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Colorectal cancer is not a single disease. It encompasses heteroge-
neous diseases with different sets of genetic and epigenetic alter-
ations. Each tumor arises and behaves in a unique fashion that is 
unlikely to be exactly recapitulated by any other tumor (1). 
Nevertheless, we classify colorectal cancers into a limited number 
of groups (eg, microsatellite instability [MSI]-high vs microsatellite 
stability [MSS]) because we assume that tumors with similar char-
acteristics have arisen through common mechanisms and behave in 
a similar fashion (1).

Traditional epidemiology research has typically investigated 
factors that are associated with the overall risk of colorectal cancer, 
although distinct risk factors have long been recognized for colon 
and rectal cancers. Traditional pathology research has explored 
histopathologic and molecular characteristics to predict prognosis 
and response to specific treatment (2). More recently, these two 
approaches have converged to improve our understanding of how 
particular exposures influence carcinogenesis by examining mole
cular pathological marks of tumor initiation or progression, in re-
lation to exposures of interest, for both etiology (3–27) and 
prognosis (28–34). These new research efforts can be thought of as 
molecular pathological epidemiology, a multidisciplinary investi-
gation of the interrelationships between exogenous and endoge-
nous (eg, germline genetic) factors, tumor molecular signatures, 
and tumor initiation, progression, and response to treatment.

In this issue of Journal, Campbell et al. (35) describe a case– 
control study of body mass index (BMI) and colorectal cancer risk 
in relation to tumor MSI status. As others have found (36,37), the 
authors showed that prediagnosis BMI was associated with an 
increased risk of colorectal cancer. In addition, they showed that 
this excess risk was limited to MSS tumors (for a BMI increment 
of 5 kg/m2, adjusted odds ratio = 1.38, 95% confidence interval = 
1.24 to 1.54); BMI was not associated with the risk of MSI-high 
tumors (adjusted odds ratio = 1.05; 95% confidence interval = 0.84 
to 1.31).

Two previous case–control studies have examined the relation-
ship between BMI and colon cancer risk by MSI status (5,10). 
Slattery et al. (5) examined 118 MSI-high and 696 MSS tumors 
and found that high BMI was associated with the risk of MSS 
tumors but not with the risk of MSI-high tumors among men; they 
observed no such difference in women. Satia et al. (10) examined 
49 MSI-high and 437 MSI-low or MSS tumors and found that 
high BMI before diagnosis was associated with the risk of MSI-low 
or MSS tumors but not with the risk of MSI-high tumors. These 

results are generally consistent with those of Campbell et al. (35), 
providing further evidence for the specific relationship between 
obesity and the risk of MSS cancer. The specificity of this link not 
only reinforces a causal interpretation but also points the way to a 
specific mechanism.

Experimental evidence supports the link between obesity and 
gastrointestinal tumorigenesis in Apc-mutant mice (38). In human 
colorectal cancer, APC mutations and WNT/CTNNB1 (b-catenin) 
activation are inversely associated with the CpG island methylator 
phenotype (CIMP) (39,40), which is strongly associated with MSI 
(41–44). CIMP is the most common cause of MSI, which occurs 
through epigenetic inactivation of a mismatch repair gene MLH1 
(43,44). CIMP status and MSI status are major determinants of 
epigenomic and genomic characteristics (1) and are associated with 
many specific molecular events (1,43,44). For example, tumor ex-
pression of fatty acid synthase (FASN) is positively associated with 
MSI (45,46). FASN is inhibited by AMP-activated protein kinase 
(47,48), which is activated by a deficiency of cellular energy source 
ATP. Obesity is associated with reduced survival among colon 
cancer patients (49,50), and this association appears to be limited 
to patients with FASN-expressing tumors (28). Thus, obesity 
likely interacts with FASN in colorectal cancer cells to modify 
tumor behavior (28). The differential influence of obesity with 
respect to MSI vs MSS colorectal cancer incidence suggested by 
Campbell et al. (35) could potentially be explained by FASN. 
Alternatively, MSI status might serve as a surrogate for CIMP 
status or other molecular changes in colorectal cancer. Further 
studies are necessary to resolve this issue.

The results of Campbell et al. suggest that the increased risk of 
colorectal cancer associated with obesity is restricted to MSS 
tumors. Along with the findings by other investigators (3–27), 
these molecular pathological epidemiology data imply that mole
cular markers (such as MSI) can be used to classify colorectal 
cancers into distinct subtypes, which have implications for both 
etiology and prevention.

Molecular pathological epidemiology is a promising approach 
to investigate molecular mechanisms of carcinogenesis. None
theless, it faces all of the challenges inherent in epidemiological 
and pathology research as well as some unique limitations. For 
example, analyses are limited to case subjects for whom tumor 
tissue specimens are available. Thus, the size of any given sample 
in a molecular pathological epidemiology study will always be 
smaller than that of the parent study. Differential tissue availability 
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can be a source of selection bias. The potential for bias will vary by 
many factors that may affect availability of tissue. Molecular path-
ological epidemiology, by definition, is based on subset analyses by 
tumor subtype, which further limits the sample size. Therefore, for 
adequate statistical power, large sample sizes are necessary. Also, 
the subset analyses exacerbate the potential for false-positive find-
ings because of multiple hypothesis testing. If one crosses a wide 
range of lifestyle and other factors with a variety of molecularly 
defined tumor types, the likelihood for a nominally statistically 
significant chance finding is high. Thus, lack of clearly defined a 
priori causal hypotheses can be another caveat that may be more 
problematic in molecular pathological epidemiology than in tradi-
tional epidemiology. Such prior hypotheses could be based on 
earlier exploratory findings (35) or on the underlying biology. For 
example, it would be reasonable to consider a causal relation 
between one-carbon nutrients and genetic and epigenetic alter-
ations (5–8,11,17–23,27) because one-carbon reactions are essen-
tial for both DNA methylation and synthesis. However, the 
relationship between obesity (and associated metabolic conditions) 
and tumor MSI status appears to be indirect. Often, findings on 
molecular subtypes are exploratory, and the data should be inter-
preted with caution. Hypotheses generated by epidemiological 
research with multiple hypothesis testing should be validated in 
independent datasets.

In summary, the article by Campbell et al. (35) represents a 
prototypical study in the evolving field of molecular pathological 
epidemiology. This approach will continue to provide useful 
insights on carcinogenic processes and help us improve cancer 
prevention and therapeutic strategies.
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