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Abstract Existing actuator controls are typically designed 

based on optimizing performance and robustness to system 

uncertainties, without considering the operational lifetime of 

the actuator.  It is often desirable, and sometimes necessary, 

to trade off performance for extended actuator operational 

lifetime.  This paper introduces the concept of incorporating 

the actuator lifetime as a controlled parameter.  We describe 

preliminary methods for speed/position tracking control of 

an electromechanical actuator (EMA) while maintaining a 

desired minimum lifetime of the actuator motor. 
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1. INTRODUCTION 

The harder an actuator is pushed to its performance limit, 

the shorter its lifetime becomes.  Existing actuator 

controllers are typically designed based on optimizing 

performance and robustness, without considering the 

operational lifetime of the actuator.  It is often desirable, and 

sometimes necessary, to trade off performance for extended 

lifetime.  For example, the performance of flight actuators 

on a damaged aircraft is not as important as ensuring that the 

remaining actuators continue operation until the aircraft can 

land safely.  Similarly, logistic problems may require 

extending the operational lifetime of a set of actuators until 

maintenance service or spare parts are available. 

This paper introduces the concept of incorporating the 

actuator lifetime as a controlled parameter.  The ability to 

actively control the actuator’s lifetime can extend actuator 

life, reduce maintenance cost, and improve aircraft safety 

and mission readiness.  In particular, we explore how the 

desired lifetime of a brushless DC motor in an 

electromechanical actuator (EMA) can be integrated into the 

actuator’s feedback control law. 

Active control of the lifetime of a particular component can 

be achieved by the following steps: (1) estimation of the 

residual lifetime (remaining time to failure) based on the 

component’s past operating conditions; and (2) control 

adaptation to modify the component’s current operating 

condition if the estimated residual lifetime is less than the 

desired residual lifetime.  Control adaptation may include 

possible modifications to the reference motion trajectory 

and/or reducing the permissible range of certain internal 

parameters. 

Failures of brushless DC (BLDC) motors are largely due to 

failure of either the motor winding or motor bearing.  In this 

work, the remaining lifetime of the motor winding is 

estimated from past motor temperature history, while the 

remaining lifetime of the motor bearing is estimated from 

the past load and speed history.  Control of motor lifetime is 

achieved by implementing a linear quadratic (LQ) optimal 

controller for speed/position tracking control with a lifetime-

dependent constraint imposed on the output of the control 

law [1].  The objective of the controller is to follow the 

commanded reference speed/position trajectory as closely as 

possible while satisfying the desired residual lifetime of the 

motor winding and bearing. 

In the following sections, we present methods for predicting 

the residual lifetime of the BLDC motor, derivation of the 

lifetime-based control law, and simulation results comparing 

a standard controller with a lifetime-based controller. 

2. PREDICTION OF MOTOR LIFETIME 

The primary failure modes of BLDC motors are winding 

insulation failure and bearing failure.  For induction motors, 

breakage of rotor bars due to mechanical fatigue is also an 

important failure mode.  In [2], on-line recursive least-

squares estimation algorithms for detection of electrical and 

mechanical faults in BLDC motors are described. In this 

section, we use heuristic methods to develop analytic models 

for estimating the life expectancy of the motor winding and 

bearing. These two components are assumed to be initially 
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fault-free and the objective is to predict the time at which the 

first sign of fault would occur. 

Motor Winding Lifetime Prediction 

The life expectancy of motor winding insulation is a 

function of the winding temperature; different classes of 

insulation material offer different temperature ratings.  For 

example, typical BLDC motors use class H winding 

insulation, which provides an average life expectancy of 

approximately 30,000 hours at 180ºC [3].  The average life 

expectancy of class H insulation is reduced approximately 

by half for every 10ºC rise in temperature [3].  Because of 

the strong influence of temperature on insulation life, most 

servo motors provide an embedded thermal switch to 

prevent thermal damage.  Aside from mechanisms to reduce 

bearing wear (e.g., improve motor-load alignment, maintain 

proper lubrication, reduce electrically induced bearing 

currents), the best way to prolong motor life is to control its 

winding temperature. 

