
Lifetime Analysis of a Sensor Network with Hybrid
Automata Modelling

Sinem Coleri
∗

Dept. of EECS
Univ. of California at Berkeley

Berkeley, CA 94720
csinem@eecs.berkeley.edu

Mustafa Ergen
†

Dept. of EECS
Univ. of California at Berkeley

Berkeley CA 94720
ergen@eecs.berkeley.edu

T. John Koo
‡

Dept. EECS
Univ. of California at Berkeley

Berkeley CA 94720
koo@eecs.berkeley.edu

ABSTRACT
In this paper, we focus on TinyOS, an event-based operating
system for networked sensor motes. We show how to model
TinyOS as a hybrid automata with HyTech and verify the
correct operation of the system by using safety verification
feature of HyTech. Since lifetime is an important metric
for sensor nodes that are planned to be deployed once and
unattended for long periods of time without maintenance,
we perform power analysis of a sensor node by using trace
generation feature of HyTech. Furthermore, we simulate
a tree sensor network of TinyOS motes by using the pro-
gramming language SHIFT to determine the lifetime of the
network as a function of the distance from the central data
collector.

Categories and Subject Descriptors
C.4 [Performance of Systems]: [Reliability, availability,
and serviceability]; D.2.4 [Software Engineering]: Soft-
ware/Program Verification—Model Checking

General Terms
Performance, Verification

Keywords
TinyOS, Sensor Networks, Power Consumption, HyTech,
SHIFT, Hybrid Automata

1. INTRODUCTION
Wireless sensor nodes have emerged as a result of the

recent advances in low-power digital and analog circuitry,

∗Sinem Coleri is a Ph.D. student in UC Berkeley
†Mustafa Ergen is a Ph.D. student in UC Berkeley
‡T. John Koo is a Visiting Faculty in UC Berkeley

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WSNA’02, September 28, 2002, Atlanta, Georgia, USA.
Copyright 2002 ACM 1-58113-589-0/02/0009 ...$5.00.

low-power RF design and sensor technology. These inex-
pensive nodes are designed to operate in a network of hun-
dreds or thousands of sensors to achieve high quality data.
The practical application of such systems range from secu-
rity monitoring in detecting intrusions to traffic monitoring
in high-ways.

Figure 1: Photograph for a Representative Sensor
Platform

Achieving the goal of cooperative sensor devices requires
the design of a software platform to manage and operate
the device in the most efficient way. TinyOS [3], a tiny
event-based operating system, is developed to address the
application-specific characteristics of sensor networks such
as small physical size, low-power consumption, robustness
and modularity.
One essential requirement for sensor networks is the relia-

bility of applications since sensor devices are planned to be
deployed into the area once and unattended for long periods
of time without maintenance. However, concurrent interac-
tions between TinyOS components can make the behavior
of applications very hard to predict for any input configura-
tion. For instance, TinyOS applications may stop working
after some time due to some condition that never occurred
while you were testing your application. We show how to
guarantee the correct operation of the system by using the
verification feature of HyTech [4], which is a symbolic model
checker for linear hybrid automata.
Another essential feature of sensor networks is the longest

possible lifetime from a specific hardware configuration. The
data being sensed by the nodes in a sensor network must
be transmitted to a control center or base station so that
the end-user can access this data. To conserve power, it
is essential that the data is being relayed multiple times to-
wards destination than to increase the transmission strength
so that it is received directly by the center. The problem
in the multi-hop case is that the nodes closer to the con-

98

trol center will relay a large number of packets compared
to the nodes away from the station. We perform the power
analysis of one node as a function of the distance from the
base station by generating a trace from an initial region to
a final region by performing forward reachability analysis
in HyTech. Moreover, we analyze the overall sensor net-
work performance by grouping the nodes according to their
distance from the base station by using SHIFT [8], which
is a tool for the description of dynamic networks of hybrid
automata.
Section 2 introduces TinyOS and gives TinyOS power

characteristics. Section 3 gives the verification and the power
analysis of TinyOS through modelling the system in HyTech.
Section 4 explains the power consumption over the sensor
network with simulation in SHIFT. Section 5 and 6 presents
the previous research and future directions respectively. Sec-
tion 7 concludes the paper.

