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Abstract

The proliferation of cloud computing has fuelled the rapid growth of

multi-tenant service-based systems (SBSs), which serve multiple ten-

ants simultaneously by composing existing services in the form of

business processes. It has been a growing challenge to provide qual-

ity guarantee across the whole lifetime of an SBS, including service

selection, service monitoring and service adaptation. In the cloud en-

vironment, the tenants that share a multi-tenant SBS often have differ-

entiated quality requirements, quality preferences and different busi-

ness scenarios, which has significantly complicated the quality man-

agement for multi-tenant SBSs at different lifetime stages.

In this thesis, we propose a systematic solution named LQM4MTS

(Lifetime Quality Management for Multi-Tenant SBSs), which consists

of a set of techniques to address the major issues of quality manage-

ment that arise at different stages of the lifetime of multi-tenant SBSs.

Specifically, an innovative service selection approach using service rec-

ommendation based on clustering techniques is proposed to facili-

tate efficient service selection for multi-tenant SBSs at build-time; a

new service selection approach is proposed to support tenants’ cor-

related quality requirements; a novel approach for service monitor-

ing is proposed to formulate criticality-based cost-effective monitor-

ing strategies for multi-tenant SBSs; an innovative service recommen-

dation approach based on Locality Sensitive Hashing (LSH) is pro-

posed to achieve quick service adaptation at runtime upon anoma-

lies; and a novel fault tolerance approach is proposed to improve the



ability of multi-tenant SBSs in handling runtime anomalies by formu-

lating cost-effective fault tolerance strategies based on criticality. Ex-

perimental results show that our approaches 1) guarantee high effec-

tiveness whilst significantly improve the efficiency of service selec-

tion for multi-tenant SBSs with clustering-based service recommen-

dation at build-time, especially in large-scale scenarios; 2) effectively

and efficiently select services to compose multi-tenant SBSs that fulfil

the tenants’ correlated quality requirements; 3) remarkably improve

the effectiveness especially cost-effectiveness of service monitoring for

multi-tenant SBSs whilst retaining high efficiency; 4) facilitate effec-

tive and efficient runtime service adaptation based on Locality Sensi-

tive Hashing; 5) effectively and efficiently reduce the risk of system

quality degradation upon runtime anomalies with the fault tolerance

strategies formulated for multi-tenant SBSs.

The major contribution of this research is to propose a systematic

solution to lifetime quality management for multi-tenant SBSs in the

cloud environment. With the new approaches proposed, the quality

of the multi-tenant SBSs can be guaranteed at different stages of the

lifetime of the SBSs.
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Chapter 1

Introduction

This thesis addresses the issue of lifetime quality management for multi-tenant

service-based systems (SBSs). The major contribution of this research is to pro-

pose a systematic solution that consists of a set of techniques to support qual-

ity management at different lifetime stages of multi-tenant SBSs, including ser-

vice selection, service monitoring and service adaptation. To support quality-

aware service selection, we propose an innovative approach for effective and ef-

ficient service selection using service recommendation based on clustering tech-

niques to fulfil tenants’ differentiated quality requirements. An approach that

handles the tenants’ correlated quality requirements is also presented. To sup-

port quality-aware service monitoring, we design a novel approach for formu-

lating cost-effective monitoring strategies for multi-tenant SBSs based on service

criticality. To support quality-aware service adaptation, we propose an efficient

service adaptation approach based on Locality Sensitive Hashing (LSH) to imple-

ment quick service replacement for adaptation upon runtime anomalies. An in-

novative approach for formulating cost-effective fault tolerance strategies based

on service criticality is also designed to significantly reduce the adverse impacts

to the quality of multi-tenant SBSs caused by runtime anomalies.

1



1.1 INTRODUCTION TO MULTI-TENANT SBSS

This chapter is organised as follows: First, Section 1.1 introduces multi-tenant

SBSs as background. Then Section 1.2 introduces the key issues of this research.

Finally, Section 1.3 presents the overview of the structure of this thesis.

1.1 Introduction to multi-tenant SBSs

The service-oriented paradigm has become an effective way to engineer service-

based systems (SBSs) by composing network-accessible (and often distributed)

Web services [1][2], which collectively offer the functionality of the SBS and fulfil

its quality requirements, such as cost, response time, reliability, and throughput

[3]. A Web service or service is a standardised way to integrate interoperable

Web-based applications over a network. It is built on top of open standards such

as Simple Object Access Protocol (SOAP) [4], Web Service Description Language

(WSDL)[5] and Universal Description, Discovery and Integration (UDDI) [6][7].

Existing Web services can be orchestrated in the form of business process to build

an SBS. The development and popularity of e-business, e-commerce, especially

the pay-as-you-go business model promoted by cloud computing, have fuelled

the rapid growth of services and SBSs, which is indicated by the statistics pub-

lished by ProgrammableWeb, an online Web service and Web API directory [8].

As an important characteristic of cloud computing, multi-tenancy refers to a

software architecture that uses a single software instance to serve multiple ten-

ants. A tenant of a multi-tenant system is an organisational entity that hosts

a number of end users and subscribes to the multi-tenant system according to

the pay-as-you-go business model. For example, a company that subscribes to

a multi-tenant CRM (Customer Relationship Management) system provided by

Salesforce1 is one of the tenants that share the system. The employees of that

company are the end users of the system. A multi-tenant SBS provides multiple

tenants with similar and yet customised functionalities with potentially different

1https://www.salesforce.com

2



1.1 INTRODUCTION TO MULTI-TENANT SBSS

quality values [9]. Multiple tenants can share all or part of the services in an SBS.

By sharing the cloud resources across tenants, multi-tenancy allows SBS vendors

to achieve economies of scale and optimisation in terms of speed, security, avail-

ability, disaster recovery, and maintenance [10].

Figure 1.1: The lifetime of service-based systems (SBSs).

As shown in Fig. 1.1, the whole lifetime of an SBS consists of three stages:

build time service selection for composition, runtime service monitoring and, if

needed, service adaptation for delivery [11]. In the cloud especially the multi-

tenant environment, these stages are briefly introduced as follows:

1. Service selection: SBS vendors build an SBS by selecting from existing ser-

vices (referred to as candidate services) to create a service composition, which

can fulfil tenants’ functional and multi-dimensional quality requirements.

