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Lifetime Estimation of High-Power White LED
Using Degradation-Data-Driven Method

Jiajie Fan, Kam-Chuen Yung, and Michael Pecht, Fellow, IEEE

Abstract—High-power white light-emitting diodes (HPWLEDs)
have attracted much attention in the lighting market. However,
as one of the highly reliable electronic products which may be
not likely to fail under the traditional life test or even accelerated
life test, HPWLED’s lifetime is difficult to estimate by using
traditional reliability assessment techniques. In this paper, the
degradation-data-driven method (DDDM), which is based on the
general degradation path model, was used to predict the reliability
of HPWLED through analyzing the lumen maintenance data col-
lected from the IES LM-80-08 lumen maintenance test standard.
The final predicted results showed that much more reliability
information (e.g., mean time to failure, confidence interval, reli-
ability function, and so on) and more accurate prediction results
could be obtained by DDDM including the approximation method,
the analytical method, and the two-stage method compared to
the IES TM-21-11 lumen lifetime estimation method. Among all
these three methods, the two-stage method produced the highest
prediction accuracy.

Index Terms—Degradation-data-driven method (DDDM), high-
power white light-emitting diode (HPWLED), lifetime estimation,
reliability.

I. INTRODUCTION

H IGH-POWER WHITE LIGHT-EMITTING DIODES

(HPWLEDs) have attracted increasing interest in the field

of lighting systems owing to their high efficiency, environ-

mental benefits and long lifetime (> 50 000 hrs, if thermal

management techniques are well performed) in applications [1].

Due to its longer lifetime, higher reliability, and its different

failure mechanisms compared to traditional light sources (like

incandescent or fluorescent), there has been no standard method

to evaluate and predict the reliability of HPWLED until now.

Therefore, how to predict the lifetime accurately for such

highly reliable electronic product is becoming a key issue in

popularizing this novel device in the LED lighting market.

Traditional reliability assessment techniques, like Failure

Mode Mechanism and Effect Analysis (FMMEA), Fault Tree
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Analysis (FTA), Lifetime Test, and Accelerated Lifetime Test

(ALT), are always time and cost consuming during operation

[2], [3]. In addition, with highly reliable products, there may

be few failures happened during reliability tests. Another draw-

back of ALT is that the failure mechanisms are different when

devices are under different accelerating stress levels, which

may not properly imitate the actual failure process. In this

situation, using degradation data to do reliability assessment

appears to be an attractive alternative to deal with traditional

failure time data, like that with more reliability information

and benefits of identifying the degradation path and providing

effective maintenance methods before failures happen [4].

Using degradation data to perform reliability assessment

was proposed by statisticians some years ago. Nelson [5] re-

viewed two methods for modeling the degradation data. One

was called a “general degradation path model” which was

developed by Lu and Meeker [6] who modeled the degradation

as a function of time and multidimensional random variables.

M.A. Freitas et al. [14] applied this model to the train wheel

linear degradation data and assessed its reliability. Another

approach was the stochastic method which assumed that degra-

dation was a random process in time (for instance, the Wiener

process model [7] and the Gamma process [8]). But few re-

search has been applied these methods to assess the reliability

of HPWLED which usually follows a nonlinear degradation

path

In this paper, a degradation-data-driven method (DDDM)

based on the general degradation path model was used to

analyze the lumen maintenance data of HPWLEDs. And the

stochastic approach will be used in future work. In detail,

DDDM deals with the degradation data with three different

approaches (the approximation method, analytical method and

the two-stage method) to estimate the failure time distribution

and evaluate the product’s reliability (e.g., mean time to failure

(MTTF), confidence interval (CI), and reliability function).

Meanwhile, another method named the IES TM-21-11 method

provided by the Illuminating Engineering Society (IES) [13]

was also used to estimate the lifetime of the same product with

the same degradation data. The estimation results from both

methods were discussed and compared.

II. RESEARCH DEVICE DESCRIPTION

LUXEON Rebel is one type of HPWLED with high lumi-

nous flux (>100 lumens in cool white at 350 mA) and advanced

packaging techniques (Chip-on-Board technique without wire

bonding) [9]. From the cross-section of this device, the pack-

aging structure is shown in Fig. 1. An LED InGaN chip is

1530-4388/$31.00 © 2012 IEEE
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Fig. 1. White LUXEON Rebel and its structure [9].

