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Introduction

Whereas the position of disul�des in folded proteins is ruled 

largely by thermodynamic considerations (An�nsen, 1973), the 

rate at which disul�des form is in�uenced by the concentration 

and activity of reduced and oxidized protein thiol oxidoreduc-

tases in the ER lumen. The mammalian ER contains at least 20 

such protein disul�de isomerase (PDI)–like oxidoreductases, 

which have in common the presence of one or more thioredoxin 

domains through which they accept and donate disul�des to 

contingent proteins (Ellgaard and Ruddock, 2005; Hatahet and 

Ruddock, 2009). Several factors affect the redox poise of this 

heterogeneous collection of oxidoreductases: Upstream are en-

zymes that function as ER oxidases; they accept electrons from 

the reduced oxidoreductases and transfer them to small molecule 

acceptors. ERO1, conserved from yeast to mammals, oxidizes 

PDI family members by reducing molecular oxygen to hydro-

gen peroxide (Tu et al., 2000; Gross et al., 2006) and the ER lo-

calized peroxiredoxin 4 (PRDX4) serves a backup, oxidizing 

PDIs by reducing hydrogen peroxide to water (Tavender et al., 

2008; Zito et al., 2010b). Other enzymatic (Kodali and Thorpe, 

2010; Nguyen et al., 2011) and nonenzymatic processes (Ruddock, 

2012) may also contribute to disul�de bond formation in the ER 

lumen. The aforementioned oxidizing features of the ER are 

opposed by the ingress of reduced cysteine residues in newly syn-

thesized secreted proteins and by the pool of reduced glutathi-

one (Hwang et al., 1992; Cuozzo and Kaiser, 1999; Chakravarthi 

et al., 2006).

ER oxidation is vigorously defended. The genes encoding 

ERO1 and several PDIs are under positive transcriptional con-

trol by the unfolded protein response (Frand and Kaiser, 1998; 

Pagani et al., 2000; Travers et al., 2000) and allosteric mecha-

nisms are in place to regulate the enzymes (Sevier et al., 2007; 

Appenzeller-Herzog et al., 2008; Baker et al., 2008). These reg-

ulatory features likely account for the recovery of disul�des 

within minutes of reversing a reductive pulse (Braakman et al., 

1992; Appenzeller-Herzog et al., 2010). Mice tolerate severe 

loss-of-function mutations to the two genes encoding ERO1 
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faithfully tracking the activity of the major ER-localized 
protein disulfide isomerase, PDI. In vivo lifetime imag-
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exposure of mammalian cells to a reducing environment 
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roGFPiE uncovered a hitherto unsuspected reductive shift in 
the mammalian ER upon loss of luminal calcium, whether 
induced by pharmacological inhibition of calcium reup-
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channels. These findings recommend fluorescent lifetime 
imaging as a sensitive method to track ER redox homeo-
stasis in mammalian cells.
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lifetime imaging microscopy of a suitable variant, roGFPiE, 

can circumvent the crippling dimness of the probe. Here we re-

port on the application of this technological advance to analyze 

ER redox poise under diverse physiological and pathophysio-

logical conditions.

Results

roGFPiE: A protein thiol redox probe 

suited to the ER

Fluorescent spectroscopy of roGFPiE puri�ed from Escherichia 

coli showed the expected double peaked excitation spectrum 

with a prominent peak at 475 nm, after reduction with dithioth-

reitol (DTT), and its attenuation by oxidation with lipoic acid. 

The emission spectrum was unaltered by the redox state of the 

protein (Fig. 1 A). Thus, ratiometric measurements of roGFPiE 

faithfully reported on the redox status of the probe in vitro, as 

previously described (Lohman and Remington, 2008).

Thiol redox reactions tend to kinetic isolation (Kemp et al., 

2008). Therefore, an in vivo thiol redox reporter should be cou-

pled to the prevalent enzymatic system of the organelle. We 

tested the response of the sensor in the presence of PDI, an abun-

dant chaperone mediating client protein oxidation and reduction 

in the ER. Ratiometric measurements tracked time-dependent 

changes in roGFPiE redox status, as trace amounts of the fully 

reduced protein in vitro were exposed to an excess of a redox 

buffer of oxidized and reduced glutathione. Alone, roGFPiE 

equilibrated slowly with the glutathione redox buffer, re�ect-

ing kinetic isolation, however PDI markedly accelerated probe 

oxidation (Fig. 1 B) with half maximal acceleration attained at 

20 µM PDI (Fig. 1 C).

The tight coupling of roGFPiE to changes in PDI redox 

status justi�ed its use as an in vivo probe. When targeted to the 

ER of mammalian cells, ERroGFPiE colocalized with the ER 

chaperone BiP and the disul�de isomerase PDI (Fig. 1 D). COS7 

cells, with superior spatial resolution, were used to assess colo-

calization, but similar observations were made in HEK 293T cells 

(see Fig. 3), which were used in subsequent experiments. 

Non-reducing immunoblot con�rmed the presence of a mixed 

population of reduced and oxidized ERroGFPiE, which were 

completely reduced in cells exposed to DTT (Fig. 1 E).

Despite these favorable features, in vivo ERroGFPiE proved 

unreliable as a ratiometric ER redox probe: Whereas the excita-

tion spectrum of Sepharose beads coated with roGFPiE tracked 

its redox status in vitro (Fig. S1 A), nonspeci�c auto�uores-

cence competed with the probe’s feeble signal in vivo, severely 

compromising the detection of changes in ER redox in cells using 

the same microscope setup (Fig. S1, B–D). This motivated the 

development of an alternative readout that could be tracked more 

readily in vivo.

Fluorescence lifetime imaging detects 

changes in ER protein thiol redox

The lifetime of the compromising auto�uorescence (3.0 ns) was 

found to be signi�cantly longer than that reported for GFP (2.4 ns; 

Esposito et al., 2005; Wallrabe and Periasamy, 2005) and was 

unresponsive to DTT (Fig. S2 A). Therefore, we hypothesized 

isoforms, Ero1L and Ero1Lb (Zito et al., 2010a; Chin et al., 

2011), further attesting to the redundancy of pathways for disul-

�de bond formation. Against this background of robustness are 

studies reporting strong deviation of redox poise under condi-

tions of unfolded protein stress in the ER. Pharmacological and 

genetic manipulations that adversely affect protein folding ho-

meostasis in the yeast ER are reported to promote a more reduc-

ing environment (Merksamer et al., 2008), whereas in mammals, 

enforced expression of a dif�cult to fold secreted protein leads 

to hyperoxidation, which contributes to failure of secretion 

(Malhotra et al., 2008).