A typical insulation life expectancy versus temperature 

curve is shown in Fig. 1.  Such data allows us to calculate 

the expected remaining life of the insulation when the motor 

operates at a constant temperature (e.g., constant duty 

operation).  However, no formula exists for calculating the 

remaining life when the winding temperature is varying.  We 

use a heuristic method based on applying Fig. 1 and the 

assumption that deteriorations incurred at different 

temperatures are linearly additive. For example, suppose 

class H insulation (which has a life of 30,000 hours at 

180ºC) is operated for 15,000 hours at 180ºC, the remaining 

lifetime would be 50% (i.e., we can view the insulation as 

50% deteriorated).  If the operating temperature is 

subsequently raised to 200ºC, where Fig. 1 indicates the life 

expectancy of brand new insulation is 5,000 hours, then we 

estimate the remaining life of the used insulation at 200ºC as 

50% x 5,000 hours = 2,500 hours. If the insulation then 

operates for 1,000 hours at 200ºC, the remaining life is 

2,500 – 1,000 = 1,500 hours at 200ºC.  The remaining life at 

200ºC as a percentage of the life of brand new insulation 

would be 1,500/5,000 = 30%.  The percentage of life 

expended at each temperature level can be thus calculated 

and accumulated to estimate the remaining life at any time 

instant.  Since the residual life in terms of absolute hours 

varies with the operating temperature, residual life tracked 

as a percentage of full life is more useful.  At any instant, we 

can convert the percentage residual life into absolute 

residual life-hours for the current operating temperature.   

We can also derive the residual life through an alternative 

calculation.  Note that operating for 15,000 hours at 180ºC 

would wear out 15,000/30,000 = 50% of a new insulation, 

and operating for 1,000 hours at 200ºC would wear out 

1,000/5,000 = 20% of a new insulation.  Thus, the sum of 

the effects of operating for 15,000 hours at 180ºC plus 

operating for 1,000 hours at 200ºC is to wear out 50% + 

20% = 70% of a new insulation.  The residual life is then 

100% – 70% = 30% of a new insulation. 

Specifically, the percentage residual (remaining) life at time 

instant t is calculated by 
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where to is the initial time instant and Life(τ) is the life 

expectancy of brand new insulation corresponding to the 

winding temperature at time instant τ for to ≤ τ < t.  Note that 

Life(τ) is obtained from the curve in Fig. 1.  The integration 

term in Eq. (1), which is the fractional used life at time 

instant t, is limited between 0 and 1, and its initial value at 

time instant to is assumed to be zero. The percentage 

residual lifetime can be converted into absolute residual 

lifetime at time instant t by 
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Again, Life(t) in Eq. (2) is the life expectancy of new 

insulation corresponding to the winding temperature at time 

instant t. 

Motor Thermal Model 

Now that we have a method for estimating the residual life 

of the winding based on winding temperature history, we 

can develop lifetime control by integrating winding 

temperature into the control problem formulation.  This 

requires relating winding temperature to the control input, 

i.e., motor current. 

A simple second-order thermal model for estimating the 

winding temperature of BLDC motors is given in [3].  The 

thermal model of the BLDC motor can be represented by the 

equivalent circuit shown in Fig. 2. In this figure, Rwc is the 

 

Figure 1 – Typical winding insulation life versus

temperature curve. 
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thermal resistance from winding to case, Rca is the thermal 

resistance from case to ambient air, Cwc is the thermal 

capacitance from winding to case, Cca is the thermal 

capacitance from case to ambient air, Twinding is the winding 

temperature, Tcase is the case temperature, Tambient is the 

ambient air temperature, and Ploss is the total power 

dissipated as heat, which might be approximated by the total 

copper losses in the windings [3].  A method for on-line 

estimation of motor thermal model parameters is described 

in [4]. 

Motor Bearing Lifetime Prediction 

The rated life of motor bearings is commonly specified by 

the bearing manufacturer in terms of the L10 life – the time 

duration at which there is a 10% probability of fatigue 

failure under a given constant load [5]. The fatigue failure 

occurs in the form of metal chips breaking off from the 

surface of bearing races or rolling elements – a condition 

referred to as “spalling.” 

In its basic form, the L10 life of a motor bearing is specified 

in terms of number of revolutions that can be attained before 

10% of identical bearings would fail.  The L10 life can be 

translated into number of hours by dividing the number of 

revolutions by the bearing’s rotational speed, and is given by 
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where Cr is the bearing’s radial load rating specified by the 

manufacturer (in lbf or N), Peq is the equivalent radial load 

applied to the bearing, and ωr is the angular speed of the 

motor rotor (or, the rotational speed of the bearing inner 

race) in rad/s.  It is important to observe from Eq. (3) that a 

small change in applied load results in a large change in 

lifetime.  For example, reducing the load by half results in 

increasing the lifetime by approximately tenfold.  In (3), Peq 

and ωr are assumed to be positive quantities; otherwise, their 

absolute values are used. 