2. TINYOS

2.1 TinyOS Description
TinyOS is an event-based operating system designed for

power-efficient, concurrency-intensive operation and modu-
larity. Since network sensor devices carry only the hardware
needed for a specific application, it is important to easily as-
semble the software components corresponding to hardware
components due to memory limitation of these devices. This
unusual degree of software modularity without heavyweight
interfaces is provided through component-based model of
TinyOS.
The components in TinyOS can be classified into three

groups. The first group consist of components that are thin
abstractions over hardware such as clock, bit level radio com-
ponents. Second class of components act as a replacement
for unavailable hardware such as a byte level radio compo-
nent on top of a bit level radio component. The third level of
components are high-level software components performing
control part of the application.
A complete TinyOS application consists of a graph of com-

ponents and a two-level scheduler. A component has four
interrelated parts: a set of command handlers, a set of event
handlers, a frame and a bundle of tasks. To facilitate the
modularity, each component declares the commands it uses
and the events it signals in separate .comp file, which are
the linked for the complete application in a .desc file. The
actual functionality of the components containing a frame
along with the code with command handler, event handler
and task executions is specified in a .c file. A frame is a stat-
ically allocated part of the memory and contains the state
of the component.
Commands and events are just function calls across the

components that provides a feedback to the caller through
a success/failure status. Commands are non-blocking re-
quests to lower-level components. Lower-level components
have the handlers corresponding to each command coming
from upper level components. On the other hand, events
are invoked to deal with hardware events either directly or
indirectly. The lowest level components have handler con-
nected to hardware interrupts. Inside this handler, a small
amount of work on the component’s state is performed and
another event is generated. A fountain of processing occurs
within the context of components’ state while going upward
through events and downward through commands.

Instruction Energy Energy
Type per cycle per instruction

(nJ) (nJ)

idle 0.001 0.001
arithmetic/ 3.41 3.41
logic
memory 3.66 7.32
read
memory 3.75 7.50
write

Table 1: Energy Consumption of instructions in
Smart Dust prototype

Device Energy per quantum

Photo 0.08-0.28 nJ/cycle
ADC 4.62-3.95 nJ/conversion
RFM send 1 µJ
RFM receive 0.5 µJ

Table 2: Energy Consumption of external modules
in Smart Dust prototype

Tasks provide a way to incorporate arbitrary computation
into event-driven model. They are atomic with respect to
other tasks but preempted by events.
TinyOS currently has a two-level scheduler. The first level

contains events and commands. Small amount of work asso-
ciated with hardware interrupt upon components states are
performed immediately. The second level contains tasks.
When a task is posted inside a command or event handler,
it is posted into a FIFO queue. The tasks are executed
when CPU has no events or commands to run and can be
interrupted by a hardware event. When there is no task,
event or command to execute, the processor is put to sleep
while leaving the peripherals operating so that the system
can wake up with any hardware interrupt.

2.2 TinyOS Power Characteristics
A networked sensor has a predetermined operation in con-

trast to a general purpose computer, which includes sensing,
slight processing and communicating the results to a central
data collector. The determination of the power consumed
in common operations can help the designers to determine
the average power required for their application.
The study of power usage is performed for the SmartDust

prototype, which includes an Atmel 90LS8535 processor ex-
ternally clocked at 4MHz, a co-processor unit, an RF Mono-
lithics 916.50 MHz transceiver and an analog light sensor, in
the paper named Power and Control for Networked Sensor
by E. J. Riedy and R. Szewczyk [5]. Table 1, 2, 3 summarize
the findings obtained from a digital oscilloscope triggered by
a set of microbenchmarks measuring various primitive oper-
ations.