These studies suggest that deviation from healthy thiol 

redox poise may contribute to impaired protein folding in the 

overloaded ER, but offer contradictory indications as to the di-

rection of the deviation. Resolving this conundrum requires tools 

to accurately measure ER redox poise; a nontrivial problem. It 

is possible to detect changes in ER redox poise by following the 

distribution of disul�des and dithiols in sentinel ER resident pro-

teins. Bulk biochemical methods to track the redox status of in-

dividual ER proteins exist, but these end-point assays are subject  

to post-lysis experimental artifacts, lack spatial and temporal 

resolution, and provide limited information on intra-sample vari-

ation. These limitations have stimulated the development of re-

dox-sensitive intravital optical probes that function in the ER 

lumen. A particularly promising approach has been to exploit 

the optical perturbation introduced by the presence of a disul-

�de on the surface of the green �uorescent protein -barrel 

(Björnberg et al., 2006; Cannon and Remington, 2008; Meyer 

and Dick, 2010). Introduction of cysteine residues on the sur-

face of such redox-sensitive GFP (roGFP) results in a �uores-

cent protein whose excitation properties differ between the 

dithiol and the disul�de state: The ratio of emitted �uorescence 

when excited at 390 nm versus 475 nm reports on the ratio of 

disul�de versus dithiol in the population of probe molecules 

(Hanson et al., 2004).

The �rst generation of roGFPs, although useful in tracking 

redox in the cytoplasm and mitochondrial matrix, proved too 

reducing for the oxidizing environment of the ER. This chal-

lenge was ingeniously met by introducing a single amino acid 

insertion into the roGFP -barrel adjacent to cysteine 147, in 

what were named “roGFP insertion X” (roGFPiX, where X is 

the inserted amino acid). Destabilization of the optically per-

turbing 147–204 disul�de in roGFPiX resulted in a less reduc-

ing protein whose midpoint potential was thus predicted suitable 

to detect �uctuations in redox poise in the oxidizing environ-

ment of the ER (Lohman and Remington, 2008). One such probe, 

roGFPiL, was introduced into the ER lumen of mammalian cells 

and proved sensitive to changing redox changes (van Lith et al., 

2011). Unfortunately, the insertion that tunes roGFPiX redox 

potential to the oxidizing environment in the ER has a negative 

impact on �uorescent intensity, compromising sensitivity (Lohman 

and Remington, 2008). One can partially overcome this prob-

lem with higher illumination, but at the risk of photo-toxicity 

and perturbation of the redox environment (Hoebe et al., 2007; 

van Lith et al., 2011). We have discovered that the dithiol and 

disul�de states of roGFPiX variants are associated with vastly 

different �uorescence lifetimes. Thus, real-time �uorescent 

http://www.jcb.org/cgi/content/full/jcb.201211155/DC1
http://www.jcb.org/cgi/content/full/jcb.201211155/DC1
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(Fig. 2, A and C). Fluorescence lifetime of roGFPiE was unaf-

fected by the presence of iodine (Fig. 2 D), suggesting that the 

lifetime alterations in roGFPiX variants does not result from 

exposure of the �uorophore to collisional quenching and pre-

dicting a measure of indifference to the ionic environment.

Given that roGFPiE had the greatest dynamic range of �uor-

escence lifetime in vitro, it was chosen for further in vivo studies. 

Fluorescence lifetime imaging microscopy (FLIM) of mammalian 

cells expressing ERroGFPiE showed a conspicuous difference 

in lifetime before and after exposure to DTT (Fig. 3, A and B). 

Reduced roGFPiE had similar lifetimes in vitro and in vivo 

(Fig. 3 C). In unperturbed cells, the lifetime of ERroGFPiE cor-

responded to that of roGFPiE at equilibrium with a redox buffer 

just above its midpoint (0.236 V; Figs. 2 B and 3 C; Lohman 

and Remington, 2008), an assignment consistent with the distri-

bution of reduced and oxidized probe observed in immunoblot 

of cell lysates (Fig. 1 E).

As expected, the revertant mutant, ERrefGFP, maintained 

its long �uorescence lifetime in cells exposed to reducing stress. 

ERroGFPiE with a C204Q mutation (precluding disul�de for-

mation) had a persistently short �uorescence lifetime. Though 

unable to form a disul�de, the C147S/E147a double mutant 

lacking the insertion had persistent long lifetime (Fig. 3 A, sam-

ples 7 and 8). Whether expressed in the oxidizing ER or reduc-

ing cytosol, conventional EGFP had an indistinguishable long 

that this parameter may provide a basis for deconvoluting the 

speci�c signal.

Proximity of the C147/C204 disul�de to the modi�ed 2,3-

didehydrotyrosine residue of roGFPiE (PDB: 3CD1) suggested 

that it might in�uence the lifetime of the �uorophore. Indeed, 

�uorescence lifetimes of roGFPiE varied from a low of 1242 ± 

62 picoseconds, for the fully reduced probe, to a high of 2311 ± 

56 ps for the fully oxidized form (Fig. 2 A). Fluorescence life-

times correlated with changes in excitation ratio in a titration with 

reduced and oxidized lipoic acid (Fig. 2 B).

In its oxidized form, the �uorescence lifetime of roGFPiE 

approached that of conventional EGFP and refGFP (a thiol-

lacking revertant mutant roGFP; Fig. 2 C). Together these ob-

servations suggested that the �uorophore was perturbed in the 

reduced state of roGFPiE. Interestingly, the �uorescence lifetimes 

of roGFP1, the C147/C204-containing parent of roGFPiE that 

lacks the E147a insertion, was long in both its reduced and oxi-

dized con�guration (Fig. 2 C), indicating that the perturbation pro-

moted by reduction of the disul�de requires the insertion at 147a. 

