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Lifespan maturation and degeneration of
human brain white matter
Jason D. Yeatman1,2, Brian A. Wandell1,2 & Aviv A. Mezer1,2,3

Properties of human brain tissue change across the lifespan. Here we model these changes in

the living human brain by combining quantitative magnetic resonance imaging (MRI)

measurements of R1 (1/T1) with diffusion MRI and tractography (N¼ 102, ages 7–85). The

amount of R1 change during development differs between white-matter fascicles, but in each

fascicle the rate of development and decline are mirror-symmetric; the rate of R1 development

as the brain approaches maturity predicts the rate of R1 degeneration in aging. Quantitative

measurements of macromolecule tissue volume (MTV) confirm that R1 is an accurate index

of the growth of new brain tissue. In contrast to R1, diffusion development follows an

asymmetric time-course with rapid childhood changes but a slow rate of decline in old age.

Together, the time-courses of R1 and diffusion changes demonstrate that multiple biological

processes drive changes in white-matter tissue properties over the lifespan.
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O
ver the past decade, it has become clear that white matter
plays a critical role in nearly every aspect of cognitive
development, healthy cognitive function and cognitive

decline in aging. Moreover, many psychiatric disorders—from
autism to schizophrenia—are associated with white-matter
abnormalities1,2. White-matter tissue properties change over
the lifespan and models of the biological principles underlying
these changes are critical for understanding the process of
brain maturation and for diagnosing abnormalities in the living
human brain.

Advances in quantitative magnetic resonance imaging (qMRI)
now make it possible to measure and model the biological
properties of tissue in the living human brain. Each qMRI
parameter is sensitive to different properties of the tissue3–11. By
combining the information from different types of qMRI
measurements and known biophysical properties of different
tissue types, it is possible to reason about changes in the biological
composition of the tissue over the lifespan.

To date, most qMRI investigations of lifespan changes in
white-matter tissue structure have focused on diffusion-weighted
magnetic resonance imaging (dMRI). Due to improvements in
dMRI acquisitions and software, spatially resolved measurements
of specific white-matter fascicles or tracts are now routine and
there is a substantial literature documenting changes in white-
matter diffusion properties over the lifespan12–17. From these
measurements, retrogenesis has emerged as a widely discussed
principle of brain development and aging18–21.

Retrogenesis postulates that late maturing tissue is particularly
vulnerable during aging and that tissue degeneration in the
aging brain follows the reverse sequence of tissue maturation in
the developing brain. This theory conceptualizes brain develop-
ment like building a pyramid where the base is stabilized before
additional layers are added. The top of the pyramid is the most
vulnerable to aging-related decline, while the base remains sturdy.
Retrogenesis has not been formalized in a manner that makes
specific quantitative predictions, and several distinct hypotheses
are discussed under the principle of retrogenesis17,21–23.

White matter is composed of many different types of tissue
including myelin, astrocytes, microglia and oligodendrocytes, and
each tissue type might change with its own unique time-
course14,24. For example, myelinated axons might change in a
manner that is consistent with the retrogenesis hypothesis, while
glial tissue might not. Diffusion measurements are open to many
biological interpretations9,25,26, and there may be multiple,
independent, biological processes active across the lifespan that
cannot be separated with diffusion measurements alone.

R1 (1/T1), a measure of the longitudinal relaxation rate of
water hydrogen protons in a magnetic field, provides
complementary information to measures of diffusion properties.
In white matter, R1 is primarily driven by variation in
myelin content (B90%; ref. 27). The significance of R1 for
biological measurements has been recognized for decades6,28,29,
but fast, accurate and reliable measurement methods have only
recently become available7,30,31. Here we employ a novel
quantitative R1 mapping procedure7 in combination with dMRI
and tractography to model the processes underlying changes in
white-matter tissue composition that occur between childhood
and old age.

Combining multiple measurement modalities makes it possible
to dissociate multiple biological processes that progress indepen-
dently over the lifespan. Consistent with the retrogenesis
hypothesis, in each fascicle the rate of R1 development as the
brain approaches maturity closely matches the rate of R1
degeneration in aging. Measurements of macromolecule tissue
volume (MTV) confirm that R1 is an accurate index of tissue
creation and loss. Unlike R1, diffusivity changes follow an

asymmetric time-course, revealing a second lifespan process that
does not follow the principle of retrogensis. Finally, we show that
these quantitative lifespan models of white-matter tissue changes
can be used to detect and quantify degeneration of specific
fascicles in individual patients with degenerative disorders of the
white matter (multiple sclerosis (MS)). Models of the processes
underlying healthy white-matter maturation will offer new insight
into the coupling between biological and cognitive development
and allow white-matter abnormalities to be rapidly diagnosed
and monitored.

Results
White-matter tissue properties change in relation to age.
We modelled changes in R1 relaxation (1/T1, s), MTV, mean
diffusivity (diffusivity) and fractional anisotropy (FA) for 24
fascicles (tracts) based on cross-sectional measurements of 102
participants between the ages of 7 and 85 years. Each MRI
parameter is sensitive to different tissue properties, and we
use these measurements to examine biological principles of
development and aging.

We begin by focusing on R1 changes over this 80-year period
of the lifespan and then compare the R1 measurements to the
MTV, diffusivity and FA measurements. The R1 value is affected
first by the amount of tissue (macromolecules and lipid
membranes) in a voxel: A voxel that is filled primarily with
water will have a much smaller R1 value (longer T1) than a voxel
that includes tissue. Second, the R1 value is affected by the type of
tissue28,29,32,33. Myelin, for example, has a particularly strong
impact on R1 values27 for two reasons. First, it is a particularly
dense tissue, in the sense that there are more macromolecules and
fewer water molecules in a volume filled with myelinated axons
compared with a volume filled with cellular tissue34. Second,
myelin membrane has a high cholesterol and galactocerebroside
content35. These molecules facilitate the longitudinal relaxation of
water protons32,36.