The L10 life established by bearing manufacturers is based 

on a constant applied load.  For time-varying load, we will 

estimate the L10 life by using the same heuristics as for 

winding lifetime prediction; that is, we assume that 

deteriorations incurred at different load levels are linearly 

additive.  The predicted percentage and absolute residual 

lifetimes of the motor bearing at time instant t can then be 

calculated, respectively, by: 
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where L10(τ) is the life expectancy of brand new bearing 

corresponding to the radial load and motor speed at time 

instant τ for to≤ τ < t. Note that L10(τ) is obtained from Eq. 

(3).  L10(t) in Eq. (5) is the life expectancy of brand new 

bearing corresponding to the radial load and motor speed at 

time instant t. 

The linear damage rule (or, the Palmgren-Miner rule) is 

explained in [5] for bearing life prediction with step changes 

in load and speed. Equations (4) and (5) are the extended 

continuous version of the linear damage rule. 

From the Weibull plot [6], the bearing life with 50% 

probability of failure and 90% probability of failure can be 

approximated, respectively, by 

10
5

50
LL ⋅≈                                                                 (6) 

10
20

90
LL ⋅≈                                                                  (7) 

where L10 is calculated from Eq. (3).  Equations (6) and (7) 

can be used if one wishes to focus on predicted residual life 

at higher probabilities of failure. 

3. CONTROL OF MOTOR LIFETIME 

Active control of the lifetime of the BLDC motor can be 

achieved by controlling the operating conditions of the 

motor winding (i.e., temperature) and bearing (i.e., bearing 

load or bearing rotational speed).  However, the controller 

must balance the need for extended lifetime with the need to 

provide good speed/position tracking performance.  In this 

section, we present lifetime control methods based on the 

linear quadratic (LQ) optimal control framework. 
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Figure 2 – Equivalent circuit for motor thermal model. 
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Dynamic Model of BLDC Motor in an EMA 

In an EMA, the rotary motion of the BLDC motor is 

converted into linear motion by coupling the motor shaft to a 

lead screw through a series of gears.  The angular speed of 

the lead screw ω and the angular speed of the motor ωr are 

related by 

ratio

r

G

ω
ω =   (8) 

where Gratio is the gear reduction ratio (gear box ratio). 

A linear dynamic model for such BLDC motor can be given 

by 
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where θr is the angular position of the motor in radians, ωr is 

the angular speed of the motor in rad/s,  u is the torque 

current of the BLDC motor, which is equal to the current of 

the conducting phases for the standard 6-step operation of a 

star-connected BLDC motor (see [7] for BLDC motor 

torque generation and operation), fm is the motor friction 

coefficient in Nּmּs/rad, Kt is the torque constant of the 

motor in Nּm/A, 
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is the total inertia of the motor and drive screw system in 

kgּm2,  and 

load

dsratio

L

F

G

DSlead
T ⋅=

⋅⋅ πη 2
 (14) 

is the load torque acting on the motor shaft in Nּm. 

In Eqs. (13) and (14), Jmg is the total inertia of the motor 

(rotor and shaft) and motor gear, Jdsg is the total inertia of 

the drive screw and drive screw gear, Gratio is the gear box 

ratio (as defined in Eq. (8)), DSlead is the drive screw lead in 

meters/revolution, ηds is the efficiency of the drive screw 

(which is 0.9 in forward drive and 0.8 in back drive for 

ballscrews [8]), Fload is the external axial load acting on the 

drive screw in N, and m is the total mass of the drive screw 

nut and external load in kg. 

Optimal Speed/Position Controller with Constraint 

To maximize motor performance while satisfying the desired 

residual lifetime, we consider using standard LQ optimal 

control design for speed/position tracking control, while a 

lifetime-dependent constraint (e.g., maximum allowable 

motor current) is imposed externally on the LQ optimal 

controller. 

Following standard LQ optimal control design procedure, 

our objective is to minimize the performance index (cost 

function) given by 
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is the reference (desired) trajectory for the motor angular 

position and speed, and 
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are weighting factors. 

For the motor given in Eqs. (9) – (12), the optimal control 

law is then obtained as [9]: 
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is the optimal feedback gain (Kalman gain) and b is defined 

in Eq. (12). 

