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Abstract
Purpose of Review In this review, we describe molecular pathological epidemiology (MPE) studies from around the world that
have studied diet and/or lifestyle factors in relation tomolecular markers of (epi)genetic pathways in colorectal cancer (CRC), and
explore future perspectives in this realm of research. The main focus of this review is diet and lifestyle factors for which there is
evidence for an association with CRC as identified by theWorld Cancer Research Fund reports. In addition, we review promising
hypotheses, that warrant consideration in future studies.
Recent Findings Associations between molecular characteristics of CRC have been published in relation to smoking, alcohol
consumption; bodymass index (BMI); waist:hip ratio; adult attained height; physical activity; early life energy restriction; dietary
acrylamide, fiber, fat, methyl donors, omega 3 fatty acids; meat, including total protein, processed meat, and heme iron; and fruit
and vegetable intake.
Summary MPE studies help identify where associations between diet, lifestyle, and CRC risk may otherwise be masked and also
shed light on how timing of exposure can influence etiology. Sample size is often an issue, but this may be addressed in the future
by pooling data.

Keywords Colorectal cancer . Molecular pathological epidemiology . Diet . Lifestyle . Review

Introduction

Colorectal cancer (CRC) is the third most common cancer in
the world, regardless of sex, with nearly 1.4 million cases
diagnosed in 2012 [1]. The majority of these cancers (70–
80%) are sporadic in nature [2], and if current trends continue,
it is estimated that 2.2 million cases of CRC will be diagnosed

annually worldwide by 2030 [1]. It is now well accepted that
CRC risk is highly modifiable through diet and lifestyle; re-
cent reports suggest that up to 47% of CRC cases could be
prevented by staying physically active, maintaining a healthy
body weight and eating a healthy diet [3].

The expert panel of the World Cancer Research Fund
(WCRF), which is the organization responsible for publishing
the most comprehensive review to date on risk factors related
to diet and physical activity for cancer, has recently concluded
that there is convincing strong evidence that body fatness,
adult attained height, and consuming processed meat and al-
coholic drinks increase the risk of developing CRC, while
physical activity decreases the risk of developing CRC.
Furthermore, they concluded that consuming whole grains,
foods containing dietary fiber, dairy products and calcium
supplements probably protect against CRC, and consuming
red meat probably increases the risk of developing CRC [3].

CRC is not a single disease, but rather encompasses a het-
erogeneous complex of diseases characterized by numerous
genetic and epigenetic abnormalities [4•]. Recently, several
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studies have used unsupervised clustering methods to develop
genomic signatures to classify colorectal cancer (CRC) into
different subtypes, and have shown that each subtype has
distinct molecular features and prognosis [5•]. As summarized
by Song et al. [5•], the CRC Assigner (CRCA) classifier cat-
egorized CRC into 5 distinct subtypes: enterocyte, gobletlike,
inflammatory, stemlike, and transit amplifying (TA) [6]; and
the Colon Cancer Subtypes (CCS) classifier identified 3
groups: CCS1, CCS2, and CCS3 [7]. Several studies have
shown that different classifiers are highly correlated; for ex-
ample, for CCS and CRCA classifiers, most CCS1 tumors are
classified as TA or enterocyte, most CCS2 tumors are classi-
fied as inflammatory and gobletlike tumors, and most CCS3
tumors are classified as stemlike tumors [8•, 9]. Although
these classifications may be significant in the advancement
of CRC research, these subtypes will not be specifically ad-
dressed in this review, as they have not yet been investigated
in MPE studies yet.

Generally, there are different (epi)genetic pathways to CRC
development, and the cancers resulting from each pathway
have specific molecular characteristics that often associated
with distinct prognosis trajectories. Therefore, it is also likely
that these cancers have a distinct etiology. Diet and lifestyle
factors may not only play a role in causing mutations and
epigenetic changes, but also in enhancing tumor growth in
tissues that have already acquired specific (epi) genetic aber-
rations. There may be direct causal associations between diet
and lifestyle factors and molecular changes in CRC, and es-
tablishing this is important for prevention strategies, and in-
creasing the ability to better predict disease progression and
prognosis.