There were significant changes in R1, MTV, diffusivity and FA
between childhood, adulthood and old age for all fascicles. The
time-course of the changes varied among fascicles and among
MRI parameters. The diffusivity and FA measurements replicate
previous observations13, and the R1 and MTV measurements
provide novel insight into the biological principles of white-
matter development and aging.

Fascicles vary substantially in terms of their amount of lifespan
R1 change. Figure 1 shows each fascicle, color-coded based on the
amount of R1 lifespan change that can be modelled as a function
of age (measured cross-sectionally). Some fascicles, such as the
inferior longitudinal fasciculus (ILF), show substantial age-related
change in tissue composition as indexed by R1, while other
fascicles, such as the corticospinal tract (CST) show more stable
R1 values over the lifespan.

The uniqueness of each fascicle’s R1 time-course can be
appreciated by examining voxel-wise estimates of R1 change.
There are sharp changes in development rates at the border of
fascicles. For example, R1 in the optic radiation is stable over the
lifespan (blue), while the immediately adjacent ILF and inferior
fronto-occipital fasciculus change substantially (red). Even
directly adjacent fibre tracts with different cortical destinations
show very different developmental patterns. For example,
within the corpus callosum the motor fibres (blue) are stable,
while fibres destined for the prefrontal cortex change considerably
(yellow-red).

R1 development and aging are symmetric for each fascicle. We
find that each tract has a signature R1 value that is consistent
along its length for a subject (Supplementary Fig. 1). While the
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R1 value along a tract is nearly constant, the mean R1 value
of a tract often differs substantially from the R1 values of
neighbouring tracts in the same hemisphere (410 s.e.m.,
Po0.0001).

From childhood (7 years of age) to adulthood (B40 years of
age), R1 increases significantly within all tracts, and the
magnitude of change varies significantly among tracts (Fig. 2).
R1 values for each tract reach their peak, mature level between 30
and 50 years of age. The values then decline, returning to their
8-year-old levels between age 70 and 80. For every tract we
evaluated, the R1 growth curves are well fit by a symmetric curve
such as a second order polynomial (parabola) over the measured
80-year period of the lifespan. This implies that the rate of growth
and decline are symmetric during a period of the lifespan lasting
from the beginning of elementary school through senescence. As
R1 is sensitive to the creation of new tissue, particularly myelin27,
the R1 data are consistent with the idea that the rate of tissue loss
during brain aging mirrors the rate of tissue creation between
childhood and early adulthood.

Tracts differ substantially both in their mature R1 values as
well as the magnitude of R1 changes over the lifespan. For
example, the mature R1 values of the anterior thalamic radiations
and CST are equivalent to the childhood/old-age R1 values of the
cingulum, arcuate fasciculus, superior longitudinal fasciculus
(SLF) and ILF. Moreover, the developmental increase and age-
related decline in R1 for the cingulum and ILF are nearly double

that of the CST and anterior thalamic radiations. The uncinate
fasciculus has a substantially lower R1 value than all other tracts
yet also shows a particularly large increase in R1 during
development and decline in R1 during aging.

Fascicles differ in the axon calibre distribution, myelination
and packing density, and these properties influence information
transmission and cortical computation37,38. Variations in mature
R1 levels and rate of change between fascicles reflect differences in
the tissue composition.

Changes in MTV predict changes in R1. To better understand
the biological underpinnings of the R1 signal we model the
relationship between developmental changes in R1 and changes
in macromolecule volume within each fascicle. Maps of MTV
fraction were computed for each subject using a revised version of
the method described in the study by Mezer et al.7 It has been
suggested that in brain tissue, R1 is principally sensitive to the
volume fraction of tissue (macromolecules and lipid membranes)
versus water filling the voxel6,7,33. Creation of new non-water
tissue (that is, MTV) within a voxel should cause a predictable
increase in the voxel’s R1.

The amount of R1 development was calculated for each fascicle
as the difference in R1 at 10 years of age versus adulthood (peak
R1 between 40 and 50 years of age). To test the relationship
between R1 changes and MTV changes we used a model7,27,33 to

Motor callosum Occipital callosum
Left corticospinal Right corticospinal
Left SLF Sup. parietal callosum
Right arcuate Right SLF
Post. parietal callosum Sup. frontal callosum
Left thalamic radiation Temporal callosum
Left arcuate Ant. frontal callosum
Right thalamic radiation Right IFOF
Right cingulum cingulate Left IFOF
Right IFL Orbitofrontal callosum
Left cingulum cingulate Left ILF
Right uncinate Left uncinate

Motor callosum

Lifespan change in R1 (1 s –1)
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Figure 1 | Fascicles vary in the amount of lifespan R1 change. Twenty-four fascicles identified with the Automated Fibre Quantification software (AFQ) are

shown for a 37-year-old male. In the top panel, the lateral aspect of the left hemisphere has been removed to view the white matter within the brain

volume. In the middle panel, the white-matter fascicles are shown without the cortical surface. Each fascicle is coloured based on the amount of change in

R1 (R1 at peak minus R1 at age 8) over the lifespan (cross-sectional); blue corresponds to less change and red to more change. The same fascicle colours are

used throughout the manuscript. The bottom panel shows the magnitude of R1 change for each voxel in the brain (computed by registering each

participant’s R1 map to a custom R1 template). The sharp differences between the development rates of adjacent tracts are clearly apparent in the

corpus callosum (anterior versus posterior) and temporo-occipito white matter (ILF/IFOF versus optic radiations (OR)). Ant, anterior; Post, posterior;

Sup, superior.
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predict the amount of MTV change for each fascicle based on the
measurements of R1 change:

1

1�MTV
¼ 0:42�R1þ 0:95 ð1Þ

The measurements of MTV change closely matched the
R1-based predictions of MTV change (R2¼ 0.90), confirming

that over development, new tissue is the principle mechanism
underlying changes in R1 (Fig. 3).

