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(Dated: January 21, 2010)

We investigate the decay of artificially created double occupancies in a repulsive Fermi-Hubbard
system in the strongly interacting limit using diagrammatic many-body theory and experiments with
ultracold Fermions on optical lattices. The lifetime of the doublons is found to scale exponentially
with the ratio of the on-site repulsion to the bandwidth. We show that the dominant decay process
in presence of background holes is the excitation of a large number of particle hole pairs to absorb
the energy of the doublon. We also show that the strongly interacting nature of the background
state is crucial in obtaining the correct estimate of the doublon lifetime in these systems. The
theoretical estimates and the experimental data are in fair quantitative agreement.

PACS numbers: 03.75.Ss, 05.30.Fk, 34.50.-s, 71.10.Fd

The non-equilibrium dynamics of a strongly interact-
ing quantum many-body system is one of the most com-
plex problems of modern physics. It encompasses var-
ious fields from the cosmology of the early universe [1]
or non-equilibrium jet production in high energy heavy
ion collisions [2] to pump-probe experiments and opera-
tion of solid state devices under strong drive [3] in con-
densed matter physics. There are many open questions
concerning non-equilibrium processes from both a theo-
retical and an experimental perspective, especially in the
realm of condensed matter physics.

The theoretical understanding of interacting quantum
many body systems in thermal equilibrium is on a much
stronger footing, although strongly interacting systems
like high temperature superconductors are not yet com-
pletely understood. This understanding is based on
paradigms such as the quasiparticle excitations in the
Fermi liquid model and ground states with broken sym-
metry described in terms of order-parameters and their
fluctuations. The crucial point in all these paradigms
is the hierarchy of energy scales of the quantum states.
By working with a restricted set of states, organized ac-
cording to their energy, it is possible to obtain a simpli-
fied model of the system. These low energy descriptions
can capture the response of the system under small per-
turbations from equilibrium. However, in systems far
from equilibrium, there is no organizing principle as the
dynamics couples disparate states with widely different
energies and linear response theory breaks down. This
makes it hard to construct generic paradigms and one
needs to solve the full microscopic Hamiltonian dynam-
ics of an interacting quantum many-body system.

Some progress has been made for 1D systems, where it
is often possible to obtain exact solutions for the eigen-
states of the Hamiltonian. The absence of thermaliza-
tion in 1D Bose systems has been predicted [4, 5] and
observed [6] in cold atomic gases. However, these studies

are hard to generalize to higher dimensions.
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FIG. 1: Stability of highly excited states in the single-band
Hubbard model. Doubly occupied lattice sites are protected
against decay by the on-site interaction energy U . The aver-
age kinetic energy of a single particle in a periodic potential
is half the bandwidth 6J . Thus the relaxation of excitations
requires several scattering partners to maintain energy con-
servation.

In this context, it is useful to seek answers to con-
crete and focused questions involving non-equilibrium
dynamics of specific strongly interacting systems. They
have practical importance and help us gain better un-
derstanding of classes of non-equilibrium processes. Re-
cent advances in controlling ultracold atomic gases with
and without optical lattices have led to their emergence
as perfect systems to study such phenomena. These
systems, which can simulate strongly interacting model
Hamiltonians, are essentially decoupled from external
heat baths and hence the intrinsic non-equilibrium dy-
namics of the system can be studied easily. Compared to
condensed matter systems, the low density in these sys-
tems results in long timescales for dynamics. As a result
the system can be followed in real time without the use
of ultrafast probes. Further, it is relatively easy to cre-
ate and characterize an initial state far from the ground
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state, which is crucial since the dynamics depends heavily
on the initial state.

In fact, questions of non-equilibrium dynamics and
thermalization timescales are particularly important for
these artificially engineered strongly correlated systems.
Their key feature is the precise tunability of the Hamilto-
nian parameters which has made these systems ideal for
the simulation of strongly interacting many-body Hamil-
tonians relevant to condensed matter systems. However,
an implicit assumption in this comparison is that the
system is in thermal equilibrium at low temperatures. In
this context it is important to estimate the thermaliza-
tion timescales as these systems are always characterized
by a finite sample lifetime. Besides, several proposed
methods to prepare the system in novel phases explicitly
depend on adiabatic tuning of Hamiltonian parameters,
which place stronger constraints on the possible sweep
rates than mere demand of thermalization.

An important class of non-equilibrium problems is the
decay of a high energy excitation into low energy excita-
tions. This problem occurs in diverse contexts like multi-
phonon decay of excitons in semiconductors [7], pump
and probe experiments [3] and dynamics of nuclear res-
onances [8]. In this paper, we study this problem in the
non-equilibrium dynamics of artificially created double
occupancies in the Fermi Hubbard Model in the strongly
interacting regime. Specifically, we will look at the mech-
anism of doublon decay in this system and the relation
of the doublon lifetime to the repulsive interaction. We
study this dynamics both experimentally using ultracold
Fermions on an optical lattice [9] and theoretically using
a projected Fermion model and diagrammatic resumma-
tions.

The doublon lifetime has practical implications for
the sweep rates of Hamiltonian parameters in cold atom
systems in the following way: The usual access to the
strongly interacting regime is to start with a weakly in-
teracting system and increase the ratio of interaction U
to the hopping energy J . As this ratio increases, the
density of doublons in the system in equilibrium should
decrease. Thus the doublon lifetime provides the dom-
inant equilibration timescale for the system. We note
here that this problem has structural similarities with the
decay of a deeply bound excitonic state through multi-
phonon processes in semi-conductors [7], but as we shall
see, the strong Hubbard repulsion modifies the situation
in an essential way.

Our main results are (i) The decay of a doublon is a
slow process as the doublon needs to distribute a large en-
ergy (∼ U) to other excitations in the system which have
a much smaller energy scale. (ii) The primary mode of de-
cay of the doublon involves creation of particle-hole pairs
in the background system. (iii) The decay rate scales as
Γ ∼ C J exp(−αU/J) and the decay becomes slower with
increasing interaction. We obtain C and α from experi-
ments and from theoretical calculation. (iv) We find that
the interactions between pairs of single Fermions, which
in our model are induced by projection, are important

and quantitatively affect the timescale of the decay. Thus
the strongly correlated character of the system changes
the dynamics in an essential way.
The paper is organized as follows: In Section I we dis-

cuss the various possible decay mechanisms of the dou-
blon in these systems and give a scaling argument for the
decay rate in each case. In Section II we describe the ex-
periments and its results. In Section III we discuss the
most relevant decay mechanism in our experiments and
develop the theoretical model for doublon decay. In Sec-
tion IV we outline the diagrammatic method to compute
the doublon lifetime. In Section V we discuss the theoret-
ical results and its comparison with the experiments. We
conclude in section VI by discussing the importance of
these results and future directions. The technical details
of the theory are described in relevant appendices.

I. DECAY MECHANISMS FOR A DOUBLON

The single-band Hubbard model describing the
Fermions on an optical lattice is given by [15]

H = −J
∑

〈ij〉σ

c†iσcjσ + U
∑

i

ni↑ni↓. (1)

At large U/J , this model has three main energy scales.
There is the energy of double occupancies, given by the
Hubbard repulsion U , the kinetic energy of the Fermions
given by the tunneling J and the superexchange scale
Jex = 4J2/U , which governs the spin dynamics in the
system. At large U/J , these scales are well separated
from each other, U ≫ J ≫ Jex. As we show below, the
separation of the energy scale U from the other energy
scales J and Jex leads to a slow decay of doublons in the
system.
In order to decay the doublon has to give up its energy

∼ U to other excitations in the system. Let the typical
energy of a possible excitation be ǫ0 where ǫ0 can be
either ∼ J or ∼ Jex depending on the background state
in which the doublon is propagating. We assume that
ǫ0 ≪ U , so that a large number n ∼ U/ǫ0 of excitations
must be created to satisfy energy constraints. The matrix
element for this process can be calculated by an nth order
perturbation theory and is given by

M ∼
J

ǫ0
×

J

2× ǫ0
× · · · ×

J

n× ǫ0
. (2)

The decay rate is ∼ M2 in units of J . Using Stirling’s
formula, and the fact that nǫ0 = U , we find that for large
n the decay rate scales as