Traditionally, epidemiological research has been used to
investigate how an exposure may increase or decrease the risk
of developing cancer, and pathological research has been used
to explore molecular characteristics of tumors to predict prog-
nosis and response to treatment. By combining these two dis-
ciplines, a relatively new field of scientific investigation has
emerged: molecular pathological epidemiology (MPE) [10].
In this review, we describe the (epi)genetic molecular path-
ways leading to CRC; identify MPE studies from around the
world that have studied molecular markers of these pathways
in relation to diet and/or lifestyle factors; summarize the data
published on such associations; and explore future perspec-
tives in this realm of research. We focus on diet and lifestyle
factors for which there is evidence for an association with
CRC as identified by the World Cancer Research Fund re-
ports. In addition, we review promising tumor markers and
hypotheses, that warrant consideration in future studies.

Studies on the importance of diet and lifestyle factors for
CRC survival according to molecular subtype of CRC are not
reviewed due to the current paucity of data. In addition, stud-
ies focused on downstream expression of genes in CRC as
outcome are not reviewed.

(Epi)genetic Pathways to CRC

Although each individual CRC tumor is (epi) genetically com-
plex, and arises and behaves in a unique manner, it is common
to classify tumors according to a limited number of pheno-
types, because it is assumed that tumors with similar molecular
characteristics have arisen through common mechanisms [10].

There are two morphologic, multi-step pathways to CRC
(the traditional adenoma-carcinoma pathway and the serrated
neoplasia pathway), which are driven by three molecular car-
cinogenesis pathways (chromosomal instability (CIN), micro-
satellite instability (MSI), and epigenetic instability (primarily
the CpG island methylator phenotype (CIMP)) [11•]. It is
important to understand these pathways, becauseMPE studies
have been used to identify disease subtypes that may benefit
from certain behavioral interventions, and may be used to
validate molecular markers for risk assessment, early detec-
tion, prognosis, and prediction [12••, 13].

The Traditional Adenoma-Carcinoma Pathway

Tumors arising via the traditional adenoma-carcinoma path-
way begin as premalignant lesions comprising of convention-
al, tubular or tubulovillous adenomas [11•], and account for
approximately 60–90% of sporadic CRCs [2]. They are char-
acterized by CIN, which describes a condition of aneuploidy
that is caused by an accelerated rate of gains and losses of
entire or large portions of the chromosome during cell division
[14, 15]. CIN is associated with inactivating mutations or
losses in the Adenomatous Polyposis Coli (APC) tumor sup-
pressor gene, which occurs as an early event in this sequence
[16]. Mutations in the KRAS oncogene, as well as TP53,
SMAD4, and PIK3CA genes are also frequently observed
[2]. With CIN, there is an increased rate of heterozygosity,
which may contribute to the inactivation of tumor suppressor
genes or activation of tumor oncogenes [17]. Descriptively,
tumors that arise from this pathway are more often associated
with male sex, and observed in the distal colon [11•].

Serrated Neoplasia Pathway

Approximately 10–30% of sporadic CRC tumors arise via the
serrated neoplasia pathway [11•] and have distinctly different
histology compared to tumors derived from the traditional
adenoma-carcinoma sequence. They are characterized by
MSI, a form of genetic instability characterized by length al-
terations within simple repeated microsatellite sequences of
DNA. This is the result of strand slippage during DNA repli-
cation, which is not repaired due to a defective postreplication
mismatch repair system [18]. An early event of these tumors is
mutation of the BRAF proto-oncogene, which inhibits normal
apoptosis of colonic epithelial cells [19]. The driving force of
the serrated neoplasia pathway is the CpG methylator
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phenotype (CIMP), a form of epigenetic instability responsi-
ble for silencing a range of tumor suppressor genes, including
MLH1 [2]. Loss of MLH1 is thought to cause microsatellite
instability (MSI) and once MLH1 is inactivated, the rate of
progression to malignant transformation is rapid [19].
Descriptively, these tumors are more frequently associated
with female sex, and are observed in the proximal colon [11•].