99

Operation cost (cycles)

Post an event 10
Post a command 10
Post a thread 46
to scheduler
Interrupt 60
(software overhead)

Table 3: Cost of the Basic Operations and Over-
heads in TinyOS

3. VERIFICATION AND POWER ANALY-
SIS OF TINYOS THROUGH MODELLING
AS A HYBRID AUTOMATA

3.1 Modelling of TinyOS as a Hybrid Automata
Hybrid Automaton is a mathematical model for a class of

dynamical systems that exhibit both discrete and continu-
ous behavior. The evolution of discrete states is governed by
a finite automaton while the evolution of continuous states
is specified by differential equations. Linear hybrid automa-
ton is a class of hybrid automata that the flow equations
of the continuous states are linear in time. Since the flow
equations, invariant conditions, initial conditions and jump
conditions are convex linear predicates and the flow condi-
tion is a predicate over the derivative of variables only, there
exist efficient algorithms for computing reachable set, such
as the function Post on state assertions.
Linear hybrid automata is very suitable for modelling

TinyOS operation due to one-to-one correspondence between
their functionalities. The component-based structure of TinyOS
facilitates its description in terms of automata. Each TinyOS
component corresponds to an automaton.
TinyOS components communicates with each other through

events from lower level to higher level components and com-
mands from higher level to lower components. These events
and commands correspond to synchronization events in hy-
brid automata. However, the synchronization events are
instantaneous while the TinyOS events require a specific
number of clock cycles as given in Table 3. This effect is ac-
counted by staying in a dummy state for this number of clock
cycles after making the transition with event. In addition,
events and commands in TinyOS are just across component
function calls so they have a returning value showing the
end of the function and the success/failure of the process-
ing. We have modelled the return of each event as another
event. When the command or event processing is finished,
the completion event is sent to the component that has gen-
erated this event. When the returning value of the function
is used, two types of completion events are used: positive
completion event and negative completion event.
TinyOS clock cycle corresponds to a hybrid automata dis-

crete step in the model of TinyOS while the energy con-
sumption is kept in a continuous variable energy. This en-
ergy variable is increased abruptly in sensing, receiving a bit
and transmitting a bit while it is increasing with different
rates in idle and active modes of the processor continuously.
The overall view of the TinyOS hybrid automata model is
shown in Figure 2. In addition to modelling TinyOS compo-
nents, we have also added a packet generation automaton to

simulate the behavior of the environment. The packets are
injected to the system by packet generation and application
components. Packet generation component represents the
generation of packets received from the neighbors. It gener-
ates a periodic rfm clock event, which represent the periodic
radio clock interrupt in TinyOS hardware platform. Then
the packet generation is done by setting a variable bit to
0 or 1 according to the state of the packet generation com-
ponent. Application component represents the generation
of packets to be transmitted either as a result of a periodic
sensing operation or the forwarding of the received packets.

Sensing Application

Radio Packet

transmit_packreceive_pack

Radio Byte

rx_byte_
ready

tx_byte_
ready

tx_
byte

packet_
done_neg

packet_
done_pos

RFM

rfm_rx_
ev

rfm_tx_
ev

rfm_rx_
comp

rfm_tx_
comp

Packet Generation

Task Handler

post_encode

post_decode

rfm_rx_comp

rfm_tx_comp

rfm_clock rfm_clock

Figure 2: Overall view of the TinyOS Hybrid Au-
tomata Model

rfm clock event generates rfm rx ev event if RFM compo-
nent is in receive state and rfm tx ev if RFM is in transmit
state. If rfm rx ev is generated, radio byte component can
either execute some instructions and send rfm rx comp or
send rx byte ready to upper level to notify that one more
byte is received. Upon reception of rx byte ready event, ra-
dio packet component either notifies the end of event execu-
tion by packet done neg or sends the complete packet to the
application with receive pack event and sends packet done pos
as a completion event to show the end of the packet recep-
tion. The transmission is done in the same way except that
it starts with the transmit pack event generated by the ap-
plication and rfm clock is used to transmit the bits.
Another important point in TinyOS modelling is task han-

dler. Here, we have used the decoding and encoding tasks
to illustrate the modelling of the tasks. The model can be
extended further. When the byte component has to decode
the bits corresponding to one byte of information or to en-
code one byte to generate the bits to be transmitted, it just
posts these calculations as a task to the task handler due to
their time-consuming operation. Task handler component,
as can be seen in Figure 2, also has input events rfm clock to
be interrupted upon hardware interrupts and rfm rx comp

100

and rfm tx comp to continue execution when there are no
event handler to execute.
Each automaton corresponding to a component in TinyOS

contains three states for each state in TinyOS model. One of
them is the actual state where components wait for an event
from lower component. The other state is the energy state,
where the automaton stays for the number of clock cycles to
execute the corresponding instructions in the event handler
plus the number of clock cycles to post the event. The third
type of state is the wait state where the automaton waits for
the complete event to be occurred when the event handler
returns.
Component RFM is shown in Figure 3 as an example.