Γ ∼ J(J/U)
U
ǫ0 ∼ CJ exp(−αU/ǫ0 log(U/J)) (3)

where C and α are constants which we will extract from
detailed calculations and experimental data.
In order to discuss the specific decay mechanisms of a

doublon, we need to specify the state of the background
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system in which the doublon is propagating. If the sys-
tem is a homogeneous Mott insulator at half-filling, the
only possible candidate for transfer of energies are spin
excitations with bandwidth ǫ0 ∼ Jex. This leads to the
decay rate scaling as Γ ∼ J exp(−αU2/J2 log(U/J)) and
is an extremely slow process. However, if the system is
compressible, the dominant energy transfers are to ki-
netic energy of the Fermions through creation of particle-
hole pairs with typical energy ǫ0 ∼ J . This leads to the
decay rate scaling as Γ ∼ J exp(−αU/J log(U/J)). This
is a much faster decay process and will dominate over de-
cay through spin excitations. We note that compressible
states with holes can exist (i) at the edges of systems with
confining traps or (ii) in the bulk of the system as a re-
sult of a large density of doublons created by modulation
spectroscopy. In a trapped system, there is another pos-
sibility of giving up the energy to the potential energy of
the Fermions at the edges. This however involves trans-
fer of particles from the center to the edges of the trap
and is usually a much slower process for typical shallow
traps used in cold atom experiments.
As we will see in the next section our experimental

system has a lot of holes and we can eliminate many
of the possible decay mechanisms for our experimental
configuration. Therefore, in this Paper we shall focus on
the dominant doublon decay channel involving excitation
of particle hole pairs.

II. EXPERIMENTS

This section describes the experimental steps towards
the observation of doublon relaxation: Initially, a sam-
ple of repulsively interacting, ultracold fermions is pro-
duced and loaded into an optical lattice. Starting from
this equilibrium state, we create additional double occu-
pancies via lattice modulation. Immediately after this
excitation we measure the time evolution of the dou-
ble occupancy. We remove the influence of inelastic loss
processes by comparing to a reference measurement and
extract the elastic doublon lifetime using a simple rate
equations model. Finally, this elastic lifetime is normal-
ized with the tunneling time J/h and found to depend
exponentially on U/6J .
The experimental sequence used to produce quantum

degenerate Fermi gases has been described in detail in
previous work [11]. In brief, we prepare (50 ± 5) × 103
40K atoms at temperatures below 15% of the Fermi tem-
perature TF in a balanced mixture of two magnetic sub-
levels of the F = 9/2 hyperfine manifold. The confine-
ment is given by a crossed beam dipole trap with trap-
ping frequencies ωx,y,z = 2π × (35, 23, 120)Hz. To ac-
cess a wide range of repulsive interactions we make use
of two magnetic Feshbach resonances. With a mF =
(−9/2,−7/2) spin mixture, we realize scattering lengths
of 98 a0 and 131 a0, where a0 is the Bohr radius [12]. The
(−9/2,−5/2) spin mixture allows us to reach the strongly
repulsive regime with scattering lengths of 374 a0, 571 a0

and 672 a0 [13]. After adjusting the scattering length
to the desired value, we add a three-dimensional optical
lattice of simple cubic symmetry. The lattice depth is
increased in 200ms to final values between 6.5ER and
12.5ER in units of the recoil energy ER = h2/2mλ2.
Here h is Planck’s constant, m the atomic mass and
λ = 1064 nm the wavelength of the lattice beams. The
lattice beams have Gaussian profiles with 1/e2 radii of
wx,y,z = (160, 180, 160)µm at the position of the atoms.
For a given scattering length and lattice depth, J and U
are inferred fromWannier functions [11, 15]. Their statis-
tical and systematic errors are dominated by the lattice
calibration and the accuracies in width and position of
the two Feshbach resonances [12, 13].

Depending on U and J the final states of the system
range from metallic to Mott insulating phases, but always
with a double occupancy below 15%. This equilibrium
system is now excited by a sinusoidal modulation of the
lattice depth with a frequency close to U/h. This causes
an increase of the double occupancy between 5 and 20%
as compared to the initial state. The modulation am-
plitude is 10% on all three axes, while the modulation
duration was chosen such that the amount of doubly oc-
cupied lattice sites saturates [11, 16–19]. The system is
now in a highly excited non-equilibrium state with double
occupancies between 15 and 35%.

After free evolution at the initial lattice depth and in-
teraction strength for a variable hold time up to 4 s we
probe the remaining double occupancy of the system.
This is accomplished by a sudden increase of the lattice
depth to 30ER, which prevents further tunneling. We
then measure the amount of atoms residing on singly
(doubly) occupied sites Ns (Nd) by encoding the double
occupancy into a previously unpopulated spin state us-
ing radio frequency spectroscopy [11]. Combining Stern-
Gerlach separation and absorption imaging we obtain
the single occupancy ns = Ns/Ntot, double occupancy
nd = Nd/Ntot and total atom number Ntot = Ns +Nd.

The time evolution of the double and single occupancy
and of the total atom number is shown for two differ-
ent parameter sets in the upper row of Fig. 2. In both
cases, the double occupancy decays exponentially within
the observation time, and the single occupancy rises ac-
cordingly. The time evolution of the total atom num-
ber, however, exhibits a remarkable difference between
the (mF = −9/2,−7/2) and the (mF = −9/2,−5/2) spin
mixture: Whilst the atom number of the (−9/2,−7/2)
sample remains rather constant, the (−9/2,−5/2) sample
suffers from an atom number reduction of 50% within 2 s.
This behavior can be observed for all parameter sets and
is a consequence of the shorter lifetime of a (−9/2,−5/2)
spin mixture.

The only relevant process described by the Fermi-
Hubbard model is the decay of a doublon into two single
particles which remain within the system. The time as-
sociated with this process will be called doublon lifetime.
In an experiment, inelastic processes may occur, result-
ing in atoms exiting the system. For a valid comparison
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FIG. 2: Time evolution of double occupancy, single occupancy and total atom number for different ratios U/6J . In the upper
row, the system was previously excited via lattice modulation. The bottom row shows the reference measurement for the
determination of the residual dynamics. The round data points were recorded using a mF = (−9/2,−7/2) spin mixture with
U/h = 1.4 kHz and J/h = 70Hz, whereas the triangular data points show a (−9/2,−5/2) mixture with U/h = 3.2 kHz and
J/h = 100Hz. The solid lines are simultaneous fits of the integrated population equations of Eq. 4. The total atom numbers are
scaled to the initial values. Single occupancy and double occupancy are the fraction of atoms residing on sites of the respective
type. Due to different detection efficiencies for hyperfine states the sum of double and single occupancy can be higher than
one. Error bars denote the statistical error of at least four identical measurements.

with theory it is therefore crucial that these processes
do not interfere with the determination of the doublon
lifetime. In the following, we show how we eliminate the
influence of inelastic loss processes on the observation of
the doublon decay.
For every dataset on doublon decay after lattice modu-

lation, we record a corresponding reference dataset with-
out lattice modulation, but with the same system pa-
rameters. Two of these reference datasets are presented
in the bottom row of Fig. 2. They show the dynamics
of double occupancies and atom number governed by in-
elastic processes, which are not taken into account by the
Fermi-Hubbard model.
Combining these two measurements, we can unambigu-

ously extract the doublon lifetime by simultaneously fit-
ting a system of coupled rate equations. They describe
the population dynamics in the optical lattice, consider-
ing three general processes:

∆Ṅd = −

(

1

τD
+

1

τin
+

1

τloss

)

∆Nd

Ṅd,0 = −

(

1

τin
+

1

τloss

)

Nd,0 (4)

Ṅs =
1

τD
∆Nd −

1

τloss
Ns

The total number of atoms on doubly occupied sites Nd

is written as the sum of the equilibrium population Nd,0

and the additional amount of double occupancy ∆Nd cre-
ated by the lattice modulation. The three time constants
correspond to three independent local decay processes
differing in the type of site they affect: τD describes the
population flow from doubly occupied to singly occupied
lattice sites visible as a decay of double occupancy within
0.01− 1 s that is accompanied by a rise of the single oc-
cupancy. We identify this time with the lifetime of dou-
blons. The other two times denote loss time constants,
which lead to a reduction of the total atom number: τloss
corresponds to losses affecting both site types in the same
manner, which is only observed in the total atom num-
ber. Additional inelastic losses on doubly occupied sites
are summarized by τin, visible as a simultaneous decay of
both the total atom number and double occupancy. This
model does not account for changes of the decay times
during the decay or for higher order terms in the rate
equations.

