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Cortical gyrification of the brain represents the folding characteristic of the cerebral cortex. How the 
brain cortical gyrification changes from childhood to old age in healthy human subjects is still unclear. 
Additionally, studies have shown regional gyrification alterations in patients with major psychiatric 
disorders, such as major depressive disorder (MDD), bipolar disorder (BD), and schizophrenia (SCZ). 
However, whether the lifespan trajectory of gyrification over the brain is altered in patients diagnosed 
with major psychiatric disorders is still unknown. In this study, we investigated the trajectories of 
gyrification in three independent cohorts based on structural brain images of 881 subjects from age 4 
to 83. We discovered that the trajectory of gyrification during normal development and aging was not 
linear and could be modeled with a logarithmic function. We also found that the gyrification trajectories 
of patients with MDD, BD and SCZ were deviated from the healthy one during adulthood, indicating 
altered aging in the brain of these patients.

Cortical gyri�cation of the brain represents the folding characteristic of the cerebral cortex, which increases the 
cortical surface area and thus the number of neurons in a limited cranium volume1. Cortical gyri�cation can be 
represented with the gyri�cation index (GI): a ratio of the total cortical inner surface area to the area of an outer 
surface that smoothly encloses the cortex2 (Fig. 1). �e GI increases with brain mass across species3, and GI 
decreases during healthy aging in humans4, 5. �e trajectory of brain cortical gyri�cation from childhood to old 
age in human is still unknown. Additionally, it was hypothesized that major psychiatric disorders, such as major 
depressive disorder (MDD), bipolar disorder (BD), and schizophrenia (SCZ), are progressive disorders associated 
with altered development and aging6–13. �is hypothesis is based on the association of these disorders with higher 
prevalence and earlier age of onset of age-related medical conditions14, 15 (e.g. cardiovascular diseases and demen-
tia), earlier cognitive decline16, and shortened telomere length17 compared to healthy controls (HC). It is possible 
therefore that the brain of patients with psychiatric disorders may also undergo abnormal changes during devel-
opment and aging. Studies with small sample sizes have shown regional brain gyri�cation alterations in patients 
with MDD18, BD19 and SCZ20, 21. However, it is still unknown whether the lifespan trajectories of gyri�cation over 
the brain are altered in patients diagnosed with these psychiatric disorders and whether there are di�erential 
courses among them. In this study, we investigated the trajectory of gyri�cation during normal development and 
aging in three independent cohorts. �e gyri�cation trajectory of healthy subjects made it possible for us to inves-
tigate the gyri�cation trajectories of patients with MDD, BD and SCZ with a normative refs 22–25. We hypothe-
sized that the gyri�cation trajectories of patients with these major psychiatric disorders would deviate from that 
of the healthy subjects. Our results will �ll the gap of our knowledge about the gyri�cation trajectory over the 
lifespan and provide a dynamic perspective of understanding the brain alterations in psychiatric disorders.
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Results
�e demographic information of the three independent cohorts is summarized in Table 1. In total, we have 510 
HC, 95 patients with MDD, 151 patients with BD-I and 125 patients with SCZ, from age 4 to 83. �e GI trajectory 
for HC was evaluated using the logarithmic function of age to �t the average GI trajectory (Eq. 1; see Materials 
and Methods), where a = 3.4000, b = −0.1746 and c = −2.9991. �e coe�cient of Pearson ‘s correlation between 
the GI estimated by Eq. 1 and the whole brain GI for the HC from all the three cohorts was r = 0.75 (p < 0.0001), 
accounting for 56.4% of the total variance in the average GI of all HC. Speci�cally, the GI estimated by Eq. 1 could 
account for 53.8% (r = 0.73; p < 0.0001), 66.2% (r = 0.81; p < 0.0001) and 28.3% (r = 0.53; p < 0.0001) variance of 
SA, NKI and COBRE samples, respectively. �e di�erence in the variance explained by the logarithmic function 
could at least partly be attributed to the individual di�erences within HC of each cohort, e.g., COBRE HC showed 
higher individual di�erence than the other two cohorts (Supplementary Materials Fig. S2). �e gyri�cation 

Figure 1. �e illustration of cortical gyri�cation index (GI) as a ratio of the area of inner contour surface to the 
surface area of outer contour area.