Moreover, there are often optimisation goals for the SBS, e.g. minimised

cost or maximised performance, which must also be achieved in the pro-

cess of service selection [12].

2. Service monitoring: After an SBS is formulated by service selection and

put into operation, the selected services in the SBS (referred to as component

services) must be monitored to provide substantial quality guarantee to all

tenants by timely detecting runtime anomalies.
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3. Service adaptation: Once the runtime anomalies are detected, service adap-

tation actions, e.g., service replacement, service re-optimisation, etc., can be

taken immediately to reduce the risk of quality violation for all tenants.

Improving effectiveness and efficiency of lifetime quality management of SBSs

are of paramount importance. First, due to the proliferation of cloud computing,

more and more cloud services with equivalent functionality are emerging, char-

acterised by different multi-dimensional quality values [13]. Selecting compo-

nent services to compose an SBS to fulfil its quality requirements while achieving

the optimisation goal is a multi-criteria decision problem, which is NP-complete

and often very complex and time consuming, especially in large-scale scenarios

[14]. In addition, the quality requirements for an SBS is not always deterministic

and correlations may exist between different quality dimensions of the require-

ments, which has made the service selection more complicated. Second, with the

increasing deployment of public, private and hybrid clouds, various cloud ser-

vices are provided by different vendors in different geographical locations. Due

to many uncertain factors, e.g., techniques used to implement the services, the

network condition, etc., the cloud environment in which the SBSs operate tends

to be dynamic and volatile [15]. Unexpected runtime anomalies may occur in its

component services [16]. If a runtime anomaly cannot be fixed in a timely man-

ner, it often leads to degradation and end-to-end violation in multi-dimensional

system quality, incurring penalties and losses caused by Service Level Agreement

(SLA) breach. Amazon reports that by adding only 100ms in response time, sales

drop by 1% [17]. An e-commerce system can lose thousands of dollars for every

minute of its unavailability [18]. In such context, an SBS must be monitored to

timely detect runtime anomalies, which, once occur, must be handled effectively

and efficiently with service adaptation to guarantee the quality of the SBS.

In spite of the benefits of multi-tenancy, such as high scalability, maximised

performance, easy system upgrade, etc., new challenges and issues in lifetime

quality management have been identified when engineering multi-tenant SBSs
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in the cloud. On one hand, tenants often have diverse quality preferences and

requirements [19]. For example, a tenant of an SBS may have strong preference

for response time, while another may prefer high system throughput. Thus, the

SBS must provide differentiated quality to satisfy the tenants. Taking Dropbox

for example, as a popular application on the cloud that provides services of data

storage, synchronisation and sharing, it offers free services with limited quality

to light-weight users, while for the users who have strict requirements on quality,

the business versions with premium features are available at an extra charge. On

the other hand, the tenants share all or part of the component services due to their

different business scenarios. The number of tenants that a component service

serves simultaneously may vary dramatically. It is possible that one component

service in an SBS is shared by a large number of tenants while another service in

the same SBS only serves for a few tenants. In such a context, SBS vendors have to

consider the diversity in tenants’ quality preferences and requirements as well as

the service sharing in an SBS in quality management across all lifetime stages of

the SBS, and endeavour to guarantee the quality of the SBS for all tenants. Thus,

the transition from single-tenancy to multi-tenancy has complicated the quality

management of SBSs significantly.

Therefore, it is critical and challenging to manage the quality of multi-tenant

SBSs across the entire lifetime for business competitiveness. The lifetime quality

management is a fundamental and urgent requirement for the wide application

of multi-tenant SBSs in the cloud.

1.2 Key issues of this research

In order to achieve lifetime quality management of multi-tenant SBSs, the follow-

ing key issues need to be addressed:

• For service selection: A lot of research efforts have been devoted to the

problem of quality-aware service selection, and various approaches have
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been proposed to address this issue, such as the work in [13][20][21]. How-

ever, some critical issues still remain to be addressed. In this thesis, we

focus on two of them: improving the efficiency of service selection whilst

retaining high effectiveness and handling the correlations in tenants’ qual-

ity requirements.

First, as discussed in Section 1.1, the aim of service selection for building

a multi-tenant SBS is to fulfil the tenants’ diverse multi-dimensional qual-

ity requirements, while achieving the optimisation goal for the SBS in the

meantime [22]. This is an NP-complete problem [14] that can be compu-

tationally expensive, especially in large-scale scenarios. Thus, how to im-

prove the efficiency whilst retaining high effectiveness of build-time ser-

vice selection for building multi-tenant SBSs has become a critical issue.

Service recommendation, as a preferred way to address this issue, has at-

tracted considerable attention in recent years [23][24]. However, most of

the approaches for service selection and recommendation are used in sin-

gle tenant environment, and the differentiation of quality preferences and

requirements of the tenants that share the same SBS is not sufficiently con-

sidered.

Second, tenant’s quality requirements can be correlated, i.e., there is trade-

off between different quality dimensions of a tenant’s requirement for the

SBS. For example, a tenant of an SBS may accept a lower throughput at a

lower cost, but is willing to pay more if a higher throughput is provided.

In this way, a tenant’s multi-dimensional quality requirements become dy-

namically varied and correlated. This is a real-world scenario but not suf-

ficiently considered. It is significantly different from the scenarios handled

by most existing works in service selection [20][21][25], where all the quality

requirements are deterministic and different quality dimensions in the re-

quirements are independent of each other. How to select proper services for

compositions to fulfil multiple tenants’ correlated quality requirements has
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become a new challenge, which makes the existing approaches impractical.

• For service monitoring: In order to facilitate timely adaptation upon anoma-

lies to guarantee the quality of an SBS, the component services of the SBS

must be monitored. Many approaches for service monitoring have been

proposed during the past decade [2][3]. However, most of them treat all

component services in an SBS equally and constantly monitor all services

whilst cost-effectiveness has not been paid enough attention when formu-

lating monitoring strategies. Service monitoring produces benefits (moni-

toring benefits for short) because adaptation actions can be taken timely to

fix the anomalies before they cause tenant-perceived quality degradation.