The identity of the inserted residue seemed less important, as 

reduced roGFPiE, roGFPiL, and roGFPiR had similar short 

�uorescence lifetimes. However, in their oxidized con�gura-

tion roGFPiR and roGFPiL had shorter �uorescence lifetimes 

than roGFPiE (1807 ± 28 and 2150 ± 46 vs. 2311 ± 56 ps, re-

spectively), endowing the latter with a superior dynamic range 

Figure 1. Optical and physiological sensitivity of roGFPiE to the ER redox environment. (A) Excitation (measured by the emission at 520 nm) and emission 
(measured by excitation at 450 nm) scans of purified roGFPiE dithiol (SH) or disulfide (S-S; 1 µM) performed at a spectral resolution of 1 nm. (B) Time-
dependent changes in the ratio of fluorescence emission (excitation: 470 nm vs. 395 nm) of the fully reduced purified roGFPiE dithiol (1 µM) introduced 
at t = 0 into a glutathione redox buffer (5:1 GSH/GSSG, 4 mM total) in the absence or presence of 30 µM PDI. The emission ratio of roGFPiE maintained 
continuously in the presence of the reducing agent DTT (5 mM) or the oxidizing agent lipoic acid (5 mM) is provided as a reference for the dithiol and 
disulfide forms, respectively. (C) Initial velocity of the oxidation of roGFPiE from the dithiol to the disulfide in the presence of the indicated concentration 
of PDI, calculated from the linear phases of measurements as in B. (D) Fluorescent photomicrographs of COS7 cells expressing ERroGFPiE, stained with 
rabbit polyclonal anti-GFP, mouse monoclonal anti-PDI, and chick polyclonal anti-BiP (as ER markers). The nucleus was visualized by Hoechst staining  
(in blue in the merged right-most panel). (E) Immunoblot of ERroGFPiE expressed in untreated or DTT-treated (5 mM DTT for 10 min) HEK 293T cells, resolved 
by nonreducing (NR) and reducing (R) SDS-PAGE. Shown are representative experiments reproduced three times (A–D) or twice (E).

http://www.rcsb.org/pdb/explore/explore.do?structureId=3CD1
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genetically de�cient in ER disul�de oxidases, which readily 

defend ER thiol redox at baseline but exhibit a subtle kinetic 

delay in disul�de formation after recovery from a pulse of DTT 

(Fig. 4 D; Zito et al., 2012).

Stability of ER protein thiol redox poise 

in the face of changing levels of unfolded 

protein stress

Diverse pathophysiological processes perturb protein folding 

homeostasis in the ER lumen (Walter and Ron, 2011). However, 

the effect of the resulting stress on ER thiol redox remains poorly 

characterized. In budding yeast, an ER-localized roGFP2 had 

been reported to undergo reduction on exposure to tunicamycin, 

an inhibitor of N-linked glycosylation that causes unfolded pro-

tein stress (Merksamer et al., 2008). However, given the reduc-

ing midpoint potential of roGFP2, 0.272 V (Hanson et al., 2004), 

it is suited to detect catastrophic deviations in redox state, but can-

not track physiological variations around the organelles’ midpoint 

lifetime, as expected (Fig. S2 A). The auto�uorescent signal of 

untransfected cells had a patchy distribution and although foci 

of high intensity auto�uorescence were noted, pixels containing 

such signal could be rejected based on their unusually long life-

time and lack of response to DTT (Fig. S2 A). Together, these 

observations con�rmed that roGFPiE FLIM tracked protein 

thiol redox in the ER of living cells and could be unmixed from 

polluting background auto�uorescence.

Despite the dimness of the ERroGFPiE signal, �uorescence 

lifetime imaging had the sensitivity and time resolution needed 

to detect subtle and rapid changes in ER redox poise in wild-

type cells exposed to DTT or to the oxidizing agent 2,2-dipyridyl 

disul�de (DPS; Fig. 4, A–C). Unlike the ratiometric method used 

to detect redox changes in roGFPiL in vivo, which suffered from 

the confounding effects of a creeping baseline (van Lith et al., 

2011), a steady baseline of �uorescence lifetime was observed 

in cells expressing ERroGFPiE (Fig. 4 C). FLIM of roGFPiE 

also readily revealed a defect in disul�de formation in cells 

Figure 2. Fluorescence lifetime of roGFPiE is altered by its oxidation state in vitro. (A) Color-coded fluorescence lifetime images acquired by time-correlated 
single-photon counting (TCSPC) spectroscopy of Sepharose beads coated with roGFPiE purified from E. coli and tethered via an antibody (right). Where in-
dicated, the beads were exposed to an oxidizing environment of lipoic acid (OX) or a reducing environment of DTT (RED). A time-correlated photon count, 
from a representative pixel (after a laser excitation pulse, blue dots) and its fit to a mono-exponential decay (red line, from which the value of lifetime is ex-
tracted) are shown (left), alongside the instrument response function (green line). 

r
x
2

 reports on goodness of fit. A histogram of the distribution of lifetimes 
observed in the pixels sampled is shown in the central panel superimposed on the continuous rainbow scale representing fluorescence lifetime values of 
1,000–3,000 ps, which is also used to color code the adjacent FLIM images. The mean ± SD lifetime of each type of measurement is noted. Reduction of 
disulfides in the tethering immunoglobulin triggers dissociation of probe molecules from the bead, accounting for the halo effect observed in the DTT-treated 
(RED) samples. (B) Ratio of fluorescence emission (excitation 470 nm vs. 395 nm, left axes, green trace) and fluorescence lifetime (in picoseconds, right 
axes, red trace) of roGFPiE equilibrated with a lipoic acid–based redox buffer of the indicated predicted redox potential (in volts). The inset is an immuno-
blot of roGFPiE resolved on a nonreducing SDS-PAGE from samples at the indicated redox potential. (C) Histogram of the distribution of lifetimes of oxidized  
and reduced GFP proteins attached to Sepharose beads. A color-coded lifetime image is shown in the inset (as in A). The mean ± SD of the fluorescence 
lifetime is also indicated. (D) Histogram of distribution of lifetimes of samples as in C. Where indicated, the buffer contained the collisional quencher potas-
sium iodide (KI, 100 mM). Shown are representative experiments reproduced three times (A) or twice (B–D).
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ERroGFPiE (Fig. 5 A), despite strong induction of ER stress, re-

�ected in the induction and nuclear localization of the ER un-

folded protein responsive marker CHOP (Fig. 5 B). ERroGFPiE 

remained unresponsive for up to 12 h (Fig. 5 C), a point at which 

death became noticeable in the stressed cells.