Diffusivity changes more in development than in aging.
Replicating previous reports, mean diffusivity declines rapidly
between childhood and adulthood, but then shows a slow and
steady increase beginning in the late 30s and 40s (ref. 13;
Supplementary Fig. 2). The diffusivity data are not well fit by a
symmetric model such as a second order polynomial because the
rate of change in development is much more rapid than the
change in aging. A Poisson curve captures this asymmetry13.
Unlike R1 values, diffusivity values at age 80 do not return to
their 8-year-old level.

Diffusivity development rates also vary among tracts. For
example, the SLF and cingulum show significantly more lifespan
change than the CST. This observation is consistent with previous
reports13.

Within each tract the diffusivity and R1 lifespan curves differ
substantially from each other (Fig. 4a). Hence, these two
parameters measure different biological processes in the white-
matter. There is only a weak relationship between the amount of
change in R1 and diffusivity for a tract (r¼ 0.39, P¼ 0.06). For
example, the R1 values in the ILF change considerably more
(150%) than the R1 values in the SLF. Yet, there is no difference
in their lifespan diffusivity changes. In a separate example,
diffusivity in the left SLF changes much more (50%) than in the
left CST. Yet there is no difference in their lifespan R1 changes.

Furthermore a tract’s mature diffusivity level is not well-
predicted by its mature R1 level. For example, at maturity the
CST has the lowest diffusivity value of all the tracts yet its mature
R1 level is not comparatively high or low (Fig. 4b). Hence the two
measurements capture different properties of the underline tissue
like axons and glia that compose a fascicle.
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Figure 2 | R1 lifespan curves demonstrating each fascicle’s pattern of maturation and degeneration. R1 lifespan curves are shown for each of the

24 fascicles, ordered based on the amount of change in R1 over the lifespan. The width of the line denotes the 95% confidence interval around the

second order polynomial model fit. There is a highly significant developmental increase and aging decline in R1 values for all fascicles. The age of peak R1

(±95% confidence interval) is shown by a bar at the bottom of each plot. The R1 values for each individual do not depend on the specific dMRI acquisition

used to define the tracts: R1 values are highly consistent when an individual’s tracts are defined using a low b-value (1,000ms� 2) or high b-value

(2,000ms� 2) acquision (R2¼0.93). Post, posterior; Sup, superior.
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Multiple processes govern white-matter development and aging.
Two observations support the assertion that there are multiple,
independent, biological processes governing age-related changes in
white-matter tissue properties and that qMRI is sensitive to these
processes. First, the amount of change in R1 is independent of the
amount of change in diffusivity. A large change in R1-sensitive
tissue is not linked to a large change in diffusivity-sensitive tissue
(Fig. 4a). Second, the two measures follow different lifespan
functions (Parabola versus Poisson; Fig. 4c).

To understand the extent of the relationship between R1 and
diffusivity, we used a polynomial model to predict R1 from
diffusivity for each tract. On an average, diffusivity predicts
25% of the variance in R1 values (95% confidence interval
(CI)¼ 19–30%). Consider the residual errors in this model (that
is, the variance in R1 that is not predicted by diffusivity or DR1).
If lifespan changes in R1 and diffusivity arise from the same
biological processes, there should be no relationship between DR1
and age. But in fact, age predicts a significant amount (on an
average 10%) of the DR1 variation (Po0.01, 95% CI¼ 8–12%
variance explained). This highlights (1) that each parameter is
weighted to be sensitive to different properties of the tissue, and
(2) different tissue properties evolve independently over the
lifespan. There are similarities between the measures, but
knowing the amount and timing of change in diffusivity for a
tract only weakly predicts the change in R1 (Fig. 4a).

The similarities and differences between R1 and diffusivity can
be appreciated by plotting the mean lifespan curve for each
parameter on the same graph (Fig. 4c). The measurements for all
24 fascicles are summarized with a local regression model. The
local regression model can assume any smooth shape and is a
non-parametric way to compare the shape of lifespan curves for
different parameters. Interestingly both curves develop until they
peak at an age of 33 years, remain stable for B10 years, and then
reverse their direction with aging. However the rate of diffusivity
growth is steeper than the rate of R1 growth, while the rate of
diffusivity decline is shallower. While R1 shows a symmetric
shape, with an equivalent value in childhood and senescence,
diffusivity values do not return to their childhood levels. The
difference in the preferred models for the different qMRI
measures supports the hypothesis that multiple active biological
processes drive changes in the white matter.

Less lifespan change in FA compared with R1 or diffusivity.
The R1 and diffusivity values changed substantially and

systematically over the lifespan: 25–45% of the variation in the
measurements for a tract is predicted as a function of age. Over
the lifespan, mean tract FA changes are smaller, and on an
average only 10% of the variation in FA values across subjects are
accounted for by age (for any model in either the b¼ 2,000 or the
b¼ 1,000 data sets).

FA values are highly influenced by the distribution of axon
orientations within a voxel (coherence)25,26,39, and this feature of
the white matter may be stable across the ages we measured.
There is a lot of variability of the FA along each tract, and this
variation is far larger than the age-related FA changes
(Supplementary Fig. 1). The observed FA variation along each
tract was equivalent for the low and high b-value data sets. Hence,
tracts do not have a signature FA value that is consistent along
the tract length39. Analyses of FA development should model the
biological processes driving FA change at specific locations along
the tract.

Evaluation of retrogenesis. The principle of retrogenesis is
widely discussed in the literature18–21, but it has not been
formalized into a mathematical model and evaluated with respect
to lifespan measurements. Hence there are multiple, dissociable,
hypotheses that are consistent with the principle of retrogenesis.
The ‘gain-predicts-loss’ hypothesis proposes that the rate of
change is mirror-symmetric in development and aging: the more
that is gained before the peak, the more that will be lost after the
peak. The ‘last-in-first-out’ hypothesis states that the last regions
to develop are the first to decline. This hypothesis predicts that
the age at which development ends is negatively correlated with
the age at which degeneration begins: Early development predicts
a long period of stability and a late decline. These two ideas are
related, however the gain-loss prediction is about the symmetry of
the curve on either side of maturity, and the last-in-first-out
prediction concerns the relative timing of a region reaching its
mature state and the region beginning to degenerate.

