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ABSTRACT  

Aging is usually accompanied by a significant reduction in muscle mass and force. To determine the 

relative contribution of inactivity and aging per-se to this decay, we compared muscle function and 

structure in a) male subjects belonging to a group of well-trained seniors (average of 70 years) who 

exercised regularly in their previous 30 years; b)  age-matched healthy sedentary seniors; c) to active 

young men (average of 27 years). The results collected show that relative to their sedentary cohorts, 

muscle from senior sportsmen have: 1) greater maximal isometric force and function; 2) better preserved 

fiber morphology and ultrastructure of intracellular organelles involved in Ca2+ handling and ATP 

production; 3) preserved muscle fibers size resulting from fiber rescue by re-innervation; and 4) lowered 

expression of genes related to autophagy and ROS detoxification. All together our results indicate that: 

a) skeletal muscle of senior sportsmen is actually more similar to that of adults than to that of age-

matched sedentaries; b) signaling pathways controlling muscle mass and metabolism are differently 

modulated in senior sportsmen to guarantee maintenance of skeletal muscle structure, function, 

bioenergetic characteristics and phenotype. Thus, regular physical activity is a good strategy to attenuate 

age-related general decay of muscle structure and function. ClinicalTrials.gov: NCT01679977 
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INTRODUCTION  

Aging is a multifactorial process influenced by genetic factors, nutrition, and lifestyle (1, 2). One of the 

most striking effects of aging on humans is a reduction in muscle mass, known as sarcopenia, which 

occurs to different degrees in all individuals and results in reduced functional capacities (strength and 

endurance). Contributing factors include a severe decrease in both myofiber size and number (3) and a 

decrease in the number of motor neurons innervating muscle fibers (4,5). Age-related reduction of 

muscle strength/endurance, though, has also been attributed to factors other than simple reduction of 

muscle mass, (6,7). Reduced amount of Ca2+ ions available to sustain muscle contraction (8) and 

impaired ATP production (9) are definitely important factors to taken into account to explain reduced 

specific force and resistance to fatigue of skeletal muscle (6). Miss-function of excitation-contraction 

(EC) coupling, the mechanism linking the action potential into Ca2+ release from the sarcoplasmic 

reticulum (SR), may be the result of an age-related decrease in the number of calcium release units 

(CRUs) (10).  Impairment in ATP production may depend on mitochondrial dysfunction (9,11) and 

possibly reduced number and miss-placement, as mitochondria-CRUs cross-talk seems to be crucial for 

efficient ATP production (12-14).  

In addition, as maintenance of muscle mass can be also regulated by anabolic (e.g., insulin-like growth 

factor-1 [IGF-1]) and catabolic (e.g., Atrogin-1, MuRF-1) factors, and by energy supply (15-18), 

sarcopenia may be also the result of deregulation of this fundamental molecular pathways.  Moreover, 

the emerging field of microRNA (miRNA or miR) biology has begun to uncover roles for these 

regulatory molecules in skeletal muscle development and disease processes.  

One of the crucial issues that would need to be addressed is the relative contribution of aging itself and 

of inactivity (i.e. sedentary lifestyle) to the dramatic changes that we just described. For example we 

know that muscle disuse can induce a rapid down-regulation of PGC-1 transcript, the master gene for 

mitochondrial biogenesis (19). Additionally, oxidative stress - also elevated in disused muscle (20) -  

may play a role in age-related deterioration of intracellular organelles (contractile elements, sarcotubular 

membranes, mitochondria, etc.) and related cellular functions (21,22).  
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Several studies have shown that regular exercise may extend life expectancy and reduce morbidity in 

aging (23-26). Exercise regulates one of the most important anti-ageing system that is the autophagy 

pathway. Indeed, autophagy is important for clearance of damaged organelles and proteins allowing 

rejuvenation of cellular components.  In this study, we aimed to define the impact of regular physical 

activity on the age-related changes that occur in muscle by comparing muscle function and structure in a 

group of lifelong-trained senior men to that of two other groups of men: i) age-matched healthy 

sedentary seniors, and ii) young active subjects. Our hypothesis is that lifelong physical activity may 

counteract age-related decline of muscle functional output and muscle fiber ultrastructure, also 

activating specific signaling pathways associated with muscle homeostasis, metabolism, and oxidative 

stress. 