In Eqs. (18) and (19), 
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are the solutions, respectively, to the Riccati and auxiliary 

input equations 
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where A and d are defined in Eqs. (11) – (12).  

The above LQ optimal controller can be extended to address 

constrained controller output by satisfying Pontryagin’s 

minimum principle [9]: 
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is the Hamiltonian function. In Eq. (23), subscript opt 

denotes optimal quantities and λ is the costate vector.  

Inequality (23) then reduces to the following parabolic 

constraint:  

buruburu
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for all admissible u. 

Inequality (25) implies that solution (18) is optimal as long 

as it remains within the admissible range of u. Otherwise, 

the optimal solution is given by either the upper or lower 

boundary of all admissible u, depending on which one is 

closest to solution (18).  Thus, the next step is to specify the 

boundary of admissible u by taking into account the 

minimum required (desired) operational lifetime and 

predicted residual lifetime of the motor winding and bearing.  

Computing Constraint Based on Desired Winding Lifetime 

From Eqs. (1) and (2), the relationship between the lifetime 

of brand new winding Life(t) and the predicted residual 

lifetime of used winding Liferes(t) can be written as  
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Since we want to ensure the predicted residual lifetime is 

greater than or equal to the desired residual lifetime at any 

given time instant t, we can rearrange Eq. (26) as the 

following constraint: 
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where Lifedes(t) is the desired absolute residual lifetime for 

the winding. This constraint requires that we operate the 

winding at a sufficiently low temperature such that the 

lifetime of brand new winding corresponding to this 

temperature would satisfy Eq. (27).  After computing the 

minimum required Life(t) from Eq. (27), the corresponding 

winding temperature Twmax(t) that yields Life(t) can then be 

obtained from Fig. 1 (by the use of inverse mapping). Note 

that Twmax(t) is the maximum allowable winding temperature 

at time instant t that will yield the desired residual lifetime. 

Now the next step is to relate the maximum allowable 

winding temperature Twmax(t) to the maximum allowable 

amplitude of the controller output |umax(t
−)| (i.e., the motor 

torque current) at the previous time instant t
−.  Here we 

define t− = t - ∆t, where ∆t can be treated as a time step in 

simulation or a sampling period in the control 

implementation.  Although the relationship between the 

winding temperature and motor current involves dynamic 

time lag, we can simplify the computation by considering the 

constant steady-state operation of the motor thermal circuit 

given in Fig. 2 (i.e., by setting the time-derivatives to zero in 

the dynamic equations of the thermal circuit). Furthermore, 

Ploss in Fig. 2 is approximated by the total copper losses [3], 

which are due mainly to the motor torque current. The 

relationship between the maximum allowable winding 

temperature at time instant t and the maximum allowable 

input current at time instant t− can then be simplified as 

mcawc
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where Rm is the motor phase-to-phase winding resistance. 

Due to the exponential asymptotic stability of the thermal 

circuit, as long as the winding temperature Twinding(t
−)  is less 

than or equal to Twmax(t) and 

|u(t−)| ≤ |umax(t
−)|  (29) 

 

is complied, the winding temperature will satisfy 

 TT
wmaxwinding

)()( tt ≤ . (30) 

 

Note that Eq. (28) was derived based on constant steady-

state operation and provides a conservative estimate on   

|umax(t
−)|.  During a dynamically varying speed trajectory, it 

is possible to apply a larger u(t−)  than |umax(t
−)| without the 

winding temperature exceeding Twmax(t), particularly when 

Twinding(t−) is comfortably below Twmax(t).  To improve the 

dynamic performance of the controller, one can then choose 

to disregard constraint (29) when Twinding(t−) < Twmax(t).  

Specifically, when Twinding(t−) < Twmax(t), we can let u(t−) be 

constrained only by the maximum available current of the 

motor drive or by the motor current limit, whichever is less. 
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Figure 3 – Radial force acting on motor bearings. 

Computing Constraint Based on Desired Bearing Lifetime 

Motor bearing lifetime can be controlled by constraining 

either the radial load on the bearing or the motor rotational 

speed.  From Eqs. (3) – (5), the relationship between the 

radial load, rotational speed, and predicted bearing residual 

lifetime can be expressed by: 
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where L10res(t) is in seconds. 

Consider the motor shown in Fig. 3.  In general, the bearing 

closer to the load side (closer to the gearbox) experiences 

heavier load.  Thus, control of bearing lifetime will focus on 

bearing #2 shown in the figure. 