The component initially starts in receive state and stays in
receive state when either it is receiving a packet or it is
listening for potential packets although there is no incom-
ing packet. The component passes to transmit state as a
result of the transmit pack event and stays there until the
packet transmission is complete. When the component re-
ceives rfm clock event from packet generation component in
receive state, it changes its state to rec energy and increases
the variable energy by crec, which is a constant showing
the energy consumed in reception of one bit from Table 2.
The component stays in rec energy state for crec handler
(crec handler is the constant showing the number of clock
cycles necessary to execute the instruction in RFM com-
ponent plus the number of clock cycles used for interrupt
handling) time steps. Then it changes its state to rec wait
where it waits for the completion event showing the function
return. The kind of function return shows the next state to
move, receive state upon rfm rx comp and transmit state
upon rfm tx comp. Similar operations are performed when
RFM component is in transmit state at the time of rfm clock
event generation.

drfmt=0

sync rfm_clock/
rfmt’=0,

energy’=energy+crec

rfmt>=crec_handler/
sync rfm_rx_ev

sync
rfm_rx_comp

drfmt=0

drfmt=0

rfmt<=ctrans_handler
drfmt=1

sync
rfm_tx_comp

sync
rfm_rx_comp

sync
rfm_tx_comp

sync rfm_clock/
rfmt’=0,

energy’=energy+ctrans

rfmt>=ctrans_handler/
sync rfm_tx_ev

receive

rec_energy rec_wait trans_wait

transmit

trans_energy

drfmt=0

rfmt<=crec_handler
drfmt=1

Figure 3: Hybrid Automata Model of RFM Com-
ponent

A key component in TinyOS modelling is task handler,
which determines energy dissipation rate of the system and
models the two-level scheduler. Task handler component is
initially in idle state. Whenever there is nothing to execute,
task handler is in idle state, which shows that the processor
is in idle state and consumes energy with a smaller rate. This
is specified to be the constant cinactive (1pJ from Table 1).
If no task is posted, it moves to exec state just to increase
the energy rate to cactive(3.50nJ on average from Table 1).
Whenever a task is posted, the posting of task is performed
in state op exec, which takes cpost task clock cycles. Then
task handler waits in state op wait until the event execution
is completed, which is signaled with either rfm rx comp or
rfm tx comp. While executing the task, the task can be
interrupted by rfm clock event, which puts task handler into

op wait state. Then task handler changes its state back and
forth between op wait and op exec until the execution of
task is complete.

ct<=ctask_post
dht=0
dct=1

denergy=cactive

sync rfm_rx_comp |
sync rfm_tx_comp

sync rfm_clock

ht<=0

sync rfm_rx_comp |
sync rfm_tx_comp

sync rfm_clock
sync encode/
ht’=cencode,

ct’=0

sync decode/
ht’=cdecode,

ct’=0
sync decode/

ht’=ht+cdecode, ct’=0

sync decode/
ht’=cdecode, ct’=0

ct>=ctask_post/
sync post_task_done

exec idle op

op_waitop_exec

dht=0
dct=0

denergy=cactive

dht=0
dct=0

denergy=cinactive

ht>=0
dht=-1
dct=0

denergy=cactive

dht=0
dct=0

denergy=cactive

Figure 4: Hybrid Automata Model of Task Handler

3.2 Verification and Power Analysis of a Sen-
sor Node

The reliability of sensor network applications is essential
since it may be either impossible or not feasible to replace
the sensor nodes. However, concurrent interactions between
TinyOS components can make the behavior of applications
very hard to predict for any input configuration. The correct
operation of sensor networks must be guaranteed under any
circumstance.
TinyOS event-driven system is prone to programming er-

