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LIFETIME ASYMPTOTICS OF ITERATED BROWNIAN MOTION IN R
n ∗

Erkan Nane
1, 2

Abstract. Let τD(Z) be the first exit time of iterated Brownian motion from a domain D ⊂ R
n

started at z ∈ D and let Pz[τD(Z) > t] be its distribution. In this paper we establish the exact
asymptotics of Pz[τD(Z) > t] over bounded domains as an improvement of the results in DeBlassie
(2004) [12] and Nane (2006) [24], for z ∈ D

lim
t→∞

t−1/2 exp

(

3

2
π2/3λ

2/3

D t1/3

)

Pz[τD(Z) > t] = C(z),

where C(z) = (λD27/2)/
√

3π
(

ψ(z)
∫

D
ψ(y)dy

)2
. Here λD is the first eigenvalue of the Dirichlet Lapla-

cian 1

2
∆ in D, and ψ is the eigenfunction corresponding to λD. We also study lifetime asymptotics

of Brownian-time Brownian motion, Z1

t = z + X(|Y (t)|), where Xt and Yt are independent one-
dimensional Brownian motions, in several unbounded domains. Using these results we obtain partial
results for lifetime asymptotics of iterated Brownian motion in these unbounded domains.
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1. Introduction and statement of main results

Iterated Brownian motion (IBM) has attracted the interest of several authors [1–3,7–10,12,15,18,23,24,27,29].
Several other iterated processes including Brownian-time Brownian motion (BTBM) have also been studied
[1,2,19,25,26]. One of the main differences between these iterated processes and Brownian motion is that they
are not Markov processes. However, these processes have many properties similar to that of Brownian motion
(see [2, 3, 12, 23], and references therein).

To define iterated Brownian motion Zt started at z ∈ R, let X+
t , X−

t and Yt be three independent one-
dimensional Brownian motions, all started at 0. Two-sided Brownian motion is defined by

Xt =

{

X+
t , t ≥ 0

X−

(−t), t < 0.
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Then iterated Brownian motion started at z ∈ R is

Zt = z + X(Yt), t ≥ 0.

In R
n, one requires X± to be independent n−dimensional Brownian motions. This is the version of the iterated

Brownian motion due to Burdzy, see [7].
We next define another closely related process, the so called Brownian-time Brownian motion. Let Xt and

Yt be two independent one-dimensional Brownian motions, all started at 0. Brownian-time Brownian motion
started at z ∈ R is

Z1
t = z + X(|Yt|) t ≥ 0.

In R
n one requires X to be an n−dimensional Brownian motion.

Let τD be the first exit time of Brownian motion from a domain D ⊂ R
n. The large time behavior of

Pz[τD > t] has been studied for several types of domains, including general cones [5, 11], parabola-shaped
domains [4, 22], twisted domains [13], unbounded convex domains [21] and bounded domains [28]. Our aim in
this article is to do the same for the first exit time of IBM from bounded domains in R

n, and for the first exit
time of BTBM from several domains in R

n. See Bañuelos and DeBlassie [3], Li [21], Lifshits and Shi [22] and
Nane [23] for a survey of results obtained for Brownian motion and iterated Brownian motion in these domains.

For many bounded domains D ⊂ R
n the asymptotics of Pz[τD > t] are well-known. (See [28] for a more

precise statement of this.) For z ∈ D,

lim
t→∞

eλDtPz [τD > t] = ψ(z)

∫

D

ψ(y)dy, (1.1)

where λD is the first eigenvalue of 1
2∆ with Dirichlet boundary conditions and ψ is its corresponding eigenfunc-

tion.
DeBlassie [12] proved that for iterated Brownian motion in bounded domains, for z ∈ D,

lim
t→∞

t−1/3 log Pz[τD(Z) > t] = −3

2
π2/3λ

2/3
D . (1.2)

The limits (1.1) and (1.2) are very different in that the latter involves taking the logarithm which may kill
many unwanted multipliers of the exponential. It is then natural to ask if it is possible to obtain an analogue
of (1.1) for IBM. That is, can one remove the log in (1.2)? In [24], we improved the limit in (1.2) as follows, for
z ∈ D,

2C(z) ≤ lim inf
t→∞

t−1/2 exp

(

3

2
π2/3λ

2/3
D t1/3

)

Pz[τD(Z) > t]

≤ lim sup
t→∞

t−1/2 exp

(

3

2
π2/3λ

2/3
D t1/3

)

Pz[τD(Z) > t] ≤ πC(z),

where C(z) = λD

√

2π/3
(

ψ(z)
∫

D
ψ(y)dy

)2
.