To quantitatively evaluate the fit of these lifespan hypotheses to
white matter changes between the ages of 7 and 85, we fit the
measurements from each tract to four different models (see
Methods and Supplementary Fig. 3). One model is a simple
parabola (second order polynomial) that captures the idea of
gain-predicts-loss. The second model comprises multiple linear
segments joined at hinges (piecewise linear); this model tests the
hypothesis that the timing of development and decline are
correlated (last-in-first-out). The third model is a Poisson curve
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Figure 4 | Developmental processes driving R1 and diffusivity development are independent. (a) Each point shows the magnitude of R1 and diffusivity

change during development. The R1 changes are not well-predicted by the diffusivity change. For example, the inferior ILF shows significantly more

R1 change than the SLF (Po0.01) but they show the same amount of diffusivity change. (b) A tract’s mature R1 value is not well-predicted by its mature

diffusivity value. This observation highlights that each measure is sensitive to different properties of the tissue. Each point shows a tract’s mean (± 1 s.e.)

R1 and diffusivity value during adulthood. (c) R1 and diffusivity curves were standardized (z score, y-axises) and plotted on the same normalized

axis to show the similarities and differences between these measures over the lifespan x-axis (the diffusivity curve was also inverted to make comparison

easier). Diffusivity grows more rapidly and declines more slowly than R1. The diffusivity lifespan curve is asymmetric for every fascicle and for each fascicle

the shape of the diffusivity lifespan curve differs systematically from the R1 lifespan curve. Both R1 and diffusivity peak around the same age.
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that, in contrast to the parabola, has an asymmetric rise and
decline. Finally, a local regression model makes no assumptions
about the lifespan data and serves to capture any systematic
deviations of the data from the model predictions.

We evaluate the accuracy of each model using leave-one-out
cross validation. Cross-validated estimates of model accuracy (R2)
will decrease when an unnecessary parameter is included in a
model (over fitting). Hence, the cross-validated estimates of R2

can compare the accuracy of these different models.

Consistency of R1 with the gain-predicts-loss hypothesis. We
tested the gain-predicts-loss hypothesis by fitting a second order
polynomial (parabola) to the lifespan measurements (Fig. 5a).
The parabola fit the R1 data for each tract as well or better than
the more complex models (median R2¼ 24%). Each tract matures
at the same rate that it declines and a tract’s R1 values are
identical when measured at symmetric ages around the peak of
the curve (Fig. 5b,c).

The additional flexibility in the piecewise linear model (median
R2¼ 23%) and local regression (median R2¼ 23%) model are not
useful for describing R1 over the measured 80 years of the
lifespan because the rate of rise and decline in R1 are equal. The
additional flexibility in those models fits the noise (over-fits) and
increases the cross-validated error. The R1 curves are consistent
with the ‘gain-predicts-loss’ principal of white-matter develop-
ment and aging. Tracts with large R1 gains during childhood
show large R1 declines during aging and tracts with minimal R1
gains do not show substantial aging-related degeneration.
Measured by R1, the aging process (ages 50–85) resembles the
development process in reverse (ages 7–50).

Diffusivity shows differences between development and aging.
Measured by diffusivity, the aging process is not just the reverse
of development. The R1 data adheres to the prediction of the
gain-predicts-loss model, but the diffusivity data does not. The
slope of diffusivity development is significantly steeper than
the slope of aging (Po0.001, tested with the piecewise linear
model) and a parabola is unable to capture the asymmetry of
diffusivity change on either side of the peak (Supplementary
Fig. 4).

A Poisson curve captures the asymmetric change13 and fits the
diffusivity measurements better than all other models (Po0.001,
median R2¼ 42%). For diffusivity the local regression and

piecewise linear models also fit the measurements better than
the parabola (Po0.001), but not as well as the Poisson curve
(Po0.001). Unlike R1, the rate of change of diffusivity differs
between development and aging.

Last-in-first-out hypothesis doesn’t predict R1 or diffusion.
The data do not support the last-in-first-out hypothesis: the age at
which a tract reaches maturity does not predict the age at which
it begins to decline. Figure 6 shows a scatter plot of the two
transition point parameters of the three segment, piecewise linear
model. The last-in-first-out hypothesis predicts a negative
correlation between these two parameters such that earlier
maturation predicts later aging. For R1, there was a weak positive
correlation (r¼ 0.43, P¼ 0.04), which is contrary to the
prediction of the last-in-first-out hypothesis. There is no sig-
nificant correlation for diffusivity (r¼ � 0.18, P¼ 0.38) or FA
(r¼ � 0.13, P¼ 0.52). If there is a link between the time a
tract reaches maturity and the time it begins to decline, the
effect is small.

From quantitative models to individual diagnosis. R1 is a
quantitative measure of tissue at a given magnetic field strength
(for example, 3T) meaning that R1 values are independent of the
specific scanner hardware7,31,40. Hence, a model of R1 growth
and decline can be used as norms for clinical and scientific
comparisons across institutions.

To confirm that our R1 measurements are truly quantitative
and do not depend on the specific hardware that is used to
measure the brain, we performed three control experiments.
First, we compare fascicle R1 values for the same individual
measured in separate sessions with two different head coils
(a custom made Nova 32-channel coil versus a stock GE
8-channel coil) and find that the R1 values are highly
stable (Fig. 7a, R2¼ 0.95). Second, we compare R1 measurements
acquired at 1mm3 resolution on a GE 3T scanner at the Stanford
University versus R1 measurements for the same individual
measured at 2mm3 on a Siemens 3T scanner at the Jerusalem
University. The Siemens measurements are noisier because the
sequence was optimized for the GE scanner: this can be
improved. But importantly, even with the differences in pulse
sequences, there was no systematic difference between the
two measurements (that is, bias) (Fig. 7b, R2¼ 0.79). Finally
we quantify the robustness of the measurements to head motion
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(b) The symmetry of change in R1 over the lifespan can be appreciated by plotting the R1 value in childhood and senescence for each individual tract.