Since the modulation has no influence on the evolu-
tion of the total atom number, this procedure removes
the influence of τin and τloss. A reliable determination of
the doublon lifetime τD is thus possible if it differs sig-
nificantly from the loss times. The model and the obser-
vation are found to agree very well within experimental
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uncertainties, as can be seen in Fig. 2.
We measure this doublon lifetime for various tunnel-

ing and interaction strengths, covering a parameter range
where J and U each differ by at least a factor of four.
The determined lifetimes vary over two orders of mag-
nitude, as shown in Fig. 3. Furthermore, the lifetime
clearly does not depend on the tunneling energy or the
interaction energy alone.

1 2 3 4 5
U/h (kHz)

10-2

10-1

100

D
ou

bl
on

 li
fe

tim
e 

(s
)

50 100 150 200 250
J/h (Hz)

10-2

10-1

100

D
ou

bl
on

 li
fe

tim
e 

(s
)

FIG. 3: Doublon lifetime as a function of U and J . The
round data points show the fit results to datasets as shown
in Fig . 2, obtained with a (−9/2,−7/2) spin mixture while
the triangular points correspond to the (−9/2,−5/2) mixture.
Error bars denote the confidence intervals of the lifetime fits
and the statistical errors in U and J .

Since the tunneling time h/J is the dominant timescale
of dynamics in an optical lattice, it appears natural to
express the doublon lifetime in units of h/J . After this
rescaling, we found that, to a good extent, the doublon
lifetime only depends on the ratio U/6J .

Fig. 4 shows the doublon lifetime in units of the tunnel-
ing time versus U/6J on a logarithmic scale. Remarkably,
over the entire parameter range the data collapses in a
corridor and can be described by an exponential function
of the form:

τD
h/J

= C exp

(

α
U

6J

)

. (5)

The scaling exponent α is found to be α = 0.82 ± 0.08
with C = 1.6 ± 0.9. This is in reasonable quantitative
agreement with the following calculation of the doublon
lifetime.
The slight offset between the two spin mixtures in

Fig. 4 could be due to the fact that the absolute values
for U and J differ significantly between the (−9/2,−5/2)

and the (−9/2,−7/2) mixture [20]. Whilst the ratio be-
tween interaction energy and kinetic energy U/6J , which
dominates the dynamics, lies in the same range, the ab-
solute values also matter in an inhomogeneous system.
For the (−9/2,−7/2) mixture the higher ratio of chem-
ical potential to on-site interaction is expected to lead
to a higher filling in the trap centre and consequently
to a higher equilibrium double occupancy Nd,0 than for
the (−9/2,−5/2) mixture. It is conceivable that this dif-
ference modifies the dynamics of doublon creation and
doublon relaxation.

In additional measurements we examined the depen-
dence of the doublon lifetime on the initial double occu-
pancy ∆Nd and on the total atom number N . In the
former case, we reduced the lattice modulation ampli-
tude from 10% to 5%, resulting in ∆Nd = 9% instead
of ∆Nd = 18%, while keeping all other parameters con-
stant with U/6J = 4.5. The measured lifetimes agree
within the error bars, they are τD,5% = (77 ± 25) × h/J
and τD,10% = (58 ± 10) × h/J , respectively. In the lat-
ter case, we prepared two otherwise identical samples
at U/6J = 3.4 with N = (49 ± 7) × 103 atoms and
with N = (26 ± 4) × 103 atoms, respectively, yielding
τD,49000 = (11± 2)× h/J and τD,26000 = (19± 2)× h/J .

This shows that, although there is a dependence on the
total density and on the doublon density, these effects
are small compared to the dominant scaling with U/6J .
Their systematic study is beyond the scope of this work.

III. THEORETICAL MODEL OF DOUBLON

DECAY

We consider the decay of an isolated doublon moving in
the homogeneous background of a compressible state of
single Fermions. Before constructing a model for doublon
decay, we focus on the dominant mechanism of decay. In
the experiments, lattice modulation created 15 − 35%
double occupancies. Assuming an initial half-filled sys-
tem, half the amount of holes were also created in the
system. At these hole densities, the kinetic energy as-
sisted decay scaling as ∼ exp(−U/J) is much faster than
the spin fluctuation or doublon-doublon collision assisted
decay which scale as ∼ exp(−U2/J2) [10]. Further, the
population of higher bands can be excluded, since U is
always smaller than half the band gap. We also note that
as the difference between U and the chemical potential is
always positive, confinement assisted decay of doublons
near the edge of the cloud is unlikely, as the accessible
confinement energy is not very large, and the tunneling
rate is very small. Finally, a homogeneous compressible
background is justified since most of the doublons are
created in the central region of the trap, where the filling
is highest, and decay at most within a few sites of where
they are produced The estimated travel distance for a
random walk during the decay process is not more than
√

τDJ/h . 10 sites, which is less than the cloud radius.
In our experiments, the doublons and holes are created
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at finite density by driving the system with optical lattice
modulations. The relaxation of the system to equilibrium
involves two very different time scales. The first timescale
is associated with the relaxation of holes and doublons
to a state of quasi-equilibrium without the decay of dou-
blons. The second timescale, which is the focus of this
paper, is associated with the decay of doublons into sin-
gles. We expect that the second timescale is much slower
than the first. Moreover, we expect that non-linear ef-
fects of doublon decay as doublon-doublon scattering can
be neglected since their kinetic energy ∼ J2/U is small.
Thus in this paper we consider the problem of the de-
cay of a single doublon in the background of equilibrated
Fermions.
To construct our model Hamiltonian, we explicitly

treat the doublon as a separate entity from the back-
ground Fermions. This approximation is justified in the
strongly interacting limit due to the separation of dou-
blon and background Fermion time-scales. We split the
complete Hamiltonian of the system into three parts

H = Hf +Hd +Hfd, (6)

where Hf describes the background Fermion
subsystem—which we model as the projected Fermi
sea, Hd describes the on-site interaction of the pair of
Fermions that make up a doublon, and Hfd describes
the Fermion-doublon interaction. The details of how

FIG. 4: Semilogarithmic plot of doublon lifetime τD vs.
U/6J . The lifetime is extracted from datasets as shown in
Fig. 2. Solid and hollow circles denote the (−9/2,−5/2) and
(−9/2,−7/2) spin mixture respectively, while the dashed line
shows the theoretical result at half filling. The solid line is a fit
of Eq. 5 to the experimental data, yielding α = 0.82 ± 0.08,
whereas for the theory curve the asymptotic slope at large
U/6J is αT = 0.80. The shaded corridor was obtained by
varying the filling factor in the calculation by 0.3. This has
only a weak effect on the slope. The inset shows the param-
eters used to realize the different values of U/6J . Error bars
denote the confidence intervals of the lifetime fits and the sta-
tistical errors in U/6J . The systematic errors in U/6J and
τD = h/J are estimated to be 30% and 25%, respectively.

to separate the Fermi-Hubbard Hamiltonian into the
above three parts via projection operators are discussed
in Appendix A. The projection operators induce inter-
actions in the Fermion subsystem as well as between
the Fermions and the doublons. The Fermion doublon
interactions are responsible for the doublon decay, and
the Fermion-Fermion interactions modify the lifetime
substantially.
As mentioned above, we expect hole density in these

systems to be ∼ 15%. At such high hole densities the
projected Fermi sea is a good approximation for the back-
ground state. Further the temperature of the system is
high enough (T ∼ J) to prevent formation of more or-
dered states like superfluids.
Except for the single doublon that is undergoing de-

cay, the large energy cost of double occupancies is taken
into account by projecting out configurations with dou-
ble occupancies from a simple Fermi sea. In the pro-
jected subspace, the Fermions can only hop in the pres-
ence of empty sites (holes) and are governed by the ef-
fective Hamiltonian

Hf = −J
∑

〈ij〉,σ

(1−niσ)c
†
iσcjσ(1−njσ)−µ

∑

i,σ

c†iσciσ (7)

where c†iσ creates a Fermion with spin σ, niσ is the
corresponding number operator, and µ is the chemi-
cal potential. Expanding out the Hamiltonian one gets
Hf = H0

f +Hp, with

H0
f = −J

∑

〈ij〉,σ

c†iσcjσ − µ
∑

i,σ

c†iσciσ, (8)