Insights from the Cancer Genome Atlas Study

The Cancer Genome Atlas study, a collaboration between the
National Cancer Institute (NCI) and the National Human
Genome Research Institute (NHGRI), has generated a com-
prehensive, multi-dimensional map of the key genomic
changes in CRC [20]. As recently summarized by Bae et al.
[11•], the Cancer Genome Atlas study reports that CIN and
MSI are mutually exclusive. CIMP, on the other hand, over-
laps with the MSI pathway because of sporadic MSI-high
CRCs, which are also usually CIMP-high, but does not appear
to be in an exclusive relationship with the CIN pathway [11•,
20]. CIMP-high tumors can exist in the absence of MSI-high,
and these tumors show some copy number variations across
the genome, but the degree of CIN is less pronounced than
CIMP-negative, MSI-low tumors. This suggests that CIMP
alone may not be enough for the malignant transformation
of serrated polyps, and requires collaboration with either
CIN or MSI to promote successful malignant transformation
[11•, 20].

In an MPE paradigm, a potential etiological factor, such as
diet or lifestyle, is assessed with risk of an outcome across
strata of molecular characteristics for the disease of interest
[12••]. For purposes of this review, focus is on MPE studies
that have considered diet and lifestyle factors in conjunction
with primarymolecular markers of (epi)genetic instability. For
the traditional adenoma-carcinoma pathway, these include
CIN, APC mutation, KRAS mutation, and TP53 mutation.
For the serrated neoplasia pathway, these include BRAF mu-
tation, MSI, hypermethylation of MLH1, and CIMP.

MPE Studies on Diet, Lifestyle, and CRC

Because MPE is an emerging research field, studies are usu-
ally drawn from existing cohort and case-control studies that
have collected pathology specimens [12••]. In the realm of
CRC, it is not uncommon for some large, long-running,
population-based studies to have thousands of CRC cases.
However, obtaining tumor blocks and subsequently phenotyp-
ing molecular characteristics in sample numbers large enough
for meaningful statistical analysis requires a significant invest-
ment of both time and money. Therefore, while many epide-
miological studies have investigated associations between di-
et, lifestyle, and CRC, the number of studies that have

embarked on MPE investigations considering such associa-
tions is still currently quite limited.

The Current Review

We reviewed the literature by searching combinations of key
words (molecular pathological epidemiology, prospective co-
hort study, case-control study, KRASmutation, APCmutation,
Microsatellite Instability, CpG Island Methylator Phenotype,
CIMP, BRAF mutation) in Pubmed and EMBASE databases,
as well as by analyzing proceedings and participants of the
International Molecular Pathological Epidemiology Meeting
Series. Eight prospective cohort studies, five case-control
studies, and one cross-sectional study that explicitly presented
data on molecular markers of (epi)genetic instability were
identified (Table 1). However, one cohort study did not further
consider associations with diet and lifestyle factors [71], so for
purposes of this review, was excluded from discussion. Of the
remaining studies, associations have been published on mo-
lecular endpoints of CRC in relation to smoking, alcohol con-
sumption; body mass index (BMI); waist:hip ratio; adult
attained height; physical activity; early life energy restriction;
ethnicity; dietary acrylamide, fiber, fat, methyl donors, omega
3 fatty acids; meat intake, including total protein, processed
meat, and heme iron; and vegetable intake. For purposes of
comparison and discussion, statistical associations are sum-
marized in Tables 2 and 3, according to markers of the tradi-
tional adenoma-carcinoma and serrated neoplasia pathways,
respectively, and the impact of these findings on advancing
knowledge of CRC etiology is described in further detail
below.

Smoking

Smoking has been studied in relation to both the traditional
adenoma-carcinoma pathway [25, 41, 42, 58, 70, 72] and the
serrated neoplasia pathway [30, 58, 60–62, 65]. As described
in the proceedings of the third international MPE meeting,
smoking provides one of the best examples of how MPE re-
search can better predict CRC compared to epidemiological
studies without molecular classification [12••]. Meta-analysis
of traditional epidemiological studies showed only a modest
link between smoking and CRC (i.e., a RR usually below 1.2)
[73], which may lead one to believe that smoking is not a
convincing risk factor for CRC. However, with the advent of
MPE, it can be seen that once CRC cases are stratified byMSI
or CIMP status, this risk increases up to two-fold for MSI-H
and CIMP-H tumors in prospective cohort studies, while there
are null associations for tumors not exhibiting these pheno-
types (i.e., tumors of the traditional adenoma-carcinoma path-
way). These data supports the premise that traditional epide-
miological studies may mask true associations between some
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risk factors and cancer, and that MPE studies can shed light on
true patterns of association.