These observations indicate that prolonged unfolded pro-

tein stress does not affect the steady-state thiol redox poise of the 

potential. Therefore, ERroGFPiE-expressing 293T cells were ex-

posed to conditions that promote unfolded protein stress in the 

ER: azetidine (a proline analogue that perturbs protein structure), 

thapsigargin (an inhibitor of the smooth endoplasmic reticulum 

calcium [SERCA] uptake pump that inhibits protein folding by 

depleting ER calcium stores), DTT, or tunicamycin. 3-h expo-

sure to tunicamycin or azetidine had no measureable effect on 

Figure 3. Redox-dependent changes to fluorescence lifetime of ER-localized roGFPiE in live cells. (A) Fluorescent intensity–based (in grayscale) and lifetime 
images (color-coded to the scale of the histogram on the right) of HEK 293T cells expressing wild-type ERroGFPiE (C147-E147a-C204) and its ER-localized 
mutant derivatives, with or without 2 mM DTT (10 min). A histogram of the distribution of lifetimes in the population of cells is provided (right), noting the 
mean ± SD lifetime. The asterisk in panel 6 points to a region of intense autofluorescence with similar spectral properties as roGFPiE, but recognizable 
by its relatively long fluorescence lifetime. (B) Nonreducing (NR) and reducing (R) immunoblot of the GFP in the cells shown in A. The dithiol (RED) and 
disulfide (OX) forms are indicated. (C) Schema showing the mean florescence lifetime of the indicated GFP proteins in vivo and in vitro, as measured in the 
experiments shown in Fig, 2, A and C; panel A here; and in Fig. S2 B. roGFPiE and ERroGFPiE are in bold font. Redox state is indicated by S-S (disulfide) and 
SH (dithiol). Treatments with DTT, the oxidizing agent 2,2-dipyridyl disulfide (DPS), or lipoic acid (LA) are noted. A and B are representative experiments 
reproduced twice.

http://www.jcb.org/cgi/content/full/jcb.201211155/DC1


JCB • VOLUME 201 • NUMBER 2 • 2013 342

Figure 4. Faithful tracking of dynamic changes in ER redox by ERroGFPiE. (A) Fluorescent intensity–based (in grayscale) and lifetime images (color-coded 
to the scale of the histogram on the right) of HEK 293T cells expressing ERroGFPiE exposed sequentially at 10-min intervals to escalating concentrations of 
the reducing agent DTT (concentration noted in the inset). A histogram of the distribution of lifetimes in the population of cells is provided (right), noting the 
mean ± SD lifetime. (B) Plot of the relationship between DTT concentration and probe lifetime derived from the experiment described in A. (C) A trace of 
time-dependent changes in ERroGFPiE fluorescence lifetime (FLT in picoseconds) in live HEK 293T cells, before, during, and after brief exposure to 2 mM DTT 
or 1 mM of the oxidizing agent DPS. Fluorescent emission intensity (in black and white) and lifetime (color-coded) images of cells before (UNT), during the 
DTT pulse, and after its washout (WO) are shown in the bottom panel. (D) As in C, comparison of lifetime changes after a reductive pulse of DTT applied 
to wild-type (WT) and compound Ero1l-, Ero1lB-, and Prdx4-deficient mutant (MUT) mouse embryonic fibroblasts. Shown are representative experiments 
reproduced twice.
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all IRE1 activity and in mutant cells rescued with an IRE1 trans-

gene (Fig. 6 A; Calfon et al., 2002). Unfortunately, spectral over-

lap with roGFPiE precluded the use of IRE1 inhibitors (which 

�uoresce strongly in that range) and con�ned our analysis to the 

consequences of long-term disruption of the IRE1 pathway. How-

ever, as in mammals the IRE1 pathway plays a crucial role in 

the long-term process of building ER capacity (Cross et al., 2012); 

this comparison is likely relevant to any role IRE1 might have 

in maintaining redox equilibrium.

PERK-mediated translational repression regulates the 

moment-to-moment �ux of proteins into the ER and is thus best 

studied by acute pharmacological inhibition, which precludes 

long-term adaptation in cultured cells (Harding et al., 2012). 

Neither PERK inhibition with the selective kinase inhibitor 

GSK2606414 (Axten et al., 2012; Harding et al., 2012) nor 

tunicamycin affected ERroGFPiE’s redox poise over 15 h of 

ER. To determine if prolonged unfolded protein stress affects 

the dynamics of disul�de formation, we compared the recovery 

of oxidized ERroGFPiE after a reductive pulse of DTT in un-

treated and 3-h tunicamycin-pretreated cells. Both populations 

rapidly recover their steady-state oxidative poise, a process that 

was mildly accelerated by tunicamycin pretreatment (Fig. 5 D), 

presumably due to ERO1 induction. Lowering the burden of un-

folded proteins by treating cells with protein synthesis inhibi-

tors was likewise with no measurable effect on ER redox. Neither 

cycloheximide, which arrests protein synthesis during elonga-

tion, freezing nascent chains in the translocon, nor puromycin, 

which releases the nascent chains from the translocon, affected 

roGFPiE redox (Fig. 5 E).