However, constantly monitoring all services in an SBS is often impracti-

cal. On one hand, hardware, software and sometimes human resources are

needed to implement monitoring strategies. Monitoring all services con-

stantly introduces excessive resource cost. On the other hand, service mon-

itoring often incurs system overhead and impacts the quality of the SBS. For

example, the retrieval of system log, the sniff of network traffic, etc., can

introduce up to 70% performance overhead [3]. In such a context, an ap-

proach for service monitoring must be able to formulate monitoring strate-

gies by comprehensively considering the trade-off between monitoring ben-

efits, resource cost and system overhead. Moreover, the monitoring budget

of a system vendor, i.e., the acceptable maximum resource cost for monitor-

ing, is often limited. In order to achieve cost-effectiveness in monitoring,

the component services which are critical to the quality of the SBS must be

prioritised. Therefore, the identification of component services with high

criticality is also an important issue to be addressed.

Several approaches have been proposed for the identification of critical ser-

vices in an SBS [3][20][26]. However, those approaches can handle only

one quality dimension (e.g., reliability), which is insufficient in real-world

scenarios where multiple quality dimensions are involved. In addition,
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these approaches are not capable of capturing the important characteris-

tic of cloud computing: multi-tenancy, which introduces significant chal-

lenges to the formulation of cost-effective monitoring strategies for SBSs.

As discussed in Section 1.1, the tenants of a multi-tenant SBS often have dif-

ferent quality preferences [19] for the SBS, and the number of tenants that

share different component service often varies. In this context, a compo-

nent service critical to some tenants may not be of the same criticality to

the others. When formulating a monitoring strategy for a multi-tenant SBS,

the system engineer must consider the diversity in tenants’ differentiated

quality preferences and endeavour to reduce the risk of quality violations

upon runtime anomalies for all tenants. Therefore, multi-tenancy signifi-

cantly complicates the identification of critical services and the formulation

of monitoring strategies for SBSs.

• For service adaptation: In order to fix the runtime anomalies detected, a

multi-tenant SBS in the cloud must achieve the ability to adapt at runtime.

A number of approaches has been proposed in recent years, such as fault

removal [20][27][28] and fault tolerance techniques [29][30][31]. Service re-

optimisation, as a representative approach of fault removal, is often used to

reduce the impacts of runtime anomalies by selecting alternative candidate

services to formulate a new service composition when a system change is

detected [32][27][33]. However, this approach often suffers low efficiency in

most cases and causes unacceptable business interruptions due to the fact

that solving the NP-complete service selection problem satisfactorily is of-

ten very time consuming [14], especially in large-scale scenarios. Thus, a

quick service re-selection that replaces only the anomalous ones with alter-

native services with equivalent functionalities is much more practical than

an overhaul of the entire SBS. Therefore, how to select the proper services

for rapid runtime system adaptation is an important issue to be addressed

for the service adaptation of multi-tenant SBSs.

8



1.3 OVERVIEW OF THIS THESIS

Fault tolerance, by offering service redundancy with functionally equiv-

alent services, is another intuitive and promising technique to guarantee

the quality of the SBS in a volatile environment. Compared to service re-

selection at runtime upon runtime anomalies, fault tolerance can achieve

higher performance, e.g., shorter business interruption time, but consume

more resources due to the deployment of service redundancy. First, redun-

dant services are selected for the component services from the correspond-

ing group of candidate services with equivalent functionality, then, the se-

lected redundant services run with the corresponding component services

in a certain redundancy mode, such as sequence or parallel. In this way, the

redundant services can immediately replace the faulty component services

at runtime. It is theoretically ideal to prepare redundancy for all compo-

nent services of the SBS. However, allocating service redundancy for ev-

ery component service of an SBS is often impractical because the excessive

cost may probably exceed a system vendor’s limited budget, especially in

large-scale scenarios. Therefore, it is much more cost-effective to provide

service redundancy for the critical component services in an SBS, which is

an important issue in the formulation of fault tolerance strategies for SBSs.

Moreover, similar to the monitoring strategies, the fault tolerance strategies

must be able to cater for tenants’ diverse multi-dimensional quality require-

ments and preferences as well as their different business scenarios. This is of

tremendous importance in the formulation of cost-effective fault tolerance

strategies for multi-tenant SBSs.

1.3 Overview of this thesis

In this thesis, we propose a systematic solution to address the issues discussed in

Section 1.2, which is named LQM4MTS (Lifetime Quality Management for Multi-

Tenant SBSs). The structure of this thesis is shown in Fig. 1.2 and introduced as
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Chapter 1 Introduction

Chapter 2 Literature review and requirements analysis

Chapter 3 Framework of LQM4MTS

Chapter 4 Composition quality model

Chapter 5 Efficient service selection
based on  service recommendation

Chapter 6 Service selection based 
on correlated quality requirements

Part I
Quality 
management 
for service 
selection

Part II
Quality 
management 
for service 
monitoring

Part III
Quality 
management 
for service 
adaptation

Chapter 7 Service monitoring based 
on criticality

Chapter 8 Service adaptation based 
on LSH

Chapter 9 Fault tolerance based on 
criticality

Chapter 10 Conclusions and future work

Lifetime Quality Management For Multi-Tenant 

Service-based Systems

Figure 1.2: The structure of this thesis.

follows: In Chapter 2, the literatures related to the quality management for each

lifetime stage of an SBS is reviewed respectively. Then, the requirements for the

solution to the research problem are analysed based on a motivating example.

In Chapter 3, we introduce the framework of LQM4MTS, which involves a set

of techniques that addresses the above-mentioned issues in each lifetime stage of

multi-tenant SBSs.

In Chapter 4, we present the composition quality model for multi-tenant SBSs,

which is employed throughout the lifetime quality management for multi-tenant

SBSs.

Then we organise the proposed set of approaches in three parts: Part I (Chap-

ter 5 and Chapter 6), Part II (Chapter 7) and Part III (Chapter 8 and Chapter 9),
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which introduce the approaches for quality management at each lifetime stage

of multi-tenant SBSs, namely service selection, service monitoring and service

adaptation respectively.