METHODS 

Study Subjects. Subjects were male volunteers who received detailed information about the study and 

gave informed consent (demographic details in Table 1). Approval from the ethical committees of the 

City of Vienna and the Comenius University in Bratislava was obtained at the study outset. Three  

groups of subjects were enrolled: a) young subjects: 19-33 years of age (n = 5), physically active for 3, 

but no more than 5, times a week; b) healthy sedentary seniors: 65-74 years of age (n=9), performing 

only routine daily activities; and c) senior sportsmen: 65-79 years of age (n=15), who routinely 

practiced (lifelong) sport activities usually more than three times a week (Table 2). All subjects were 

healthy and declared not to have any specific physical/disease issues. For detailed inclusion and 

exclusion criteria: ClinicalTrials.gov. NCT01679977. All of the senior sportsmen (group c) declared to 

have a lifelong (30 years) history of high level training.  

Force measurements. An isometric measurement using a force chair (Wise Technologies, Lubljana, 

Slovenia) was performed to assess the maximal isometric torque (MIT) of the left and right knee 

extensors (18).  

Functional Tests. Functional tests were designed and applied to all groups: 

http://www.clincaltrial.gov/
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1) 10m-walking test. Subjects walked 10 meter at their preferred speed and then again at a very fast pace 

(27); - 2) short physical performance battery (SPPB). Lower extremity function was evaluated using 

tests of gait speed (2.4 meters), standing balance and the time which the subject needed to rise from a 

chair five consecutive times as quickly as possible with the arms folded across their chest (28); 3) static 

and dynamic body sway tests. Subjects maintained three positions during quiet stance on a force plate 

(static body sway) (29-31) or stood on a force plate with their hands placed on their hips, knees fully 

extended and their gaze directed forward at a display which provided feedback on the center of pressure 

displacement (dynamic body sway) (29); and 4) TUGT. Subjects stood up from a standard chair, walked 

a distance of 3 meters as fast as possible, turned, walked back to the chair and sat again (32). Statistical 

analyses. Force measurements and functional tests were analyzed for normal distribution using the 

Kolmogorov-Smirnov-Test and a one-way analysis of variance (one-way ANOVA) (post-hoc analyses: 

Tukey-HSD, Tamhane-T2) test was used to evaluate group differences using a SPSS Statistics software 

package, version 17.1. 

Muscle biopsies. Needle muscle biopsies were harvested through a small skin incision (6 mm) from the 

right and left Vastus Lateralis muscles of each patient (33). Resulting specimens were fixed for either 

light or Electron Microscopy (10,34,35). 

Light Microscopy and quantitative histological analyses. Serial cryosections (8 m) from muscle 

biopsies were mounted on polysine™ glass slides, air-dried and stained either with Hematoxylin and 

Eosin (H&E) or conventional techniques for myofibrillar ATPases to evaluate muscle fiber type.  For 

ATPase stains, slow-type fibers are dark while fast-type fibers are lightly stained following 

preincubation at pH 4.35. Fiber type grouping is identified on the basis that one myofiber is completely 

surrounded by fibers of the same phenotype. Morphometric analyses were performed on stained 

cryosections using Scion Image for Windows version Beta 4.0.2 (2000 Scion Corporation) (34,36). 

Statistical analyses. The differences in mean myofiber diameter and percentage of fast and slow 

myofiber type between groups were analyzed using the two-tailed Student’s t test (Microsoft ® Office 

Excel ® 2007, Microsoft Corporation). 

http://en.wikipedia.org/wiki/Computer_program
http://en.wikipedia.org/wiki/Computer_program
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Transmission Electron Microscopy (EM) and quantitative analyses of CRUs and mitochondria.  

Biopsy specimens fixed for EM (in 3.5% glutaraldehyde in 0.1 M CaCaCo buffer, pH 7.4, RT) were 

rinsed in 0.1 M CaCaCo buffer and post-fixed for 1h in 2% osmium tetroxide. The specimens were 

prepared, and analyzed (10,12,35). CRU and mitochondrial number/area (and their position relative to 

the sarcomeres) was determined from electron micrographs of non-overlapping regions randomly 

collected from longitudinal sections. In each specimen, 6 to 10 fibers were analyzed and in each fiber 6 

to 10 micrographs were collected at 14,000X magnification. In each EM image, we determined: a) the 

number of triads and their morphology (discriminating between triads and dyads) and orientation 