The age of peak R1 was calculated and values are plotted at age 10 and at a symmetric number of years past the peak (senescence). In senescence,

R1 values return to the same level they were in childhood. For diffusivity, the values do not return to their childhood level (Supplementary Fig. 4b).

(c) R1 changes over the lifespan are symmetric for most voxels in the brain. Each participant’s R1 map was aligned to a custom, R1 template and the

voxel R1 value was calculated at age 10 and a symmetric number of years past that voxel’s peak. The childhood and old-age R1 values are closely

matched for each white-matter voxel (R2¼0.70).
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by measuring the same individual twice on the same scanner,
first, with minimal head motion and second, with moderate
head motion. The moderate head motion caused characteristic
artifacts in the raw images (for example, ripples) but did
not induce any systematic bias to the R1 measurements
(Fig. 7c, R2¼ 0.98).

The stability of the R1 measurements across different hard-
ware, pulse sequence, image resolution and subject motion, mean
that the normative model of healthy R1 development can be used
to detect and quantify tissue loss in individual patients with
degenerative diseases of the white matter including MS (Fig. 8).
Each individual with MS (N¼ 10) has regions of the white
matter that are substantially different from the model prediction
(43 s.d.). These highly abnormal regions correspond to MS
lesions. To test the specificity of this approach, a group of healthy,
age-matched participants was held out of the model construction
and compared with the normative model. The healthy partici-
pants did not have regions of highly abnormal R1 values (Fig. 8c,
black curve). The median R1 value across all white-matter voxels
for each individual with MS is also below the mean for his or her
age (Fig. 8c, blue tick marks); this effect is significant for the
group (Po0.001).

Discussion
We combined qMRI measurements of R1 and MTV with dMRI
and tractography to model white matter development and aging
over an 80-year period of the lifespan. Developmental processes
create new tissue that displaces water, leading to higher R1, MTV
and FA and lower diffusivity within the white matter. The R1
decline with aging is mirror-symmetric with the R1 increase
during development. We confirm that for each fascicle, R1
changes in development are tightly coupled to changes in MTV.
In the white matter, a majority of the macromolecules are
contained in myelin membrane34. The symmetry of the R1
changes during development and aging might be explained
if the tissue created late in childhood is equal to the tissue lost
during aging.

Unlike R1, the diffusivity change during aging is substantially
slower than the diffusivity change during childhood. Even though
tissue is lost during aging, the elderly brain does not revert back
to the biology of a child’s brain. There are multiple active lifespan
processes and not all of them are symmetric. This observation is
supported by histology in aging macaques, showing that axons
and myelin are lost but the continued creation of new astrocytes,
microglia and oligodendrocytes fill the empty space41,42.
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We used the qMRI measurements to test three quantitative
hypotheses regarding the biological principles of white-matter
development and aging. Evidence supports the gain-predicts-loss
(Fig. 5) and multiple-biological-process hypotheses (Fig. 4), but
the lifespan curves for R1, diffusivity and FA contradict the
last-in-first-out hypothesis (Fig. 6). These models concern
changes in brain tissue as the brain approaches maturity and
begins to decline, and there are certainly additional processes that
drive in utero43 and infant white-matter development5. The rapid
changes that occur in utero and during infant development might
be discontinuous with the changes measured between childhood
and 85 years of age. By extending the measured age range, future
work can confirm whether the symmetry of the curves extends
from infancy through the end of life or if additional, independent
mechanisms drive white-matter changes at the beginning and
end of life.

These observations highlight two important points. First, it is
unlikely that a single model characterizes changes in the myriad
of cell types in the brain. There is value, then, in using multiple
qMRI measurements that are sensitive to different tissue proper-
ties. Second, formalizing ideas such as ‘retrogensis’ into a
computational framework is essential for determining whether
it is a suitable principle to characterize brain development. The
concept of retrogensis formalized as a symmetric curve accurately
predicts changes in R1 over the lifespan, while retrogensis
formalized under the last-in-first-out model does not fit the data.

A major goal of human neuroscience is to understand the
cellular processes in the living human brain that drive changes in
cognitive function over the lifespan. There is an extensive
literature linking the biophysics of macromolecules composing
brain tissue to MR properties such as R1, MTV and diffusivity.
These qMRI measurements offer a unique opportunity to bridge
the gap between cognitive, systems and cellular neuroscience.

Before discussing how qMRI measurements extend our
understanding of the neurobiology of development and aging, it

is useful to consider what is already known from invasive studies
employing animal models and post mortem histology. Beginning
in the late prenatal period and continuing through childhood and
young adulthood, axons grow in calibre and oligodendrocytes
wrap myelin around these axons44. With each additional wrap of
myelin, the outer diameter of the axon increases. This additional
tissue provides a barrier to the diffusion process and reduces the
overall water content of the tract (which also affects R1) as
macromolecules fill the space that was once occupied by water
molecules. Even though a substantial number of underused axons
are removed (pruning) during development to free space for the
growth of pertinent axons45,46, overall there is an increase in
macromolecule content and a decrease in water content as a
child’s brain approaches maturity47.

The myelination process is determined both by intrinsic
genetic codes and extrinsic environmental factors44,48. The level
of electrical activity of an axon influences myelination, meaning
that the myelination process is modified through experience48,49.
Myelination speeds signal conduction between distant cortical
regions and together the distribution of myelin and axon calibre
in a pathway determines the rate, quantity and nature of signals
that a pathway transmits37,38,50.