Fig. 2. Thermal management of White LUXEON Rebel.

Fig. 3. Failure modes of HPWLED.

attached to the surface of the metal interconnect layer (copper)

by the bond layer (silver adhesives) and in order to improve

the thermal dispersion capacity of the whole package, ceramic

with higher thermal conductivity (>20 W/m.K) compared to

the traditional glass fiber reinforced epoxy material (FR-4)

(0.35 W/m.K) is introduced as the substrate. At the same time, a

copper thermal pad is set at the bottom of the ceramic substrate

in order to conduct the heat produced by a LED InGaN chip to

the air effectively (Fig. 2). The top surface of the LED InGaN

chip is covered with phosphor to convert the blue light to a

white color.

From the FMMEA results [10], it can be seen that the com-

mon failures modes of HPWLED as shown in Fig. 3 include

catastrophic failure, lumen degradation failure and chromatic

TABLE I
IES LM-80-08 TEST CONDITIONS

change failure. However, for LUXEON Rebel, InGaN types

of LED without wire bonding interconnects, the probability

of catastrophic failure (like the light suddenly going off due

to an open circuit) under standard aging test conditions rec-

ommend by IES LM-80-08(shown in Table I) [12] is low,

especially at the beginning of the test period (before 6000 h)

[11]. The lumen degradation and chromatic change are the two

dominating failures in LUXEON Rebel LED. This paper is

focused on predicting the lumen degradation failure which is

one of the most disturbing technical problems for both LED

manufacturers and LED reliability engineers and the chromatic

change failure will be analyzed in the future.

III. THEORY AND METHODOLOGY

A. IES TM-21-11 Method

[IES TM-21-11, Projecting Long Term Lumen Maintenance

of LED Light Sources]is a lumen lifetime estimation standard

proposed by the IES, which provides a method to determine

the LED luminaire operating life (lumen output decreases to

some percents, 50% or 70%, of the initial one over a certain

length of operation time) based on the lumen maintenance data

collected from IES LM-80-08. And the main implementation

procedure of the IES TM-21-11 method provided by TM-21

working group [13] is as follows:

a) Selecting the sample size. Minimum sample size is rec-

ommended as 20 and the lumen maintenance data are

collected based on the IES LM-80-08 test standard.

b) Preprocessing the lumen maintenance data. Firstly, for

each unit, remove the initial data (0 ∼ 1000 h) to reduce

the noise from the nonchip decay failure mechanisms

(like encapsulant decay); and then normalize all data to

1 at time zero test point. The next step is to average the

data from all 20 samples at each test point (normally, Ad-

ditional measurements after the initial 1000 h at intervals

smaller than 1000 h (including every 1000 h points)) as

the fitting data (not considering the influence of variance

between the samples).

c) Fitting model. Previous work on the HPWLEDs indicated

that its degradation of lumen performance followed the

exponential curve [18], [19]. Therefore, in this paper,

applying the LED exponential lumen degradation path

model (1) to fit the averaged degradation data using the

nonlinear least squares (NLS) method.

D(t) = α · exp(−β · t) (1)

where D(t) is the averaged normalized luminous flux at

time t, α is initial constant, and β is the degradation rate

which varies from unit to unit.
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Fig. 4. General degradation path model. (a) Increasing type. (b) Decreasing
type.

d) Projecting the lumen maintenance life Lp

Lp = ln

(

100 × α

p

)

/β (2)

where p is the maintained percentage of the initial lumen

output (i.e., 50, 70).

e) Adjusting the result with the “6-times rule”. “6-times

rules” means that if the lumen maintenance data before

6000 hrs are used to fit the model, the projected lumen

maintenance life Lp must be smaller than 36 000 hrs

(from 6000 × 6). If the lumen maintenance data during

6000–10 000 h is collected, the maximum projected lu-

men maintenance life Lp is 60 000 hrs (from 10 000 ×
6 hrs).