Characteristic HC (n = 510)
MDD 
(n = 95)

BD-I 
(n = 151)

SCZ 
(n = 125) F/X2 P value

Sample

 SA 225 95 151 —

 NKI 139 — — —

 COBRE 146 — — 125

Age, y* 4.83 0.0024

SA
8–65 9–62 8–68 —

27.7 ± 14.2 36.5 ± 16.5 32.1 ± 16.1 —

NKI
4–83 — — 19–64

33.6 ± 20.1 — — 38.4 ± 13.0

COBRE
18–63

38.5 ± 11.5

Gender** 15.32 <0.001

 Male 57.5%(293) 36.8%(35) 45.0%(68) 78.4%(98)

 Female 42.5%(217) 63.2%(60) 55.0%(83) 21.6%(27)

Table 1. Demographic information of all subjects. *Mean and standard deviation, p value according to 
ANOVA; **Relative (%) and absolute (n) frequencies; p value according to χ2 test; Abbreviations: BD-I, Bipolar 
1 Disorder; COBRE, Center of Biomedical Research Excellence; HC, Healthy Control; MDD, Major Depressive 
Disorder; NKI, Nathan Kline Institute; SA, San Antonio; SCZ, Schizophrenia.
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indices across the brain decreased over the lifespan (Fig. 2B; Supplementary Materials Fig. S3). Regional brain 
gyri�cation indices were generally higher during childhood and adolescence than adulthood, but the decrease 
rate was also more dramatic before adulthood.

�e GI trajectories of patients with MDD, BD-I and SCZ were estimated individually with Eq. 1 (Fig. 3A). �e 
GI estimated by Eq. 1 accounted for 54.8% (r = 0.74; p < 0.0001), 60.9% (r = 0.78; p < 0.0001) and 33.8% (r = 0.58; 
p < 0.0001) variance of MDD, BD-I and SCZ patients, respectively. BD-I (p = 0.0009) and SCZ (p = 0.0427) 
patients showed marked decrease of GI during adulthood, especially a�er the age of 40 (BD-I, p = 0.0021; SCZ, 
p = 0.0004), compared to HC (Fig. 3B).

To con�rm the GI trajectories of patients with psychiatric disorders are di�erent from the GI trajectory of 
healthy subjects, we estimated the parameters of Eq. 1 for each diagnosis group using resampling technique 
within each group. �e �tting parameters, a and b, were not di�erent across the HC in the three cohorts (Fig. S4). 
We found that the parameter a was lower than HC in MDD (Cohen’s d = −1.68; p < 0.0001) and higher in BD-I 
(Cohen’s d = 0.81; p < 0.0001) and SCZ (Cohen’s d = 1.22; p < 0.0001), while the parameter b, which indicated the 
decrease rate of GI, was higher (less negative) than HC in MDD (Cohen’s d = 1.66; p < 0.0001) and lower (more 
negative) in BD-I (Cohen’s d = −1.35; p < 0.0001) and SCZ (Cohen’s d = −1.48; p < 0.0001) than HC (Fig. 3C). 
�ese results showed that the GI of BD-I and SCZ decreased faster than HC during aging.

�e gyri�cation indices in multiple brain regions were signi�cantly lower in the patients with BD-I and SCZ 
than HC during aging a�er the age of 40 (Fig. S6). No signi�cant di�erence was found in MDD patients. �e 
group-level comparison was performed at each vertex of the cortical surface. Only vertices with p values lower 
than the threshold p values obtained at a false discovery rate (FDR)26, 27 of 0.05 were shown. No further cluster-
ing adjustment was performed. To con�rm the validity and uniformity of the combined HC sample, the HC of 
each of the three cohorts was compared to the combined HC sample, and no vertex was signi�cantly di�erent 
(Fig. S5). We also compared each of the patient samples to the corresponding HC sample within each cohort 
instead of the combined HC sample, and the results were similar to but less sensitive than the results with all HC 
(see Supplementary Materials Fig. S7).

Discussion
To our best knowledge, this is the �rst in vivo study to show the cortical gyri�cation index trajectory of the human 
brain over the lifespan, from age 4 to 83. During this age range, the GI trajectory follows a logarithmic function 