In this paper we prove the following theorem which improves both limits above.

Theorem 1.1. Let D ⊂ R
n be a domain for which (1.1) holds pointwise and let λD and ψ be as above. Then

for z ∈ D,

lim
t→∞

t−1/2 exp(
3

2
π2/3λ

2/3
D t1/3)Pz [τD(Z) > t] =

(λD27/2)√
3π

(

ψ(z)

∫

D

ψ(y)dy

)2

.

Remark 1. Observe that 2λD

√

2π/3 ≤ (λD27/2)/
√

3π ≤ πλD

√

2π/3, so Theorem 1.1 is in agreement with
the results obtained previously in [12, 24].
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In [13], DeBlassie and Smits studied the tail behavior of the first exit time of Brownian motion in twisted
domains in the plane. Let D ⊂ R

2 be a domain whose boundary consists of three curves (in polar coordinates)

C1 : θ = f1(r), r ≥ r1

C2 : θ = f2(r), r ≥ r1

C3 : r = r1, f2(r) ≤ θ ≤ f1(r)

where f1 and f2 are smooth and the curves C1 and C2 do not cross:

0 < f1(r) − f2(r) < π, r ≥ r1.

DeBlassie and Smits call D a twisted domain if there are constants r0 > 0, γ > 0 and p ∈ (0, 1] and a smooth
function f(r) such that the curves f1(r) and f2(r), r ≥ r0, are obtained from f(r) by moving out ±γrp units
along the normal to the curve θ = f(r) at the point whose polar coordinates are (r, f(r)). They call γrp the
growth radius and θ = f(r) the generating curve. DeBlassie and Smits [13] (Th. 1.1) have the following tail
behavior of the first exit time of Brownian motion in twisted domains D ⊂ R

2 with growth radius γrp, γ > 0,
0 < p < 1

lim
t→∞

t−( 1−p
1+p ) log Pz [τD > t] = −l1 = −

[

π2p−1

γ22p(1 − p)2p

]
2

p+1

Cp (1.3)

where

Cp = (1 + p)

⎡

⎣

π2+p

8pp2p(1 − p)1−p

Γ2p
(

1−p
2p

)

Γ2p
(

1
2p

)

⎤

⎦

1
p+1

.

For these domains, Nane [23] obtained the following result for IBM: for all z ∈ D,

lim
t→∞

t−( 1−p
3+p ) log Pz[τD(Z) > t] = −

(

3 + p

2 + 2p

) (

1 + p

1 − p

)( 1−p
3+p )

π( 2−2p
3+p )l

( 2+2p
3+p )

1 ,

where l1 is the limit given by (1.3).
We obtained in [24], the following for BTBM in twisted domains, for z ∈ D,

lim
t→∞

t−( 1−p
p+3 ) log Pz [τD(Z1) > t] = −2( 2p−2

3+p )
(

3 + p

2 + 2p

) (

1 + p

1 − p

)( 1−p
3+p )

π( 2−2p
3+p )l

( 2+2p
3+p )

1 ,

where l1 is the limit given by the limit given by (1.3).
DeBlassie and Smits [13] also obtained similar results for p = 1. Let D ⊂ R

2 be a twisted domain with
growth radius γr, γ > 0. Then for z ∈ D,

lim
t→∞

[log t]−1 log Pz [τD > t] = −C(γ) = −π

[

4 arccos
1

√

1 + γ2

]−1

. (1.4)

We obtain the following lifetime asymptotics of BTBM in twisted domains.

Theorem 1.2. Let D ⊂ R
2 be a twisted domain with growth radius γr, γ > 0. Then for z ∈ D,

lim
t→∞

[log t]−1 log Pz [τD(Z1) > t] = −C(γ)/2,

with C(γ) as in (1.4).
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Using Theorem 1.3. from [24], which says that for all z ∈ D and all t > 0,

Pz[τD(Z) > t] ≤ 2Pz[τD(Z1) > t],

we obtain the following for IBM in twisted domains.