In Chapter 5, we present a novel approach for build-time service selection

using service recommendation based on clustering techniques [34], which inno-

vatively explores the similarity between tenants’ quality requirements and ser-

vices’ quality values to realise effective service selection for multi-tenant SBSs

with high efficiency. We firstly introduce the procedure of recommending repre-

sentative services for selection based on tenant clustering and service clustering,

based on which, the model for service selection is presented. Finally, we evaluate

the effectiveness and efficiency of the proposed service selection approach based

on some experimental results.

In Chapter 6, we propose an innovative approach for service selection based

on tenants’ correlated quality requirements. Firstly, the scenario where differ-

ent dimensions of tenants’ quality requirements are correlated is introduced in

detail. Then, the procedure of formalising the quality correlations in tenants’

requirements is presented, based on which, the models for service selection are

proposed. Finally, we conduct extensive experiments to evaluate the proposed

approach in terms of effectiveness and efficiency.

In Chapter 7, we describe a novel approach for formulating cost-effective

monitoring strategies based on criticality for multi-tenant SBSs. Firstly, we in-

troduce the calculation of service criticalities of the component services in an

SBS, based on which, a model is proposed to formulate cost-effective monitor-

ing strategies by comprehensively considering the monitoring benefits, resource

cost and incurred system overhead. Finally, the effectiveness especially cost-

effectiveness and efficiency of the proposed approach is assessed based on ex-

tensive experiments.

In Chapter 8, we propose a new approach for runtime service adaptation

based on Locality Sensitive Hashing (LSH), which can achieve quick service re-
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placement for adaptation upon runtime anomalies. The principles of LSH are

firstly introduced as a preliminary, and then the procedure of the proposed LSH-

based service adaptation is illustrated. Finally, a series of experiments is con-

ducted to evaluate the effectiveness and efficiency of the proposed approach.

In Chapter 9, we present an innovative approach for formulating cost-effective

fault tolerance strategies based on criticality for multi-tenant SBSs. Firstly the cal-

culation of service criticality is briefly introduced, which is the same as that in

Chapter 7. Then we describe the procedure of formulating fault tolerance strate-

gies in detail. Finally, we evaluate the proposed approach in terms of effective-

ness especially cost-effectiveness and efficiency with some experimental results.

Finally, in Chapter 10, we conclude this thesis, summarise the major contribu-

tions of this research and outline the future research directions.
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Chapter 2

Literature review and requirements anal-

ysis

In this chapter, the existing work related to our research is introduced. We con-

duct an extensive and comprehensive literature review on quality management

for SBSs. We present the state-of-the-art literatures and analyse their limitations,

based on which, the research requirements for lifetime quality management for

multi-tenant SBSs is proposed.

This chapter is organised as follows: Section 2.1 reviews the related work on

different lifetime stages of quality management for SBSs respectively, namely ser-

vice selection, service monitoring and service adaptation. Then, with a motivat-

ing example, Section 2.2.2 analyses the research requirements for lifetime quality

management for multi-tenant SBSs. Finally, Section 2.3 summaries this chapter.
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2.1 Literature review

2.1.1 Quality management for service selection

2.1.1.1 Service selection models and algorithms

Back to a decade ago, the authors in [20] present AgFlow, a middleware platform

for Web service composition, which can maximise client satisfaction with util-

ity over multiple quality dimensions, while meeting clients’ multi-dimensional

quality requirements. Two selection approaches are investigated: local selection

and global selection. Integer Programming (IP) is used to find the solution to

the constraint optimisation problem (COP). When anomalies occur at runtime

in an SBS built with global selection, re-planning procedure may be triggered

to ensure that the end-to-end quality remains optimal. The work in [21] pro-

poses an architecture in which quality-aware service selection is modelled re-

spectively as a 0-1 knapsack problem (MMKP) in the combinatorial model and a

multi-constrained optimal path (MCOP) problem in the graph model. Heuristic

algorithms are adopted to find near optimal solutions for different composition

structures in polynomial complexity time. The work in [35] proposes a heuristic

approach to find the close-to-optimal solution for service selection by decompos-

ing global quality constraints into local quality constraints, which aims at appli-

cations with dynamic changes and real-time requirements. In [13], the authors

present CASS, a model that selects services based on iterative multi-attribute

combinatorial auction. The complementarities between services are taken into

account. The authors in [36] propose an approach for skyline discovery and com-

position of multi-cloud mashup services. MapReduce paradigm is used to solve

the skyline selection problem on mashup cloud platforms, which is accelerated by

exploring distributed parallelism. The mashup composition process is optimised

based on the MapReduce skyline selection guided by the quality constraints. The

authors in [37] propose an approach to compute a quality-optimised selection
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of service clusters that includes a sufficient number of backup services for each

service employed. The backup services should be sufficiently distributed to pre-

vent a task failure. The possible repair costs related to a service in case of failure

are taken into consideration in a multi-objective approach for service selection.

In [38], the authors propose an approach for service selection based on service

clusters. A model is proposed to solve the optimal quality problem of Web Ser-

vice composition using dynamic programming techniques. In [39] the authors

propose an approach for service selection for services with probabilistic quality.

Services’ quality values are represented as discrete random variables with prob-

ability mass functions.

However, the common and critical limitation of these existing approaches

when applied in cloud computing is that they only support single-tenant SBS -

they try to optimise the quality for only one end user. These approaches can

be adopted to create service compositions for multiple tenants one after another.

The result is that, although the created service compositions can locally fulfil the

quality constraints of corresponding tenants, the overall quality of the SBS is usu-

ally sub-optimal, i.e., the optimisation goal of service selection for the SBS cannot

be achieved. Furthermore, applying these approaches to compose multi-tenant

SBSs is very computationally expensive in large-scale scenarios. To address this

issue, in work [22], the authors propose an approach that facilitates quality-aware

service selection for multi-tenant SaaS by modelling the problem as a constraints

optimisation problem, and again, IP is used to find an optimal solution. In large-

scale scenarios where the SaaS optimisation problem is computationally expen-

sive, a greedy algorithm is proposed to find a near-optimal solution. This work

does not consider the diversity and similarity between tenants’ quality require-

ments and quality values of the services, which can be used to recommend suit-

able services for service composition to fulfil the tenants’ diverse quality require-

ments. By doing so, the effectiveness of service selection for multi-tenant SBSs

can be guaranteed and its efficiency can be further improved.
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Quality correlations in service selection has received considerable attention

and made a lot of progress. The correlations between different services have been

well investigated in service selection by many works [13][40][41]. This type of

quality correlation means that some quality dimensions of a service are not only

dependent on the service itself but also correlated to other services [40]. The au-

thors in [40] propose CASP, which is a correlation-aware service pruning method

for service selection. CASP manages quality correlations by accounting for all

services that may be integrated into optimal composite services and prunes ser-

vices that are not the optimal candidate services. The work in [42] proposes an

approach for computing the composite service skyline in the presence of quality

correlations. Pruning techniques are used to accelerate the computation. The au-

thors in [43] propose an approach for quality dependency-aware service compo-

sition considering multiple quality attributes. Pareto-based techniques are com-

bined with Vector Ordinal Optimisation techniques to search for Pareto optimal

solutions. A candidate pruning algorithm is proposed to remove the unpromis-

ing candidate services. The authors in [44] propose an approach for quality-aware