Next we turned our attention to the role of the unfolded 

protein response in maintaining the stability of ER redox. ER 

redox was defended equally well in mutant mouse cells lacking 

Figure 5. Fluorescence lifetime of ERroGFPiE 
is unaffected by physiological levels of unfolded 
protein stress. (A) A trace of time-dependent 
changes in ERroGFPiE fluorescence lifetime in live  
HEK 293T cells after exposure to 2 mM DTT, 
5 µg/ml tunicamycin (TUN), 3 mM azetidine 
(AZT), or 2 µM thapsigargin (TG). Color-coded 
fluorescence lifetime images of cells 3 h into 
the exposure are shown in the bottom panel. 
Each data point represents the mean ± SD of 
fluorescence lifetime measured in ≥10 cells. 
(B) Fluorescent photomicrographs of cells as  
in A, immunostained for the ER stress–induced  
nuclear protein CHOP (left), GFP (middle), 
and a superposition of the two images with 
Hoechst nuclei staining (right). (C) Extended 
time course of color-coded fluorescence lifetime 
images of ERroGFPiE expressing live HEK 293T 
cells exposed to tunicamycin or azetidine.  
(D) A trace of time-dependent changes in 
ERroGFPiE fluorescence lifetime in untreated 
(green) and 3-h tunicamycin-treated HEK 293T 
cells (orange), before, during, and after brief 
exposure to DTT. (E) Extended time course of 
color-coded fluorescence lifetime images of 
ERroGFPiE expressing live HEK 293T cells 
exposed to 50 µg/ml of the protein synthesis 
inhibitors cycloheximide (CHX) or 10 µg/ml of 
puromycin (PUR). Shown are representative 
experiments reproduced twice.
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0.209 V to 0.233 V (Fig. 5 A). These observations sug-

gested an unanticipated relationship between perturbed intra-

cellular calcium homeostasis and ER protein thiol redox.

Thapsigargin irreversibly inhibits the SERCA pump; in 

keeping with this, depletion of ER calcium and the shortening 

of ERroGFPiE �uorescence lifetime persisted upon thapsigar-

gin washout (Fig. S3, A and B). HEK 293T cells exhibit a wide 

range of sensitivity to the ER calcium store–depleting effects of 

thapsigargin, necessitating the use of relatively high concentra-

tions of this SERCA inhibitor (Fig. S3, C and D). To determine 

if the correlation between depletion of lumenal calcium and a 

more reducing ER extended to reversible, physiological calcium 

signaling, we exploited the responsiveness of pancreatic acinar 

AR42j cells to the gut hormone cholecystokinin (Zhao et al., 

1990). As expected, cholecystokinin reversibly depleted lume-

nal calcium stores, as monitored by the �uorescence lifetime of 

the FRET-based probe D1ER cameleon (Fig. 7, A and B, left; 

Palmer et al., 2004). The temporal pro�le of ER calcium store 

depletion correlated well with the cholecystokinin-mediated 

shortening of ERroGFPiE �uorescence lifetime and with its 

observation (Fig. 6 B). To promote sensitivity to spatial inho-

mogeneity in redox poise, were it to occur, these measurements 

were conducted in COS7, with superior spatial resolution. Redox 

poise was defended throughout the ER in PERK inhibitor–treated 

cells (Fig. 6 C). Translational control is especially important 

under conditions of ER stress and PERK de�ciency strongly 

sensitizes cells to tunicamycin (Harding et al., 2000). Interest-

ingly, tunicamycin-treated cells experienced defective ER redox 

when the PERK pathway was simultaneously compromised 

(Fig. 6 B, yellow trace; and Fig. 6 C, bottom-most panels).

Calcium store depletion promotes a more 

reducing ER

The aforementioned observations suggested that ER redox is 

defended across a broad range of levels of unfolded protein load 

and breaks down only when the defensive mechanism of trans-

lational repression is acutely disabled. It was of interest there-

fore to note that within minutes of exposure to thapsigargin, 

ERroGFPiE �uorescence lifetime decreased to a new baseline, 

corresponding to an apparent reductive shift of 24 mV from 

Figure 6. Failure of ER redox regulation at extreme unfolded protein stress. (A) Color-coded fluorescence lifetime images of Ire1-deleted mouse cells 
and deleted cells rescued by an IRE1 transgene (IRE1+) after 4 h exposure to 5 µg/ml tunicamycin or 2 mM DTT. Values represent mean ± SD of fluores-
cence lifetime measured in ≥20 cells. (B) A trace of time-dependent changes in ERroGFPiE fluorescence lifetime in live COS7 cells that had been exposed 
to 5 µg/ml tunicamycin (TUN), 10 µM of the selective PERK kinase inhibitor GSK2606414 (PERKi), or both agents. Each data point represents the mean ± 
SD of fluorescence lifetime measured in ≥10 cells. (C) Color-coded fluorescence lifetime images along with histograms of lifetime frequency distribution 
of ERroGFPiE-expressing untreated COS7 cells and cells 3 h into the exposure to tunicamycin and PERK inhibitor. Shown are representative experiments 
reproduced twice.
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However, the feeble �uorescent signal of these roGFPiX probes 

compromises their utility in vivo, where normal background auto-

�uorescence overlaps their emission spectrum and confounds 

the intensity-based ratiometric excitation measurement used to 

estimate the redox state of the probe. Our �ndings indicate that 

the insertion of residue 147a, which destabilizes the disul�de and 

renders the probe less reducing (and thus suited to the ER envi-

ronment), fortuitously subordinates the �uorescence lifetime of 

the �uorophore to the redox state of the adjacent cysteines. The 

dithiol has a considerably shorter �uorescence lifetime than the 

disul�de, thus the redox state of the probe can be estimated by 

measuring its �uorescence lifetime in vivo.

Both ratiometrics and �uorescence lifetime imaging pro-

vide information that is independent of probe concentration. Life-

time measurements offer advantages in deconvoluting signals 

emanating from cellular auto�uorescence, whose lifetime differs 

considerably from roGFPiE (as exempli�ed by Fig. 3 A, panel 6, 

and Fig. S2 A) and thus provides a measurement gated on the 

�uorescent properties of the probe. The large number of events 

acquired by photon counting provides reliable data at weak 

excitation intensities. This is revealed by the narrowness of the 

distribution of lifetimes measured in vivo under diverse physi-

ological conditions and favors the detection of subtle differ-

ences in the state of the probe, while avoiding photo-toxicity and 

photo-oxidation.