Hp = J1
∑

〈ij〉,σ

niσc
†
iσcjσ + c†iσcjσnjσ, (9)

where we have replaced J by J1 in the second term. J1
will be treated as a perturbation parameter to organize
the calculation but we will put J1 = J at the end of the
calculation. Hp, coming from the projection operators
can thus be interpreted as a Fermion-Fermion scattering
term which leads to the creation of particle-hole pairs.
We thus see that projection induces interaction between
the Fermions.
We note that the scattering is always between Fermions

of opposite spins. Since we will be interested in calcu-
lating Feynman diagrams, we note that the interaction
vertex for the Fermion Fermion scattering can be written
as J1(γk+ γk−q), where k and k−q are momenta of the
incoming and outgoing Fermion with the same spin and

γk = 2
∑D

i=1 cos ki in D dimensions. This is depicted in
first row of Table I.
Throughout our treatment, we leave out terms such as

−J niσc
†
iσcjσnjσ in Eq. (7) involving six or more fermion

creation/annihilation operators. Intuitively such terms
are rare because they involve collisions of multiple parti-
cles.
We now consider the decay of a single doublon in this

background state. The doublon (d) and Fermion-doublon
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Interaction Diagram

Vertex
[

Momentum

Avg. Vertex

]

Fermion-Fermion
Scattering

p1, σ p1 + k1 − k2, σ

k1, σ̄

k2, σ̄

J(γk1
+ γk2

)

[

J
√
2z

]

Doublon-Fermion
Scattering

p p− q + k

q, σ

k, σ

J(γp−q + γp + γq)

[J
√
z ]

Doublon Decay

p

k, ↑

p− k, ↓

J(γk + γp−k)

[

J
√
2z

]

TABLE I: Interaction vertices for different processes in the
model for doublon decay. The single lines are Fermion prop-
agators while the double lines are doublon propagators. The
top entry in the right-most column is the corresponding ver-
tex function, while the bottom entry is the “momentum av-
eraged” vertex function that we use in the our resummation
technique. The first row corresponds to Hp (Eq. 9) while the
next two rows correspond to the two terms that make up Hfd

(Eq. 11). Here γk = 2(cos(kx) + cos(ky) + cos(kz)) and z is
the coordination number, z = 6 for 3D cubic lattice.

(fd) Hamiltonians can be written as

Hd = U
∑

i

d†idi, (10)

Hfd = J
∑

〈ij〉σ

(d†idi + d†jdj + d†jdi )c
†
iσcjσ (11)

+ diσc
†
iσc

†
jσ(1− njσ) + H.c.,

where H.c. stands for the Hermitian conjugate of the pre-
ceding term. The doublon interacts with the Fermions in
two different ways: (i) it can scatter off a Fermion leading
to the hopping of doublons with back-flow of Fermions;
(ii) it can decay by creating a singlet particle-particle
pair.
The interaction vertices of the doublon with the

Fermions are given in second and third rows of Ta-
ble I. The vertex for scattering off particle-hole pairs
is J(γp−q + γq + γk), where p is the momentum of the
incoming doublon, q is the momentum of the outgoing
Fermion and k the momentum of the outgoing hole. The
corresponding vertex for decay through singlet creation
is given by J(γk + γp−k) where k and p − k are the
momenta of the Fermions created.
We assume that we are looking at the decay of a single

doublon i.e. while the doublon is affected by the pres-
ence of the background Fermions, the Fermions are un-

FIG. 5: A Typical doublon self-energy diagram. The double
lines are bare doublon propagators while the single lines are
bare Fermion propagators. The dashed line cuts the diagram
in half and shows the final products of the process represented
by this diagram

affected by the presence of the doublon. The motivation
for this assumption is that the experimentally observed
decay rate depends only weakly on the doublon density.

IV. DIAGRAMMATIC COMPUTATION OF

DOUBLON LIFETIME

Our strategy for finding the lifetime of a doublon is to
calculate the doublon Green function

Gd(ω) = [ω − U − Σd(ω)]
−1, (12)

where Σd is the self-energy arising from interaction with
Fermions. The imaginary part of the self-energy at
ω = U then gives the decay rate Γ and its inverse is
the required lifetime τ . Since we are interested in the
high frequency response, the momentum dependence of
the self energy should be negligible in this limit.
We perform the calculation at T = 0, where the rela-

tion between imaginary part of the self-energy and decay
rate is exact. At finite temperatures Im Σ(ω) has an ex-
tra contribution due to scattering on particle-hole pairs
created by thermal fluctuations. Thus, we must com-
pute the scattering rate separately, and subtract it from
Im Σ(ω) to obtain the decay rate. However, since we are
looking at frequencies ∼ U , ignoring thermal fluctuations
is justified for T ≪ U , which is the regime of interest.
Physically, there are two important processes for the

doublon decay. A doublon can lose its energy either by
creating a large number of particle-hole pairs, each with
an energy ∼ J , or by creating a few high energy particle-
hole pairs, each of which is unstable and creates a shower
of particle hole pairs of low energies. The first process
is a high order diagram in the doublon self-energy while
the second process comes from high order diagrams in the
Fermion self-energy. We find that combinations of both
processes give important contributions to the doublon
decay rate.
The typical doublon self-energy diagram (Fig. 5) de-

picts a process of creation of a number of particle and
hole excitations. Since we are interested in the imagi-
nary part of the self energy at ω = U , the Fermion lines
crossing the dashed line which cuts the diagram in half
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FIG. 6: Self-consistency equation for the doublon propagator
(top) and some typical diagrams that make up the full prop-
agator (bottom). Thin double-lines indicate the bare dou-
blon propagator, the double-lines with a squiggle the full (re-
summed) doublon propagator, and thick single-lines the full
(resummed) Fermion propagator.

should be on-shell and their energies must add up to U .
The leading order contributions to the decay rate thus
come from the diagrams which maximize the number of
Fermions that cross the dashed line while minimizing the
number of interaction vertices.
Our approach for obtaining the doublon self energy

consists of (1) obtaining the projected Fermi sea Green
function, and (2) using it to obtain the doublon self-
energy. We make the dilute doublon approximation, and
assume that the Fermion Green function is independent
of the doublon Green function. We proceed by formulat-
ing a diagrammatic resummation technique for the dou-
blon self-energy in the following subsection. In doing so,
we relate the doublon self-energy to the Fermion Green
function, which we calculate in the next two subsections.

A. Doublon Self-Energy

For large U/J , doublon decays into a large number
of particle-hole pairs, and therefore one needs to com-
pute high order diagrams to obtain the doublon self-
energy (for creation of n pairs, one needs to compute
∼ 2n! diagrams). It is then much preferable to resum
a class of diagrams, rather than evaluate an exponen-
tially increasing number of them. We use a self-consistent
non-crossing approximation to achieve this resummation.
The propagator diagrams are shown in Fig. 6, where the
doublon lines with squiggles represent the full doublon
Green function to be obtained self-consistently and the
thick single lines are the Fermion propagators.
At this point, we make an additional approximation,

and replace the k-dependent vertex functions Λk by mo-
mentum averaged vertex functions

√

〈Λ2
k〉 listed in Ta-

ble I. The basis of this approximation, is that within our
resummation scheme, the vertex functions always occur
in pairs with identical and largely arbitrary momentum
indices, as can be seen from the self-consistent equation
represented in Fig. 6. The self-consistent equation, there-
fore, contains the product of this pair of vertex functions,
and we replace this product by its momentum averaged
value.
Having replaced the momentum-dependent vertex

functions by momentum-independent ones, we can re-

place Green functions and self-energies by their momen-
tum averaged counterparts. With this modification, the
doublon self-energy is given by

Σ
′′

d (ω)=zJ2C
′′

(ω)−2zJ2

∫ ω

0

dω′

π
S

′′

(ω′)G
′′

d (ω−ω′)

(13)

Σ
′

d(ω)=zJ2C
′

(ω)−2zJ2

∫ 0

−∞

dω′

π
S

′′

(ω′)G
′

d(ω−ω′)

+ 2zJ2

∫ ∞

0

dω′

π
G

′′

d (ω
′)S

′

(ω−ω′) (14)

where Σd, C, and S are the retarded doublon self-energy,
Fermionic particle-particle and particle-hole propagators
respectively [21], and the primes ′ and ′′ denote the real
and imaginary parts, respectively. The particle-particle
and particle-hole propagators are given by

S
′′

(ω)=−

∫ ω

0

dω′

π
G

′′

f (ω
′)G

′′

f (ω
′−ω) (15)

S
′

(ω)=−

∫ 0

−∞

dω′

π
G

′′

f (ω
′)[G

′

f (ω
′−ω) + G

′

f (ω
′+ω)] (16)