Web Service selection with internal complementarity (WSS-IC). This problem is

handled by an iteratively improving framework for deriving the solution itera-

tion by iteration while taking into consideration both solution structure and qual-

ity constraints. In each iteration, the current solution is improved by solving a

disjunctively constrained knapsack problem. The work in [45] proposes a cloud

service composition framework that selects the optimal composition based on an

end user’s long-term quality requirements. Multivariate quality analysis method

is used to predict the long-term quality provisions based on service providers’

historical quality data and short-term advertisements represented using time se-

ries. Quality dimensions’ intra correlations and quality time series’ inter correla-

tions are taken into consideration in the multivariate analysis and the selection of

optimal service composition. In [41], the authors present an alliance-aware ser-

vice composition method, which takes into consideration the Alliance Relation
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(AR) between services when formulating service composition. The fundamen-

tal properties of the AR are given based on a multi-granularity service compo-

sition model, and then alliance relation granularity is coarsened into a relation

granulation quotient space and the domain elements are matched reversely with

service composition. A relation Granularity-aware Particle Swarm Optimisation

Algorithm (RG-PSO) is used to solve the alliance-aware service composition op-

timisation problem. However, none of the above works and the like take into

consideration the correlation between different quality dimensions of a tenant’s

quality requirements for a multi-tenant SBS.

Fuzzy logic can be used to handle users’ correlated and imprecise quality re-

quirements. For example, in [46], the authors model the service selection as a

fuzzy constraint satisfaction problem. The constraint levels on each quality di-

mension are represented with multiple fuzzy sets. The authors in [47] present a

fuzzy model for ranking real-world Web services. A ranking algorithm is pro-

posed, which is based on the objective weighting technique that leverages the

distance correlation metrics between quality dimensions. The authors in [48] pro-

pose an approach for service selection based on fuzzy logic that considers users’

personalised trade-off strategies. However, these service selection and ranking

approaches based on fuzzy logic are used in single-tenant environment. They

mostly assume that the quality requirements can be represented with a set of

fuzzy expressions based on users’ quality trade-off preferences, which is insuffi-

cient to handle the dynamically varied and correlated quality requirements.

2.1.1.2 Service filtering and recommendation

Service recommendation and filtering, as an effective way for improving the ef-

fectiveness and efficiency of service selection, has been discussed in a number of

research investigations.

In [49], the authors apply skyline techniques to quality-aware service com-

position to reduce the number of candidate services. If the size of skyline is
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still large, representative services are then selected after a clustering and rank-

ing process. The work in [50] presents a statistical clustering approach that sup-

ports retrieving Web services to match a given natural language-based enquiry.

Web service clusters are calculated based on the proximity between WSDL docu-

ments, which is measured with Euclidean distance extended by means of a multi-

dimensional angle produced by a vector space search engine. In [51], the authors

propose the ranking and clustering of Web services based on the notion of dom-

inance, which is obtained by comparing the degree of matching in all parame-

ters and according to all criteria between services. The produced service clusters

reveal and reflect the different trade-offs between the matched parameters. In

[52] the authors propose a quality-driven component ranking framework named

CloudRank for cloud computing by taking advantage of the past component us-

age experiences of different component users, which facilitates the optimal com-

ponent selection from a set of functionally equivalent component candidates. A

greedy method is used to compute the component ranking. In [53], the authors

present FTCloud, a component ranking framework for fault-tolerant cloud appli-

cations. Algorithms based on system structure information and prior knowledge

are employed to identify and rank the significant components in a cloud applica-

tion. Significant value is used to indicate the importance of a component service.

In [23], the authors combine user-based and item-based collaborative filtering al-

gorithms to facilitate Web service recommendation. In [54], the authors present

AWSR, a Web service recommendation system based on users’ usage history to

actively recommend Web services to users. A hybrid new metric of similarity

is developed to combine functional similarity measurement and non-functional

similarity measurement based on comprehensive quality of Web services. In [55],

the authors propose a semantic content-based recommendation approach that

analyses the context of intended service use to provide recommendations in con-

ditions of scarce user feedback. In [24], the authors present LoRec, a system that

supports service recommendation by predicting Web service quality values based
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on user locations and historical Web service quality records. Users and services

are clustered respectively according to the user similarity and service similar-

ity. The authors in [56] propose a Web service recommendation approach that

incorporates a user’s potential quality preferences and diversity feature of user

interests on Web services, which are mined by exploring the Web service usage

history. Then the scores of candidate services are calculated by measuring their

relevance with historical and potential user interests, and their quality utility. A

diversity-aware Web service ranking algorithm is proposed to rank the candidate

services based on their scores and diversity degrees derived from a Web service

graph, which is constructed based on the functional similarity between services.

The authors in [57] propose a temporal tag-based and social-based (TTS) service

recommendation algorithm, which is a hybrid method by considering tag, time

and users’ social relations information at the same time for service recommen-

dation. The work in [58] presents a location-aware personalised CF method for

service recommendation, which leverages both locations of users and services

when selecting similar neighbours for the target user or service. The personalised

influence of users and services are taken into account in the similarity measure-

ment. In [59], the authors propose a probabilistic approach to predict the popu-

larity of services to facilitate service recommendation performance. A method is

presented that extracts service evolution patterns by exploiting Latent Dirichlet

Allocation (LDA) and time series prediction. A time-aware service recommenda-

tion framework is established for mashup creation that conducts joint analysis of

temporal information, content description and historical mashup-service usage

in an evolving service ecosystem.