rors due to the lack of direct interaction between compo-
nents although they are directly related. The generation of
an event at the wrong place of the program may cause the
system operate worse than ideal and may not even be recog-
nized by the developer or may not be experienced by some
chance when running the program. An example of this kind
of bugs is shown in Figure 5. In TinyOS, when the RFM
component receives a bit, it gives this bit to the radio byte
component. Radio byte component does not send any event
to radio packet component unless it has received one exact
byte. Therefore, at the beginning of the packet, until the
whole byte is received, the packet component is still in idle
state. If application component tries to send a packet at
that time and packet component does not check with byte
component first as shown in Figure 5, it may send an event
to application showing that it has sent packet successfully.
However, when it tries to send it to byte component af-
terwards, it is rejected since byte level is in receive state
although the application is positively acknowledged for this
packet.
We have performed safety check in HyTech to verify that

such conditions cannot be reached. HyTech [4] is a tool for
the automated analysis of embedded systems. HyTech can
ensure the correct operation of the systems by performing
safety and timing verification of the systems, which can be
posed in a natural way as a reachability problem. In addi-
tion to checking system requirements, this tool can also be
used for the generation of a trace from an initial region to a
final region by using forward reachability analysis. We can
verify the whole TinyOS system by setting the conditions
that should not be reached in any way as a final region and
performing reachability analysis. For instance, the case in
Figure 5 could have been detected by setting the final con-
dition as ”radio packet is in transmit and radio byte is in

101

receive state”.

Application

Packet level

Byte level

RFM Bit level

….

idle Tx idle receiving

receiving

Packet
level

Byte
level

Figure 5: Motivation for the Verification of TinyOS

We have also performed the power analysis of a sensor
node by generating a trace of the system with final region
as time is greater than the duration of the simulation time.
Then the energy variable that is mentioned in Section 3.1
gives us the energy spent during this time. The energy vari-
able increases with rate cinactive when the processor is idle
and cactive when the processor is active. The variable also
increases abruptly upon receiving or transmitting a bit or
sensing.

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

Number of Children

E
ne

rg
y

(m
J/

se
c)

Figure 6: Energy Spent in One Sensor Node with
Different Traffic Load

The power analysis is performed for the nodes at different
distances from the central data collector. The parameter
changed in the simulation is the packet generation rate in
the packet generation component to reflect the fact that
more number of packets are forwarded as the node is closer

to the base station. As can be seen in Figure 6, the energy
spent increases with an increasing slope as the number of
children of the node increases. The reason is that as the
number of incoming packets increases, the node spends most
of the time in backoff state trying to transmit the packet in
addition to receiving and transmitting packets the number
of which is proportional to the number of children.

4. POWER ANALYSIS OF SENSOR NET-
WORK

A typical application in a sensor web is gathering of sensed
data at a distant base station (BS). The sensor nodes are
homogeneous and energy constrained with uniform energy.
The data from all the nodes need to be collected and trans-
mitted to BS. A simple approach to accomplish this task is
for each node to transmit its data directly to the BS. How-
ever, if the sensor network is deployed in a big region, this
one hop transmission is costly and nodes die very quickly.
Another approach is to use multi-hop forwarding. In the
common multi-hop configuration, sensor nodes forms a rout-
ing tree where the root of the tree is BS. Each node forwards
data of its own and its children to its parent in the tree.
Another approach is hierarchical multi-hop configuration,
where sensor nodes are clustered. In each cluster, one of the
nodes acts as the head of the cluster. Then every node in
the cluster sends its data to cluster head, which forwards
them to the base station. Power analysis of clustered con-
figuration is analyzed in [6], [7].
We focus on multi-hop configuration since this kind of con-

figuration is inevitable when the sensor nodes are deployed
in big area. Even if the nodes form a hierarchical network,
cluster heads may not be capable of reaching the base sta-
tion in one hop. As a result, a multi-hop configuration is
needed on top of hierarchical configuration.
Power analysis of a sensor network is necessary since net-

work is desired to be in operation state as long as possi-
ble. “Operation state” is defined as the state in which the
network graph remains connected including the base station
with the assumption that route configuration is dynamic and
can be reactivated. This performance figure determines the
lifetime of a sensor network. Lifetime of a sensor network is
desired to be predictable since when the graph become un-
connected (i.e there is no path to the base station.), sensor
network need maintenance.
We analyze a multi-hop tree-based network in order to ob-