C
′′

(ω)=−

∫ ω

0

dω′

π
G

′′

f (ω
′)G

′′

f (ω − ω′) (17)

C
′

(ω)=

∫ 0

−∞

dω′

π
G

′′

f (ω
′)G

′

f (ω − ω′)

−

∫ ∞

0

dω′

π
G

′′

f (ω
′)G

′

f (ω
′ + ω)] (18)

where Gf (ω) =
∑

k Gf (kω) is the momentum averaged
Fermion Green function and the primes ′ and ′′ denote the
real and imaginary parts. These equations, together with
the equation for the doublon Green function, Eq. (12),
define a system of self-consistent equations for the dou-
blon self-energy.
In this section we have made two approximations: (1)

we replaced the momentum dependent vertex functions
by momentum independent ones, and (2) we have left
out a large number of diagrams with crossing Fermion
lines (see Fig. 7 for some typical examples). To ver-
ify these approximations, we have explicitly computed
all diagrams up to 6th order in a Fermi Golden Rule
calculation, which is free of these approximations (see
Appendix B for details). We find that the decay rate
computed via Fermi Golden Rule matches very well with
the resummation result. Further, within Fermi Golden
Rule calculation we empirically verify that the contri-
bution of crossed diagrams to the doublon self-energy is
indeed negligible. Intuitively, the reason for this seems
to be that the Fermion-doublon interaction vertex con-
tains the factor γp−q + γk + γq which changes sign as
we sample momentum space. The non-crossing diagrams
involve squares of this vertex function and do not change
sign as we integrate over momentum coordinates. On
the other hand, the crossing diagrams involve product
of the vertices at different momenta and hence give a
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k

p p

q p+k−q’−q

q’
p+k−q q+q’

γ
q+q’−k

γ
p−q

FIG. 7: Typical diagrams for the doublon Green function
that are not accounted for in the resummation procedure as
they contain crossing Fermion lines. Here, double-lines stand
for bare doublon propagators and thick single-lines the full
(resummed) Fermion propagator. For reasons explained in
the main text, these crossing diagrams do not contribute to
the doublon decay, as the vertex factors are not paired and
thus average to zero upon momentum integration. To see this,
the momenta and a pair of vertices in the first, pretzel-like,
diagram are labeled. Notice that the γ vertex factors have
different momentum labels, these would have been identical
for the case of a non-crossed diagram.

= +

= +

+ ...+

+

FIG. 8: Self-consistency equation for the Fermion propagator
(top) and some typical diagrams that make up the full propa-
gator (bottom). Thin lines indicate the bare propagator and
thick lines the full (resummed) propagator.

negligible contribution upon integrating over momentum
coordinates.

B. Fermion Self-Energy

We now come back to the question of evaluating the
Fermion Green function

Gf (k) =
∑

k

[ω − ǫk − Σf (ω)]
−1, (19)

where ǫk = −J γk − µ is the bare dispersion and Σf (ω)
is the Fermion self-energy that arises due to interaction
with other Fermions. To make progress, we begin by
considering the non-crossing approximation. As before,
for the case of the doublon self-energy, we are interested
in the high frequency part of the Green functions, and
therefore (in the non-crossing approximation) we are jus-

FIG. 9: Typical crossed fermion diagrams that are missed
by the resummation method. These types of diagrams are
expected to strongly contribute to the Fermion self-energy at
high frequencies and therefore to the doublon decay rate.

FIG. 10: Typical type III diagrams that are missed by the
resummation method. As explained in the main text, these
diagrams are expected to give some contribution to the dou-
blon self-energy, but their effect is not taken into account.

tified in replacing the vertices by their momentum aver-
aged counterparts as listed in first row of Table I, and
then working with momentum averaged Green functions
and self-energies. In the non-crossing approximation, the
Fermion self-consistency equation is depicted diagram-
matically in Fig. 8, where the thick Fermion lines repre-
sent fully dressed Fermion Green functions that are be-
ing determined self-consistently. The Fermion self-energy
equations are given by

Σ
′′

f (ω) = −2zJ2
1

∫ ω

0

dω′

π
S

′′

(ω′)G
′′

(ω − ω′) (20)

Σ
′

f (ω) = −2zJ2
1

∫ 0

−∞

dω′

π
S

′′

(ω′)G
′

f (ω − ω′)

+2zJ2
1

∫ ∞

0

dω′

π
G

′′

f (ω
′)S

′

(ω − ω′). (21)

Combining these self-energy equations with the definition
of the Green function Eq. (19), we obtain a set of self-
consistent equations for the Fermion Green function.

C. Corrections Due to Diagrams Left Out

In the resummation formalism we have missed three
important classes of diagrams: type I diagrams, which
correspond to doublon self-energy diagrams with cross-
ing Fermion lines (examples depicted in Fig. 7); type II
diagrams, which are Fermion self-energy diagrams with
crossing Fermion lines (examples depicted in Fig. 9); and
type III diagrams, which are doublon self-energy dia-
grams which are left out and are neither type I nor type
II (examples depicted in Fig. 10).
As mentioned earlier, we have empirically checked that

type I diagrams do not contribute to the doublon self-
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energy due to the lack of pairing of the Fermion-doublon
vertex factors. However, there are no similar arguments
for excluding type II or type III diagrams. We suppose
that when a doublon emits a particle-hole pair, the parti-
cle and hole are not coherent with each other, and there-
fore, we make the approximation of dropping type III
diagrams. However, each Fermion in the emitted pair
still interacts with the Fermi sea, resulting in both non-
crossing Fermion self-energy diagrams, that have already
been taken care of, and type II diagrams which we shall
try to estimate.
Since we cannot evaluate all the type II diagrams ex-

plicitly, we proceed to approximate their effect on the
Fermion self-energy in the following way:
(a) We assume that at a given frequency ω, the lead-

ing contribution to the imaginary part of self-energy
Im Σf (ω) comes from diagrams of a definite order n0(ω),
as diagrams of lower order do not have enough particle-
hole pairs to absorb ω and diagrams of higher order
are suppressed by additional powers of J/ω. We ex-
pect n0(ω) to scale linearly with ω as the main contri-
bution to the spectral function at ω comes from exciting
∼ ω/ǫ0 particle-hole pairs, where ǫ0 is the typical energy
of particle-hole pairs.
(b) To determine n0(ω), we keep the Fermion-Fermion

vertex energy scale J1 as a free parameter, and calculate
n0(ω) from the logarithmic derivative

n0(ω) =
1

2

d log Σf (ω)

d log J1

∣

∣

∣

∣

J1=J

. (22)

This relation is exact if only one order of diagrams con-
tribute at given energy; for the case of different orders
contributing to self-energy, this gives a number close to
the order with leading contribution. n0(ω), obtained
from the resummed self-energy, is plotted in Fig. (11).
The best fit for this graph is n0(ω) = ω/(5.85J)− 1/2.

(c) We then compute the ratio of the total number of
possible nth order Fermion self-energy diagrams to the
number of nth order diagrams included in the resumma-
tion scheme, R(n). R(n) can then be interpolated to form
a function of the continuous variable n. See Appendix C
for details of computing this ratio.
(d) In the final step, we rescale the imaginary part of

the Fermion self-energy by R(n0(ω)) to obtain a better
approximation including effects of missed diagrams

Σ
′′

f (ω) → Σ
′′

f (ω)R[n0(ω)]. (23)

Here, we are making an assumption: the amplitude of
the Fermion self-energy diagram only depends on its or-
der in perturbation theory and not on the details of the
structure of the diagram. Modulo the contribution of
the type III diagrams, this approximation should over-
estimate the decay rate as the crossing diagrams usually
contribute less than the non-crossing diagrams due to the
momentum sums involved.
To complete the calculation of the doublon self-energy,

we use the Fermion Green function to construct the

0 1 2 3 4 5 6
ω/6J

0

1

2

3

4

5

6

o
rd

er
 o

f 
d

ia
g

ra
m

 n
0
(ω

)

0.5 d Log Im Σ(ω) / d Log J
1

n
0
(ω) = ω / (5.85 J) - 0.5

FIG. 11: Order with largest contribution to the Fermion self-
energy n0(ω) as a function of the frequency ω. The solid line
represents the best linear fit for the high frequency data.

particle-particle and particle-hole propagators Eqs. (15-
18), which appear in the self-energy equations for the
doublon Eqs. (13, 14).