Figure 2. �e gyri�cation index trajectory during normal development and aging. (A) �e non-linear 
gyri�cation index trajectory for healthy subjects. �e trajectory was well �tted with GI = a + b * ln(age + c), 
where a = 3.4000, b = −0.1746 and c = −2.9991. Note that the thin light gray area along the black line indicates 
the 95% �tting con�dence of the trajectory. (B) Brain gyri�cation changes over lifespan. Regional gyri�cation 
was high in childhood and adolescence, but the decrease rate was also high during these periods. Overall 
gyri�cation indices across the brain were low in adulthood, but the decrease rate was also low. �e age ranges 
were chosen to best represent the gyri�cation changes. Only lateral view is shown, because the gyri�cation 
changes of medial regions over the lifespan was much less than the lateral regions (see Fig. S3). �e colors 
represent the GI values.
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of age. �is is an important advancement of our knowledge on human brain development and aging, as previous 
studies showed a linear decrease of GI during the adulthood4, 28. Based on post-mortem studies, the gyri�cation 
increases a�er birth29, 30, which was con�rmed by a recent longitudinal imaging study on children before the age 
of two31. However, when the gyri�cation of human brain reaches its peak during development is still unknown. 
Although there have been studies suggesting that the brain complexity keeps increasing until teenage32 and cer-
tain brain regions such as entorhinal cortex may have increased thickness until the age of 3033, our study suggests 
that the GI starts to decrease already around the age of four. �e cellular mechanisms underlying the gyri�cation 
are still unclear34, although theories have been raised based on mechanical tension35, stress-dependent folding 
and di�erential growth36, 37, regulated radial and tangential expansion38, axonal pushing39 and minimization of 
e�ective free energy associated with cortical shape3, 30. Most of these theories focused on the brain development 
during the young age, and the trajectory observed in the present study may be associated with di�erent mech-
anisms. �us, the gyri�cation trajectory established in this study will be valuable information that needs to be 
considered in the future gyri�cation theories considering both brain development and aging.

Our �ndings revealed abnormal gyri�cation trajectories in patients with major psychiatric disorders. �e GI 
in patients with BD-I and SCZ decreased faster than HC during aging. �e brain regions with altered gyri�cation 
indices in BD-I and SCZ are consistent with several previous brain imaging studies investigating them individu-
ally19, 20, 40, 41. Patients with SCZ showed a signi�cant decrease of GI in the dorsolateral prefrontal cortex, anterior 
cingulate cortex and supra-marginal cortex. �e prefrontal cortex is known to be crucial for executive function42 
and working memory43. �ese important cognitive functions are impaired in SCZ44, which has been linked to 
the dysfunction of dorsolateral prefrontal cortex, such as low activity, low N-acetylaspartate concentration and 
abnormal dopamine metabolisms45–47. �e anterior cingulate cortex is the key region for con�ict monitoring, 
motivation modulation and mood regulation48–50, the pathology of which has been shown in mood disorders and 
schizophrenia51–54. �e abnormally decreased gyri�cation indices of these regions are in line with the altered cog-
nitive monitoring and executive control55 in SCZ. �e GI decrease in patients with BD-I was less extensive com-
pared to patients with SCZ. However, lower GI in BD-I than HC in inferior frontal regions was consistent with 
previous studies on cortical gray matters56. We also found that the gyri�cation trajectory of patients with MDD 
might be di�erent from HC, as well as from BD-I and SCZ, but no brain region showed signi�cant alteration of 
gyri�cation in MDD. In fact, several studies with small sample size showed higher gyri�cation in MDD than in 
healthy controls57, 58, while some showed lower18, 59, which could be due to di�erences in genes or brain connec-
tions57, 59. Further studies will be necessary to clarify these inconsistent results. However, our results did show a 

Figure 3. Abnormal gyri�cation trajectories in patients with major psychiatric disorders. (A) Patients with 
MDD, BD-I and SCZ showed deviated gyri�cation index (GI) trajectories from the trajectory of healthy 
subjects. Note that the thin light gray area along the black line indicates the 95% �tting con�dence of the healthy 
trajectory. (B) �e whole brain GI of healthy subjects and all the psychiatric groups in di�erent age ranges. 
Patients with bipolar disorder and schizophrenia showed lower GI in the adulthood, especially a�er the age 
of 40. (C) Resampling results con�rmed that the parameters of the �tting function for the GI trajectories of 
patients with psychiatric disorders were di�erent from that of healthy subjects. Abbreviations: MDD, Major 
Depressive Disorder; BD-I, Bipolar 1 Disorder; SCZ, Schizophrenia; HC, healthy controls.



www.nature.com/scientificreports/

5Scientific RepoRts | 7: 511  | DOI:10.1038/s41598-017-00582-1

possible decrease of gyri�cation index in MDD at a young age, which can be con�rmed with future longitudinal 
studies focusing on pediatric MDD. �e more signi�cant decrease of gyri�cation in BD and SCZ compared to 
MDD could also be related to the possible damages due to manic episodes in BD and positive symptoms in SCZ 
indicated in the neuroprogression theory of BD and SCZ60, 61. In addition, this is in line with recent studies, which 
suggested that the number of manic episodes seems to be the clinical marker more robustly associated with brain 
changes and neuroprogression in BD61. Given that the psychiatric disorders have been a major burden62 in this 
aging world63, brain markers of abnormal aging, such as the gyri�cation index, may help us understand the mech-
anisms of brain aging, evaluate future strategies to slow down the degenerative process and relieve the burden 
caused by these major psychiatric disorders.