The binary mode of TCSPC eliminates nonlinear ampli�ca-

tion of weak signals, a problem affecting analogue light-detecting 

restoration upon washout (Fig. 7, A and B, right). By contrast, ER 

calcium stores were notably preserved in cells experiencing ER 

stress and only began to decline when viability was compromised 

at late time points (Fig. S4), suggesting that stability of ER calcium 

may contribute to the stability of roGFPiE in stressed cells.

Thapsigargin has reciprocal effects on lumenal ER calcium 

(decrease) and cytosolic calcium (increase; Brayden et al., 1989). 

To deconvolute their in�uence on �uorescence lifetimes of 

ERroGFPiE, we buffered cytosolic calcium with the cell-permeant 

calcium chelator BAPTA-AM. In the presence of BAPTA-AM, 

the ratiometric cytosolic calcium probe, INDO1-AM, reported 

nearly complete buffering of the thapsigargin-induced transient 

increase of cytosolic calcium (Fig. 7 C). ER calcium was depleted 

by thapsigargin, as expected (Fig. 7 D, left) but, BAPTA-AM did 

not reverse thapsigargin’s effect on the redox state of ERroGFPiE 

(Fig. 7 D, right), implicating changes in lumenal calcium. 

Importantly, the calcium-dependent changes in ERroGFPiE 

�uorescence lifetime observed in vivo were not reproduced by 

exposing reduced or oxidized roGFPiE to different calcium con-

centrations in vitro, indicating that at neither oxidation state is 

roGFPiE’s lifetime directly sensitive to calcium (Fig. 7 E).

Discussion

The development of ratiometric optical redox probes suited to 

the oxidizing environment of the ER was a major conceptual 

advance (Lohman and Remington, 2008; van Lith et al., 2011). 

Figure 7. Calcium depletion promotes a more reducing ER. (A) Time-dependent changes in fluorescence lifetime (FLT) of the redox reporter ERroGFPiE or 
the ER calcium reporter D1ER cameleon before, during, and after exposure of AR42j cells to a pulse of cholecystokinin (CCK, 2 µM). Shown are temporally 
superimposed typical measurements reproduced three times in cells expressing either reporter. (B) Fluorescent emission intensity (grayscale) and lifetime 
(color-coded) images of ERroGFPiE or D1ER cameleon in AR42j cells before, at the peak of CCK action, and after washout of CCK (as in A). (C) Traces 
of time-dependent changes in cytosolic calcium concentration measured by Indo 1-AM emission ratios before and after exposure to thapsigargin (2 µM). 
Where indicated, the thapsigargin-induced cytosolic calcium spike was buffered by 50 µM BAPTA-AM. (D) Bar diagram showing mean ± SD (n > 5) 
fluorescence lifetime of the ER-localized calcium probe, D1ER cameleon, or the redox probe, ERroGFPiE, in cells exposed to thapsigargin, BAPTA-AM, or 
both (as in C; note that D1ER cameleon’s lifetime is inversely related to ER calcium). (E) A time series of fluorescence lifetime measurements of roGFPiE 
dithiol (SH), disulfide (S-S), or a mixture of the two that approximates the redox state of ERroGFPiE in untreated cells (S-S/SH in vivo like) exposed in vitro 
to a solution whose calcium concentration was increased at regular intervals by addition of calcium (gray trace). Note that calcium concentration does not 
affect fluorescence lifetime of roGFPiE in vitro. Shown are representative experiments reproduced twice.
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in ER-stressed yeast (Merksamer et al., 2008). These differences 

may re�ect phylogenetic distance, but it may also be worth not-

ing that the yeast study was conducted with roGFP2, which is 

tuned to the cytosol’s redox potential and would likely miss sub-

tle perturbations like the ones we measured upon calcium re-

lease or combined exposure to tunicamycin and PERK kinase 

inhibitor. Thus, the shift in roGFP2 redox status noted in ER-

stressed yeast more likely re�ects a different, dramatic process, 

such as catastrophic permeabilization of the ER or accumula-

tion of cytosolic roGFP2 due a stress-induced translocation 

defect in the yeast (Rubio et al., 2011).

In mammalian cells the ER unfolded protein response ac-

tivates a gene expression program that defends against accumu-

lation of reactive oxygen species and whose compromise exposes 

ER-stressed cells to accumulation of endogenous peroxides 

(Harding et al., 2003). But the stability of ER thiol redox observed 

here suggests that the accompanying global increase in reactive 

species re�ects something other than ER hyperoxidation and 

that the restoration of secretion of dif�cult-to-fold proteins by 

electron donors (antioxidants; Malhotra et al., 2008) is unlikely 

to involve their direct action at the level of the ER. There are other 

hints that in mammalian cells redox in the ER and cytosol may be 

quite isolated. Partial loss of ERO1 function, which lowers levels 

of endogenous peroxides in ER-stressed worms (Marciniak et al., 

2004), had no similar protective effect in mouse pancreatic  cells 

(Zito et al., 2010a). These considerations should prompt a re-

examination of the site of action of the pro-oxidant strands of 

the ER unfolded protein response, mediated by the transcription 

factor CHOP (McCullough et al., 2001).

This re�ned method for tracking ER redox revealed that 

depletion of ER calcium results in a more reduced ERroGFPiE 

at steady state. This was observed in both thapsigargin-treated 

cells and in a more physiological setting of regulated ER cal-

cium release, induced by an agonist of the membrane cholecys-

tokinin receptor. Calcium depletion promptly leads to unfolded 

protein stress in the ER lumen (Prostko et al., 1992), but a role 

for ER protein misfolding in the shift of roGFPiE to a more re-

duced poise is rendered unlikely by the observation that tunica-

mycin and azetidine, which severely perturb ER protein folding 

homeostasis, have no such effect.

The underlying molecular mechanism linking changes in 

ER calcium stores to ER redox remain to be worked out. It is 

nonetheless tempting to speculate on the physiological signi�-

cance of the shift to a less oxidizing ER after calcium release. 