Alcohol Intake

The association between alcohol intake and CRC has been
studied separately by tumor markers related to the traditional
carcinoma-adenoma pathway [21, 38, 43, 66] and the serrated
neoplasia pathway [22, 38, 44, 63, 67]. Although considered
by the WCRF as a convincing risk factor for CRC in menand
women, MPE data is conflicting. Acetaldehyde in alcoholic
beverages is a highly toxic substance that is carcinogenic to
humans. In one of the earliest case-control studies considering
alcohol in relation to risk of APC mutations, Diergaarde et al.
found that alcohol intake only increased the risk of APC
wildtype tumors [66]. In 2006, Bongaerts et al. concluded that
alcohol was not associatedwith tumors harboringmutations in
the KRAS gene [43]; however, in 2016, Jayasekra et al. con-
cluded that alcohol intake is associated with an increased risk
of KRAS mutated and BRAF wildtype/KRAS wildtype tumors
originating via the traditional adenoma-carcinoma pathway

but not with BRAFmutated tumors originating via the serrated
pathway [38]. This is in contrast to case-control data from
Slattery et al., who was the first to report that alcohol intake
is associated with MSI [63]. Some reasons for these discrep-
ancies may include heterogeneity between the way that alco-
hol intake was measured (i.e. lifetime exposure, highest vs.
lowest intake, continuous intake), and the inability to consider
men and women separately in data analysis due to limitations
with sample size. Another layer of complexity in the associa-
tion between alcohol and CRC risk is that there are suscepti-
bility genes in relation to alcohol metabolism not accounted
for in MPE studies. This may also explain some of the ob-
served heterogeneity.

Indicators of Energy Balance

Indicators of energy balance include lifestyle factors that play
a role in the development of body growth and obesity. These
include body mass index (BMI), waist and hip circumference,
adult-attained height, caloric intake and physical activity. The
majority of MPE research on these factors has been conducted

Table 1 Epidemiological studies that have collected molecular data according to (epi)genetic characteristics of colorectal cancer

Study Country N Tumor characteristics

Prospective cohort studies

European Prospective Investigation into
Cancer (EPIC) Norfolk [21–24]

England 30,441 APC mutation and promoter hypermethylation,
BRAF mutation, KRAS mutation, MLH1
promoter hypermethylation, TP53 mutation

Iowa Women’s Health Study (IWHS) [25–29] USA 41,836 BRAF mutation, CIMP, KRAS mutation, MSI

Health Professionals Follow-up Study
[10, 30–37]

USA 173,229 BRAF mutation, CIMP, KRAS mutation, LINE-1
hypomethylation, MSI, PIK3CA mutation

Malmo Diet and Cancer Study (MDCS) [26] Sweden 29,098 BRAF mutation, KRAS mutation, MSI

Melbourne Collaborative Cohort Study (MCCS)
[38, 39•, 40]

Australia 41,328 BRAF mutation, CIMP, MSI

Netherlands Cohort Study on Diet and Cancer
(NLCS) [39•, 41–50, 51•, 52–55]

Netherlands 120,852 APC mutation, CIMP, CIN, BRAF mutation, KRAS
mutation, MGMT promotor hypermethylation,
MLH1 promoter hypermethylation, MSI,

Nurses Health Study (NHS) [10, 30–37, 56, 57] USA 77,443 BRAF mutation, CIMP, KRAS mutation, LINE-1
hypomethylation, MSI, PIK3CA mutation

Swedish Health and Disease Study (SHDS) [58]1 Sweden 166,414 CIMP, MSI

Case-control studies

Colorectal Cancer: Chances for Prevention
Through Screening (DACHS) [59]

Germany 1215 cases/ 1891 controls MSI

Kaiser Permanente Medical Care Program of
Northern California (KPMCP) and the state
of Utah/Minnesota [60–64]