There is a period of relative stability before the white matter
once again undergoes substantial changes due to aging processes.
Even though the number of neurons in the cortex remains
relatively constant, axons in the white matter begin to
degenerate51. Sandell and Peters41 demonstrate that the packing
density of axons in the macaque optic nerve declines from an
average of 28.85 per 100 mm2 in mature monkeys to 17.18 per
100 mm2 in old monkeys. The degeneration of axons appears to be
coupled with degeneration of their myelin sheaths: there is as
much as a fivefold increase in the number of microglia in aging
fascicles and many microglia are engorged with phagocytosed
myelin. Beyond the increase in the numbers of microglia, new
oligodendrocytes develop from oligodendrocyte progenitor cells
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Figure 8 | Automated diagnosis and quantification of white-matter lesions based on R1 lifespan curves. (a) Four patients with multiple sclerosis

(43–45 years of age) are compared with age-matched norms based on the model of R1 development (See Fig. 2). The grey bands show 1 and 2 s.d.

intervals around the mean for 44-year-olds on each tract. The mean R1 values for tracts with demyelinating MS lesions are substantially below the

healthy R1 values (43 s.d.) but even the normal appearing white matter has slighly lower R1 values than the average. (b) Comparing individual patient

data with a group localizes lesions and quantifies tissue loss. The tracts are shown for one patient (purple), who has large lesions in occipital callosal fibres

in both hemispheres. (c) A simple threshold identifies locations with substantial tissue loss. Ten age-matched, control subjects were left out of the curve-

fitting procedure and for each location on the tracts we compared the R1 value with the norm for the relevant position (black line). For the healthy controls,

very few locations on any tract exceed a 3-s.d. threshold, highlighting the specificity of the R1 comparison. The same analysis was applied to the MS

patients (N¼ 10, light blue histogram). These patients have many locations, where R1 values are more than 3 s.d. below the age-matched norms.

Each patient’s median R1 white-matter value (blue tick marks) is also below the norms.
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and the fanning astrocyte processes expand to fill many gaps left
by the degenerating axons42.

As the brain ages, some tissue degenerates but new tissue is also
created leading to large-scale changes in the cellular composition
of the white matter. The different mechanisms present in
development and aging are reflected in the quantitative MR data.
There is a rapid change in R1 and diffusivity during development,
with a symmetric rapid decline in R1 over aging but slow, gradual
change in diffusivity. One hypothesis that explains the pattern of
results is this: glial tissue that is created in the aging brain has a
substantially lower R1 value than the myelinated axons that are
lost. Diffusivity changes less because glial membrane barriers
effectively restrict water movement. Glial proliferation in the
aging brain could explain why diffusivity does not decline as
sharply as R1.

Myelin membrane is particularly rich in cholesterol and
galactocerebroside35,47. These two macromolecules have a
particularly large impact on R1 relaxation rates of water
molecules32. Moreover, unlike other cell structure, myelin has
many tightly wrapped membrane layers yielding particularly high
density of macromolecules versus water molecules. R1 decreases
roughly linearly with the volume of water molecules in a
voxel7,52,53. The lifespan data demonstrate that R1 changes can
explain with great accuracy the MTV changes. Many studies
suggest that R1 is a good index of myelin variation across brain
regions27,54–56; however, any decrease in water content due to
additional tissue in a voxel also increases R1. Moreover,
biochemical processes that change the type of macromolecules
and ions affect R1 without affecting the MTV values. For this
reason, both measurements contribute to our understanding of
white-matter maturation and degeneration.

R1 and diffusivity measurements differ substantially when
comparing voxels packed with cells (grey matter) and those
packed with myelinated axons (white matter). The diffusivity in
grey and white matter is roughly equivalent, suggesting that
diffusion barriers are similar in both types of tissue. But the mean
R1 in white matter is almost double the mean R1 in grey matter7,57.
In aging, R1 declines steeply but diffusivity only slowly. Hence, the
data support the view that in aging there is degeneration of
myelinated white-matter axons and proliferation of glia.

What might cause the symmetry of the R1 lifespan curves?
The link between R1 growth and R1 decline may reflect a general
phenomenon regarding the link between plasticity and vulner-
ability of a brain region. Connections between gene expression
across the lifespan are an important future step for understanding
the molecular mechanisms that produce the circuit level changes
we measure in the living human brain.

These data provide the first benchmark of R1 in the healthy
brain across a large portion of the lifespan. Because the R1 data
are quantitative, an individual scanned at any location in the
world can be compared with the normative lifespan curves
established in this study. We demonstrate the utility of these
models for detection and quantification of MS lesions (Fig. 8).
This approach supports the goal of using qMRI to quantitatively
monitor healthy development and aging or disease progression
within an individual. While the current sample reported here is
too small to characterize the normal variation in white-matter
tissue properties across demographic groups, we hope that data
sharing across institutions will assist in obtaining larger, more
diverse samples. These data could prove useful in the early
identification, treatment and post-treatment monitoring of
myelin abnormalities in the developing, mature and aging brain.
Additional measurements are needed to understand how changes
in myelin affect cortical computations and resulting behaviours.

Combining in vivo biological measurements with behavioural
measurements will lead to models that explain the coupling

between biological and cognitive development. DMRI has
demonstrated robust correlations between diffusion properties
and behaviour, driving an interest in the role of white matter in
cognition but leaving the biology of these correlations a
mystery24. Combining diffusion tractography with measures of
diffusivity and R1 is a step towards inferring the biological
mechanisms that link white-matter tissue to cognition.

Methods
Summary. We used qMRI to measure changes in the tissue properties of 24 major
white-matter fascicles over the lifespan. The protocol included (1) a high angular
resolution diffusion imaging (HARDI) sequence that was optimized for the iden-
tification of each fascicle and the quantification of each fascicle’s diffusion prop-
erties and (2) a technique to quantitatively map R1 (1/T1), the longitudinal
relaxation rate of the MR signal, in each fascicle7. We measured 102 subjects
between the ages of 7 and 85 years.

The Automated Fibre Quantification (AFQ) software package was used to
identify 24 major white-matter fascicles from each individual’s diffusion data and
map the qMRI measurements to these fascicles39. The following sections describe
the subjects, MRI protocol and data processing in detail. Example code and data is
available at https://github.com/jyeatman/lifespan.

