

Life Prediction Model for Grid-Connected Li-ion Battery Energy Storage System

Kandler Smith*, Aron Saxon, Matthew Keyser, Blake Lundstrom National Renewable Energy Laboratory

> Ziwei Cao, Albert Roc SunPower Corp.

American Control Conference Seattle, Washington May 23-26, 2017

NREL/ PR-5400-68759

*<u>kandler.smith@nrel.gov</u>

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Applications of Energy Storage (ES) on the Grid

Example Application: Behind-the-meter ES enables PV use in locations such as Hawaii (where power export is prohibited)

Figure: "Solar Plus: An Holistic Approach to Distributed Solar PV" Eric O'Shaughnessy, Kristen Ardani, Dylan Cutler, Robert Margolis (NREL Pub #68371)

Outline

- Degradation mechanisms
- Modeling approach
- Aging tests
- Model and parameter identification
- Example life prediction

Li-ion Working Principles

Figure credit: Gi-Heon Kim

Electrochemical Operating Window

Electrochemical Window – Degradation

NREL Battery Life Predictive Model Framework

Reduced-order models for physical fade mechanisms, e.g.

- SEI growth & damage
- Particle fracture
- Electrode isolation
- Electrolyte decomposition
- Gas generation, delamination
- Li plating

Semi-automated software aids model equation selection and parameter identification

Mechanism	Trajectory equation	State equation	Parameters			
Diffusion-	$x(t) = kt^{1/2}$	k(k)	k – rate			
controlled	<i>x</i> (<i>t</i>) - <i>nt</i>	$\dot{x}(t) = \frac{\kappa}{2} \left(\frac{\kappa}{x(t)} \right)$	(p=1/2)			
Kinetic-	x(t) = kt	$\dot{x}(t) = k$	k–rate			
controlled			(p=1)			
reaction Mixed	(4) 1-40	(1-n)	k - rate			
diffusion/	$X(t) = Kt^{\mu}$	$(k) \left(\frac{k}{p}\right)$	p – order,			
kinetic		$x(t) = kp\left(\frac{1}{x(t)}\right)$	0.3 <p<1< td=""></p<1<>			
Diffusion controlled	See Appendix A	$\dot{D} = \frac{dN}{d} k_{D} \left(\sqrt{D}\right)^{p}$	k – rate p – order			
reaction with		$dt = \frac{1}{2}$	p crucr			
mechanical damage		$\dot{x}_0(t) = \frac{\kappa}{2} \left(\frac{\kappa}{x(t)} \right)$				
		$\dot{x}_j(t) = D \frac{k}{2} \left(\frac{k}{x(t)} \right)$				
Cyclic fade– linear	x(N) = kN	$\dot{x}(N) = k$	k – rate (p=0)			
Cyclic fade – accelerating.	$x(N) = \left[x_0^{1+p} + kx_0^p (1+p)N\right]^{\frac{1}{1+p}}$	$\dot{x}(N) = k \left(\frac{x_0}{x_0} \right)^p$	k – rate p – order,			
D 1 :	()) () () () () () () () () ((x(N))	$0 \ge p > 3$			
process	$x(t) = M(1 - \exp(-kt))$	$\dot{x}(t) = k(M - x(t))$	м– maximum			
-	or $x(N) = \dots$		fade			
Simucidal			k–rate			
reaction	$x(t) = M \left[1 - \frac{2}{1 - \frac{1}{1 - 1$	$\dot{x}(t) = \frac{2MkpX(t)\exp(kX(t))}{[1+e^{-k}X(t)]^2}$	maximum			
	$\left[1 + \exp(kt^p)\right]$	$[1 + \exp(kX(t))]^{-1}$	fade			
	or $x(N) = \dots$	$\left[1 \left(2\right)\right]^{\frac{1}{p}}$	p – order			
		$X(t) = \left\{ \frac{1}{k} \ln \left(\frac{2}{1 - x(t)/M} - 1 \right) \right\}$				
x, D: state variables						
$k_{\rm c}, k_{\rm D}$: fade rates						
p: order M: maximum extent of fade						

S. Santhanagopalan, **K. Smith**, J. Neubauer, G.-H. Kim, A. Pesaran, M. Keyser, Design and Analysis of Large Lithium-Ion Battery Systems, Artech House, 2015.

