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Abstract. The LifeCLEF challenge BirdCLEF offers a large-scale prov-
ing ground for system-oriented evaluation of bird species identification
based on audio recordings of their sounds. One of its strengths is that
it uses data collected through Xeno-canto, the worldwide community of
bird sound recordists. This ensures that BirdCLEF is close to the condi-
tions of real-world application, in particular with regard to the number
of species in the training set (1500). The main novelty of the 2017 edi-
tion of BirdCLEF was the inclusion of soundscape recordings containing
time-coded bird species annotations in addition to the usual Xeno-canto
recordings that focus on a single foreground species. This paper reports
an overview of the systems developed by the five participating research
groups, the methodology of the evaluation of their performance, and an
analysis and discussion of the results obtained.
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1 Introduction

Accurate knowledge of the identity, the geographic distribution and the evolu-
tion of bird species is essential for a sustainable development of humanity as
well as for biodiversity conservation. The general public as well as professionals
like park rangers, ecological consultants and of course the ornithologists them-
selves are potential users of an automated bird identifying system, typically in
the context of wider initiatives related to ecological surveillance or biodiversity
conservation. The LifeCLEF bird challenge BirdCLEF proposes to evaluate the
state-of-the-art of audio-based bird identification systems at a very large scale.
Before BirdCLEF started in 2014, three previous initiatives on the evaluation of
acoustic bird species identification took place, including two from the SABIOD6
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group [6,5,1]. In collaboration with the organizers of these previous challenges,
the BirdCLEF 2014, 2015 and 2016 challenges went one step further by (i) sig-
nificantly increasing the species number by an order of magnitude, (ii) working
on real-world social data built from thousands of recordists, and (iii) moving
to a more usage-driven and system-oriented benchmark by allowing the use of
meta-data and defining information retrieval oriented metrics. Overall, these
tasks were much more difficult than previous benchmarks because of the higher
confusion risk between the classes, the higher background noise and the higher
diversity in the acquisition conditions (different recording devices, contexts di-
versity, etc.). They therefore produced substantially lower scores and offered a
better progression margin towards building real-world generalist identification
tools.
The main novelty of the 2017 edition of the challenge with respect to the previ-
ous years was the inclusion of soundscape recordings containing time-coded bird
species annotations. Usually xeno-canto recordings focus on a single foreground
species and result from using mono-directional recording devices. Soundscapes,
on the other hand, are generally based on omnidirectional recording devices that
monitor a specific environment continuously over a long period. This new kind of
recording reflects (possibly crowdsourced) passive acoustic monitoring scenarios
that could soon augment the number of collected sound recordings by several or-
ders of magnitude. In this paper, we report the methodology of the performance
evaluation as well as an analysis and a discussion of the results achieved by the
5 participating groups.

2 Dataset

As the soundscapes appeared to be very challenging in 2015 and 2016 (with
an accuracy below 15%), new soundscape recordings containing time-coded bird
species annotations were integrated in the test set (so as to better understand
what makes state-of-the-art methods fail on such contents). This new data was
specifically created for BirdCLEF thanks to the work of three people: Paula
Caycedo Rosales (ornithologist from the Biodiversa Foundation of Colombia
and Instituto Alexander von Humboldt, Xeno-canto recordist), Herv Glotin (bio-
accoustician, co-author of this paper) and Lucio Pando (field guide and ornithol-
ogist). In total, about 6,5 hours of audio recordings were collected and annotated
in the form of time-coded segments with associated species name. This dataset
is composed of two main subsets:

Peru soundscapes, about 2 hours (1:57:08) 32 annotated segments:
recorded in the summer of 2016 with the support of Amazon Explorama Lodges
within the BRILAAM STIC-AmSud and SABIOD.org project. These recordings
have been realized in the jungle canopy at 35 meters high (the highest point of
the area), and at the level of the Amazon river, in the Peruvian basin. The
recordings are sampled at 96 kHz, 24 bits PCM, stereo, dual -12 dB, using mul-
tiple systems: TASCAM DR, SONY PMC10, Zoom H1.



Colombia soundscapes, about 4,5 hours (4:25:55), 1990 annotated seg-
ments: These documents were annotated by Paula Caycedo Rosales, ornithol-
ogist from the Biodiversa Foundation of Colombia and an active Xeno-Canto
member.