Reduction of a lumenal disul�de involving cysteines 2496 or 

2505 by the ER-localized ERp44 attenuates calcium release by 

the R1 isoform of the inositol phosphate-3 receptor (Higo et al., 

2005), and thiol oxidation has been shown to attenuate the reup-

take of calcium into the ER via the SERCA pump (Scherer and 

Deamer, 1986). Conversely, compromise of ERO1 activity lim-

its activity-dependent calcium release in cardiomyocytes (Chin 

et al., 2011). This dialectic of thiol redox and calcium �ux across 

the ER membrane is consistent with a rectifying feedback mech-

anism that opposes the consequences of ER calcium depletion 

on thiol redox poise and a role for the reducing poise elicited by 

calcium release as a negative feedback loop to conserve lume-

nal calcium or limit cytosolic calcium signaling.

devices commonly used in microscopy. In addition, immunity 

to saturation of the counting mode used to generate the intensity 

image and the single light path used throughout the FLIM image 

acquisition both contribute to its superior accuracy. The practi-

cal advantages of lifetime imaging over ratiometric measure-

ments are nicely demonstrated by the contrast between the stable 

baseline of the probe obtained during repeated lifetime measure-

ment in vivo (Fig. 4 C) and the creeping baseline attributed to 

photo-oxidation caused by the intense illumination required to 

generate a signal in intensity-based ratiometric measurements 

(van Lith et al., 2011).

Ratiometric measurement of �uorescent excitation may 

be acquired by an assortment of con�gurations. And although 

these may produce internally consistent data, they are dif�cult 

to standardize. Lifetime measurements, by contrast, yield an 

absolute value that should be comparable across diverse plat-

forms. Notably, our measurement of EGFP �uorescence lifetime, 

2,496 ps, is within 3% of values previously reported (Esposito 

et al., 2005; Wallrabe and Periasamy, 2005).

The photophysical basis of the dramatic difference in �uor-

escence lifetime of the disul�de and dithiol forms of roGFPiE  

remains to be determined. The GFP �uorophore is well pro-

tected by the encasing -barrel (Remington, 2011), and �uores-

cence of reduced roGFPiE is not quenched by halogens. Thus, 

it seems unlikely that a structural alteration in the wall of the 

GFP -barrel exposes the �uorophore to collisional quenching 

when the C147/C204 disul�de has been reduced. More likely, 

the shorter lifetime is intrinsic to the disposition of the �uoro-

phore in relation to other residues of the 147a insertion-containing 

GFP -barrel, a perturbation that is reversed by formation of the 

C147/C204 disul�de.

Autonomy of �uorescence lifetime is an important feature 

in restricting the responsiveness of roGFPiE to changes in the 

redox environment. ER redox poise is a convenient heuristic term 

applied to a nonequilibrium situation; no single sentinel disul�de 

can serve as a general redox probe for the compartment (Kemp 

et al., 2008). Nonetheless, the dramatic acceleration by PDI of 

the equilibration of roGFPiE with a glutathione redox buffer, 

observed here, suggests that roGFPiE is a good surrogate for 

clients of PDI. As these include reduced, unfolded, nascent se-

creted proteins, roGFPiE is likely to report on a physiologically 

relevant aspect of the redox of PDI substrates.

Applying this re�ned tool to in vivo measurements in liv-

ing cells unveiled remarkable stability of the ER redox setpoint 

in the face of considerable variation in unfolded protein load. 

Neither tunicamycin nor azetidine, which impede folding and 

induce high levels of ER stress, affected redox poise. Nor was 

ER redox measurably affected by shutting off the in�ux of un-

folded proteins into the ER. An extreme imbalance between client 

protein in�ux and the capacity of the cellular machinery, imposed 

by disabling the PERK-mediated translational limb of the un-

folded protein response in cells exposed to the glycosylation in-

hibitor tunicamycin, led to an inappropriately reducing ER. But 

these extreme circumstances showcase the stability of ER redox 

under more physiological circumstances.

Our �ndings seemingly con�ict with earlier observations 

made in yeast, which suggest a failure of disul�de bond formation 
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2007), with a 63× oil immersion lens (NA 1.4) coupled to a microscope 
incubator, maintaining standard tissue culture conditions (Okolab), using a 
pulsed (sub-10 ps, 40 MHz) supercontinuum (430–2,000 nm) light source 
(SC 450; Fianium Ltd.). Desired excitation wavelength (typically 470 nm 
for FLIM of GFP variants and 440 nm for D1ER cameleon FRET) was tuned 
using an acousto-optic tunable filter (AOTFnC-VIS; AA Opto-Electronic). 
Desired emission was collected using 510/42 and 470–490 bandpass 
filters for GFP variants and D1ER cameleon accordingly and detected by 
a fast photomultiplier tube (PMC-100; Becker & Hickl GmbH). Lifetimes 
for each pixel were recorded using TCSPC circuitry (SPC-830; Becker & 
Hickl GmbH), keeping count rates below 1% of the laser repetition rate 
to prevent pulse pile-up. Images were acquired over 20–60 s, with a typi-
cal flow rate of 5 × 104 photons sec1, while detector speed saturation 
(pile-up effect) is not observed below 106 photons sec1 in this instru-
ment. The data were processed using SPCImage (Becker & Hickl GmbH) 
fitting the time-correlated photon count data obtained for each pixel of 
the image to a monoexponential decay function, yielding a value for life-
time on the picosecond scale.

After filtering out autofluorescence (by excluding pixels with a fluor-
escence lifetime that was out of range of the roGFP probes, i.e., longer than 
2,800 ps), mean fluorescence lifetime of single cells or beads was estab-
lished. The value obtained represented the redox as sensed by roGFPiE in 
vivo/in vitro or FRET efficiency of D1ER cameleon (inversely proportional 
to Ca2+ concentration). Each data point is constituted by the average and 
SD of measurements from at least 10 cells or beads. Unless indicated oth-
erwise, the images shown are of a representative experiment reproduced 
at least twice.

Calcium imaging
In vivo assessments of cytosolic Ca2+ concentration were performed on 
cells loaded with 20 µM Indo 1-AM for 30 min (Sigma-Aldrich), excited at 
350 nm and measuring the ratio of emission intensities at 405 vs. 485 nm. 
The FRET-based, ER-optimized D1ER cameleon (Palmer et al., 2004) was 
used for ER calcium imaging by FLIM (exploiting fluorescence lifetime short-
ening effect of FRET on the emission of the cyan fluorescent protein segment 
of D1ER cameleon). Cytosolic Ca2+ buffering was achieved by exposing 
cells to the acetoxymethyl ester of 1,2-bis(o-aminophenoxy)ethane-N,N,N, 
N-tetraacetic acid, BAPTA-AM (50 µM; Sigma-Aldrich).