B. DDDM

DDDM used in this paper is based on the general degradation

path model presented by Lu and Meeker [6]. For the general

degradation path model, a random sample size is supposed

as n, and the measurement times are t1, t2, t3, . . . . . . ts. The

performance measurement for the ith unit at the jth test time

is referred to as yij . So the degradation path can be regis-

tered as the time-performance measurement pairs (ti1, yi1),
(ti2, yi2), . . . . . ., (timi, yimi), for i = 1, 2, . . . . . . , n. and mi

represents the test time points for each unit

yij = D(tij ;α;βi) + εij (3)

where D(tij ;α;βi) is the actual degradation path of unit i
at the measurement time tij . α is the vector of fixed effects

which remain constant for each unit. βi is a vector of random

effects which vary according to the diverse material properties

of the different units and their production processes or handing

conditions. εij represents the measurement errors for the unit

i at the time tij which is supposed to be a normal distribution

with zero mean and constant variance, εij ∼ Normal(0, δ2

ε).
Failure definition for the general degradation path models

is that the performance measurement yij exceeds (or is lower

than) the critical threshold Df at time t. And pdf is the prob-

ability density failure distribution of sample. The cumulative

probability of failure function F (t) is given as follows (Fig. 4):

The increasing type of performance measurement

F (t) =P (t ≤ T ) = P [D(tij , α, βi) ≥ Df ]

Time to Failure T = inf (t ≥ 0;D(tij , α, βi) ≥ Df ) . (4)

The decreasing type of performance measurement

F (t) =P (t ≤ T ) = P [D(tij , α, βi) ≤ Df ]

Time to Failure T = inf (t ≥ 0;D(tij , α, βi) ≤ Df ) . (5)

To estimate the time to failure distribution, F (t), based

on the degradation data, several statistical methods have been

proposed by researchers, including the approximation method,

the analytical method, the two-stage method and others [14].

After reviewing these methods, it can be concluded that two

basic steps are involved: (1) estimating the parameters for

degradation path model (2) evaluating the time to failure distri-

butions, F (t).
1) Approximation Method [14]: The approximation method

predicts each unit’s time to failure based on the general degra-

dation model and projects to the “pseudo” failure time when

the degradation path reaches the critical failure threshold, Df .

Normally, the steps of the analysis are as follows:

a) Use the NLS method to estimate the parameters (fixed

effect parameter α and random effect parameter βi) of

degradation path model, based on the measured path data

(ti1, yi1), (ti2, yi2), . . . . . . , (timi, yimi) for each unit, and

the estimated results are α and βi, respectively.

b) Extrapolate the degradation path model of each unit to

critical failure threshold, Df . When D(tij ;α;βi) = Df ,

the “pseudo” failure (not real failures) time for each unit

(t1, t2, t3, . . . . . . ts) can be predicted.

c) Fit the probability distribution for these “pseudo” lifetime

data and estimate the associated parameters for each

distribution.

d) Assess the sample’s reliability, based on analysis re-

liability function, R(t), hazard function, h(t), MTTF,

and CI.

The approximation method is simple to implement not only

for statisticians but also for manufacturers. However, there are

also some requirements for this method if believable predic-

tion results are required. First, the degradation path model,

D(tij ;α;βi), needs to be relatively simple. Secondly, sufficient

degradation data is the essential requirement to get accurate

parameter estimation results for α and βi. Last but not least

is that both magnitudes of error εij and extrapolation width

which means the time period from cut time of data collection

to projected failure time need to be small [15].

2) Analytical Method: Regarding simple degradation path

models, researchers found that there were some relationships

between the random effect parameters of degradation path

models and cumulative probability of failure distribution F (t)
[15]. Therefore, the reliability information of the sample could

be obtained by analyzing the statistical properties of random

effects parameters βi. The LED empirical lumen degradation

path model (1) is used to show the details of the inference

procedure of this method.

a) The first step of the analytical method is also to estimate

the parameters (fixed effect parameter, α, and random

effect parameter, βi) using the NLS method for each unit,

like the first step of the approximate method.
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b) It is assumed that the random effect parameter βi, which

varies from unit to unit, follows the widely used two-

parameter Weibull distribution with shape parameter δβ

and scale parameter λβ , β ∼ Weibull(δβ , λβ). Next,

estimate the two parameters in δβ, λβ using the maxi-

mum likelihood estimation (MLE) method.

c) Infer the cumulative probability of failure distribution,

F (t), from Weibull(δβ,λβ).