However, the above service filtering and recommendation approaches are

proposed mainly in the single-tenant environment, where multiple tenants’ di-

verse multi-dimensional quality requirements on the same SBS are not consid-

ered. In addition, among the approaches of service recommendation with simi-

larity measurement between the users’ quality requirements and services’ quality
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values, most of them assume that the quality requirements to a single service are

known and do not take the end-to-end quality requirements into account. Thus,

the quality requirements for the entire SBS need to be explored further in service

recommendation to improve the effectiveness and efficiency of service selection,

especially in the multi-tenant environment.

2.1.2 Quality management for service monitoring

After service selection, the component services of an SBS must be monitored to

facilitate timely adaptation upon anomalies to guarantee the quality of the SBS.

Monitoring is the basis of most work in service adaptation, such as [27][60][61].

Many efforts have been devoted to the monitoring of SBSs. The authors in

[62] propose ReqMon, a two-level monitoring system that consists of distributed

individual monitor servers and a centralised global integrative monitor. The au-

thors in [63] propose a framework to verify the requirements for service compo-

sitions at runtime, which supports monitoring the runtime behaviours of com-

ponent services by intercepting the events exchanged in the SBS. The work in

[64] presents an approach for runtime monitoring of WS-BPEL processes, which

can weave the external monitoring rules into the service composition. In [65],

the authors propose an assertion language named ALBERT, with which both the

functional and non-functional properties of service compositions can be speci-

fied. Dynamo [66], a proxy-based monitoring infrastructure is used at runtime

to check the assertions. The authors in [67] propose an architecture named As-

tro aiming at separating the business logic of a Web service from its monitoring

functionality. It can monitor both a single instance and multiple instances of a

BPEL process in a class. A language is also defined to specify the properties to be

monitored. The authors in [68] propose an integrated approach for BPEL moni-

toring based on Dynamo [66] and Astro [67]. The integration happens both for the

monitoring languages used and the monitoring frameworks. In [69], the authors

propose a general monitoring language named SECMOL based on three existing
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monitoring languages, namely ECAssertion [70], SLANG [71] and WSCoL [64].

In SECMOL, data collection, data computation, and data analysis are considered

separately. In [72] the authors employ timed automata to monitor the timeliness,

reliability and throughput of the system according to the SLA. The work in [1]

adopts WSCoL as a means to enhance service compositions with monitoring ca-

pabilities.

However, none of the existing work has properly considered the cost effec-

tiveness of monitoring strategies. Most of them treat all component services in

an SBS equally and constantly monitor all services whilst cost-effectiveness is not

sufficiently considered when formulating monitoring strategies. The trade-off

between monitoring benefit, resource cost and system overhead should be taken

into consideration and the critical services which impact the quality of an SBS

more seriously upon anomalies must be given higher priorities in the formula-

tion of cost-effective monitoring strategies.

In order to identify the critical services in an SBS, some approaches have been

studied. Recent years, in the area of software engineering, various reliability-

based and structure-based importance measures have been proposed [73][74][75],

which can be used to identify and rank the important components in a software

system. These works have shed light on the issue of important service identifica-

tion in the SBSs. In [20] the authors use the critical path in terms of execution du-

ration to identify the critical services in a service composition. In [26] the authors

present FTCloud, a component ranking framework for fault-tolerant cloud appli-

cations. Algorithms based on system structure information and prior knowledge

are employed to identify and rank the significant components in a cloud applica-

tion. In [3] and [76], the authors propose CriMon, an approach that evaluates the

criticalities of both execution paths and component services based on the concept

of probabilistic critical path. The trade-off between monitoring benefit, resource

cost and system overhead is described by the Value of Monitoring (VoM), which

is integrated into the model for formulating cost-effective monitoring strategies.
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However, the existing approaches mostly assess service criticality from one di-

mension of quality, such as failure rate or response time, which is not suitable

for the cloud environment characterised by multiple tenants with preferences for

multiple dimensional quality.

2.1.3 Quality management for service adaptation

2.1.3.1 Service re-selection at runtime

The authors of [2] proposed QoSMOS, a tool-supported framework for the devel-

opment of adaptive service-based systems. QoSMOS first translates high-level

quality requirements for the SBS to probabilistic temporal logic formulae, which

are then analysed to identify and enforce optimal system configurations. Three

mapping patterns of abstract to candidate services are studied: single, sequential

one-to-many, and parallel one-to-many mapping. In [20], the middleware plat-

form AgFlow is designed with the ability of adaptation. When exceptions occur

at runtime in an execution plan built with global selection, replanning procedure

may be triggered to ensure that the end-to-end quality remains optimal. In [27],

the authors present an optimisation approach for the composition of Web ser-

vices, which can meet the local and global quality constraints of the users. Service

selection problem is formalised as a Mixed Integer Programming (MIP) problem,

and adaptive re-optimisation is adopted to fulfil the variable quality constraints

at runtime. When a feasible solution does not exist, negotiation techniques are ex-

ploited to enlarge the solution domain. The work in [28] proposes a decentralised

self-adaptation mechanism using market-based heuristics for service-based ap-

plications in the cloud. Continuous double-auction is used to select services for

composition to meet the changing quality requirements. The authors in [60] pro-

pose a framework named MOSES that supports quality-driven adaptation of a

service-oriented system at runtime. MOSES is able to select and implement adap-

tation actions based on a combination of both the service selection and coordina-
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tion pattern selection mechanisms. The optimal service adaptation problem is

formulated as a Linear Programming (LP) problem and the computational cost

is investigated. However, the existing works mainly focus on single-tenant en-

vironment and the computational complexity may be high due to the process of

finding optimal solution and negotiation, and hence are not suitable for the run-

time adaptation of multi-tenant SBSs.