In addition to these newly introduced records, the test set still contained the
925 soundscapes and 8,596 single species recordings of BirdCLEF 2016 (col-
lected by the members of Xeno-Canto7 network, see [7] for more details).

As for the training data, we consistently enriched the training set of the 2016
edition of the task, in particular to cover the species of the newly introduced
time-coded soundscapes. Therefore, we extended the covered geographical area
to the union of Brazil, Colombia, Venezuela, Guyana, Suriname, French Guiana,
Bolivia, Ecuador and Peru, and collected all Xeno-Canto records in these coun-
tries. We then kept only the 1500 species having the most recordings so as to get
sufficient training samples per species (48,843 recordings in total). The training
set has a massive class imbalance with a minimum of four recordings for Lan-

iocera rufescens and a maximum of 160 recordings for Henicorhina leucophrys.
Recordings are associated to various metadata such as the type of sound (call,
song, alarm, flight, etc.), the date, the location, textual comments of the au-
thors, multilingual common names and collaborative quality ratings. All audio
records are associated with various meta-data including the species name of the
most active singing bird, the species of the other birds audible in the back-
ground, the type of sound (call, song, alarm, flight, etc.), the date and location
of the observations (from which rich statistics on species distribution may be
derived), some textual comments by the authors, multilingual common names
and collaborative quality ratings. All of them were produced collaboratively by
the Xeno-canto community.

3 Task Description

Participants were asked to run their system so as to identify all the actively
vocalising birds species in each test recording (or in each test segment of 5 sec-
onds for the soundscapes). Up to 4 run files per participant could be submitted
to allow evaluating different systems or system configurations (a run file is a
formatted text file containing the species predictions for all test items). Each
species had to be associated with a normalized score in the range [0, 1] reflecting
the likelihood that this species is singing in the test sample. For each submitted
run, participants had to signal if the run was performed fully automatically or
with human assistance, and if they used a method based only on audio analysis
only or with the use of the metadata.

Participants were asked to run their system so as to identify all the actively
vocalising birds species in each test recording (or in each test segment of 5
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seconds for the soundscapes). The submission run files had to contain as many
lines as the total number of identifications, with a maximum of 100 identifications
per recording or per test segment). Each prediction had to be composed of a
species name belonging to the training set and a normalized score in the range
[0, 1] reflecting the likelihood that this species is singing in the segment. The
used evaluation metric used was the Mean Average Precision.

The evaluation metric used to compare the systems is the mean Average
Precision (mAP) averaged across all queries, considering each audio file in the
test set as a query and computed as:

mAP =

∑Q

q=1
AveP (q)

Q
,

where Q is the number of test audio files and AveP (q) for a given test file q is
computed as

AveP (q) =

∑n

k=1
(P (k)× rel(k))

number of relevant documents
.

Here k is the rank in the sequence of returned species, n is the total number of
returned species, P (k) is the precision at cut-off k in the list and rel(k) is an
indicator function equaling 1 if the item at rank k is a relevant species (i.e. one
of the species in the ground truth).

4 Participants and methods

78 research groups registered for the BirdCLEF 2017 challenge. Five of them
finally submitted run files and four of them submitted working notes describing
their system. Details of the used methods and evaluated systems are synthesized
below (by alphabetical order) and further developed in the working notes of the
participants [9,4,10,3]:

Cynapse, Austria, 4 runs [3]: This system is based on a multi-modal deep
neural network taking audio samples and metadata as input. The audio is fed into
a convolutional neural network using four convolutional layers. The additionally
provided metadata is processed using fully connected layers. The flattened con-
volutional layers and the fully connected layer of the metadata were joined and
put into a large dense layer. For the sound pre-processing and data augmenta-
tion, they used a similar pipeline as the best system of BirdCLEF 2016 described
in [2]. The two runs Cynapse Run 2 and 3 mainly differ in the FFT window size
used for constructing the time-frequency representation passed as input to the
CNN (respectively 512 and 256). Cynapse Run 4 is an average of Cynapse Run
2 and 3.

DYNI UTLN, France, 2 runs [10]: This system is based on an adaptation of
the image classification model Inception V4 [11] extended with a time-frequency
attention mechanism. The main steps of the processing pipeline are (i) the con-
struction of a multi-scaled time-frequency representation passed as a RGB image



to the Inception model, (ii) data augmentation: random hue, contrast, bright-
ness, saturation, random crop in time and frequency domain and (iii) the training
phase relying on transfer learning from the initial weights of the Inception V4
model (learned in the visual domain using the ImageNet dataset).