F (t)=P (t ≤ T )=P

⎡

⎣t ≤
ln

(

Df

α

)

−β

⎤

⎦=P

⎡

⎣β ≤
ln

(

Df

α

)

−t

⎤

⎦

=1 − exp

⎡

⎢

⎣
−

⎛

⎝

ln
(

Df

α

)

−tλβ

⎞

⎠

δβ
⎤

⎥

⎦
. (6)

In this situation, the reciprocal of time to failure,

T , is also Weibull distribution with shape parameter

δ1/T = δβ , scale parameter λ1/T = λβ/ln(α/Df ), 1/T ∼
Weibull(δ1/T , λ1/T ) = Weibull(δβ , λβ/ln(α/Df )). So

finally the time to failure distribution can be inferred from

the probability distribution of the random effect parameter,

ignoring the step of extrapolating the degradation path

model; however, the analytical method does not consider the

measurement errors εij .

3) Two-Stage Method: To solve the problems in the above

two methods, W.Q. Meeker et al. [15] proposed a two-stage

method to implement the parameter estimation.

a) In the first stage, for each unit, the degradation path model

is also fitted with the nonlinear least squares method

to estimate the parameters (fixed effect parameter, αi,

and random effect parameter, βi), however, the difference

between this method and the two methods mentioned

above is that the measurement errors, εij , is taken into

consideration and the error variance, σ2

ε , for the ith unit is

estimated by

σ2

εi
=

⎡

⎣

mi
∑

i=1

{yij − D(tij ;αi;βi)}
2

(mi − q)

⎤

⎦ (7)

where q = p + k, p and k are the number of estimated

fixed effect parameters and the random effect parameters,

respectively.

And then by some appropriate reparameterization,

transfer the distribution of the random effect parameter,

βi, into a multivariate normal distribution with asymptotic

mean, µϕ, and variance covariance matrix, Σϕ, ϕ =
H(βi) = Normal(µϕ,Σϕ) [10].

b) In the second stage, estimate the parameters including α,

µϕ, and Σϕ, for the degradation path model

α=
n

∑

i=1

αi

n
(8)

µϕ =

n
∑

i=1

ϕi

n
(9)

∑

ϕ

=

⎛

⎝

n
∑

i=1

(ϕi−µϕ)
(ϕi−µϕ)i

(n−1)

⎞

⎠−

⎛

⎝

n
∑

i=1

varε(ϕi)/n

⎞

⎠ .

(10)

c) Randomly generate N (normally is 100 000) simulated

realizations ϕ∗ of ϕ from Normal(µϕ,Σϕ) and then

the corresponding N simulated realizations β∗ of β from

H−1(ϕ).
d) Calculate the simulated failure time t∗ by inserting the β∗

into the Df = D(t;α;β).
e) With Monte Carlo simulation, time to failure distribution

F (t) can be expressed by:

F (t) =
(Number of simulated first crossing times ≤ t)

N
(11)

and the CI can be calculated by the bootstrap method.

IV. RESULTS AND DISCUSSION

A. Lumen Maintenance Data

Lumen maintenance data of LUXEON Rebel LED device

were collected by LUMILEDS, PHILIPS and published in the

document [DR03: LM-80 Test Report] [16]. The data analyzed

in this paper were collected under one test condition as shown

in Table I.

According to the IES LM-80-08 standard, lumen degradation

failure is defined as that the lumen output decreases to the 70%

of the initial one over a certain length of operation time, which

is also the lumen lifetime L70. Therefore, in this paper, L70 is

the critical failure threshold of the lumen degradation model,

Df . The sample size is chosen as 20. For each unit, lumen

maintenance data was collected every 1000–10 000 h (totally

10 test time points) and normalized to 1 at the time zero test

point.

B. Lumen Lifetime Estimation With the IES TM-21-11 Method

Following the IES TM-21-11 operation procedure shown in

Section III, the mean value of the lumen maintenance data

from 20 units at each test time was used to fit the degradation

path model ((1)) using the nonlinear least squares method.