Subjects. The Stanford University Institutional Review Board approved all data
collection procedures and each adult participant provided informed consent and
each child participant assent with the consent provided by their parent/guardian.
The participants in the study were healthy volunteers recruited from the San
Francisco Bay Area based on flyers, advertisements in local papers and school
newsletters. All participants were screened for neurological, psychiatric and cog-
nitive disorders. However subjects were not screened for disorders that are likely to
occur later in life (for example, hypertension). The age distribution of the sample
purposefully included more subjects in the age bins that were expected to show the
largest change in tissue properties and fewer subjects in the age bins that were
expected to have stable tissue properties. There were 32 participants of age 7–12, 14
participants of age 13–18, 12 participants of age 19–29, 11 participants of age
30–39, 7 participants of age 40–49, 9 participants of age 50–59, 8 participants of age
60–69, 9 participants of age 70–85, forming a total of 102 participants (51 female
participants).

dMRI acquisition and preprocessing. All dMRI data were collected on a General
Electric Discovery 750 (General Electric Healthcare, Milwaukee, WI, USA)
equipped with a 32-channel head coil (Nova Medical, Wilmington, MA, USA)
at the Center for Cognitive and Neurobiological Imaging at Stanford University
(www.cni.stanford.edu).

dMRI data were acquired using dual-spin echo diffusion-weighted sequences
with full brain coverage. Diffusion weighting gradients were applied at 96 non-
collinear directions across the surface of a sphere as determined by the electro-
static repulsion algorithm58. In all subjects, dMRI data were acquired at 2.0mm3

spatial resolution and diffusion gradient strength was set to b¼ 2000 smm� 2.
We acquired eight non-diffusion-weighted b¼ 0 images at the beginning of each
measurement. A second, independent, dMRI data set was acquired on each subject
using a low b-value (b¼ 1000 smm� 2) 30-direction acquisition.

Subjects’ motion was corrected using a rigid body alignment algorithm.
Diffusion gradients were adjusted to account for the rotation applied to the
measurements during motion correction. The dual-spin echo sequence we used
does not require performing eddy current correction because it has a relatively long
delay between the RF excitation pulse and image acquisition. This allows sufficient
time for the eddy currents to dephase. A tensor model was fit to each voxel’s data
using the RESTORE algorithm, which is designed to remove outliers from the
fitting procedure and minimize the effects of pulsatility and motion-related
artifacts59. Preprocessing was implemented in MATLAB (MathWorks, Natwick,
MI, USA) and are publically available as part of the vistasoft git repository
(http://github.com/vistalab/vistasoft/mrDiffusion; see dtiInit.m).

Quantitative T1 mapping protocol. R1 relaxation was measured from spoiled
gradient echo (spoiled-GE) images acquired at different flip angles (á¼ 4�, 10�, 20�,
30�, TR¼ 14ms, TE¼ 2.4ms). The scan resolution was 1mm3. In addition
to the 102 subjects measured on a GE scanner, one subject was also measured on
a 3T Siemens scanner in Jerusalem.

The transmit-coil inhomogeneity was corrected by comparing with R1
measured with an additional spin echo inversion recovery (SEIR) scan7 that is free
from transmit-coil inhomogeneity7,60. The SEIR was done with an echo planar
imaging (EPI) read-out, a slab inversion pulse and spectral spatial fat suppression.
For the SEIR-EPI acquisition the TR was 3 s; Echo time was set to minimum full;
inversion times were 50, 400, 1,200, 2,400ms. We used 2mm2 in-plane resolution
with a slice thickness of 4mm. The EPI read-out was performed using 2�
acceleration to minimize spatial distortions. We used the ANTS software
package to register the spoiled-GE images to match the SEIR-EPI image61.
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The transmit-coil inhomogeneity was calculated by combining the un-biased SEIR
R1 fits with the spoiled-GE data7. We use the estimated transmit-coil
inhomogeneity and the multi flip-angle spoiled-GE measurements to derive the R1
maps. These were calculated using a nonlinear least-squares fitting procedure to
minimize the difference between the data and the spoiled-GE signal equation
predictions62. We release the R1 analysis pipeline as open-source MATLAB code
(https://github.com/mezera/mrQ).

Quantification of white-matter tissue properties. The AFQ software package
was used to identify each fibre tract and quantify Tract Profiles of tissue properties
along the tract trajectory39. There were a number of substantial additions and
revisions to the AFQ software for the analyses reported here, and like previous
versions we release AFQ (v1.1) as open-source MATLAB code (https://github.com/
jyeatman/AFQ). The major updates to the code are described here with additional
details in the on-line revision history.

AFQ uses a three-step procedure to identify each of the 24 fibre tracts in an
individual’s brain. First, a tractography algorithm estimates a whole-brain
connectome of fibre tracts. Deterministic streamlines tracking based on a tensor
model is the default algorithm63. Second, fibre tract segmentation is done with a
two way-point region of interest (ROI) procedure, in which each fibre from the
whole-brain connectome becomes a candidate for a specific fibre group if it passes
through two ROIs that define the trajectory of the fibre group64. Third, fibre tract
refinement is done by comparing each candidate fibre to a fibre tract probability
map, and removing each candidate that passes through regions of the white matter
that are unlikely to be part of the tract65. Finally, the tract is summarized by a curve
that is at the central position of all the tract fibres. The curve is created by defining
100 sample points along each fibre and robustly computing the mean position of
the corresponding sample points. The robust mean is computed by estimating the
three-dimensional Gaussian covariance of the sample points and removing fibres
that are more than 5 s.d. from the mean.