USA 1510 cases/ 2410 controls APC mutation, BRAF mutation, CIMP, KRAS
mutation, MSI, TP53 mutation

Colon Cancer Family Registry (CCFR) [65] USA 2253 cases/ 4486 controls MSI

Dutch case-control study [66–68] Netherlands 278 cases/ 414 controls MLH1 promoter hypermethylation, MSI, APC
mutation,

Majorca case-control study [69] Spain 286 cases/295 controls KRAS mutation

Cross-sectional studies

Martinez et al. [70] Spain 623 APC mutation, KRAS mutation

One study did not publish data on these molecular endpoints with respect to diet and lifestyle factors
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with respect to markers of the serrated neoplasia pathway [26,
39•, 45, 46, 59, 62, 64]. Although associations with APC,
KRAS, and CIN have not been directly considered, the fact
that BMI and waist measurements are positively associated
with BRAFmutations and BRAF-wildtype,MSI and microsat-
ellite stable tumors, and CIMP-H and non-CIMP tumors, is in
accordance with WCRF evidence showing that overweight is
a strong risk factor for CRC in general.

On the other hand, studies on adult-attained height and
early life energy restriction suggest that timing of exposure
may be important for influencing CRC risk. Height is a marker
of aggregated fetal and childhood experience, and can be con-
sidered a proxy measure for important nutritional exposures,
which affect several hormonal and metabolic axes [3]. Like
body weight, adult-attained height is also an established risk
factor for CRC in general; however, observations tend to be
stronger for tumors demonstrating BRAF mutation and MSI
[39•, 45]. One study on early life energy restriction showed
that exposure to famine during childhood and adolescence
decreased the risk of developing a tumor characterized by
CIMP [46]. Taken together, this suggests that early life expo-
sures may influence risk of epigenetic instability and CRC risk
through the serrated neoplasia pathway, but data are scarce
and more research is needed in this area.

Dietary Factors

Because the majority of MPE studies are derived from larger
cohort and case-control studies that were designed to consider
outcomes between diet and cancer, and therefore have validat-
ed food frequency questionnaires in place, it is not uncommon
for multiple dietary exposures to be presented in the same
publication.

Red meat intake was identified by theWCRF as a probable
risk factor for CRC, and MPE research supports that this may
especially be true for tumors of the traditional adenoma-
carcinoma pathway; dietary heme intake shows stronger asso-
ciations with KRAS.mutated tumors than KRAS wildtype tu-
mors. It has been hypothesized that heme can enhance the
endogenous formation of carcinogenic N-nitroso compounds
[51•]. The study by Gilsing et al. is important because it is the
first human observational study providing evidence, as ex-
pected, for an association between heme and tumors with
specific point mutations [51•].

Similarly, the first observational study showing that dietary
acrylamide might be associated with CRC with specific so-
matic mutations, such as G > C or G > T mutations, was re-
cently published [47], which supports the a priori hypothesis
that metabolites of acrylamide are human carcinogens.

With respect to dietary fat, a high intake of polyunsaturated
fat, in particular linoleic acid, has also been linked to KRAS
mutations [49]. Intriguingly, and in contrast, it was recently
reported that high marine omega-3 polyunsaturated fatty acidT
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intake is associated with lower risk of MSI-high CRC but not
MSS tumors, suggesting a potential role of omega-3 fatty
acids in protection against CRC through DNA mismatch re-
pair [31]. Calcium, milk, and garlic were not significantly
associated with specific tumor subtypes in the reviewed pub-
lications [21, 22, 63, 64, 51•].

Alcohol is often considered in conjunction with dietary
methyl donors such as folate, because folate may influence
promoter methylation at gene promoters, and is depleted with
alcohol intake. It has been hypothesized that methyl donors
such as folate and methionine influence CRC through the
serrated neoplasia pathway because of their role in methyl
transport (i.e. a deficient status may result in a decrease in
promotor hyper methylation, as observed in CIMP). Folate
intake is associated with BRAF mutations, suggesting that it
does play a role in epigenetic aberrations [52]. However, high
folate consumption also appears to reduce the risk of APC
wildtype colon tumors, while being positively associated with
APC mutated colon tumors in men [50], indicating that folate
may also enhance colorectal carcinogenesis through a distinct
APC mutated pathway. More research, with attention to sam-
ple size, is needed to replicate and clarify these associations.