Corollary 1.1. Let D ⊂ R
2 be a twisted domain with growth radius γr, γ > 0. Then for z ∈ D,

lim sup
t→∞

[log t]−1 log Pz [τD(Z) > t] ≤ −C(γ)/2,

with C(γ) as in (1.4).

In [21], using Gaussian techniques, Li studied lifetime asymptotics of Brownian motion in domains of the
following form

Pf = {(x, y) ∈ R
n+1 : y > f(x), x ∈ R

n}
for f(x) = exp(|x|p), p > 0. Li established that for z ∈ Pf ,

lim
t→∞

t−1(log t)2/p log Pz[τPf
> t] = −j2

ν , (1.5)

where ν = (n − 2)/2 and jν is the smallest positive zero of the Bessel function Jv.
We obtain the following theorem in these domains

Theorem 1.3. Let Pf be as above with f(x) = exp(|x|p), p > 0. Then for z ∈ Pf ,

lim
t→∞

t−1/3(log t)4/3p log Pz[τPf
(Z1) > t] = −C(p),

where
C(p) = (3/2)(4+3p)/3p21/3(j2

ν22/p)2/3(π2/8)1/3.

Using Theorem 1.3. from [24], we obtain the following for IBM in these domains.

Corollary 1.2. Let Pf be as above with f(x) = exp(|x|p), p > 0. Then for z ∈ Pf ,

lim sup
t→∞

t−1/3(log t)4/3p log Pz[τPf
(Z) > t] ≤ −C(p).

For f(x) = h(|x|) and h−1(x) = Axα(log x)β , x > 1. Li obtained the following: let ǫ > 0. For t large, z ∈ Pf

−(1 + ǫ)Cα,β,1 ≤ t−
(1−α)
(1+α) (log t)

2β
(1+α) log Pz [τPf

> t] ≤ −(1 − ǫ)Cα,β,2, (1.6)

where
Cα,β,1 = 2−1(1 − α)−1(α−α(1 + α)2β+2A−2j2

ν)1/(1 + α)

and
Cα,β,2 = (1 + α)(2α)−α/(1+α)(2−1(1 + α))2β/(1+α))C1/(1+α)

where C = (1 − α)−122β−1A−2j2
ν .

We have the following for BTBM in these domains.

Theorem 1.4. For 0 < α < 1 and β ∈ R,

−C(1) ≤ lim inf
t→∞

t−(1−α)/(3+α)(log t)4β(1+α)/(3+α) log Pz [τPf
(Z1) > t]

≤ lim sup
t→∞

t−(1−α)/(3α+1)(log t)4β(1+α)/(3+α) log Pz [τPf
(Z1) > t]

≤ −C(2)
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where

C(1) =

(

3 + α

2(1 + α)

)

3+α+4β
3+α

(

1 − α

(3 + α)

)

(π2/8)
1−α

(3+α) (Cα,β,1)
2(1+α)
(3+α) 2

4β
(3+α) ,

and

C(2) =

(

3 + α

2(1 + α)

)

3+α+4β
3+α

(

1 − α

(3 + α)

)

(π2/8)
1−α

(3+α) (Cα,β,2)
2(1+α)
(3+α) 2

4β
(3+α) .

Using Theorem 1.3. from [24], we obtain the following for IBM in these domains.

Corollary 1.3. For 0 < α < 1 and β ∈ R. Let Pf be as above with f(x) = h(|x|), h−1(x) = Axα(log x)β,
x > 1. Then for z ∈ Pf ,

lim sup
t→∞

t−(1−α)/(3α+1)(log t)4β(1+α)/(3+α) log Pz [τPf
(Z1) > t] ≤ −C(2)

where C(2) is as above.

The paper is organized as follows. In Section 2, we give some preliminary lemmas to be used in the proof of
main results. We also recall several asymptotic results from Nane [24] to be used in the proof of main results.
Theorem 1.1 is proved in Section 3. Section 4 is devoted to prove Theorems 1.2, 1.3 and 1.4.