V. THEORETICAL RESULTS AND

COMPARISON WITH EXPERIMENTS

In this section we look at the theoretical results of the
doublon lifetime calculation and compare them with ex-
perimental results. We start by summarizing the method
of calculation, which will help in establishing different ap-
proximation schemes. We then discuss the results from
different schemes and their comparison with experiments.
The calculation of the decay rate via the resumma-

tion technique has two important steps. The first one
is the evaluation of the Fermion Green’s functions which
are used to compute the particle-particle and particle-
hole propagators. The second one is the evaluation of
the doublon self-energy, which uses these propagators.
As mentioned before, a non-crossing approximation for
the doublon self-energy yields good results. The crossing
diagrams give negligible contribution as the vertex func-
tions which oscillate with momenta kills the momentum
averages. We also note that there is a set of doublon
self-energy diagrams (the type III diagrams) which we
neglect in our calculation.
Our approximations are then related to different

ways of evaluating the Fermion propagators. We con-
sider three different approximations: (i) Non-interacting
Fermions; in this case we use the free Fermion propaga-
tors with a band dispersion. One way of looking at this
approximation is to set J1 = 0. (ii) Non-crossing ap-
proximation for interacting Fermions; in this case we set
J1 = J but use only non-crossing diagrams to evaluate
the Fermion propagators. (iii) Modified self-energy for in-
teracting Fermions; in this case we modify the self-energy
of the interacting Fermions obtained by non-crossing ap-
proximation to take into account Fermion self-energy di-
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FIG. 12: Fermion spectral functions in different approxima-
tions: the free Fermion spectral function (A(0)(ω)); the pro-
jected Fermion spectral function obtained as the result of the
resummation procedure (A(ω)); the projected Fermion spec-
tral function including corrections for missing diagrams in the
resummation procedure (corrected A(ω)). The linear slope
at high energies on a semi-logarithmic scale shows the expo-
nential transfer of spectral weight due to projection induced
interactions.

agrams missed in the resummation. The modification
procedure is detailed in the previous Section.

We plot the spectral function of the Fermions, A(ω) =
−(1/π)ImGf (ω), for the three approximations in Fig. 12.
In the non-interacting case, this is simply the density of
states in a cubic lattice and the spectral weight is zero
outside the band. In the non-crossing approximation, we
see that there is a transfer of spectral weight from low
energies to an exponential tail at high energies, which
reflects the fact that interaction induced by projection
leads to the possibility of creating a high energy Fermion,
which can reduce its energy by creating particle-hole
pairs. This is an important qualitative change that af-
fects the physics of doublon decay in a fundamental way.
The interacting Fermion approximation allows two dis-
tinct decay processes : (a) creation of several low energy
(ω ∼ 2zJ) particle-hole pairs and (b) creation of a high
energy particle-hole pair which then decays into a shower
of low energy particle-hole pairs. The second process is
forbidden for non-interacting Fermions. Finally, in the
modified self-energy approximation, we include more pro-
cesses to create particle-hole pairs and hence there is a
larger shift of spectral weight to higher energies, as ev-
idenced by the slower decay of the tail. This enhances
the importance of the (b) channel for decay.

In the second step we use the Fermion propagator ob-
tained in step one to self-consistently compute the dou-
blon self-energy. The imaginary part of the doublon self-
energy for various U/6J ratios is depicted in Fig. 13. The
main features are a pair of peaks, one occurring at small
frequencies, and another at high frequencies. As there
are no excitations in the Fermi system in the initial state,
for frequencies ω ≤ U a nonzero value of ImΣd(ω) cor-
responds directly to the rate of doublon decay. At low
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FIG. 13: Doublon self-energy (in the modified Fermion self-
energy approximation) for various values of U/6J .
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FIG. 14: Doublon decay time as a function of U/6J . The
blue circles are the experimental data (cf. Fig. 4). The lines
represent theoretical results from resummation with different
levels of sophistication from non-interacting Fermions (red
dashed line) to the non-crossing approximation with inter-
acting Fermions (green dot-dashed line) to the modified self-
energy approximation (purple solid line).

frequencies, the doublon is far from its mass shell and
rapidly decays into a pair of particles. As the frequency
increases more and more particle-hole pairs are required
to absorb the doublon energy resulting in the exponential
decrease in ImΣd(ω). As ω surpasses U , a new contri-
bution to the imaginary part of the doublon self-energy
arises from processes where the doublon can scatter into
a lower energy state closer to the mass shell by releasing
the excess energy in the form of a few particle-hole ex-
citations. This scattering process is responsible for the
high frequency peak in ImΣd(ω), that starts growing at
ω = U . As we are interested in the decay of a doublon
on the mass shell, we read it from ImΣd(U), which cor-
responds to the smallest value of ImΣd(ω) between the
two peaks.
In Fig. 14, we plot the experimentally obtained de-

cay time together with the theoretical estimates from
the three different approximations mentioned earlier. We
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proceed in the order of sophistication, starting from the
non-interacting Fermion case. We see that the decay
time obtained with non-interacting Fermions (J1 = 0)
via resummation of doublon self-energy diagrams is much
longer than the experimentally obtained one. Setting
J1 = J , and using non-crossing diagrams for Fermion
self-energy, we obtain a decay time that is a closer match
to the experimental data, but is still too long. Next, we
take care of the corrections to the imaginary part of the
Fermion self-energy from crossing diagrams and find a
reasonable match with experiments.
Finally, we want to comment on the remaining free

parameters in our calculation. The chemical potential of
the Fermions, which determine the hole density, is a free
parameter, which can in principle be determined from an
equilibrium theory of a strongly interacting doped Hub-
bard model. Since there is no consensus about the theory
of the doped Hubbard model, we prefer to keep it as a
free parameter. We vary it within the plausible range
of 0.25J to (−0.3J) to see how sensitive our results are
to the choice of this parameter. The dispersion in the
lifetime is then plotted as the shaded region in Fig. 4.
We see that we find good quantitative agreement with
the experiments in the slope of the lifetime curve, i.e. for
the co-efficient α in the exponent of the scaling function.
The agreement in the prefactor C is also fair, but this
quantity is sensitive to the choice of the free parameter
in our calculation.

VI. CONCLUDING REMARKS

We have studied the decay of artificially created dou-
ble occupancies in the repulsive Fermi-Hubbard model in
the presence of a background compressible state. The sit-
uation is experimentally realized by creating double oc-
cupancies and corresponding holes on top of a half-filled
system via optical lattice modulation. Experimentally it
is found that the decay time of the doublons scales ex-
ponentially with U/J . We can understand the observed
scaling in terms of the fact that in order to decay the
doublon has to distribute its energy (∼ U) among ∼ U/J
particle-hole excitations. We have developed a detailed
theoretical description of this process using diagrammatic
resummation techniques. Although the scaling form can
be understood from a simple energy conservation argu-
ment, we find that the co-efficient in the exponent de-
pends substantially on the strong interaction between the
background Fermions. After taking into account the ef-
fects of these strong interactions, we find quantitatively
fair agreement between theory and experimental results.
The exponentially large lifetime of the doublons has

serious implications for use of cold atom systems to sim-
ulate the equilibrium properties of the Hubbard model
at large values of U/J . Typically, in cold atom exper-
iments, the strong interaction regime of the Hubbard
model is accessed by cooling the atoms in a weakly in-
teracting state and then tuning either the optical poten-

tial or the magnetic field to change U/J . The lifetime
of the doublons constrains the maximum sweep rate of
these Hamiltonian parameters under which thermal equi-
librium is maintained. As one goes towards larger U/J ,
the sweep rates need to be exponentially slow to maintain
thermodynamic adiabaticity. Given intrinsic constraints
like lifetime of a sample, this would restrict the values
of U/J for which the simulation of Hubbard model in
thermal equilibrium can be achieved.
However, this also opens up the possibility of studying

non-equilibrium dynamics of the Hubbard model, which
may contain interesting and new physics. In addition,
the long lifetime of the doublons also leads to the possi-
bility of observing metastable states with finite density of
doublons. An intriguing scenario is observing η pairing
of doublons and holes [22].
Finally, we point out that similar phenomena may be

relevant to the issues of equilibration in the Bosonic Hub-
bard model. In a recent paper [23] C. Chin’s group
observed the equilibration of the density distribution of
Bosonic atoms in a two dimensional optical lattice after
the lattice potential was ramped up. As the system re-
laxed toward equilibrium, the center of the trap heated
up, which required the increase in the number of dou-
blons. The slow relaxation timescale observed in experi-
ments may be a reflection of the “dual” problem to the
one we discussed in this paper: slow rate of formation of
doublons from a a state containing only singly occupied
sites and holes.
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Appendix A: Model