Future Perspectives

In order to gain more insight into etiology and potential CRC
interventions, it is important to continue investigating associa-
tions between diet, lifestyle factors and risk of different CRC
subtypes. As mentioned previously, several studies have recent-
ly been publishing clustering CRC into specific subtypes [5•, 6,
8•, 9, 74]. The Cancer Genome Atlas study provides additional
insights on how MPE studies in the realm of CRC should
consider molecular markers and etiologic pathways [20].

As noted earlier, MPE studies are usually drawn from
existing cohort and case-control studies. That means that in
most cases, such studies have validated food-frequency and
lifestyle questionnaires in place and in the future may have
more tumor tissues available for molecular subtyping as cases
continue to be identified. This will improve interpretation of
research findings as One important limitations ofMPE studies
is limited sample size. Any molecular pathological epidemi-
ology study conducted within a larger cohort will undergo
multiple exclusions based on availability of tumor material
and valid assay results. Therefore, the sample size for a study
with molecular endpoints will always be smaller than the par-
ent study. To analyze molecular data for associations with diet
and lifestyle factors, a subset analysis for the different sub-sets
is performed (i.e. CIMP-H vs CIMP-0;MSI-H vsMSS; BRAF
mutated vs. BRAF wildtype tumors). The sample size for a
subset, especially the rarer event (e.g., CIMP-H, MSI-H,
BRAF mutated) may be too small to provide adequate statis-
tical power, or limit the number of possible subtypes to be

distinguished, even though this may at least in part be offset
by more refined risk estimates in these subtypes.

Pooling data from independent studies may be a solution to
this problem. To our knowledge, only one such MPE pooling
data from the (NLCS) and the Melbourne Collaborative
Cohort Study (MCCS) to assess the association between body
size and CRC, by MSI and BRAF mutation, has been pub-
lished so far. However, iin that study, pooling CIMP data was
not possible due to methodological differences [39•]. This
study highlights a unique challenge of pooling molecular data:
it is important that similar definitions and laboratory analyses
be used to define the phenotype in each study. We have pre-
viously published on the need for a global consensus on how
to analyze and define CIMP [75, 76], but this is important for
all molecular endpoints.

In a 2010 review on MPE of CRC, Ogino et al. identified
that to overcome the unique challenges of this work, it would
be necessary to coordinate research efforts around the world
and to formulate a system where researchers could discover
and validate new findings [4•]. Recently, The 3rd International
Molecular Pathological Epidemiology (MPE) Meeting was
held in Boston, which was attended by 150 scientists from
17 different countries [12••]. This meeting highlighted a new
wave of research that is focused on increasing the understand-
ing of the role that lifestyle/behavioral factors on modifying
prognosis of diseases (including CRC) by considering specific
disease subtypes. Such organization and collaboration will
only expedite the creation of new, high quality studies, re-
search questions, and answers around CRC etiology.

Conclusion

Because CRC is a heterogeneous disease with several molec-
ular subtypes, traditional epidemiological studies may mask
completely or underestimate true associations between diet,
lifestyle and disease risk. The WCRF has identified several
convincing and probable risk factors for CRC, and by utilizing
MPE can inform prevention and treatment strategies as well as
predict prognosis for CRC.

MPE studies have also suggested that timing of exposure
may be important for establishing patterns of epigenetic insta-
bility (e.g., as suggested by associations on adult-attained
height and early life energy restriction with tumors exhibiting
specific (epi)genetic markers). Furthermore, MPE studies of-
fer the possibility to test hypotheses with regards to mutagenic
effects (e.g., as suggested by the associations of heme iron and
acrylamide with tumors exhibiting specific somatic mutations
related to the exposure).

In the future, continuing collaboration and pooling data
from high quality studies, including data on other molecular
endpoints, may improve the strength of individual MPE

466 Curr Colorectal Cancer Rep (2017) 13:455–469



findings, overcome the challenges of small sample sizes, and
further pinpoint carcinogenic mechanisms leading to CRC.
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