serve the power dissipation in regions at different distances
from BS. As expected, power dissipation is lower for the
nodes apart from the base station since they only forward
their own data and higher for the nodes near to the base
station since they have more children. Our aim in this anal-
ysis is to deploy the network in a clever way with a clear
understanding of the relation of the traffic load and power
consumption of the sensor nodes. One clever configuration
may be to use nodes with energies increasing gradually as we
go away from BS. For this to be implementable, regions can
be grouped (See Figure 7) and each group contains nodes
with different energy.
We use SHIFT [8] as the simulation tool. SHIFT is a

programming language for describing dynamic networks of
hybrid automata. It consists of components which can be
created, interconnected and destroyed as the system evolves.
Components exhibit hybrid behavior, consisting of continuous-

102

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

X− coordinates (m)

Y
−

 c
oo

rd
in

at
es

 (
m

)

node
Group 4
Group 3
Group 2
Group 1

Figure 7: Random 100-node topology

time phases separated by discrete event transitions. Com-
ponents may evolve independently, or they may interact
through their inputs, outputs and exported events.
In a uniform distributed network, we clustered the net-

work into four groups. Power dissipation of a node depends
on the number of its children. Children of a node are de-
termined by the geographical distribution. In each group,
the nodes are separated into regions with a straight line in
which there is only one node and all the lower group nodes
occupied between the lines is assigned as children to that
node. In each group, energy dissipation of nodes are de-
termined according to Figure 6 and group determination is
position based as seen in Figure 7. The modelling of a node
is as follows: when a node dies, load of that node is dis-
tributed to the nodes in its group. And the total load of
the group decreases if there is a death in the lower layer.
Hybrid modelling of a node is shown in Figure 8. Each node
(nj

i) has consumed energy Xj
i and power dissipation rate

f j
i , obtained from Figure 6, where i ∈ (1, 4) represents the
group number and j ∈ (1, Ni) represents the ID of the node
in the group that has Ni members. Each group is repre-
sented with set Si to signal all the nodes in the group and
set Rj

i = Si − {nj
i } for j ∈ (1, Ni) to signal a death event

to the nodes except itself. When a node dies, it sends death
signal and the load of the dead node is distributed to the
rates of nodes in set Rj

i and the corresponding load that af-
fect the upper groups is decreased from the rates of nodes in
Si of those groups. The distribution of the rate is uniform,
more complicated schemes can be done by distributing the
rate regarding the position. When Xj

i exceeds total energy
of the node, the node dies.
Figure 9 shows the lifetime of the nodes in each group. As

expected, group 1 has the lowest lifetime. We can also see
from the figure that most of the nodes die at the same time
in group 1 since a death in this group forces the remaining
nodes to forward the packets of lower level nodes and die
quickly. This is also true for other groups but since the loads
of the first group is higher, this result is more noticeable in
group 1. Group 4 nodes also die at the same time since the
load can be considered same for all nodes. On the other

exit
init

x'=f
Set R = Set S - {self}

when “death” from R
increase f

when x > Total Energy
send “death”signal

when “death” from lower set
decrease f

x = 0
f (mJ/s)

 Group nodes Set S

Figure 8: Hybrid Automata Model of A Single Sen-
sor Node

hand, group 2 and group 3 nodes die gradually. That is
reasonable since the load of that nodes varies and lifetime is
not homogeneous.

1 25 50 100
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Percentage of Node Death

T
im

e
(s

ec
)

Group 1
Group 2
Group 3
Group 4

Figure 9: Performance Results for the Network in
Figure 7

5. RELATED RESEARCH
Automatic verification of embedded systems is essential

for safety critical applications. The safety check procedure
for railroad gate controller and for a timing-based mutual
exclusion protocol is performed in [9] with HyTech. In [10],
the verification of the controller is performed for the safe op-
eration of the boiler after obtaining abstracted linear models
for the nonlinear behavior of the boiler again with HyTech.
Simple power analysis of a networked sensor node is per-

formed in [5]. Power cost of instructions such as writing to
memory, external functions such as sensing and overhead of
basic operations in terms of clock cycles such as posting a
task is measured. By using the results of this paper, we
have performed automatic power analysis of the nodes as a
function of the distance from the central data collector.
Power analysis of a sensor network is performed in [7] and