The radial load acting on bearing #2 can be expressed by   
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where Wr is the total radial force at the gear mesh, and l1 and 

l2 are the lengths defined in Fig. 3. The total radial force at 

the gear mesh is comprised of two components: 
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where Wt is the tangential force at the gear mesh,  Wr
' is the 

separating force at the gear mesh, and γ is the gear pressure 

angle [10]. For spur gears, γ = 20°, which results in 

G
tr r

Trq
WW ⋅=⋅= 0642.10642.1                                   (34) 

where Trq is the torque acting on the gear and rG is the radius 

of the gear.  Substitution of Eq. (34) into Eq. (32) yields 

 TrqcpeqP
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⋅=  (35) 

where the coefficient for equivalent load is given by 
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The torque acting on the gear can be assumed to be equal to 

the torque produced by the motor current, unless the external 

torque acting on the gear (e.g., from the load or disturbance) 

exceeds the torque produced by the motor current.   Thus, 

under most conditions, Eq. (35) results in 

 u
t

KcpeqTrqcpeqP
eq

⋅=⋅=    (37) 

where, u is the motor torque current.  

Substituting Eq. (37) into Eq. (31) results in an equation that 

expresses the predicted bearing residual lifetime L10res(t) as a 

function of the motor current and motor rotational speed.  

We thus have the option of controlling the bearing lifetime 

by constraining either the controller output (i.e., the motor 

current) or the motor speed.  

Since we want to ensure the predicted bearing residual 

lifetime is greater than or equal to the desired residual 

lifetime, i.e., L10res(t) ≥ L10des(t), we can rearrange Eq. (31) as 

the following constraint: 
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Substituting Eq. (37) into (38), and then rearranging the 

resultant equation to express the constraint in terms of the 

controller output u, results in 
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Eq. (39) gives the maximum allowable motor current based 

on the desired bearing residual lifetime L10des(t).  We can 

also rearrange Eq. (39) to express the constraint in terms of 

a maximum bound on the motor speed ωr(t).  However, using 

the motor current constraint offers significant advantages 

over a motor speed constraint.  Reducing the motor current 

to a constrained value can be enforced instantly, while, due 

to the time lag in the motor/gear dynamics, reducing the 

motor speed to a given value cannot occur instantly.  

Another advantage of using the motor current constraint for 

bearing lifetime control is that it can be easily combined 

with the motor current constraint derived for winding 

lifetime control. Thus, the motor controller can 

simultaneously control both winding and bearing lifetimes 

by simply enforcing the constraint 
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EMA parameter Value Units 

Rm 0.431 Ω 

Rwc 0.425 °C/W 

Rca 0.670 °C/W 

Cwc 141.2 W⋅s/°C 

Cca 895.5 W⋅s/°C 

Twmax 100 °C 

Tambient 25 °C 

fm 3.681e-5 N⋅m⋅s/rad 

Kt 0.267 N⋅m/A 

Jmg 8.8e-4 kg⋅m2 

Jdsg 1.6e-4 kg⋅m2 

m 0 kg 

DSlead 0.00508 m/rev 

Gratio 5.20 − 

ηds 0.85 − 

l1 0.110 m 

l2 0.045 m 

rG 0.0635 m 

cpeq 23.615 1/m 

Cr 14946 N 

Lifedes(t0) 7680000 h 

L10des(t0) 19423659 h 

 

Table 1 – EMA parameter values used in simulation.

 

PI+ 

LQ+ 
PI 

Cmd 

Figure 4 – Motor position trajectories.  Comparing 

reference command (Cmd), standard PI control (PI), PI 

control with constraint (PI+), and LQ optimal control with 

constraint (LQ+). 

 

PI+ 

LQ+ 

PI 

Figure 5 – Motor position tracking errors.  Comparing

standard PI control (PI), PI control with constraint (PI+), 

and LQ optimal control with constraint (LQ+).

|u(t)| ≤ min { |umax(t)|winding, |umax(t)|bearing } (40) 

where |umax(t)|winding and |umax(t)|bearing are the maximum 

allowable amplitudes of the motor current computed based 

on the desired winding lifetime and desired bearing lifetime, 

respectively. 

Using the motor speed constraint for bearing lifetime control 

would be preferred in industrial applications where the 

motor operates at nearly constant speed and load.  In this 

case, the speed constraint computed based on a desired 

bearing lifetime can simply be applied as the motor’s 

commanded reference speed. 