AFQ (v1.1) includes an additional tract cleaning procedure in which fibres with
aberrant cortical endpoints are removed from the fibre group. This is achieved by
warping the cortical labels from the MNI-AAL atlas66 to an individual’s native
space, and making sure each fibre in the group starts and ends within 4mm of its
known cortical destination. This a priori knowledge of fibre endpoint is only
imposed at a very course resolution as to not bias new discoveries that come with
improved tractography algorithms (for example, the arcuate spans from the lateral
temporal to the lateral frontal lobe and the uncinate spans from the anterior
temporal to the frontal lobe). Finally, each fibre in the group is flipped such that all
fibres start and end in the same cortical zone and span the same direction (for
example, posterior to anterior). These revisions increase the accuracy of Tract
Profiles that are calculated for the full trajectory of the fibre group, from the cortical
start to the cortical termination, rather than confining the analysis to the portion of
the tract spanning between the two defining ROIs.

AFQ (v1.1) includes eight additional callosal fibre groups that were not included
in the previous release: occipital, posterior parietal, superior parietal, motor,
superior frontal, anterior frontal and orbitofrontal and temporal callosal
projections. Two ROIs placed in homologous regions of each hemisphere are used
to segment the eight callosal fibre groups (as described in ref. 67). The occipital and
posterior parietal ROIs are drawn on the coronal plane at the intersection of the
calcarine and parieto-occipital sulci. The boundary between these ROIs separate
fibres destined for occipital and parietal cortices. The superior parietal, motor and
superior frontal ROIs are drawn on the axial plane, superior to the corpus
callosum, where the central sulcus has an omega (O) shape. The superior parietal
ROI covers the posterior portion of this plane and goes as far anterior as the central
sulcus. The motor ROI extends from the central sulcus to the precentral gyrus. The
superior frontal ROI covers the anterior portion of the plane. The anterior frontal
and orbitofrontal ROIs are drawn on the plane half way between the genu of the
corpus callosum and the frontal pole. The orbitofrontal ROI covers the most
inferior gyrus in this plane and the anterior frontal ROI covers the superior portion
of this plane. The temporal ROI is draw in a coronal plane and covers the white
matter adjacent to the posterior horn of the lateral ventricles know as the tapetum.

For these eight callosal groups, the fibre tract refinement stage was not
necessary. The anterior frontal and occipital callosal groups are highly overlapping
with the forceps major and forceps minor fibre groups (included in AFQ v0.1).
Hence, only the new callosal groups were used as in the current analysis making for
24 tracts in total.

Tissue properties are calculated along the trajectory of the fibre group by first
resampling each fibre to 100 equally spaced nodes and then interpolating the value
from a coregistered qMRI image at each node along each fibre. The maps of scalar
parameters from the dMRI data are already in register with the fibre tracts and do
not require additional alignment. To coregister a subject’s quantitative R1 map to
their dMRI data, we used the ANTS software package to warp the R1 map to match
the non-diffusion-weighted, B0 image61. This warping procedure corrects
differences in image rotation and translation as well as local stretching and
compression of the dMRI data due to EPI distortions. EPI distortions were minimal
due to the 2� ASSET acceleration used for the readout of the diffusion-weighted
images, but some regions of the white matter were misaligned by 2–4mm if a
simple rigid body alignment was used. After applying the diffeomorphic warp,
manual inspection of the aligned images confirmed that the registration was
accurate within B1mm.

Tract Profiles of each parameter are calculated as a weighted sum of each fibre’s
value at a given node, where a fibre is weighted based on its Mahalanobis distance
from the core of the tract. The result is a vector of 100 measurements of each MRI
parameter sampled equidistantly along the trajectory of each fascicle. Tract Profiles
can then be averaged to produce a single mean value for each tract or models can
be fit at each point along the Tract Profile.

Voxel-wise analysis of R1 data. In addition to the analysis of fibre-tract R1 values,
we also conducted a voxel-wise analysis of R1 development and aging. ANTS was
used to build a custom R1 template from the collection of individual subject R1
maps (see the ANTS buildtemplateparallel.sh script). Then each model was fit voxel
wise to characterize regional white-matter development and aging.

Model fitting. We fit four classes of models to explain changes in tissue properties
as a function of age (Supplementary Fig. 3). Model accuracy was quantified using
leave-one-out cross-validation: The model was fit to the data leaving out one
subject’s data point and then the model was used to predict this left out data point.
This procedure is repeated for each subject and the difference between the model
predictions and the measurements were used to calculate an un-biased estimate of
the coefficient of determination (R2) using the following equation:

R2 ¼ 100� 1�

Pn
i¼1 yi ��yið Þ2
Pn

i¼1ðyiÞ
2

� �

ð2Þ

where n is the number of measurements, y is the vector of measurements and ý is
the vector of model predictions.

Model 1 was a second order polynomial (parabola) with the following equation:

y ¼ w1�age2 þw2�ageþw3 ð3Þ

where y is the vector of measurements and each wi is a weight that is estimated
using ordinary least-squares regression.

Model 2 was a five-parameter piecewise linear model. The first two parameters
are the intercept and slope of change over development. The third and fourth
parameters are transition points, the first of which being the age when development
ends and the next being the age at which aging begins. Maturity is defined as the
time between the two transition points during which tissue properties remain
relatively constant. The fifth parameter is the slope of change during aging. The
piecewise linear model was fit using the Levenberg–Marquardt algorithm with a
least-squares cost function. Due to local minimum, we did a grid search over
starting parameters and the model with the lowest mean squared error was
retained.

Model 3 was a Poisson curve with asymmetric rise and decline as described in
ref. 13 with the following equation:

y ¼ w1�age�e�w2�age þw3

Where each wi is a parameter estimated using the Levenberg–Marquardt algorithm
with a least-squares cost function.

Model 4 was a local linear regression model in which each data point was
predicted based on a linear fit that considered a local window of data centered on
that point. The local regression model was fit using weighted least squares, where
each data point’s contribution to the fit was weighted based on its distance to the
center of the window. We used a tricubic weighting function and a bandwidth of
20 years. The local regression model can assume any smooth shape and imposes
very few constraints on the shape of a tract’s lifespan curve.

Parameter reliability was estimated with bootstrapping. Unless otherwise stated,
the results throughout the paper use the median and bootstrapped CI around the
median to represent the central tendency and error of each estimate.
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