Online supplemental material
Fig. S1 shows insensitivity of ratiometric fluorescent emission spectroscopy 
of roGFPiE to changes in ER redox of live cells. Fig. S2 shows that fluores-
cent lifetime of conventional GFP is not altered by changes to the redox 
environment. Fig. S3 shows irreversible ER calcium depletion and altered 
ER redox poise in thapsigargin-treated cells. Fig. S4 shows that unfolded 
protein stress does not promote lumenal calcium depletion. Online sup-
plemental material is available at http://www.jcb.org/cgi/content/full/
jcb.201211155/DC1. Additional data are available in the JCB Data-
Viewer at http://dx.doi.org/10.1083/jcb.201211155.dv.
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Materials and methods

Plasmid construction and mutagenesis
The GFP-based probe variants were produced by introducing point muta-
tions into roGFPiE (a gift from S.J. Remington, University of Oregon, Eugene, 
OR; Lohman and Remington, 2008) in the pQE10 vector for bacterial ex-
pressible variants and in ERroGFPiE in pCDNA3.1-His vector (created using 
roGFPiE-pQE10 as a source) for mammalian ER targeted variants, directed to 
the ER by a cleavable signal peptide and C-terminal KDEL ER retrieval signal, 
based on the FLAGM1 tag in the plasmid pFLAG-CMV1 (Sigma-Aldrich).

Transfections, immunoblotting, and immunofluorescence
HEK 293T, COS7, and AR42j cells were obtained from the American Type 
Culture Collection (Manassas, VA). Ire1-deleted embryonic mouse cells 
(Ire1) derived from outbred 9.5-d embryos homozygous for a targeted 
deletion of the exon encoding the transmembrane domain and lacking all 
IRE1 activity, and their retrovirally rescued counterpart (IRE1+), were de-
scribed previously (Calfon et al., 2002), as were the outbred mouse embry-
onic fibroblasts derived from 13.5-d embryos with combined homozygosity 
for mutant alleles of PRDX4 (that delete the signal peptide containing exon), 
and gene-trap disruptions of Ero1l and Ero1lb encoding both mouse iso-
forms of ERO1 (Zito et al., 2012). Cells were cultured and imaged in 
DMEM (Sigma-Aldrich), supplemented with 10% fetal calf serum. Transfec-
tions were performed using the Neon Transfection System (Invitrogen).

Transfected HEK293T cells from confluent 100-mm plates were 
washed in phosphate-buffered saline (PBS) with 20 mM N-ethylmaleimide 
and lysed in 0.5% Triton X-100, 150 mM NaCl, 20 mM Hepes, pH 7.4, 
10 mM CaCl2, 20 mM N-ethylmaleimide, and protease inhibitors. Proteins 
were resolved by 12% SDS-PAGE and blotted with an anti-GFP serum 
raised in rabbit. CHOP immunoreactivity was detected by immunofluores-
cence of 2% paraformaldehyde-fixed cells using a primary rabbit poly-
clonal serum to mouse CHOP (diluted 1:500) as described previously (Ron 
and Habener, 1992). Goat anti–rabbit DyLight488- and anti–mouse 
DyLight543-conjugated IgG were used as secondary antibodies diluted 
1:500 (Jackson ImmunoResearch Laboratories, Inc.). To localize roGFPiE 
the protein was immunostained in 2% paraformaldehyde-fixed cells using 
the aforementioned anti-GFP serum alongside a commercial mouse mono-
clonal anti-PDI antibody (1D3; Assay Designs) and a polyclonal anti-
body raised in hen against full-length bacterially expressed hamster BiP. 
Goat anti–rabbit DyLight488, anti–mouse DyLight633, and anti–chicken 
Cy3-conjugated IgG were used as secondary antibodies diluted 1:500 
(Jackson ImmunoResearch Laboratories, Inc.).

Protein purification and enzymatic assays
For in-vitro assays, human PDI (PDIA1 18–508; a gift of C. Thorpe, University 
of Delaware, Newark, DE) and roGFP variants were expressed in the 
E. coli BL21 (D3) strain, purified with Ni-NTA affinity chromatography, dia-
lyzed into the reaction buffer, reduced by incubation with 20 mM of DTT, 
and then buffer exchanged on a PD-10 gel filtration column (GE Health-
care; Blais et al., 2010). Fluorescent lifetime imaging of purified roGFP 
variants was conducted on samples of fluorescent protein immobilized on 
protein A–Sepharose beads with rabbit polyclonal anti-GFP serum. Redox 
titrations and redox potential calculations were performed by first exposing 
bacterially expressed roGFPiE to a reducing concentration of DTT (20 mM), 
removing the DTT by gel filtration, and then equilibrating the reduced 
protein with different redox buffers containing defined concentrations of 
oxidized and reduced glutathione, as described previously (Lohman and 
Remington, 2008).

For kinetic assays, reduced PDI (5–150 µM) was equilibrated in 
100 mM Hepes, pH 7.4, and 150 mM NaCl buffer containing an excess 
of a combination of reduced and oxidized glutathione (4 mM; Sigma-
Aldrich) for 1 h at room temperature, then added simultaneously to all the 
samples in the experiment. The ratio of fluorescence emission at 520 nm 
after sequential excitation at 395 and 470 nm was measured using EnSpire 
Multimode Plate Readers (PerkinElmer).

FLIM and intensity-based confocal microscopy and image analysis
A laser-scanning confocal system (510 Meta; Carl Zeiss) with a Plan-
Apochromat 63× oil immersion lens (NA 1.4) was used to acquire  
intensity-based fluorescence microscopy images of cells fixed with 2% 
paraformaldehyde PBS. Images were analyzed using ImageJ with JACoP 
and RatioPlus plugins (National Institutes of Health) to assess colocaliza-
tion and ratiometrics.

FLIM experiments were performed on a modified version of a previ-
ously described laser-scanning multiparametric imaging system (Frank et al., 
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