In this appendix we derive the model we use to describe
doublon decay in the background of a projected Fermi
sea. We begin with the Fermi-Hubbard model

HFH = −J
∑

〈ij〉σ

c†i,σcj,σ + U
∑

i

ni,↑ni,↓, (A1)

where the first term describes the hopping of fermions
and the second term the on-site repulsive interaction. We
are interested in the case U ≫ J , where we expect dou-
blons to be meta-stable particles. Therefore, our goal is
to decouple the doublon sector from the sector of singles.
We do this by projecting out double occupancies from
the singles sector, and introducing doublon creation and
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annihilation operators d†i and di to take their place. We,
proceed in two steps, first we use projection operators to
separate the terms in the Fermi-Hubbard Hamiltonian
that preserve the number of doublons from those that
change it:

HFH = H0 +H+1 +H−1, (A2)

where H0 preserves the number of doublons

H0 = −J
∑

〈ij〉σ

(1− niσ̄)c
†
iσcjσ(1− njσ̄)

− J
∑

〈ij〉σ

(niσ̄)c
†
iσcjσ(njσ̄)

+ U
∑

i

ni↑ni↓, (A3)

and H±1 increases/decreases it by one

H+1 = −J
∑

〈ij〉σ

(niσ̄)c
†
iσcjσ(1− njσ̄), (A4)

H−1 = −J
∑

〈ij〉σ

(1− niσ̄)c
†
iσcjσ(njσ̄), (A5)

where niσ = c†iσciσ and σ̄ indicates spin opposite to σ.
In the second step, we replace double occupancies by the
corresponding doublon operators. Thus we have

H0 =− J
∑

〈ij〉σ

(1− niσ̄)(1− nd
i )c

†
iσcjσ(1− nd

j )(1− njσ̄)

− J
∑

〈ij〉σ

d†idjciσc
†
jσ + U

∑

i

nd
i , (A6)

and

H+1 = −J
∑

〈ij〉σ

σd†j(cjσ̄ciσ)(1− niσ̄) (A7)

H−1 = −J
∑

〈ij〉σ

σ(1− niσ̄)(c
†
iσc

†
jσ̄)dj , (A8)

where nd
i = d†idi . Thus far, we have obtained an expres-

sion for the Fermi-Hubbard Hamiltonian that incorpo-
rates doublon operators. This Hamiltonian was specifi-
cally derived in such a way as to avoid creation of spu-
rious states (e.g. a doublon and a single fermion on the
same site) by the use projection operators. As a result,
we do not need to supplement it with a constraint equa-
tion.
Now we can separate the terms in the Hamiltonian

based on which sectors they connect. The Fermion-
Fermion term arises from terms in H0 that connect the
projected sector and is given by

Hf = −J
∑

〈ij〉σ

(1− niσ̄)c
†
iσcjσ(1− njσ̄). (A9)

Likewise, the Doublon repulsion term also arises from H0

and is given by

Hd = U
∑

i

nd
i . (A10)

The remaining terms connect the Fermion and Doublon
sectors and are

Hfd = H+1 +H−1 + J
∑

〈ij〉σ

(A11)

[

(1− niσ̄)n
d
j + nd

i (1− njσ̄) + d†jdi

]

c†iσcjσ, (A12)

where we have dropped the term that is nonzero in the
presence of a pair of doublons as we are assuming that
there is at most one doublon. To complete the model,
we drop terms that result in Feynman vertices with more
than two incoming and two outgoing propagators. We
have verified, numerically, that these diagrams do not
significantly contribute to the doublon decay rate.

Appendix B: Checks on Approximations through

Fermi Golden Rule Calculation

In this appendix, we compute the doublon decay rate
for the case of non-interacting Fermions (i.e., we disre-
gard Hp part of the Hamiltonian (8)). We treat H0 =
H0

f + Hd as the base Hamiltonian, and Hfd as the per-
turbation Hamiltonian, and evaluate the decay rate, via
the Golden Rule, to very high order in Hfd using Monte
Carlo integration. The objective of this appendix is to
test the approximations made in the resummation tech-
nique of Section IV on a simplified Hamiltonian. In par-
ticular, we empirically verify that (1) we may ignore the
crossing diagrams in doublon self-energy and (2) we can
use momentum averaged Green functions to compute the
decay rates. We begin by laying out the formalism, and
then list the results of Monte Carlo integration of decay
rates.

1. Formalism

Our goal is to compute the transition rate from the
starting configuration composed of a single doublon in
a Fermi sea at finite temperature to the final configura-
tion composed of the initial Fermi sea with the doublon
converted into a pair of single particles and a number of
particle-hole excitations. The Fermi Golden rule states
that the decay rate is given by

Γ(p) =
2π

~

∑

f

|〈i|T |f〉|2δ(Ei − Ef ), (B1)
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where the matrix element can be expressed in ordinary
perturbation theory via

〈f |T |i〉=
∑

s1,s2,...

〈f |Hfd|sn−1〉〈sn−1|Hfd|sn−2〉...〈s1|Hfd|i〉

(Ei − Es1)(Ei − Es2)...(Ei − Esn−1
)

.

(B2)

Here, the sum goes over all intermediate states si, with
energy Esi , and n is the order of perturbation theory.
In this perturbation theory, the action of Hfd (except
for the final matrix element 〈f |Hfd|sn−1〉) is to create
particle-hole pairs. In principle, we may be able to con-
nect the initial state to the final state via other processes,
e.g. doublon→particle-particle→doublon, however, these
process lead to decay at higher order in perturbation the-
ory, and thus we ignore them.
We label the initial state by the momentum of the dou-

blon p:

|i〉 = |·; p〉 = d†p|FS〉. (B3)

Likewise, we label the final state via a set of momenta
for the up (down) spin particles ki↑(↓) and the up (down)
spin holes qi↑(↓):

|f〉 =

∣

∣

∣

∣

∣

k1,↑...kn↑+1,↑, k1,↓...kn↓+1,↓,

q1,↑...qn↑,↑, q1,↓...qn↓,↓

; ·

〉

(B4)

= c†kn↑+1,↑
c†kn↓+1,↓

(

c†kn↓,↓
cqn↓,↓

)

...
(

c†k1,↓
cq1,↓

)

×

×
(

c†kn↑,↑
cqn↑,↑

)

...
(

c†k1,↑
cq1,↑

)

|FS〉, (B5)

where n↑ (↓) counts the number of spin up (down)
particle-hole pairs created (n↑ + n↓ + 1 = n).

The intermediate states are composed of a doublon
and 1, 2, 3, ..., n − 1 fermion-hole pairs. Using Hfd, we
can write the matrix element as

〈f |T |i〉 =

〈

k1,↑...kn↑+1,↑, k1,↓...kn↓+1,↓,

q1,↑...qn↑,↑, q1,↓...qn↓,↓

; ·

∣

∣

∣

∣

∣

T |·; p〉 (B6)

=
∑

permutations

sig(perm)
〈f |H1|(σ̃1, k̃1, q̃1), ..., (σ̃n−1, k̃n−1, q̃n−1); p̃n−1〉...〈(σ̃1, k̃1, q̃1); p̃1|H1|p〉

(ξk̃1
+ ...+ ξk̃n−1

− ξq̃1 − ...− ξq̃n−1
)...(ξk̃1

+ ξk̃2
− ξq̃1 − ξq̃2)(ξk̃1

− ξq̃1)
, (B7)

where k̃i, q̃j , p̃v stand for the particle, hole, and dou-
blon momenta, respectively, and σ̃i indicates the spin
of the i-th particle-hole pair. The sum runs over all
intermediate states that lead to the final state |f〉.
That is, we must sum over all permutations of as-
signed values to (σ̃i, k̃i, q̃j) from the list {k1,↑, ..., kn↑+1},
{k1,↓, ..., kn↓+1}, {q1,↑, ..., qn↑

}, {q1,↓, ..., qn↓
}. Within

this labeling scheme, the doublon momenta in the inter-
mediate states p̃v, and the hole momentum in the final
state, are chosen automatically by momentum conserva-
tion. We take care of the Fermionic anti-commutation
relations with sig(perm), which stands for the signature
of the permutation, and is ±1 for even/odd permutations

of momenta.