(transversal vs. longitudinal) (Table 5); and b) number of mitochondria as well as their positioning 

with respect to the I and A bands, and to triads (Table 6). For additional detail on quantitative analysis 

see (12). The relative volume occupied by mitochondria (Table 6, column A) was determined using 

well-established stereology point-counting techniques (37,38) in EM micrographs taken at 14.000X of 

magnification. Statistical analyses. The results presented in Tables 5 and 6, are shown either as: 1) 

average (± SD) number of CRUs/100m2 (Table 5, column A), mitochondria/100m2 (Table 6, 

columns B and C), or mito-CRU couplets/100m2 (Table 6, column D) of sectional area; here, 

statistical significance was determined using a Student’s t test (Microcal Origin® 6.0 Microcal 

Software, Inc.), and differences were considered statistically significant at p<0.01; or 2) percentage 

(Table 5, columns B and C; Table 6, column A); here we used a chi-squared test to evaluate statistical 

significance (Microsoft ® Office Excel ® 2007, Microsoft Corporation), differences were considered 

statistically significant at p < 0.01. 

miRNA and gene expression analyses. Total RNA was extracted from muscle using tissue lyser 

(QIAGEN) in TriReagentTM (SIGMA) and small RNAs were purified using a PureLink miRNA 

Isolation Kit (Invitrogen). The miRNA fraction was reverse-transcribed using the TaqMan® 

MicroRNA Reverse Transcription Kit (Life Technologies); the other RNA fraction was reverse-

transcribed using a QuantiTect Reverse Transcription Kit (QIAGEN). Quantitative PCR was 

performed on an ABI PRISM 7500 SDS (Applied Biosystems, USA), using premade 6-
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carboxyfluorescein (FAM)-labeled TaqMan assays for GAPDH, IGF-1 Ea, IGF-1 Eb, IGF-1 Ec, IGF-1 

pan, (Applied Biosystems, USA), and for Atrogin1, MuRF1, Bnip3, p62, Nrf2, PGC1a, YY1 and 

SREBP1 (39). FAM-labeled TaqMan MicroRNA Assays for miR-1, miR-133a, miR-206 and U6 

snRNA (Applied Biosystems, USA) were performed. Quantitative RT-PCR sample values were 

normalized to the expression of GAPDH mRNA or U6 snRNA. Relative levels for each gene and 

miRNA was calculated using the 2-DDCt method (40) and reported as mean fold change in gene 

expression. Statistical analyses. Statistical analysis was performed with GraphPad Prism v5.0 

software; groups were compared by Mann-Whitney Rank Sum test. One-way ANOVAs were 

performed followed by the Bonferroni post hoc test. 

RESULTS  

Force measurements and functional tests. MIT was measured as a marker of muscle strength and was 

significantly higher in the young group compared to all other groups (Table 3); however, the force 

generated by healthy sedentary seniors was significantly lower compared to both young men and 

senior sportsmen (Table 3). Similarly, senior sportsmen had higher functional capacity compared to 

sedentary peers (TUGT and chair rise tests, Table 3).  

Histology and muscle morphometry. Muscle biopsies from seniors showed well-packed myofibers 

without inflammatory cell infiltrates, major degenerative changes or evidence of acute or chronic 

damage (Figure 1, A-C). In muscle from healthy sedentary seniors, some small angulated (denervated) 

myofibers were detected (Figure 1, B). The mean myofiber diameter was significantly higher in young 

subjects compared to healthy seniors (Table 4) and importantly was significantly higher in senior 

sportsmen compared to sedentary seniors for both fast and slow fiber types (Table 4). Interestingly, 

while the percentages of slow and fast type fibers in young subjects and sedentary seniors were 

comparable, a significantly higher percentage of slow type fibers was observed in senior sportsmen.  

Among the total number of myofibers analyzed in young active males, 0.3% have a mean myofiber 

diameter < 30 m (Table 4) which has been shown to be typical for denervated myofibers (34,41,42). 

This percentage increased significantly to 4.0% in healthy sedentary seniors, but only by a significant 
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2% in senior sportsmen (Table 4). Furthermore, in muscle from senior sportsmen, numerous fiber type 

groupings were detected (Figure 1, F, encircled), and less frequently observed in age-matched sedentary 

seniors. 