NATIONAL RENEWABLE ENERGY LABORATORY

Model assumes measured capacity is minimum of:

- 1. Cycleable lithium, Q_{Li}
- 2. Negative electrode sites, Q_{neg}
- 3. Positive electrode sites, Q_{pos}

Aging tests – Kokam 75Ah Gr/NMC Li-ion cells

- Tests design to include both benign and highly accelerated aging
 - Some real-world, some reaching 30% capacity fade in 6-9 months
- Pure storage (0%), partial cycling (50% DC*), & fully accelerated cycling (100% DC)
 - Separate calendar from cycling fade
- Capacity check run at test temperature
 - Simplifies testing but makes model ID more difficult
- Ideal test matrix would include more aging conditions

Gr = Graphite negative electrode NMC = Nickel-Manganese-Cobalt positive electrode

Cycling tests					
Temperature	DOD	Dis./charge	Duty-	# of	
lemperature		rate	cycle*	cells	
23°C	80%	1C/1C	100%	2	
30°C	100%	1C/1C	100%	1	
30°C	80%	1C/1C	50%	1	
0°C	80%	1C/0.3C	100%	2	
45°C	80%	1C/1C	100%	1	
Storage tests					
Tomporaturo	SOC			# of	
lemperature				cells	
30°C	100%			1	
45°C	65%			1	
45°C 100%			1		
55°C 100%			1		

C/5 Capacity vs. Time

- Tight agreement for replicate cells 1&2 at 23°C
- Some divergence for replicate cells 6&7 at 0°C
- Unexplained temporary capacity increase for 55°C storage cell

C/5 Capacity vs. Cycles

- Storage data omitted
- Just 6% capacity loss after 3000 cycles at 23°C, 80% DOD

Capacity Evolution–Reversible and Irreversible

Q_{Pos} Capacity Break-in & Initial Temperature Dependence

• Hypothesize initial cycles induce microcracks in NMC particles, increasing electrolyte wetting and surface area

Q₁₁ Local Models

Local models: Separately fit b₀, b₁, b₂ for each data set, excluding

5

- First 50 days of data (allows y-intercept to vary with break-in) 0
- Knee at 0°C (to be captured later with Q_{neg} model) 0

Frror = Model - Data

Choice of mechanisms justified by • R²=0.990 and flat residuals

Q_{Li} Magnitude of break-in Li-loss

Q₁ Calendar fade rate

U . (V)

Q_{Li} Global Model

- With equations known, parameters fit to all data simultaneously
- R² = 0.985, RMSE = 1% of capacity, flat residuals

NATIONAL RENEWABLE ENERGY LABORATORY

Q_{Neg} Model

- Captures knee with cold temperature cycling
- Minor importance in most real-world scenarios

Lifetime analysis – PV self consumption

- Model reformulated in rate-based form
- SOC(t) discretized into microcycles, DOD_i, using Rainflow algorithm
- Application data

Conclusions

- Battery energy storage can enable increased integration of renewable power generation on the grid
- Battery life modeling methodology formalized, aiding systems design process
 - Capacity error: $L_2 = 1\%$, $L_{\infty} = 5\%$
 - For studied Gr/NMC Li-ion ES technology, best to restrict daily cycles < 55% DOD with occasional larger excursions
 - Thermal management extends life from 7 to 10 years
- Battery aging experiments are time consuming & expensive
- Additional model validation needed
 - Longer duration
 - Variable cycling & temperature
- Life model accuracy may be enhanced in the future by coupling with electrochemical modeling & diagnostics

- U.S. DOE Office of Energy Efficiency and Renewable Energy Solar Energy Technologies Program
- SunPower Corporation

Extra Slides

Previous Validation of Life Model

Eaton Corp. ARPA-E AMPED project resulting in 35% smaller HEV battery (PI: Dr. Chinmaya Patil/Eaton)

Cell-level aging tests Prognostic model characterization

Pack-level HIL tests HEV prognostic control algorithm validation

Model tuned to 6 months simple cell aging data matches 33 months 4-season cycling with same accuracy