Figs. 5 and 6 are the projected lumen lifetime L70 based on

two different test time intervals (1000–6000 and 6000–10 000,

respectively). And the parameter estimation of the degradation

path model and the lumen lifetime L70 projection results are

shown in Table II.

By applying the “6 times rule” required in IES TM-21-11,

both projecting results exceed the 6 times limitation (like

L70(6 k) > 36 000 hrs). Therefore, more test time and more

lumen maintenance data are required to estimate lumen life-

time under these test conditions for the LUXEON Rebel LED

device. Another drawback of IES TM-21-11 is that as it does

not consider the variance of each test unit, so little reliability

information for this device, including MTTF, CI, and reliability

function and so on, could be obtained. This may be not effective
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Fig. 5. Projecting L70 with lumen maintenance data from 1000 to 6000 h.

Fig. 6. Projecting L70 with lumen maintenance data from 6000 to 10 000 h.

TABLE II
RECOMMENDED IES TM-21-11 ESTIMATION REPORT

for maintenance decision making by either LED manufacturers

or designers.

C. Lumen Lifetime Estimation With the Approximation Method

To overcome the problems encountered in the IES TM-21-11

method, the approximation method was used to estimate the

lumen lifetime using the same data as shown in the previous

section. Using the nonlinear least squares estimator, parameters

Fig. 7. Extrapolating degradation path model with 1000–10 000-h data.

TABLE III
LIST OF ESTIMATED PARAMETERS FOR DEGRADATION

PATH MODEL AND PSEUDO FAILURE TIME

of general degradation path model (αi, βi) were estimated for

each unit (Fig. 7). This is different from the IES TM-21-11

method which just considered the average data. And next,

by extrapolating the model of each unit to the critical failure

threshold (30% light decrease), “pseudo failure times” can be

predicted (Table III).

The next step of the approximation method is to fit the prob-

ability distribution for the “pseudo failure times” obtained from

the extrapolating method. In this paper, three types of statistical

models (Weibull, Lognormal and Normal) were selected to fit

the “pseudo failure times” (Fig. 8) and the fitting results were
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Fig. 8. Statistical models fitting for “pseudo failure time.”

TABLE IV
ESTIMATED PARAMETERS OF EACH STATISTICAL

MODELS BY APPROXIMATE METHOD

justified by the Akaike Information Criterion (AIC) which is

one method proposed by H. Akaike [20] to verify the goodness

of fit of a proposed statistical model. The AIC is quantitatively

defined as follows:

AIC = −2 log(L) + 2 · k (12)

where L is the maximum likelihood estimation (MLE) of the

fitting model and k is the number of independently adjusted

parameters within the model. The judgment standard of this the-

ory is to compare the AIC value of proposed fitting models and

the lowest AIC value means the best model-fitting. According

to the AIC value shown in Table IV, Weibull model with lowest

AIC value presents the best fitting performance among them.

As shown in Fig. 9, the “pseudo failure times” followed

the Weibull distribution with shape parameter δ and scale

parameter λ, T ∼ Weibull(δ, λ). The reliability function is

shown as follows:

R(t) = exp

[

−

(

t

λ

)δ
]

= exp

[

−

(

t

107,500

)8.223
]

. (13)

Fig. 10 reveals the reliability and the 95% confidence limit

prediction results for our research device. The parameters of

the reliability function, which were estimated by the maximum

likelihood estimator (MLE), are listed in Table V.

By comparing from the prediction results, because of con-

sidering the sample’s variance, approximation method provides

more reliability information (i.e., reliability function, MTTF,

and CI) than IES TM-21-11 method, which benefits not only

for manufactures to make decisions but also for customers to

Fig. 9. Weibull plotting for “pseudo failure times.”

Fig. 10. Reliability prediction for LUXEON Rebel.

TABLE V
PARAMETER ESTIMATION AND RELIABILITY PREDICTION USING

THE APPROXIMATION METHOD

understand products clearly. But due to assuming fitting model

D(tij ;α;βi) as degradation path and ignoring the measurement

errors εij , the approximation method also has some limitations.