Some limitations should be considered in our study. �e GI trajectory over the lifespan was developed using 
only cross-sectional data, and longitudinal data with multiple follow-ups were necessary to map the individ-
ual GI trajectory and to compare the individual di�erences of the GI trajectory during aging. �e GI obtained 
with the automated algorithm was slightly higher than the ones in the previous studies31, 64. However, a recent 
study showed a similar range of GI using the same automated algorithm65. Our study covered a large age range 
of human lifespan from 4 to 83, but the GI trajectory before the age of four was not included. �is was due to 
multiple limitations, e.g., the data that were publicly available over the lifespan usually did not include children 
below the age of four; there were challenges to perform MRI scans on young children due to the head motion; and 
validation of the current automated algorithm on young children was still necessary.

In summary, the present study demonstrated for the �rst time that the gyri�cation of the human brain in vivo 
decreased non-linearly from the age of 4 to 83 and this process could be modeled with a logarithmic function 
of age. �e results were consistent across three independent cohorts. Moreover, by comparing the gyri�cation 
trajectories of healthy subjects and patients diagnosed with major psychiatric disorders, such as major depressive 
disorder, bipolar disorder, and schizophrenia, we provided consistent evidence that these disorders were asso-
ciated with abnormal gyri�cation during aging. �ese results will advance our knowledge about how our brain 
changes during normal and abnormal aging.

Materials and Methods
Samples. Structural brain images from 881 subjects were collected with T1-weighted magnetic resonance 
imaging (MRI) from three independent cohorts: a sample collected at San Antonio (the SA sample), a sam-
ple collected at Nathan Kline Institute - Rockland (the NKI sample)66 and a sample collected by the Centers of 
Biomedical Research Excellence (the COBRE sample). �e latter two samples were publicly available. All patients 
completed the Structured Clinical Interview for DSM-IV Axis I Disorders (SCID) and met the corresponding 
DSM-IV criteria for MDD, bipolar 1 disorder (BD-I) or SCZ. Healthy controls (HC) had no current condition or 
history of psychiatric dysfunctions. All subjects had no history of neurological diseases. Signed informed consent 
have been obtained from all the subjects. No identi�able image from a speci�c subject was used for publication. 
�e study protocols were approved by the Institutional Review Boards at the University of Texas at San Antonio 
in accordance with their guidelines and regulations.

Image Acquisition and Processing. �e SA sample was all acquired at one Philips 1.5 Tesla MRI scan-
ner (Philips Medical System, Andover, MA, USA) with a three-dimensional axial fast field echo sequence 
with the following parameters: repetition time (TR) = 24 ms, echo time (TE) = 5 ms, �ip angle = 40°, �eld of 
view (FOV) = 256 mm, slice thickness = 1 mm, matrix size = 256 × 256 and 150 slices. All scans were visually 
inspected to rule out gross artifacts. �e NKI sample was acquired at one 3 Tesla Siemens Magnetom TrioTim 
syngo scanner with a three-dimensional magnetization-prepared radio-frequency pulses and rapid gradient-echo 
(MPRAGE) sequence with the following parameters: TR = 2500 ms, TE = 3.5 ms, �ip angle = 8°, FOV = 256 mm, 
slice thickness = 1 mm, matrix size = 256 × 256 and 192 slices (see http://fcon_1000.projects.nitrc.org/indi/
pro/nki.html). �e COBRE sample was acquired at one 3 Tesla Siemens Magnetom TrioTim syngo scanner 
with a three-dimensional multi-echo (ME-MPRAGE) sequence with the following parameters: TR = 2530 ms, 
TE = 1.64, 3.5, 5.36, 7.22, 9.08 ms, �ip angle = 7°, FOV = 256 mm, slice thickness = 1 mm, matrix size = 256 × 256 
and 176 slices (see http://fcon_1000.projects.nitrc.org/indi/retro/cobre.html).

�e structural brain images were preprocessed and the cortical surface of each brain was reconstructed 
with Freesurfer67, 68 (version 5.3, http://surfer.nmr.mgh.harvard.edu/). �e reconstructed images were visually 
inspected by the authors to exclude the apparent reconstruction errors. �e local gyri�cation index (GI) at each 
vertex of the reconstructed cortical surface mesh was calculated using the toolbox in Freesurfer with default set-
tings69. Brie�y, a circular region of interest was delineated on the outer surface, and its corresponding region of 
interest on the inner cortical surface was identi�ed using a matching algorithm as described elsewhere70 and the 
ratio between the folded inner cortical surface and its corresponding exposed outer surface was calculated as GI. 
�e resulted GI values of each subject were smoothly sampled (Gaussian kernel, 10 mm) onto an average template 
provided by Freesurfer (fsaverage; 163842 vertices), so that cross individual comparison could be performed. �e 
averaged GI for each subject was also calculated to represent the gyri�cation of whole brain.