2. Preliminaries

In this section we state some preliminary facts that will be used in the proof of main results.
In what follows we will write f ≈ g and f � g to mean that for some positive C1 and C2, C1 ≤ f/g ≤ C2

and f ≤ C1g, respectively. We will also write f(t) ∼ g(t), as t → ∞, to mean that f(t)/g(t) → 1, as t → ∞.
The main fact is the following Tauberian theorem ([14, Laplace transform method, 1958, Chapter 4]). Laporte

[20] also studied these types of integrals. Let h and f be continuous functions on R. Suppose f is non-positive
and has a global max at x0, f ′(x0) = 0, f ′′(x0) < 0 and h(x0) 
= 0 and

∫ ∞

−∞
h(x) exp(λf(x)) < ∞ for all λ > 0.

Then as λ → ∞,
∫ ∞

0

h(x) exp(λf(x))dx ∼ h(x0) exp(λf(x0))

√

2π

λ|f ′′(x0)|
· (2.1)

It can be easily seen from this that as λ → ∞,

∫ ∞

0

exp(−λ(x + x−2))dx ∼ exp(−3λ2−2/3)

√

24/3π

3λ
· (2.2)

Similarly, as t → ∞,

∫ ∞

0

exp

(

− at

u2
− bu

)

du ∼
√

π

3
22/3a1/6b−2/3t1/6 exp(−3a1/3b2/32−2/3t1/3). (2.3)

This follows from equation (2.2) after making the change of variables u = (atb−1)1/3x.
Finally, we obtain, as t → ∞,

∫ ∞

0

u exp

(

− at

u2
− bu

)

du ∼ 2

√

π

3
a1/2b−1t1/2 exp(−3a1/3b2/32−2/3t1/3). (2.4)

Writing the power series for the cosine function we easily see that as t → ∞,

∫ ∞

0

x cos (πK/x) exp

(

−π2t

2x2
− λDx

)

dx ∼ 2

√

π

3

(

π2

2

)1/2

λ−1
D t1/2 exp

(

−3

2
π2/3λ

2/3
D t1/3

)

. (2.5)
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We next state a version of de Bruijn’s Tauberian Theorem (Kasahara [17] Th. 3 and Bingham, Goldie and
Teugels [6] p. 254).

Theorem 2.1 (de Bruijn’s Tauberian Theorem). Let ξ be a positive random variable. Then, for α > 0 and
β ∈ R

log P [ξ ≤ ǫ] ∼ −Cǫ−α| log ǫ|β as ǫ → 0+

if and only if

log E[exp(−λξ)] ∼ −(1 + α)1−β/(1+α)α−α/(1+α)C1/(1+α)λα/(1+α)(log λ)β/(1+α)

as λ → ∞.
In the case α = 0, if x → 0+

[| log x|]−1 log P [ξ ≤ x] ∼ −c/2.

Then as λ → ∞
[log λ]−1 log E[exp(−λξ)] ∼ −c/2.

Next, we will recall some lemmas that will used in Sections 3 and 4. The following lemma is proved in [12]
Lemma A1 (it also follows from more general results on “intrinsic ultracontractivity”). We include it for
completeness.

For I ⊂ R an open interval, we write

ηI = η(I) = inf{t ≥ 0 : Yt /∈ I}.

Lemma 2.1. As t → ∞,

Px[η(0,1) > t] ∼ 4

π
e−

π2t
2 sin πx, uniformly for x ∈ (0, 1).

We recall a result from Nane [23] Lemma 6.2, that will be used for the process Z1.

Lemma 2.2. Let B = {u > 0 : t/u2 > M} for M large. Then on B,

d

du
P0[η(−u,u) > t] ∼ exp

(

− π2t

8u2

)

πt

u3
· (2.6)

3. Iterated Brownian motion in bounded domains

If D ⊂ R
n is an open set, write

τ±

D (z) = inf{t ≥ 0 : X±

t + z /∈ D},

and if I ⊂ R is an open interval, write

ηI = η(I) = inf{t ≥ 0 : Yt /∈ I}.