FHDO BCSG, Germany, 4 runs [4]: Like the DYNI UTLN team, these
participants based his system on an adaptation of an image classification model,
i.e Inception V3 [12]. Audio records were encoded through spectrograms and fur-
ther processed by applying bandpass filtering, noise filtering, and silent region
removal. For data augmentation purposes, they intended to use time shifting,
time stretching, pitch shifting, and pitch stretching. Unfortunately, the data
augmentation was not properly executed and the learned models suffered from
overfitting problems. The first three runs differ in term of preprocessing, while
the Run 3 is an average of the runs: Run 2 manipulates binary pictures and
Run 4 uses grayscale pictures. Run 1 exploited the 3 RGB channels: the original
grayscale picture in one channel, its blurred and sharpened versions for the two
other channels.

TUCMI, Germany, 4 runs [9]: This system is also based on convolutional
neural networks (CNN) but using more classical architectures than the Inception
model used by DYNI UTLN. The main steps of the processing pipeline are (i)
the construction of magnitude spectrograms with a resolution of 512x256 pix-
els, which represent five-second chunks of audio signal, (ii) data augmentation
(vertical roll, Gaussian noise, Batch Augmentation) and (iii) the training phase
relying on either a classical categorical loss with a softmax activation (TUCMI
Run 1), or on a set of binary cross entropy losses with sigmoid activations as an
attempt to better handle the multi-labeling scenario of the soundscapes (TUCMI
Run 2). TUCMI Run 3 is an ensemble of 7 CNN models including the ones of
Run 1 and Run 2. TUCMI Run 4 was an attempt to use geo-coordinates and
time as a way to reduce the list of species to be recognized in the soundscapes
recordings. Therefore, the occurrences of the eBird initiative were used comple-
mentary to the data provided within BirdCLEF. More precisely, only the 100
species having the most occurrences in the Loreto/Peru area for the months of
June, July and August were kept in the training set.

5 Results

Figure 1 reports the performance measured for the 18 submitted runs. For each
run (i.e. each evaluated system), we report the Mean Average Precision for the
three categories of queries: traditional mono-directional recordings (the same as
the one used in 2016), non time-coded soundscape recordings (the same as the
one used in 2016) and the newly introduced time-coded soundscape recordings.
To measure the progress over last year, we also plot on the graph the perfor-



mance of last year’s best system [2].

Fig. 1. BirdCLEF 2017 results overview - Mean Average Precision. The orange dot
line represents the last year’s best system obtained by the CUBE system [2].

It is remarked that all submitted runs were based on Convolutional Neural
Networks (CNN) confirming the supremacy of this approach over previous meth-
ods (in particular the ones based on hand-crafted features which were performing
the best until 2015). The best MAP of 0.71 (for the single species recordings)
was achieved by the best system configuration of DYNI UTLN (Run 1). That
rather similar to the MAP of 0.68 achieved last year by [2] but with 50% more
species in the training set. Regarding the newly introduced time-coded sound-
scapes, the best system was also the one of DYNI UTLN (Run 1) whereas it did
not introduce any specific features towards solving the multi-labeling issue. The
main conclusions we can draw from the results are the following:

The network architecture plays a crucial role: Inception V4 that was
known to be the state of the art in computer vision [11] also performed the
best within the BirdCLEF 2017 challenge that is much different (time-frequency
representations instead of images, a very imbalanced training set, mono- and
multi-labeling scenarios, etc.). This shows that its architecture is intrinsically
well-suited for a variety of machine-learning tasks across different domains. It
also reveals a convergence of the methods to be used for machine learning tasks
in the audio and the visual domain.



Ensembles of networks improve the performance consistently: This
can be seen through Cynapse Run 4 and TUCMI Run 3 that outperform the
other respective runs of these participants. The problem of such ensembles of
networks is that their practical use in real-world applications is limited. They
actually require a much higher GPU consumption so that their use in data
intensive contexts is limited by cost issues. A promising solution towards this
issue could be to rely on knowledge distilling [8]. Knowledge distilling consists in
transferring the generalization ability of a cumbersome model to a small model
by using the class probabilities produced by the cumbersome model as soft tar-
gets for training the small model. Alternatively, more efficient architectures and
learning procedures should be devised.