�e e�ect of brain volume on GI was taken into account for by adjusting the GI values with a linear regression 
of intracranial volume (ICV) on GI at each vertex and the whole brain GI, because previous studies found that the 
GI could be correlated with the brain volume31, 71.

Modeling Gyrification Trajectory as a function of Age. We compared the �tting of the whole brain 
GI with age from ten common mathematical functions and chose the best function based on the averaged mean 
squared errors (MSE). �e MSE of each �tting function was calculated with the non-linear �tting functions of 
the Statistics and Machine Learning Toolbox in MATLAB (�e MathWorks, Inc., Natick, Massachusetts, United 
States) using default settings. Because the COBRE sample only included adults, it was not involved in the function 
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selection process. For SA and NKI samples, the MSE of each function was calculated based on the residuals 
derived from two types of validation procedures: (a) a leave-one-out cross-validation within each of the two 
samples and (b) a cross-sample validation, in which a �tting function was optimized for one sample and tested 
on the other. �us, we had four MSEs for each function and the averaged of these MSEs was used as the �tting 
performance for the corresponding function as shown in Table S1. �e best function was the logarithmic function 
with three parameters.

As a result, we used the following logarithmic function of age to �t the average GI trajectory:

= + ∗ +a b ln age cGI ( ) (1)

where a was an indicator of GI levels independent of age, b controlled the decrease rate of GI over age and c 
was the translational term of age. �e initial value of a was set to 4, because the mean of the brain average GI 
values of all the HC subjects was around 3 and the maximum whole brain GI was near 4. �e initial value of b 
was set to −1, because GI apparently decreased with age. �e initial value of c was set to 0. We found that c was 
sensitive to the age range of the sample and we had varied age range in COBRE HC, MDD, BD and SCZ samples. 
Furthermore, c did not provide any information of the GI levels and trajectory shapes, and its value was consistent 
in SA and NKI HC samples. In order to reliably compare the GI trajectories of all the samples without changing 
the shape and levels of GI trajectory, we �xed the c value to −2.9991 according to the cross-validated �tting for 
the combined SA and NKI HC sample. �en each of the MDD, BD and SCZ groups was �tted separately.

GI was adjusted for study site by an amount of the estimated GI di�erence between the HC in each cohort and 
the combined SA and NKI HC sample at a given age [aHC + bHC ∗ ln(age + c)] − [aX + bX ∗ ln(age + c)], where X 
represents the sample of HC in SA, NKI and COBRE cohorts and the mean adjustment values were as small as 
−0.0023, 0.0043 and 0.0523, respectively. �e adjustment for the COBRE cohort was larger than the other two 
cohorts, because the GI in the COBRE HC sample was generally lower than the HC in the other two cohorts, 
which could also be observed in the mean GI of adult HC in the COBRE cohort (2.748) compared to the GI of 
adult HC in SA (2.7938) and NKI cohorts (2.7777). To further con�rm whether the adjustment introduced sig-
ni�cant e�ect in the SCZ sample in the COBRE cohort, we also compared the GI over the brain of HC and SCZ 
within the COBRE cohorts.

Although the samples showed di�erent distributions of males and females (see also72), which might have an 
e�ect on the GI trajectory of the samples with major psychiatric disorders, we found that e�ect of gender on GI 
was negligible a�er GI was adjusted by the ICV (Supplementary Materials Fig. S1). �is might indicate that the 
gender e�ect on GI could be mostly explained by the brain volume. �us, no further adjustment for gender was 
performed.

Estimating the Parameters with Resampling. In order to quantify the di�erence between the GI trajectories of 
HC, MDD, BD-I and SCZ, it was necessary to estimate the distributions of �tting parameters. We utilized the 
resampling technique. Brie�y, for each of the HC, MDD, BD and SCZ samples, the sample was re-sampled 10000 
times and the �tting was performed for each of the 10000 samples. In order to stratify the age distribution during 
the resampling, each sample was divided into four age blocks: 4–9, 9–18, 18–40 and 40–83. During each iteration 
of the resampling, 50% of the subjects in each age block were selected without duplicate. �us, we had 10000 sets 
of parameters for each sample, and it was then possible to estimate the distributions of the �tting parameters in 
di�erent samples.
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