Ultrastructure of muscle fibers and quantitative analyses of CRUs and mitochondria. Qualitative EM 

reveals that the ultrastructure of fibers from senior sportsmen appears better preserved than that of 

healthy sedentary seniors (Figure 2). For example, mitochondria, which should be positioned at the I 

band in proximity of the Z-line (Figure 2A and C, white and black arrows), are often misplaced (Figure 

2A, empty arrows) in samples from sedentary seniors. Also, structure/position of EC coupling apparatus 

is abnormal with CRUs often being miss-oriented with respect to the longitudinal axis of the fiber 

(Figure 2B, arrows, enlarged inset). In some confined areas of fibers from sedentary seniors, decay in 

internal organization is more evident with possible accumulation of mitochondria and glycogen granules 

(Figure 2A, stars). In fibers from seniors sportsmen, though, the overall ultrastructure is strikingly better 

preserved: mitochondria often form pairs (Figure 2C, white arrows) on both sides of Z-lines (Figure 2C, 

black arrows points at Z lines); CRUs present as classic triads (Figure 2D, arrows), appear better 

oriented, and are frequently associated to a mitochondrion (Figure 2D, enlarged inset).  

We quantitatively analyzed frequency and positioning of CRUs and mitochondria inside individual 

muscle fibers. Inactive aging results in a drastic reduction in the number of CRUs (Table 5, A) and in 

the volume and number of mitochondria (Table 6, A and B) compared to young individuals. Also, 

structure, position and orientation of these two organelles is challenged by aging, as shown by increase 

of: a) dyad number, i.e., incomplete CRUs (Table 5, B); b) miss-oriented longitudinal junctions (Table 

5, C); and c) miss-positioned mitochondria at the A band (Table 6, C). The combined effect is that the 

frequency of mitochondria-CRU pairs is 3-fold lower with aging (Table 6, D). In fibers from senior 

sportsmen, we did not find significant improvement in the EC coupling apparatus (Table 5), even if the 

frequency of longitudinal CRUs is reduced in exercising individuals suggesting a slightly improved 

orientation of triads (Table 5, column C). Effect of exercise on the mitochondrial population appears 

far more striking: both number and volume of mitochondria in senior sportsmen are as high as in active 
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young subjects (Table 6, columns A and B) with marked preservation of organelle positioning (i.e.,  

fewer A band mitochondria; Table 6, column C). The maintenance of mitochondrial population  (Table 

6) results in a striking restoration of the frequency of mitochondria-CRU pairs (Table 6, column D), a 

parameter which is important for overall muscle performance as it could directly influence ATP 

production (13,43,44).  

Expression of relevant genes associated with muscle homeostasis. The maintenance of muscle mass is 

controlled by two parallel processes: cell and protein turnover, reflecting the balance between protein 

synthesis and degradation. Protein turnover is regulated by a highly conserved pathway composed of 

IGF-1 and a cascade of intracellular effectors that mediate its effects. In humans, three mRNA variants 

(known as IGF-1Ea, IGF-1Eb, and IGF-1Ec) with alternatively spliced-end have been identified (45). 

Real time PCR analysis did not revealed significant modulations in any of the IGF-1 isoforms in 

human muscle biopsies at different ages or with different physical activity status. In contrast, it should 

be noted that the expression of the IGF-1Eb isoform showed a trend toward an higher level in the 

muscle of seniors compared to young subjects (Figure 3A). The exact mechanisms of IGF-1Eb 

signalling are currently unknown. However, it can be activated, as compensatory mechanism, in 

response to exercise and damage to guarantee muscle homeostasis. 

We also analyzed the expression of the muscle specific atrophy-related ubiquitin ligases Atrogin-1 and 

MuRF1, and, similarly to IGF-1 transcripts, we did not observe any significant modulation among the 

different subjects (Figure 3B). 

MicroRNAs are an increasingly important class of small non-coding RNAs that regulate gene 

expression post-transcriptionally and different miRs have been characterized to be selectively 

expressed by muscle tissue (46). In senior sportsmen there was a significant down-regulation of miR-1, 

compared to healthy sedentary subjects, and with a transcription level similar to that observed in the 

muscle of young subjects (Figure 3C).  

In contrast, miR-133a expression showed a trend toward, not significant, an increase in the muscle of 

senior sportsmen compared to young and healthy sedentary subjects. Of note, in the muscle of senior 
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sportsmen we observed a significant up-regulation in miR-206 gene expression compared to young and 

healthy sedentary seniors (Figure 3C). miR-206 has been shown to play a specific role in the early 

events of regeneration by repressing Pax7 activity, thus allowing progression of the differentiation 

program (47).  

