, for example, the
tetragonal structure gives way to apparently concomitant
SDW and orthorhombic transitions [151, 152] at 170 K.
Under a small pressure, the transition is suppressed and
superconductivity appears at low temperature [153], while
under higher pressures a so-called ‘collapsed tetragonal’ (cT)

phase emerges which is non-magnetic [154]. Recent studies
(e.g. [155, 156]) have been able to connect the disappearance
of the Γ-centred hole pockets at the cT transition with the
disappearance of magnetism and bulk superconductivity.

2.11. Phonon softening and shape memory alloys

Shape-memory alloys exhibit the highly technologically
useful property of being able to ‘remember’ their previous
form when subjected to some external stimulus (e.g. stress,
temperature) [157]. The behaviour is associated with a mar-
tensitic transformation below a certain temperature. These

Figure 5. The interlayer turn angle for a series of alloys of Y with
Tb, Dy and Er. The data were extracted from [119]. The Fermi
surface of Y measured by positron annihilation is also shown, with
the double-headed arrow spanning the region known as the
‘webbing’ [118].
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transitions are, however, commonly preceded by ‘precursor’
or ‘premartensitic’ phenomena (e.g. strong phonon softening,
diffuse scattering in electron diffraction) well above the actual
martensitic transformation, and are believed to have a com-
mon origin associated with Fermi surface nesting [158].
Indeed, for the shape-memory alloy β-phase Ni–Al, calcula-
tions of the electronic structure and the phonon dispersions
indicated that the softening was linked with a nesting feature
in the Fermi surface [159], subsequently identified experi-
mentally by Dugdale et al [160]. Similar conclusions were
drawn for Ni–Ti [161] and in AuZn, Goddard et al [162] were
able to infer a ‘catastrophic’ Fermi surface reconstruction at
the martensitic transformation, consistent with theoretical
predictions [163]. It should be emphasised that the martensitic
transformation does not require there to be Fermi surface
nesting (the structural transition would happen anyway), but
nesting can play a supporting role.

There also exist ferromagnetic shape memory alloys, of
which the Heusler alloy Ni2MnGa is the most well-known
example [164]. For these alloys, an external magnetic field
can provide the stimulus required for the alloy to change its
shape. With a Curie temperature of about ~T 380 Kc , the
premartensitic and martensitic transformations occur within
the ferromagnetic state (~250 K and ~220 K, respectively).
The exchange splitting, and therefore the Fermi surface
topology will be evolving as a function of temperature,
something not taken into account in earlier investigations of
Fermi surface nesting [165]. This inspired Lee et al to cal-
culate the bare susceptibility as a function of the saturation
magnetisation [166] and implicate one particular nested sheet
of Fermi surface in promoting the premartensitic phonon
softening [167], and preparing the system for the eventual
martensitic transformation. Experimentally, the Fermi surface
of Ni2MnGa was revealed by the positron annihilation
experiments of Haynes et al [168], revealing nesting vectors
that could be compatible with the premartensitic ordering as
well as the so-called ‘5M’ martensite.

2.12. Fermi surfaces of the quarternary rare earth

borocarbides

The interplay of magnetic order and superconductivity in the
quarternary borocarbides have led them to be described as a
‘toy box for solid-state physicists’ [169]. They have the
general formula RNi2B2C, where R is a rare earth element (or
Lu/Y). Discovered in the mid 1990s [170, 171], they have
relatively high superconducting transition temperatures (e.g.
LuNi2B2C has a Tc of 16.6 K [170]). The anisotropy of the
superconducting gap, and some indication of other uncon-
ventional features such as point nodes, has meant that mul-
tiband superconductivity has not been ruled out [172].

The paramagnetic Fermi surfaces for different R can be
expected to be very similar since the the filling of the f bands
does not strongly influence the bands near the Fermi energy.
When the rare earth R is Er, Tb or Gd, incommensurate
antiferromagnetic order was found with a characteristic
wavevector parallel to the *a direction of magnitude
~ ´ p
0.55

a

2 [173–177]. Furthermore, it was noticed that the

phonon spectrum showed strong temperature-dependent
softening along 100[ ], at about the same q [178]. Calculations
of the bare susceptibility revealed a peak at the same wave-
vector, the origin of which was a prominent nesting feature in
one Fermi surface sheet [179]. The observation of an increase
in the nuclear magnetic resonance relaxation rate at low
temperatures has been interpreted as being indicative of the
presence of strong antiferromagnetic spin fluctuations [180],
which are likely be be enhanced by Fermi surface nesting. It
is believed that importance of the crystal electric field for the
magnetic interactions when the rare earth is Dy or Ho
explains the absence of an *a propagation vector [181].

Figure 6 shows how the shape of the Fermi surface,
through its nesting properties, can be related to both phonon
softening and magnetic order. The phonon softening identi-
fied from inelastic neutron scattering [178] has been repro-
duced (from the orginal data presented), together with a
calculation of c q, 00 ( ) for the nested Fermi surface sheet
(which agrees with that of Rhee et al [179]). It is clear that the
softening is very profound around the nesting vector, but it is
still possible that this pronounced softening (over a range of
wavevectors) is due to the q-dependence of the electron–
phonon coupling rather than Fermi surface nesting [182].
Note that the peak in the susceptibility coincides with the
magnetic ordering vector when the rare Earth is Er, Tb or Gd.

This Fermi surface has been measured, and the nesting
verified using positron annihilation [183, 184], and later by
ARPES [185]. The nesting feature (identified most clearly
from the full three-dimensional reconstruction of the Fermi
surface by Utfeld et al [184]) can be seen in figure 7, and was
determined to be  ´ p

0.54 0.02
a

2 [183]. The nested area is
rather small (extending as it does over some small range of kz,
see figure 3 of [184]), but the density of states there is rather
large thus increasing its significance.

Figure 6. Top: softening of the D4 x00[ ] phonons in LuNi2B2C
between 295K and 10K. The data have been taken from [178].
Bottom: calculation of the c q, 00 ( ) for the nested Fermi surface
sheet, with the arrow indicating the wave vector associated with the
magnetic order in ErNi2B2C [173, 174], TbNi2B2C [175, 176], and
GdNi2B2C [177].
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3. Summary and perspectives

By presenting some of the physical phenomena associated
with the existence of a Fermi surface, and emphasising the
particular importance attached to its shape, the continuing
importance of the fermiologist’s endeavour has hopefully
been made clear. In short, the Fermi surface has been shown
to be the unifying concept behind a variety of electronic
behaviours in metals. The examples of phenomena are not
meant to be exhaustive, and indeed many interesting ideas
have been omitted or only covered superficially (e.g. uncon-
ventional superconductivity). The Fermi surface is often the
battleground for competing ordering phenomena, for example
when superconductivity and CDWs appear to fight for control
of the Fermi surface in YBa2Cu3O6.67 [186].

Much of the discussion has focused on understanding
things that happen as a result of features of the Fermi surface
topology. It is also possible to think about tuning the elec-
tronic structure (for example via doping, or through the
application of pressure or magnetic field) to engender specific
properties. A great example to conclude with is the idea of

‘engineering’ a nested Fermi surface by doping the delafossite
CuAlO2 in order to create a transparent superconductor, an
idea suggested by Katayama-Yoshida et al [187].
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