Recall that τD(Z) stands for the first exit time of iterated Brownian motion from D. As in DeBlassie [12, §3.],
we have by the continuity of the paths for Zt = z + X(Yt), if f is the probability density of τ±

D (z)

Pz [τD(Z) > t] =

∫ ∞

0

∫ ∞

0

P0[η(−u,v) > t]f(u)f(v)dvdu. (3.1)
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The proof of Theorem 1.1. The following is well-known

P0[η(−u,v) > t] =
4

π

∞
∑

n=0

1

2n + 1
exp

(

− (2n + 1)2π2

2(u + v)2
t

)

sin
(2n + 1)πu

u + v
, (3.2)

(see Feller [16] pp. 340–342).
Let ǫ > 0. From Lemma 2.1, choose M > 0 so large that

(1 − ǫ)
4

π
e−

π2t
2 sinπx ≤ Px[η(0,1) > t] ≤ (1 + ǫ)

4

π
e−

π2t
2 sin πx, (3.3)

for t ≥ M , uniformly x ∈ (0, 1). For a bounded domain with regular boundary it is well-known (see [28]
pp. 121–127) that there exists an increasing sequence of eigenvalues, λ1 < λ2 ≤ λ3 · · · , and eigenfunctions ψk

corresponding to λk such that,

Pz [τD ≤ t] =

∞
∑

k=1

exp(−λkt)ψk(z)

∫

D

ψk(y)dy. (3.4)

From the arguments in DeBlassie [12] Lemma A.4

f(t) =
d

dt
Pz [τD ≤ t] =

∞
∑

k=1

λk exp(−λkt)ψk(z)

∫

D

ψk(y)dy. (3.5)

Finally choose K > 0 so large that

A(z)(1 − ǫ) exp(−λDu) ≤ f(u) ≤ A(z)(1 + ǫ) exp(−λDu)

for all u ≥ K, where

A(z) = λ1ψ1(z)

∫

D

ψ1(y)dy = λDψ(z)

∫

D

ψ(y)dy.

We further assume that t is so large that K < 1
2

√

t/M . Define A for K > 0 and M > 0 as

A =

{

(u, v) : K ≤ u ≤ 1

2

√

t

M
, u ≤ v ≤

√

t

M
− u

}

.

By equation (3.3) and from equation (3.10) in [12],

Pz[τD(Z) > t] = 2

∫ ∞

0

∫ ∞

u

P u
u+v

[

η(0,1) >
t

(u + v)2

]

f(u)f(v)dvdu

≥ C1

∫ 1
2

√
t/M

K

∫

√
t/M−u

u

sin

(

πu

(u + v)

)

exp

(

− π2t

2(u + v)2

)

exp(−λD(u + v))dvdu,

where C1 = C1(z) = 2(4/π)A(z)2(1 − ǫ)3. Changing the variables x = u + v, z = u the integral is

= C1

∫ 1
2

√
t/M

K

∫

√
t/M

2z

sin
(πz

x

)

exp

(

− π2t

2x2

)

exp (−λDx) dxdz,
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and reversing the order of integration

= C1

∫

√
t/M

2K

∫ 1
2 x

K

sin
(πz

x

)

exp

(

− π2t

2x2

)

exp(−λDx)dzdx

= C1/π

∫

√
t/M

2K

x cos

(

πK

x

)

exp

(

− π2t

2x2

)

exp(−λDx)dx.

From equation (2.5) as t → ∞,

∫ ∞

0

x cos

(

πK

x

)

exp

(

− π2t

2x2

)

exp (−λDx) dx ∼ 2

√

π

3

(

π2

2

)1/2

λ−1
D t1/2 exp

(

−3

2
π2/3λ

2/3
D t1/3

)

. (3.6)

Now for some c1 > 0,

∫ 2K

0

x exp

(

− π2t

2x2
− λDx

)

dx ≤ e−π2t/2K2

∫ 2K

0

x exp(−λDx)dx � e−c1t, (3.7)

and

∫ ∞

√
t/M

x exp

(

− π2t

2x2

)

exp (−λDx) dx ≤
∫ ∞

√
t/M

x exp(−λDx)dx = (
√

t/Mλ−1
D + λ−2

D ) exp(−λD

√

t/M). (3.8)