Mitophagy, mitochondrial function, and ROS detoxification. An alternative system that play a key role 

in the turnover of muscle protein and that is activated in several catabolic processes leading to muscle 

atrophy and wasting is the autophagy‑lysosome pathways. We monitored the expression of the critical 

enzymes involved in autophagy–lysosome and reactive oxygen species (ROS) detoxification. All 

evaluated autophagy-related genes were significantly up-regulated in sedentary senior subjects when 

compared to age-matched seniors sportsmen and young subjects (Figure 4A). In senior sportsmen the 

expression levels of Bnip3 and p62 are not as high as in sedentary seniors, being closer to that of the 

young subjects. We also monitored the expression of master genes involved in ROS detoxification and 

mitochondrial function: Nrf2 and PGC-1α (48,49) (Figure 4B). The transcription factor Nrf2 was 

strongly induced in healthy sedentary subjects when compared to either young men (Figure 4B). Senior 

sportsmen showed a significant induction of Nrf2 that, however, was significantly lower than in 

healthy sedentary seniors. PGC-1α expression was upregulated in healthy sedentary and senior 

sportsmen (Figure 4B) when compared to the young . 

To get further insight into mitochondrial function and metabolic response, we investigated expression 

YY1 and SREBP1, two transcription factors crucial for lipid homeostasis and protein synthesis (50) 

(Figure 4C). YY1 was significantly up-regulated in senior groups relative to the young men (Figure 

4C). SREPB1 expression was significantly up-regulated in healthy sedentary seniors (Figure 4C). 

Interestingly, relative to healthy sedentary subjects, senior sportsmen have significantly less SRBP1 

induction.  

DISCUSSION 

Muscle tissue changes with increasing age and often these changes result in a decline of muscle mass 

and performance. In the present study, we show that senior sportsmen have a high retention of both 
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myofiber size and function when compared to sedentary peers. The better functional output of senior 

sportsmen in comparison to age-matched healthy sedentary seniors may be related to the larger average 

size of both fast and slow type myofibers (Table 4). The observed higher percentage of slow type fibers 

in senior sportsmen relative to age-matched healthy sedentary seniors can be ascribed to the amount of 

endurance exercise that these subjects have performed on a lifelong basis, thereby augmenting oxidative 

muscle metabolism (51). It is important to note that fiber type groupings (i.e., reinnervation events) were 

predominantly detected in senior sportsmen, together with a smaller proportion of severely atrophic 

myofibers (diameter < 30 m) compared to healthy sedentary seniors. These findings indicate that 

denervation atrophy is counteracted by reinnervation in lifelong exercising seniors, as demonstrated in 

our previous study on a smaller group of subjects (37). 

The improvements in functional output noted in senior sportsmen could be also related to the better 

preserved ultrastructure of skeletal fibers Indeed, aging is associated with a significant lower number 

of CRUs, the structures responsible for transduction of the action potential into Ca2+ release from 

internal stores (Table 5), (SR), and of the organelles deputed to ATP production, i.e. the mitochondria  

(Table 6). EM structural data presented here indicate that the general organization of the metabolic 

apparatus is far better preserved in subjects who exercise regularly than in sedentary individuals (Figure 

2, Tables 5 and 6):  frequency of mitochondria is higher in athletic than in sedentary seniors with 

mitochondria being even more positively affected than EC coupling apparatus, with parameters similar 

to those of healthy young subjects (Table 6). However, the most significant result stemming from our 

EM quantitative studies is the frequency of CRU-mitochondria pairs, which is three times higher in 

senior sportsmen than in sedentary individuals (Table 6, D), a combined result of the higher frequency 

and improved positioning of both organelles. Recent work indicates that CRUs and mitochondria are 

functionally coupled, as entry of Ca2+ into the mitochondrial matrix is able to stimulate the respiratory 

chain and up-regulate ATP production when muscle is active (42-44). Some of us have also recently 

shown that mitochondria and CRUs are specifically linked to one another by small strands, or tethers 

(12). This mitochondria-CRU tethering seems to be crucial for bi-directional cross-talk between the two 
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organelles (14,44). As correct association between CRUs and mitochondria may be crucial for efficient 

ATP production, the findings presented in Table 6 D (together with higher myofiber size) is likely a key 

element explaining the significant improvement in muscle performance/endurance of lifelong exercising 

seniors. 