4. SIMULATION RESULTS 

The proposed motor lifetime controller has been tested in 

simulation.  The EMA and motor parameter values used in 

the simulation are shown in Table 1.  Comparisons between 

the proposed lifetime controller (LQ optimal controller with 

output constraint), a standard PI controller, and a PI 

controller with output constraint are presented.  The PI 

controller with output constraint applies the same lifetime-

based motor current constraints as the LQ optimal 

controller.  The initial desired winding lifetime Lifedes(t0) 

and desired bearing lifetime L10des(t0) are also shown in 

Table 1; the desired winding and bearing lifetimes decrease 

linearly with passing time. 

Figure 4 shows the position trajectories of the BLDC motor 

resulting from the three types of controllers.  Fig. 5 shows 

the position tracking errors. A demanding reference 

trajectory was selected for the simulation, in order to push 

the motor to its performance limit and highlight the effects 

of lifetime-based control.  The EMA is assumed to be 

driving a spring load that generates an external force given 

by Fload = (x/xmax)⋅Fmax where x is the linear position of the 

EMA, xmax = 0.0762 m (3 inches) is the maximum linear 

position and  Fmax = 17792 N (4000 lbf) is the maximum 

value of the spring force. 

We see from Figs. 4 and 5 that the standard PI controller 

(without constraint) provides the best position tracking 

performance, followed by the LQ optimal controller with 

constraint, and lastly the PI controller with constraint.  
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PI+ 

LQ+ 

PI 

Cmd 

Figure 6 – Predicted motor winding percentage residual

life. Comparing reference life (Cmd), standard PI control

(PI), PI control with constraint (PI+), and LQ optimal

control with constraint (LQ+). 

 

PI+ 

LQ+ 

PI 

Figure 7 – Motor winding temperature in °C. Comparing 

standard PI control (PI), PI control with constraint (PI+), 

and LQ optimal controller with constraint (LQ+). 

 

PI+ 

LQ+ 

PI 

Cmd 

Figure 8 – Predicted motor bearing percentage residual 

life.  Comparing reference life (Cmd), standard PI control

(PI), PI control with constraint (PI+); and LQ optimal 

control with constraint (LQ+). 

Figure 6 shows the predicted percentage residual life of the 

motor winding resulting from the three types of controllers.  

The LQ optimal controller with constraint produced the 

highest residual life, followed by the PI controller with 

constraint, while the residual life resulting from the standard 

PI controller fell below the reference (desired) life. 

Although the PI controller with constraint is also capable of 

maintaining the desired residual life, its residual life and 

position tracking performance are both lower than those of 

the LQ optimal controller with constraint. 

The winding temperatures resulting from the three types of 

controllers are shown Figure 7.  The LQ optimal controller 

with constraint produced the lowest winding temperature, 

which confirms the longer life expectancy.  

Figure 8 shows the motor bearing percentage residual 

lifetimes %L10res resulting from the three types of 

controllers. The LQ optimal controller with constraint 

produced the highest residual life of the motor bearing, 

followed by the PI controller with constraint; the residual 

life resulting from the standard PI controller fell below the 

reference life.  

5. CONCLUSION 

We introduced a new machinery control concept that 

incorporates desired lifetime into the control law. The ability 

to actively extend machinery lifetime will reduce 

maintenance cost and improve system safety and reliability.  

We explored the application of this concept to control the 

lifetime of the BLDC motor in an EMA.  Our control 

methodology utilizes linear quadratic optimal control with 

output constraints.  Specifically, the controller enforces the 

desired motor winding and bearing lifetimes as hard 

constraints on the motor current. In some situations, we may 

wish to violate the lifetime-based constraints in order to gain 

needed performance. One approach is to develop a high-

level supervisory controller that gradually relaxes the 

desired lifetime when performance is deemed unsatisfactory. 

Alternatively, we can directly incorporate lifetime into the 

performance index for optimal control.  We are currently 

investigating methods for achieving optimized trade-off 

between lifetime and performance. 

Whether accurate lifetime control can be achieved is 

critically dependent on the accuracy of the models used in 

estimating residual life.  In our derivations, we have used 

lifetime models established by winding and bearing 

manufacturers for constant operating conditions (i.e., 

constant temperature, constant load), and extrapolated these 

models for use in variable operating conditions by assuming 
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that the damages incurred at each of the operating conditions 

are linearly additive.  It is very likely that this assumption of 

linearly additive damage is too simplistic.  Deriving an 

accurate damage model through physics-based modeling and 

experimental verification is a key area for future work. 
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