Now from equations (3.6)–(3.8) we get

lim inf
t→∞

t−1/2 exp

(

3

2
π2/3λ

2/3
D t1/3

)

Pz [τD(Z) > t] ≥ (C1/π)2

√

π

3

(

π2

2

)1/2

λ−1
D . (3.9)

For the upper bound for P [τD(Z) > t] from equation (3.10) in [12],

Pz[τD(Z) > t] = 2

∫ ∞

0

∫ ∞

u

P u
u+v

[η(0,1) >
t

(u + v2)
]f(u)f(v)dvdu. (3.10)

We define the following sets that make up the domain of integration,

A1 = {(u, v) : v ≥ u ≥ 0, u + v ≥
√

t/M},
A2 = {(u, v) : u ≥ 0, v ≥ K, u ≤ v, u + v ≤

√

t/M},
A3 = {(u, v) : 0 ≤ u ≤ v ≤ K}.

Over the set A1 we have for some c > 0,

∫ ∫

A1

P u
u+v

[η(0,1) >
t

(u + v)2
]f(u)f(v)dvdu ≤

∫ ∫

A1

f(u)f(v)dvdu ≤ exp(−c
√

t/M). (3.11)

The equation (3.11) follows from the distribution of τD from equation (3.5).
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Since on A3, t/(u + v)2 ≥ M ,

∫ ∫

A3

P u
u+v

[

η(0,1) >
t

(u + v)2

]

f(u)f(v)dvdu

�

∫ K

0

∫ K

0

exp(− π2t

2(u + v)2
)f(u)f(v)dvdu

≤ exp

(

− π2t

8K2

)
∫ K

0

∫ K

0

f(u)f(v)dvdu ≤ exp

(

− π2t

8K2

)

. (3.12)

Let C1 = C1(z) = 2(4/π)A(z)2(1 + ǫ)3. For the integral over A2 we get,

∫ ∫

A2

P u
u+v

[

η(0,1) >
t

(u + v)2

]

f(u)f(v)dvdu

≤ C11

∫ K

0

∫

√
t/M−u

K

f(u) exp

(

− π2t

2(u + v)2
− λDv

)

dvdu

+ C1

∫ 1/2
√

t/M

K

∫

√
t/M−u

u

sin

(

πu

u + v

)

exp

(

− π2t

2(u + v)2
− λD(u + v)

)

dvdu

= I + II. (3.13)

Changing variables u + v = z, u = w

I ≈
∫ K

0

∫

√
t/M−u

K

exp

(

− π2t

2(u + v)2

)

f(u) exp(−λDv)dvdu

≤
∫ K

0

∫

√
t/M

w+K

exp

(

−π2t

2z2

)

f(w) exp(−λDz) exp(λDw)dzdw

≤ exp(λDK)

∫ K

0

f(w)dw

∫ ∞

0

exp

(

−π2t

2z2

)

exp (−λDz) dz

� t1/6 exp

(

−3

2
π2/3λ

2/3
D t1/3

)

. (3.14)

Equation (3.14) follows from equation (2.3), with a = π2/2, b = λD.
Changing variables u + v = z, u = w

II ≤ C1

∫ 1/2
√

t/M

K

∫

√
t/M

2w

sin
(πw

z

)

exp

(

−π2t

2z2
− λDz

)

dzdw

= C1

∫

√
t/M

2K

∫ z/2

K

sin
(πw

z

)

exp

(

−π2t

2z2
− λDz

)

dwdz (3.15)

≤ C1/π

∫

√
t/M

2K

z cos

(

πK

z

)

exp

(

−π2t

2z2
− λDz

)

dz

≤ (1 + ǫ)(C1/π)2

√

π

3

(

π2

2

)1/2

λ−1
D t1/2 exp

(

−3

2
π2/3λ

2/3
D t1/3

)

. (3.16)

Equation (3.15) follows by changing the order of the integration. Equation (3.16) follows from equation (2.5).
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Now from equations (3.11), (3.12), (3.14) and (3.16) we obtain

lim sup
t→∞

t−1/2 exp

(

3

2
π2/3λ

2/3
D t1/3

)

Pz [τD(Z) > t] ≤ (1 + ǫ)

(

C1

π

)