To obtain the decay rate, we trace over the final states,
order by order in perturbation theory,

Γ(p) =

∞
∑

n=0

Γn(p). (B8)

At each order we trace over the number of up- and down-
spin particle-hole pairs, and the corresponding momenta
of particles and holes that make up the final state. The
decay rate at n-th order is the given by the expression

Γn(p) =
2π

~

∑

n↑+n↓+1=n

∫

[

d̄k1,↑...d̄kn↑+1,↑

] [

d̄k1,↓...d̄kn↓+1,↓

] [

d̄q1,↑...d̄qn↑,↑

] [

d̄q1,↓...d̄qn↓,↓

]

(n↑ + 1)!(n↓ + 1)!(n↑)!(n↓)!

δ(U − Ef ) δ
(

p−
∑

k +
∑

q
)

∣

∣

∣

∣

∣

〈

k1,↑...kn↑+1,↑, k1,↓...kn↓+1,↓,

q1,↑...qn↑,↑, q1,↓...qn↓,↓

; ·

∣

∣

∣

∣

∣

T |·; p〉

∣

∣

∣

∣

∣

2

, (B9)

where d̄k stands for f(k) d3k/(2π)3, d̄q for (1 − f(q)) d3q/(2π)3, and f(k) is the Fermi function. The de-
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FIG. 15: Decay rate as a function of the order of the per-
turbation theory computed using Fermi Golden rule. Largest
decay rate corresponds to most important order.
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FIG. 16: Comparison of the resummation method and various
Golden Rule approximations for calculating the dependence
of the Doublon decay time on the interaction strength U/6J
(with non-interacting Fermions).

nominator in the integral takes care of the fact that inter-
changing a pair of momentum labels does not change the
final state, Ef = ξ(k1,↑)+ ...+ ξ(kn↑+1,↑)+ ξ(k1,↓)+ ...+
ξ(kn↓+1,↓)−ξ(q1,↑)− ...−ξ(qn↑,↑)−ξ(q1,↓)− ...−ξ(qn↓,↓))
is the final state energy, and the second δ function takes
care of momentum conservation.

We explicitly evaluate the 32n dimensional integral in
Eq. (B9) numerically via Monte Carlo integration. To
perform this integration, we replace the δ function of en-
ergy, which defines a hypersurface in momentum space –
a volume of of measure zero, by the top hat function. We
also use important sampling to speed up integration by
biasing our selection so that we pick particle-hole pairs
with holes in the Fermi sea and particles outside of it.
The main numerical constraint on the speed of integra-
tion comes from evaluating the (n↑ + 1)!(n↓ + 1)!n↑!n↓!
permutations over the intermediate states, which be-
comes rather expansive for n > 6.

2. Results

We begin by verifying that the perturbation theory
in Hfd does indeed converge. That is, for fixed U/6J ,

does Γ(n)(p) decrease sufficiently fast as n increases? We
know that for n . U/12J , Γ(n)(p) = 0, as not enough
particle-hole pairs are formed to carry away the energy
of a doublon. When n ∼ U/12J , in order to satisfy
energy conservation, particles created in the decay must
have momentum in vicinity of the band maximum near
(π, π, π) and holes in the vicinity of the band minimum
at (0, 0, 0). Therefore, for n ∼ U/12J the volume of
the momentum space being integrated is very small, but
this volume increases quickly as n grows. As a result,
we expect that the Γ(n)(p) will increase with n for small
n. On the other hand, at high orders the decay rate is
suppressed by a high powers of the small parameter J/U .
Thus, we expect Γ(n)(p) to have a maximum for some
intermediate value of n close to, but somewhat larger
than U/12J .

In Fig. 15 we plot Γ(n)(p) as a function of n for various
values of U/6J . In all cases, computations have been
performed at T = 0 and µ = 0 (corresponding to one
particle per two sites). As expected, in all cases, we see
a clear peak in Γ(n)(p) at n ∼ U/12J + 2.

Having verified the convergence of the high order per-
turbation expansion, we move on to empirically verify
whether we can ignore crossing diagrams, at least for
the case of free Fermions. In order to perform this com-
parison we compute the total decay rate as a function of
U/6t using both Monte Carlo integration of Eq. (B9) (in-
corporates all possible diagrams), as well as the resum-
mation of the non-crossing diagrams given by Eq. (14)
with bare Fermion Green functions used to compute C(ω)
and S(ω). We perform two additional tests using Monte
Carlo integration: (1) We calculate the decay rate with
Bosonic instead of Fermionic signs for closed Fermion
loops; (2) We keep only the diagonal terms, i.e. we re-
place |σperm...|

2 → σperm|...|
2, which corresponds to the

order-by-order summation of non-crossing diagrams, but
without momentum averaging of the resummation ap-
proach. The results of these four types of calculations
are plotted in Fig. 16, for T = 0 and µ = 0. There is very
good agreement between all four cases, confirming that
crossing diagrams may indeed be dropped as explained
in subsection IVA.

n=1 n=2

FIG. 17: All distinct tree diagrams with one vertex (left) and
two vertices (right).
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FIG. 18: Dependence of the number of distinct tree diagrams
on the number of nodes in the tree.

Appendix C: Diagram Counting

In this appendix we describe the procedure for count-
ing the total number of distinct, spin-labeled Fermion
self-energy diagrams at a given order Qall(n) and the
number of non-crossed spin-labeled Fermion self-energy
diagrams Qnc(n). We remind the reader that Qall(n) and
Qnc(n) correspond to diagrams with 2n vertices. For high

ω, Σ
′′

f (ω) is dominated by diagrams with maximal num-
ber of particle and hole lines in the middle, as these max-
imize the energy that is being transferred to the particle-
hole pairs being created. In fact, the range in ω over
which Σ

′′

f (ω) is nonzero is proportional to the number
of particle- and hole-lines in the middle of the diagram.
Therefore, to simplify the counting, we only count dia-
grams that have the maximal number (2n+1) of particle-
and hole-lines going across the middle of the diagram.
To count the number of diagrams at given n, we first

construct all distinct tree diagrams (without spin labels)
that have a single particle going in, n + 1 particles and
n holes going out and n vertices of the type given in
first row of Table I. In Fig. 17, we show all such tree

diagrams for n = 1 and n = 2. In Fig. 18 we show
how the number of distinct trees scales with n. Next, we
construct the set of all the possible self-energy diagrams
by taking a pair of tree diagrams, reversing all the arrows
in one of them, and gluing them together. When we
count the total number of diagrams, we glue together
particle-particle lines and hole-hole lines in all pairs of
trees at the given order, in all possible ways. On the other
hand, when counting the number of diagrams produced
by the non-crossing approximation, we only glue together
trees with their mirror image. Finally, we spin label the
resulting diagrams, and remove all duplicate diagrams,
to obtain Qall(n) and Qnc(n).

We assume that the ratio Qall(n)/Qnc(n) scales like
∼ eαn. We use this assumption to extrapolate the ratio
for non-integer values of n and for large values of n >
4. We plot the ratio of Qall(n)/Qnc(n), along with the
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FIG. 19: Correction ratio as a function of the order of the
diagram.

extrapolated curve that we use in rescaling the Fermion
self-energy, in Fig. 19.
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[18] S. D. Huber, A. Rüegg, Phys. Rev. Lett. 102, 065301

(2009).
[19] R. Sensarma, D. Pekker, M. Lukin, E. Demler, Phys.

Rev. Lett. 103, 035303 (2009).
[20] Separate fits to the two spin mixtures yield values of

α(−9/2,−5/2) = 0.75±0.10 and α(−9/2,−7/2) = 1.00±0.14.
[21] The pair propagators are momentum integrated objects

e.g. S(ω) =
∑

q
S(q, ω) and so on

[22] C. N. Yang, Phys. Rev. Lett. 63, 2144 (1989); A. Rosch,
D. Rasch, B. Binz amd M. Vojta, Phys. Rev. Lett. 101,
265301 (2008).

[23] C.-L. Hung, X. Zhang, N. Gemelke, and C. Chin,
arXiv:0910.1382v1.


	I Decay mechanisms for a doublon
	II Experiments
	III Theoretical Model of Doublon Decay
	IV Diagrammatic Computation of Doublon Lifetime
	A Doublon Self-Energy
	B Fermion Self-Energy
	C Corrections Due to Diagrams Left Out

	V Theoretical Results and Comparison with Experiments
	VI Concluding Remarks
	VII Acknowledgements
	A Model
	B Checks on Approximations through Fermi Golden Rule Calculation
	1 Formalism
	2 Results

	C Diagram Counting
	 References