Our results on atrophy-related gene expression are consistent with a recent report of MYOAGE (45). In 

both groups of seniors, the ubiquitin ligases Atrogin-1 and MuRF-1 are not up-regulated in either 

healthy sedentary subjects or senior sportsmen when compared to young subjects. Conversely, in both 

studies the autophagy genes are strongly induced in healthy sedentary elderly, suggesting that autophagy 

is part of the mechanism(s) required for maintenance of muscle homeostasis (52-54). Interestingly, 

results from senior sportsmen show that exercise maintains some aspect of autophagy, for instance the 

gene Bnip3, which is involved in mitophagy, is not induced in senior sportsmen suggesting that the 

mitochondrial network is well functioning. Indeed, ultrastructural analyses confirmed that mitochondria 

are well preserved in lifelong exercised people.  

In the present study, we did not observe significant differences in the expression of hypertrophy-related 

gene IGF-1 isoforms in either sedentary or senior sportsmen; however, we did reveal a downregulation 

of miR-1 and an upregulation of miR-206 and miR-133a gene expression in senior sportsmen. This 

down-regulation of miR-1 expression is in line with the evidence indicating that miR-1 is downregulated 

after 7 days of functional overload in mice and that this downregulation was accompanied by a 45% 

increase in plantaris muscle weight (55). Moreover, it has been demonstrated that miR-1 is up-regulated 

in stimuli-mediated atrophy (56). 

Overall, a downregulation of miRNA-1 and the up-regulation of miR-206, in the senior sportsmen may 

represent another level of control on transcripts important for muscle homeostasis and satellite cell 

function. 

The differences in genes related to autophagy and/or selective mitophagy in healthy sedentary seniors 

in comparison to senior sportsmen could mirror a tendency of clear damaged organelles and proteins 

that would inevitably contribute to ROS production and weakness. It is well known that exercise 
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maintains/preserves mitochondrial function preventing ROS release. This may explain why Nrf2 is less 

induced in athletic than in sedentary seniors.  

Recent data concerning the transcription factors YY1 and SREBP (which play a critical role in glucose 

and lipid homeostasis) are also in favor of this hypothesis. Indeed YY1 interacts with PGC-1 via 

mTOR and controls expression of many genes of the insulin/IGF-1-Akt pathway, including IGF-1, 

Insulin receptor substrate 1 and 2, Akt1 and Akt2 (57). Inactivation of YY1 in muscle causes 

abnormalities of mitochondrial morphology and oxidative function associated with exercise intolerance 

(58). Therefore, the upregulation of YY1 during aging might compensate for both mitochondrial 

dysfunction and insulin resistance. SREBP1 upregulation may support the metabolic changes favoring 

the use of lipids rather than glucose as energy sources for ATP production. However, because SREBP1 

has recently been found to be a negative regulator of protein synthesis in muscle (50), its induction in 

healthy sedentary subjects may also account for lower protein synthesis in these subjects, while its 

lower level of induction in senior sportsmen may serve to maintain protein synthesis. Therefore, 

exercise would be expected to preserve glucose homeostasis, insulin sensitivity and protein synthesis, 

thereby, reducing age-related SREBP induction.  

The results of our study strongly highlight the importance of lifelong recreational sport activity in 

delaying progression of the age-related changes within skeletal muscle which negatively affect either the 

“quantity” or the “quality” of the muscle. Our findings further suggest that regular skeletal muscle 

contractility, voluntary or supported by a specifically designed neuromuscular electrical stimulator (56) 

may represent a good therapy to attenuate or reverse the decline of skeletal myofiber size, strength, and 

power associated with the ultra-structural abnormalities observed during aging.  In this regard, a specific 

well directed program of training could improve body balance, muscle structure and contractile 

properties in elderly subjects, which in turn are likely to improve quality of life and reduce risk of 

falling. 
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Table 1. Study subject demography. 