2

√

π

3

(

π2

2

)1/2

λ−1
D . (3.17)

Finally, from equations (3.9) and (3.17) and letting ǫ → 0,

C(z) ≤ lim inf
t→∞

t−1/2 exp

(

3

2
π2/3λ

2/3
D t1/3

)

Pz [τD(Z) > t]

≤ lim sup
t→∞

t−1/2 exp

(

3

2
π2/3λ

2/3
D t1/3

)

Pz [τD(Z) > t] ≤ C(z),

where C(z) = (λD27/2)/
√

3π
(

ψ(z)
∫

D ψ(y)dy
)2

. �

4. Brownian-time Brownian motion in unbounded domains

In this section we study Brownian-time Brownian motion (BTBM), Z1
t started at z ∈ R, in several unbounded

domains.
If D ⊂ R

n is an open set, write
τD(z) = inf{t ≥ 0 : Xt + z /∈ D},

and if I ⊂ R is an open interval, we write

ηI = inf{t ≥ 0 : Yt /∈ I}.

Let τD(Z1) stand for the first exit time of BTBM from D. We have by the continuity of paths

Pz [τD(Z1) > t] = P [η(−τD(z), τD(z)) > t]. (4.1)

Proof of Theorem 1.2. Let ǫ > 0. From Lemma 2.2, choose M > 0 so large that

(1 − ǫ) exp

(

− π2t

8u2

)

πt

u3
≤ d

du
P0[η(−u,u) > t] ≤ (1 + ǫ) exp

(

− π2t

8u2

)

πt

u3

for all u ≤
√

t/M .
Let C = C(γ). From the hypothesis choose K > 0 so large that

u−C(1+ǫ) ≤ P (τD(z) > u) ≤ u−C(1−ǫ) for u ≥ K. (4.2)

We further assume that t is so large that K <
√

t/M . Now by (4.1), after integration by parts,

Pz [τD(Z1) > t] =

∫ ∞

0

(

d

du
P0[η(−u,u) > t]

)

P [τD(z) > u]du

� t

∫

√
t/M

K

exp

(

− π2t

8u2

)

u−(C(1+ǫ)+3)du (4.3)

and changing variables u−2 = x, du = −1/2x−3/2dx the integral is

� t

∫ K−2

M/t

exp

(

−π2tx

8

)

xC(1+ǫ)/2dx. (4.4)
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Changing variables, z = π2tx/8, the integral is

� t−C(1+ǫ)/2

∫ K−2π2t/8

π2M/8

e−zzC(1+ǫ)/2dz. (4.5)

Now since for some c0 > 0,
∫ ∞

K−2π2t/8

e−zzC(1+ǫ)/2dz ≤ e−c0t,

∫ π2M/8

0

e−zzC(1+ǫ)/2dz < ∞,

and
∫ ∞

0

e−zzC(1+ǫ)/2dz = Γ(1 + C(1 + ǫ)/2).

We have

Pz [τD(Z1) > t] � t−C(1+ǫ)/2. (4.6)

We now give an upper bound.

Pz [τD(Z1) > t] =

∫ ∞

0

P0(η(−u,u) > t)f(u)du

�

∫

√
t/M

0

e−
π2t
8u2 f(u)du +

∫ ∞

√
t/M

f(u)du

� E

[

exp

(

− π2t

8(τD(z))2

)]

+ (
√

t/M)−C(1−ǫ)

� t−C(1−ǫ)/2. (4.7)

Equation (4.7) follows from Theorem 2.1 and the asymptotics of τD(z).
Now from Equations (4.6) and (4.7) we have

t−C(1+ǫ)/2 � Pz [τD(Z1) > t] � t−C(1−ǫ)/2.