[6]. In these schemes, the sensor network is configured in
a hierarchical manner where the sensor nodes are clustered
and one of the nodes is selected as the head of the group

103

and sends the collected data directly to the base station.
In these schemes, scheduling problem arises because of the
one hop forwarding and need complex algorithms which by
it self, consumes lots of power. Extreme power dissipation
of the head of clusters is solved by random or chain-based
scheduling of the heads. Although this hierarchical scheme
is a solution for small size networks, when large size net-
works are considered, head of clusters still needs multi-hop
communication to the base station over tree based configu-
rations. Therefore, our analysis is for tree-based multi-hop
networks.

6. FUTURE WORK
Applying formal verification techniques (and ideally syn-

thesis techniques) to sensor network systems and applica-
tions is an extremely important direction. The constrained
setting and the structured environment in TinyOS make this
a very attractive direction. However, the current automata
model is constructed by abstracting the performance of the
system with extensive human intervention. In the future,
we would like to automate the abstraction procedure from
the TinyOS code along with some high level performance
specifications to the hybrid automata model.

7. CONCLUSION
In this paper, we analyzed TinyOS, an event driven op-

erating system for sensor networks. We modelled TinyOS
with the Hybrid Automata. We made a verification check
and analyzed the power dissipation of a node which formed
a tree-based multi-hop sensor network and had different rate
of power dissipation with respect to its position. Following
the analysis of a single node with HyTech, we modelled the
sensor network as Hybrid Automata to analyze the power
dissipation over the sensor network. Results show that sen-
sor nodes near and far away the base station has the highest
and lowest lifetimes respectively and a large fraction of nodes
die at the same time. On the other hand, nodes in the mid-
dle have a variation in their lifetime. For a sensor network
to be in operation, connection to the base station always
should be alive. This requires the usage of the nodes with
high energy or dense distribution near the base station.

8. REFERENCES
[1] K. S. J. Pister, J. M. Kahn and B. E. Boser, Smart

Dust: Wireless Networks of Millimeter-Scale Sensor
Nodes, Highlight Article in 1999 Electronics Research
Laboratory Research Summary.

[2] J. M. Kahn, R. H. Katz and K. S. J. Pister, Mobile
Networking for Smart Dust, ACM/IEEE Intl. Conf. on
Mobile Computing and Networking(MobiCom 99),
Seattle, WA, August 17-19, 1999.

[3] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler and
K. Pister, System Architecture directions for network
sensors, ASPLOS 2000.

[4] T. A. Henzinger, P. H. Ho and H. Wong-Toi, Hytech: a
model checker for hybrid systems, Software Tools for
Technology Transfer 1: 110-122, 1997.

[5] E. J. Riedy and R. Szewczyk, Power and Control in
Networked Sensors, today.cs.berkeley.edu/tos.

[6] S. Lindsey, C. S. Raghavendra. PEGASIS:
Power-Efficient Gathering in Sensor Information
Systems, IEEEAC, 2001.

[7] W. Heinzelman, A. Chandrakasan, and H.Balakrishan.
Energy-Efficient Communication Protocol for Wireless
Microsensor Networks., Proceedings of the 33rd Annual
Hawaii International Conference on System Sciences,
Maui, HI, USA, 4-7 Jan. 2000.

[8] SHIFT The Hybrid System Simulation Programming
Language http://www.path.berkeley.edu/shift

[9] R. Alur, T. A. Henzinger and P. H. Ho, Automatic
Symbolic Verification of Embedded Systems, IEEE
Transactionson Software Engineering 22: 181-201, 1996.

[10] T. A. Henzinger and H. Wong-Toi, Using Hytech to
Synthesize Control Parameters for a Steam Boiler,
Formal Methods for Industrial Applications: Specifying
and Programming the Steam Boiler Control, Lecture
Notes in Computer Science 1165, Springer-Verlag, 1996,
pp. 265-282

104