   Seniors  

 Young Healthy sedentary Sportsmen 

 (n=5) (n=9) (n=15) 

Age (years)  27.3 ± 4.2 $$^^ 71.4 ± 3.0 **  70.2 ± 4.0 ** 

Weight (kg)  73.8 ± 5.9  84.9 ± 10.08  81.7 ± 8.8 

Height (cm)  174.6 ± 4.0 177.3 ± 8.0  176.0 ± 4.9 

BMI (kg/m2)  24.2 ± 2.0 26.9 ± 2.0  26.3 ± 1.9 

  

Values are given as mean ± SD; BMI= body mass index. **p<0.01 vs. young; ^^p<0.05 vs. Sportsmen; 

$$p<0.01 vs. sedentary;   
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Table 2.  Weekly amount of training detailed by type and duration in senior sportsmen at biopsy.  

  

 

 

 Type of Training/week  Total amount of training/week 

    

 Force Endurance Game sports Duration Session  Duration 

Subject (%)   (%) (%) of session (hrs)   (no.) (hrs) 

 

1  100 0 0 1.5 3 4.5 

2  89 11 0 3.0 5 9 

3  100 0 0 3.0 3 9 

4  65 35 0 2.3 6 6.9 

5  0 100 0 2.0 3 6 

6 0 25 75 4.0 8 16 

7 17 33 50 5.0 7 12 

8 12.5 87.5 0 3.0 9 16 

9 10 80 10 5.5 5 10 

10 0 100 0 2.0 4 8 

11 14 86 0 4.0 3 7 

12  14 86 0 3.0 8 14  

13  0 100 0  1.5 4 6 

14 58 18 24 5.5 13 24.5 

15 0 100 0 2.0 6 12 

   

mean±SD 32.0±38.8 57.4±40.3 10.6±22.6 3.2±1.4 5.8±2.8 10.7±5.2  
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Table 3. Maximal isometric torque normalized to body mass and functional tests.  

 Seniors  

 Young Healthy sedentary Sportsmen   

Maximal Isometric 

Torque (Nm/kg) 3.2±0.6^^$$   1.7±0.3**^  2.2±0.3**$$ 

 

10-m test (normal, m/s)  1.6±0.2 1.4±0.1  1.5±0.3 

10-m test (quick, m/s)  2.5±0.1$$ 1.9±0.2**^^  2.3±0.4$ 

   

SPPB (total score)  12.0±0.0$ 10.9±0.9*  11.9±0.6  

SPPB (5x chair rise, s)  5.3±0.7$$ 11.9±2.1**^^  6.3±1.3$$  

 

TUGT (s)  4.0±0.2$$ 6.6±1.3**^  4.7±1.1$ 

Values represent mean±SD; TUGT= timed-up-and-go-test; SPPB= short physical performance battery; 

n.d.=not determined. Statistical significance: *p<0.05 vs. young; **p<0.01 vs. young; ^p<0.01 vs. 

Sportsmen; ^^p<0.05 vs. Sportsmen; $p<0.05 vs. sedentary; $$p<0.01 vs. sedentary; Nm=Newton-meter; 

m/s = meters per second. 

 



 25 

Table 4. Morphometric analyses of muscle biopsies. The mean myofiber diameter of muscle biopsies 

from young men is significantly higher than in all other groups, as well as in senior sportsmen when 

compared to sedentary seniors. No major differences in fiber type distribution were observed in healthy 

seniors compared to young subjects while a significant higher percentage of slow type fiber was 

detected in muscle biopsies from senior sportsmen. 

   

 Mean myofiber diameter   Myofiberdiameter 

 (m ±SD)  < 30 m (%) 

 

 All fibers Slow-type (%) Fast-type (%)  

Young subjects 73.4 ± 19.3^ 68.8 ± 21.8 (50)^ 76.8 ± 22.9 (50)^ 0.3^ 

Healthy sedentary seniors  56.2 ± 17.9# 54.8 ± 18.0 (54)# 51.0 ± 16.8 (46)# 4.0#   

Senior sportsmen 61.2 ± 17.1* 61.8 ± 15.8* (69)* 59.5 ± 18.2* (31)* 2.0*  

Statistical significance: ^ p < 0,01 vs senior sportsmen; # p < 0.01 vs young sportsmen; * p < 0.01 vs 

healthy sedentary seniors. 
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Table 5. Quantitative analysis of CRUs. Aging causes a drastic reduction in CRU number (A) and an 

increase in the number of dyads (B) and of longitudinal junctions (C). In fibers from senior sportsmen, 

we did not find significant improvement in the EC coupling apparatus (A and B), even if the frequency 

of longitudinal CRUs is reduced in exercising individuals suggesting a slightly improved orientation of 

triads (C).  