Now taking logarithm of the above inequalities, dividing by log t, letting ǫ → 0, we obtain the desired result. �

Proof of Theorem 1.3. Let ǫ > 0. From Lemma 2.2, choose M > 0 so large that

(1 − ǫ) exp

(

− π2t

8u2

)

πt

u3
≤ d

du
P0[η(−u,u) > t] ≤ (1 + ǫ) exp

(

− π2t

8u2

)

πt

u3
(4.8)

for all u ≤
√

t/M .
Let C = j2

ν . Given ǫ > 0, choose K > 0 so large that

exp(−C(1 + ǫ)u(log u)−2/p) ≤ P (τPf
(z) > u) ≤ exp(−C(1 − ǫ)u(log u)−2/p) (4.9)

for u ≥ K. We further assume that t is so large that K <
√

t/M .
Then, by equations (4.8) and (4.9)

Pz [τPf
(Z1) > t] � t

∫

√
t/M

K

u−3 exp

(

− π2t

8u2

)

exp(−C(1 + ǫ)u(log u)−2/p)du (4.10)
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changing variables u−2 = x, du = −1/2x−3/2dx the integral is

� t

∫ K−2

M/t

exp

(

−π2tx

8

)

exp(−C(1 + ǫ)x−1/2(log x−1/2)−2/p)dx.

Now we set

v(x) = C(1 + ǫ)x−1/2(log x−1/2)−2/p

which gives

dv = C(1 + ǫ)x−3/2(log x−1/2)−2/p[−1/2 + 1/p(logx−1/2)−1]dx = −V dx.

Then the integral is

� t

∫ K−2

M/t

V V −1 exp

(

−π2tx

8

)

exp(−C(1 + ǫ)x−1/2(log x−1/2)−2/p)dx.

Now for x ≥ M/t

V −1 � t−3/2[1/2 − 1/p(log
√

t/M)−1]−1 � t−3/2.

Hence the integral is

� t−1/2

∫ K−2

M/t

exp

(

−π2tx

8

)

exp(−v(x))V (x)dx. (4.11)

Now from de Bruijn’s Tauberian Theorem 2.1 we have

log

∫ ∞

0

exp

(

−π2tx

8

)

exp(−v(x))V (x)dx ∼ −C(p, ǫ)t1/3(log t)−4/(3p)

where C(p, ǫ) = (3/2)(4+3p)/3p21/3((1 + ǫ)j2
ν22/p)2/3(π2/8)1/3.

For some c1, c2 > 0 we have the following bounds:

∫ M/t

0

exp

(

−π2tx

8

)

exp(−v(x))V (x)dx ≤ e−c1t1/2(log t)−2/p

,

and
∫ ∞

K−2

exp

(

−π2tx

8

)

exp(−v(x))V (x)dx ≤ e−c2t,

from which we get

Pz[τPf
(Z1) > t] � exp

(

−(1 + ǫ)2C(p, ǫ)t1/3(log t)−4/3p
)

. (4.12)

We next give the upper bound

Pz [τPf
(Z1) > t] =

∫ ∞

0

P0(η(−u,u) > t)f(u)du

�

∫

√
t/M

0

e−
π2t
8u2 f(u)du +

∫ ∞

√
t/M

f(u)du

� E

[

exp

(

− π2t

8(τPf
(z))2

)]

+ exp(−C(1 − ǫ)t1/2(log t)−2/p).
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The upper bound follows from de Bruijn’s Tauberian Theorem by observing from (1.5) that as x → 0+

log P [1/(τPf
(z))2 ≤ x] = log P [τPf

(z) ≥ x−1/2] ∼ −Cx−1/2(| log x−1/2|)−2/p.

Hence
Pz [τPf

(Z1) > t] � exp(−(1 − ǫ)D(p, ǫ)t1/3(log t)−4/3p) (4.13)

where D(p, ǫ) = (3/2)(4+3p)/3p21/3((1 − ǫ)j2
ν22/p)2/3(π2/8)1/3.

Therefore from equations (4.12) and (4.13), we obtain

exp(−(1 + ǫ)2C(p, ǫ)t1/3(log t)−4/3p)

� Pz[τPf
(Z1) > t]

� exp(−(1 − ǫ)2D(p, ǫ)t1/3(log t)−4/3p).

Now taking logarithms, multiplying by t−1/3(log t)4/3p), letting t → ∞ and then letting ǫ → 0, we get the
desired result. �

Proof of Theorem 1.4. The proof follows the same steps of the proof of Theorem 1.3, so we omit the details. �
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[3] R. Bañuelos and R.D. DeBlassie, The exit distribution for iterated Brownian motion in cones. Stochastic Processes Appl. 116

(2006) 36–69.
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