2.1.3.2 Fault tolerance based on service redundancy

In order to improve the effectiveness and efficiency in fixing runtime anomalies in

SBSs, some researchers have looked into the use of service redundancy for fault

tolerance to mitigate the impact of service anomalies. Inspired by the success

of hardware redundancy for tolerating hardware failures, software redundancy

by using multiple versions of independently developed software has become a

widely accepted means to improve the reliability and availability of a software

system [77]. Service redundancy usually uses services with similar or identical

interfaces as redundant replicas aiming at fault tolerance and performance im-

provement of SBSs. In [30], the authors present a distributed replication strategy

evaluation and selection framework for fault tolerant Web services. Time redun-

dancy, space redundancy and the combinations of the two are studied. Similar

strategies are used in [60] for service adaptation to obtain quality levels that could

not be achievable by single service. The work presented in [78] investigates the

inherent redundancy and diversity of services, base on which, the authors pro-

pose solutions to improve the dependability of SBSs and two invocation strate-

gies of redundant services are employed: sequential and simultaneous. In [79],

a framework is proposed for selecting the optimal fault tolerance strategy for an

SBS, which is modelled as an optimisation problem with user requirements as lo-

cal and global constraints, and a heuristic algorithm is used to find the solution.

These works and the like all assume that all the services are equally important

to the service providers, and thus probably make them overpay for the services
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which are not critical, or cannot mitigate the system failures effectively because

of the absence of protection to critical services under a budget constraint.

2.2 Motivating example and requirements analysis

After reviewing the state-of-the-art for quality management at different lifetime

stages of SBSs, we can see that some critical issues remain unresolved in the sce-

nario of multi-tenant SBSs, which are challenging yet fundamental for the wide

application of multi-tenant SBSs in the cloud. Existing approaches are insufficient

in aspects such as efficiency, multi-tenancy support, cost-effectiveness, etc. Thus,

we advocate that a systematic solution should be provided, which can effectively

and efficiently manage the quality of multi-tenant SBSs across their whole life-

time.

2.2.1 Motivating example

This section presents an example multi-tenant SBS, namely Versatile Online Video

Studio (VOVS) [80] to motivate this research.

As shown in Fig. 2.1, this SBS consists of nine tasks. Similar to [20][21][27][81],

t1
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t3

t2

t7t5 t9

t8

t6

t1: Access Control Service t2: Video on Demand 
t4: Video Transcoding

t3: Video Uploading

t9: Video Analyticst8: Live Eventt7: Video, Audio and Subtitle Merger
t6: Multilingual Subtitle Generationt5: Audio Extration

Internet

…
…
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……
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Figure 2.1: Business process of VOVS.
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there is a group of functionally equivalent candidate services with differentiated

quality values available for each of the tasks of VOVS. The system engineer needs

to select component services from the corresponding set of candidate services (re-

ferred to as service class) for tasks t1 to t9 to compose the SBS, which provides three

types of online video services to multiple tenants. The notation and acronym

summary for this thesis can be found in the appendix.

In VOVS, t1 provides the Access Control Service (ACS) to authenticate tenants

when their end users try to gain access to the SBS. After the tenants are authen-

ticated, the end users can use different categories of video services: t2 is used to

view videos on demand (VoD); t8 offers the live streams services, which are used

to broadcast or watch live videos; while t3 to t7 provide services for uploading,

editing, and publishing the video clips; t3 hosts the uploaded videos; t4 transcodes

the videos to different formats and resolutions compatible with various end de-

vices; t5 extracts audio streams from the videos, with which multilingual subtitles

are generated by t6; t7 merges the videos, audios and subtitles, and publishes the

synthetic video clips; t9 performs video analytics, which carries out measurement

and analysis of the videos viewed and uploaded online for user experience opti-

misation.

This SBS has the following characteristics:

1. In order to reduce the time and cost, the whole or part of the business pro-

cess can be implemented and deployed by other system vendors in the form

of Web services in the cloud. The system engineer selects a component ser-

vice from the corresponding service class for each task to formulate the SBS

in the form of service composition to serve multiple tenants simultaneously.

2. For some tenants, trade-offs may exist between different quality dimensions

of their quality requirements. In this way, the tenants’ quality requirements

are no longer deterministic but becomes dynamically varied and correlated.

For example, the cost that a tenant can accept may increase along with the
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increase of system throughput. Such quality requirements must be consid-

ered in the process of service selection.

3. After the SBS is built, it must process the video stream timely and con-

tinuously to ensure low-latency streaming of high quality videos. In the

dynamic and volatile cloud environment, various runtime anomalies may

happen in the services that constitute the system, such as service unavail-

ability, network failure, etc. If an anomaly cannot be fixed in a timely man-

ner, the tenants sharing the faulty service will suffer from increased latency

in the video stream or even denial of service, which can easily lead to cus-

tomer complaints and attrition. Service monitoring and adaptation are es-

sential for handling anomalies in a dynamic and volatile environment to

ensure the quality of its video streaming, such as response time, through-

put, etc.

4. The tenants that share the SBS have multi-dimensional quality requirements

and preferences, as well as different business scenarios. Firstly, the tenants

may contain end users that access the SBS with different kinds of end de-

vices, and thus have different concerns on quality of the SBS. For example,

when viewing videos on demand, tenants that offer services for end users

using laptops on a home network may prefer high resolution and low la-

tency without worrying about cost incurred by data traffic, while tenants

that access the SBS with a mobile network may prefer relatively low res-

olution to limit the cost incurred by data traffic and be endurable to long

buffering time. In addition, the tenants may subscribe to VOVS for dif-

ferent purposes, e.g., watching videos on demand or live videos, and thus

anomalies of some services may not affect the tenants who do not use them.

These need to be taken into account in the quality management at different

lifetime stages of the SBS.

For such a multi-tenant SBS, the requirements for the quality management at
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each lifetime stage are analysed in the following sections.

2.2.2 Requirements analysis

2.2.2.1 Quality management for service selection

In this stage, we focus on ensuring high effectiveness of service selection whilst

improving its efficiency, and service selection based on tenants’ correlated quality

requirements.

Existing approaches for service selection often suffer from high computational

overhead by finding the optimal solutions, especially in large-scale scenarios.