 

 A B C 

  CRUs /100 m2  Dyads (%) Longitudinal CRUs (%) 

Young subjects$  32.5±13.4 8.0  0.5 

Healthy sedentary seniors#  20.3±10.0 10.9  21.9  

Senior sportsmen§ 21.6±10.8* 13.8  10.6*  

Values are given as mean ± SD;  

$ Young subjects: n = 50 fibers total;  10 micrographs/fiber; 

# Healthy sedentary seniors: n = 52 fibers total;  6-10  micrographs/fiber;   

§ Senior sportsmen: n = 72 fibers total (6 for each sample); 6 micrographs/fiber. 

* Statistical significance: p < 0.01 
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Table 6. Quantitative analysis of mitochondria: exercise preserves the association between 

mitochondria and CRUs. Aging causes a dramatic decrease in mitochondrial volume and number (A 

and B) and a miss-placement of these organelles at the A-band (C). In senior sportsmen, both 

mitochondrial number and volume are as high as in young subjects (A and B) with an improvement in 

organelle positioning (i.e., lower frequency of A band mitochondria, C). Maintenance of mitochondrial 

population  results in a striking restoration of the frequency of mitochondria-CRU pair(D). 

 

A B C D  

 Mito V/V, no. of Mito no. of Mito at  no. of Mito-CRU  

 % of total /100 m2  A band/100 m2  pairs/100m2 

  

Young subjects$  5.3±2.9 50.0±20.1 1.8 (4.3%) 13.0±9.1  

Healthy sedentary seniors#  3.4±1.7 37.1±18.3 7.8 (22.2%) 5.9±5.5 

Senior sportsmen§  6.3±3.0* 52.0±21.3* 3.2 (6.6%)* 11.1±8.3* 

 

Values are given as mean ± SD;   

$ Young subjects: n = 50 fibers total;  10 micrographs/fiber;  

# Healthy sedentary seniors: n = 52 fibers total;  6-10  micrographs/fiber;   

§ Senior sportsmen: n = 72 fibers total (6 for each sample); 6 micrographs/fiber.  

* Statistical significance: p < 0.01 
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Figure 1. Exercise rescues age related fiber atrophy.  

 

Hematoxylin and Eosin stains (A-C) of muscle sections from young men (A), healthy sedentary seniors 

(B) and senior sportsmen (C) show well-packed myofibers without evidence of major degenerative 

differences. Fiber type distribution (D,E,F; ATPase pH 4.35) in young subjects (D) and healthy 

sedentary seniors (E) is similar, while in senior sportsmen slow type (dark) myofibers significantly 

increase  with accompanying fiber type grouping (encircled). Bars=100m. 
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Figure 2. Exercise improves cellular ultrastructure.   

 

Muscle fibers of healthy sedentary subjects (A-B) exhibit poor internal organization, having 

mitochondria often localized to the A band (A, empty arrows) instead of the I band (panel A, white 

arrows) in close proximity to the Z-line (A, black arrows). Decay of internal organization is evident (A, 

stars) and CRUs are often miss-oriented and abnormally structured (B, arrows and inset). In fibers 

from senior sportsmen (C-D), internal organelle structure and positioning  are strikingly better 

preserved: mitochondria more often form pairs (C, white arrows) on both sides of Z-lines (C, black 

arrows); CRUs have the classic triad structure (D, arrows) and are frequently associated with 

mitochondria (D, inset). Bars A and C=1m; B and D=0.5m.  
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Figure 3. Expression of genes and miRNA controlling muscle mass.  

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

Real time PCR analysis for the expression of IGF-1 isoforms (A), atrophy related genes (B) and 

miRNA (C) in human muscle biopsies from young, healthy sedentary senior and senior sportsmen 

subjects. Statistical significance: *p≤0.05; **p≤0.01; ***p≤0.001. 
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Figure 4. Expression of genes controlling autophagy, oxidative stress and muscle metabolism.  

 

      

              

 

 

 

 

 

  

 

 

 

 

 

  

 

   

Expression of genes related to: (A) autophagy, (B) regulation of ROS detoxification and mitochondria 

biogenesis and (C) modulation of lipid homeostasis and protein synthesis. Beclin1, NRF2, PGC-1a and 

YY1 genes are significantly upregulated in senior sportsmen relative to young men. Statistical 

significance: *p≤0.05; **p≤0.01; ***p≤0.001. 
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