The use of a multi-label loss function provides some improvements
for soundscapes: The class-wise binary cross-entropy losses used in TUCMI
Run 2 did allow a consistent performance gain on the time-coded soundscapes
compared to the classical softmax loss in TUCMI Run 1. This was not enough
to compensate the gain due to the Inception v4 architecture in the DYNI UTLN
runs but we could expect a similar improvement with that architecture. Never-
theless, the multi-label loss function degrades the performance in the case of the
traditional mono-directional recordings. Thus, it should be used only for records
with many vocalizing birds such as the soundscapes.

The size of the FFT window used to construct the spectrograms
plays an important role: This aspect was one of the main factor evaluated by
the Cynapse team through their different runs. In particular, Cynapse Run 2 used
a FFT window size of 512 whereas Cynapse Run 3 used a FFT window size of
256. As shown on Figure 1, the smaller FFT window size enables a considerable
gain on the time-coded soundscapes probably because it reduces the overlap
of different bird species within each chunk. On the other side, it degrades the
performance on the traditional mono-directional recordings. On that content, a
larger FFT window size helps recognizing the main foreground species.

Location-based and time-based species filtering is promising: TUCMI
Run 4, that restricted the training set to the 100 most likely species according to
the probability of eBird’s occurrences did perform consistently worse than the
other runs of TUCMI (N.B: only the time-coded soundscapes have to be con-
sidered here, i.e. the green bar in Figure 1). This reveals an unfitting selection
of bird species. The period June-August in the Loreto/Peru area they used for
selecting the most likely species is actually fitting only the Peruvian subset of
the soundscapes not the Colombian one that is much larger. To better evaluate
the benefit of the filtering strategy of TUCMI team, Table 1 provides the re-
sults of their submitted runs detailed by country. It shows that on the Peru’s
subset, the location-based and time-based filtering (Run 4) is very effective. On
the other side, it degraded the performance on the Colombia subset because of
the unfitting selection. Overall, we believe such location-based and time-based
filtering is very promising for improving the performance. However, a finer and



more accurate species distribution model should probably be used. Using oc-
currence data solely for learning species distribution model is actually often not
possible because of strong sampling bias. Thus, in ecology, the prediction of the
presence or absence of a given species at a given location, is usually based on
environmental variables that characterize the environment encountered at that
location (e.g. climatic data, topological data, occupancy data, etc.).

Table 1: Results of TUCMI runs detailed by country (time-coded soundscapes
only)

All Colombia Peru

TUCMI Run 3 0,144 0,146 0,026
TUCMI Run 1 0,099 0,101 0,003
TUCMI Run 2 0,119 0,121 0,007
TUCMI Run 4 0,061 0,059 0,158

Learning from metadata was not really conclusive: The attempt of
Cynapse to use metadata as a context information passed to the neural network
did not allow to outperform the purely audio-based runs of DYNI and TUCMI
systems. However, as they used a less advanced network architecture it is difficult
to conclude on the real benefit of metadata learning. A run without the use of
metadata would have been required.

6 Conclusion

This paper presented the overview and the results of the LifeCLEF bird identi-
fication challenge 2017. The main outcome was that the best performing system
was based on a purely image-based convolutional neural network architecture
(Inception V4) applied to a standard time-frequency representation. This shows
the convergence of the best performing methods whatever the targeted domain.
As in many challenges, ensembles of networks also improved the performance
consistently even if their practical use in real-world applications is still limited.
Concerning the soundscapes-based passive monitoring scenario that was evalu-
ated this year, few additional conclusions came out: (i) the performance improved
over last year but remains globally low, (ii) few design considerations specific
to that contents allow consistent improvements such as a lower FFT window
size to construct the spectrograms or the use of a multi-label loss function in-
stead of a softmax. Finally, it was shown by one of the participant that the use
of location-based and time-based species filtering could be beneficial for a real-
world monitoring device that would be fixed at a given place. Such approach is
now facilitated by the huge volume of occurrences collected and shared by the
eBird citizen science project. Even the raw spatial frequency of the occurrences
gives a rather good estimate of the observable species at a given place. However,



this might not help identifying the less abundant species that are often the ones
that need a further follow-up.
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