D. Lumen Lifetime Estimation Using the Analytical Method

The analytical method is similar to the approximation

method, just replacing the extrapolating step as the probability

analysis for random effect parameters, βi. And the parameter,

αi, was supposed as fixed effect and equals to 1 as all lumen

degradation data of each unit were normalized to 1 at the origi-

nal test point. So after parameter estimation for the degradation

path model (shown in Table III), the Weibull probability curve
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Fig. 11. Weibull plotting for random effect parameters βi.

TABLE VI
PARAMETER ESTIMATION AND RELIABILITY PREDICTION

IN THE ANALYTICAL METHOD

Fig. 12. Reliability prediction for random effect parameters βi.

was used to fit the random effect parameters, βi, shown in

Fig. 11. And then the two parameters for Weibull distribution

were estimated δβ, λβ with maximum likelihood estimation

(MLE) method (Table VI). The reliability function with its 95%

confidence limits was predicted (Fig. 12).

As discussed in Section III, if random effect parame-

ters, βi, follow a two-parameter Weibull distribution, β ∼
Weibull(δβ , λβ), the reciprocal of time to failure is

also a Weibull distribution, 1/T ∼ Weibull(δ1/T , λ1/T ) =

TABLE VII
PARAMETER ESTIMATION AND RELIABILITY PREDICTION

IN THE TWO-STAGE METHOD

TABLE VIII
95% CI WIDTHS OF MTTF

Weibull(δβ , λβ/ln(α/Df )). Based on the inference from

(6), both reliability functions are calculated as follows:

R(β) = exp

[

−

(

β

λβ

)δβ

]

= exp

[

−

(

β

3.918∗e−6

)6.433
]

(14)

R

(

1

t

)

= exp

⎡

⎣−

(

1
t

λ 1

T

)δ 1

T

⎤

⎦

= exp

⎡

⎣−

(

1
t

1.098∗e−5

)6.433
⎤

⎦ . (15)

E. Lumen Lifetime Estimation With Two-Stage Method

As mentioned above, random effect parameters, βi, follow

a Weibull distribution with scale parameter, λβ , and shape

parameter, δβ , β ∼ Weibull(δβ , λβ). So it was possible to

move to the third step of this method directly, randomly gener-

ating N(= 100 000) realizations β∗ of β from two-parameter

Weibull(6.433, 3.918∗e−6) with S-PLUS (one software for

statistical computing from Bell Laboratories) random number

generation function [17]. And the corresponding N simulated

failure time t∗ was calculated by substituting each β∗ into

Df = D(t;α;β). Time to failure distribution, F (t), was es-

timated by (11) with a Monte Carlo simulation. The lifetime

estimation results are shown in Table VII.

Through comparing the prediction results of the two-stage

method with others, the estimated results of MTTF by the two-

stage method and the approximation method are very closely,

but the widths of the 95% CIs obtained by using the two-stage

method are smaller than others (Table VIII), which means the

last method has the highest prediction accuracy.
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V. CONCLUSION AND PROPOSALS

In this paper, the lumen lifetime of one type of HPWLED

(LUXEON Rebel, LUMILEDS, PHILPS) was estimated by

the DDDM including the approximation method, the analytical

method and the two-stage method and the estimation results

were compared to those obtained when using the IES TM-21-11

method.

From the IES TM-21-11 method, only lumen lifetime, L70,

could be estimated by projecting the empirical degradation

model without other reliability information. Moreover, the pre-

diction results based on two sets of periodical degradation data

revealed different prediction results, both of which exceeded

the maximum requirements of the “6 times rules”. This sug-

gests that the prediction results were not acceptable without

extending the data collecting time. However, with the general

degradation path model, more reliability messages, in addition

to the lumen lifetime (e.g., MTTF, CI, and reliability function),

could also be predicted. And among these three methods,

the two-stage method with smallest widths of the 95% CIs

produced the highest degree of prediction accuracy.

But due to its long lifetime, up to now there has still been

no actual measurement of the complete lifetime of LUXEON

Rebel against which to evaluate the prediction results obtained

from these DDDMs. Therefore, for these highly reliable elec-

tronic products, some other prediction methods with more ad-

vantages (such as an Accelerated Degradation Test or stochastic

approaches) should be introduced.
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