Service recommendation is a practical way to address this issue. As we have

discussed in Section 2.2.1, tenants’ quality requirements for the SBS are often

characterised by distinctive features, e.g., some prefer higher throughput while

others prefer lower cost. The quality values of candidate services, on the other

hand, also have the similar features, i.e., the functionally equivalent services (e.g.,

video transcoding) provide differentiated quality and trade-offs can be found be-

tween the multi-dimensional quality values. In such context, an effective and

efficient service selection approach using service recommendation should fulfil

the requirements as follows:

1. Recommending the "right" candidate services according to the tenants’ dif-

ferentiated quality requirements. For example, a candidate service that can

respond service requests quickly should have high potential to participate

in the service selection for the tenants that prefer lower response time.

2. Catering for the tenants’ varied quality preferences in service recommen-

dation. The quality preferences of the tenants that share the corresponding

component service should be taken into consideration when ranking the

functionally equivalent candidate services for recommendation.

3. Ensuring high effectiveness of service selection whilst improving its effi-
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ciency by reducing the search space of the problem of service selection sig-

nificantly.

In order to handle the tenants’ correlated quality requirements, a successful

service selection approach should support the following features:

1. Formalising the correlated quality requirements appropriately, by which,

the trade-offs between different quality dimensions of the requirements can

be captured.

2. Facilitating effective and efficient service selection to fulfil multiple tenants’

correlated quality requirements simultaneously. The optimisation goal in

service selection, if any, should also be achieved in the meanwhile.

2.2.2.2 Quality management for service monitoring

In this stage, we focus on the effectiveness especially cost-effectiveness and effi-

ciency of service monitoring.

Service monitoring must be implemented to guarantee the quality of the SBS

after it is composed by service selection. As discussed in Section 2.2.1, cost-

effectiveness is a critical issue in service monitoring and limited resources should

be allocated to those component services which are critical to the quality of the

SBS. However, the impacts of different component services on the quality of the

SBS upon runtime anomalies are different, and the severity of the impact of an

anomalous component service on the SBS is also varied to different tenants due to

their different business scenarios [82]. In order to reduce the quality degradation

and quality violation caused by runtime anomalies within the system vendor’s

monitoring budget, an approach for cost-effective monitoring should meet the

requirements as follows:

1. Identifying critical component services based on their multi-dimensional

quality, the tenants’ quality preferences and their service sharing across the

SBS.
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2. Formulating monitoring strategies by determining the key monitoring pa-

rameters for the component services to be monitored such as number of

monitors, monitoring frequency, monitoring granularity.

3. Achieving high cost-effectiveness in monitoring the critical component ser-

vices. The trade-off between monitoring benefit, resource cost and system

overhead within the system vendor’s monitoring budget should be consid-

ered systematically.

2.2.2.3 Quality management for service adaptation

When the runtime anomalies are detected by service monitoring, it is of tremen-

dous importance to fix the anomalies effectively in a timely manner to reduce the

risk of quality violation. In this stage, we focus on improving the effectiveness

and efficiency of service adaptation.

Re-optimising the entire SBS upon runtime anomalies is potentially time con-

suming and is often impractical. Thus, the efficiency of system adaptation must

be given a higher priority over the optimality of the system quality. Efficient ser-

vice adaptation at runtime need to fulfil the following requirements:

1. Efficiently finding appropriate candidate services in terms of quality values

for quick replacements of the anomalous component services.

2. If the quality violation cannot be eliminated after service replacements and

system re-optimisation is unavoidable, service selection for re-optimisation

must still be of high efficiency.

3. After service adaptation, the quality requirements of all tenants for the SBS

must still be satisfied.

As another promising way to ensure the quality of the SBS, fault tolerance

can alleviate or mitigate impacts of runtime anomalies on the system quality of

the SBS by deploying redundant services for all or some component services.
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The redundant services coordinate with the corresponding component service

with certain redundancy mode, such as sequence and parallel. An approach for

formulating cost-effective fault tolerance strategies should support the following

requirements:

1. Identifying critical component services in the SBS, which is the same as that

in service monitoring.

2. Prioritising the critical component services in the formulation of fault toler-

ance strategies to achieve cost-effectiveness.

3. Effectively and efficiently reducing the risk of quality degradation and qual-

ity violation upon runtime anomalies.

2.3 Summary

In this chapter, the literatures in relation to the research problems have been re-

viewed intensively. The major issue of existing research is the lack of a systematic

solution that supports the quality management for SBSs in a multi-tenant envi-

ronment at different lifetime stages, namely service selection, service monitoring

and service adaptation. Based on a motivating example, the research require-

ments for addressing this issue have been analysed in detail.
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Chapter 3

Framework of LQM4MTS

In this chapter, we introduce the framework of LQM4MTS, the proposed solution

for lifetime quality management for multi-tenant SBSs.

3.1 Overview of the framework

LQM4MTS consists of a set of approaches that cover the whole lifetime of a multi-

tenant SBS to address the key issues of quality management discussed in Section

1.2 and fulfil the research requirements discussed in Section 2.2.2. Its framework

is shown in Fig. 3.1, in which each module represents an approach for the quality

management at corresponding lifetime stage of a multi-tenant SBS.

At the stage of service selection, we propose two approaches as follows:

• SSR4MTS (Service Selection based on service Recommendation for Multi-

Tenant SBSs): SSR4MTS aims at effective yet (especially) efficient service se-

lection using service recommendation based on clustering techniques [34].

The similarity between tenants’ quality requirements and services’ qual-

ity values are innovatively explored. It firstly builds tenant clusters based

on the diversity and similarity in their multi-dimensional quality require-
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Figure 3.1: Framework of LQM4MTS.

ments. After that, the common quality features of each tenant cluster are

extracted, based on which, the candidate services are grouped into different

clusters accordingly. By doing so, candidate services with similar quality

features to the corresponding tenants’ quality requirements can be effec-

tively and efficiently identified and recommended as representatives for

service selection. Thus, SSR4MTS is particularly suitable for the scenario

where both the tenants’ quality requirements and services’ quality values

have distinctive features.

• SSC4MTS (Service Selection based on Correlated quality requirements for

Multi-Tenant SBSs): SSC4MTS is designed to handle the tenants’ quality

requirements with correlations. It innovatively formalises a tenant’s corre-
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lated quality requirement with a quality correlation function, which from

the perspective of spatial geometry can be represented with a graph, e.g., a

(straight or curved) line or a surface, in a Euclidean space. With the avail-

able candidate services, the service selection based on a correlated quality

requirement is modelled as a Constraint Optimisation Problem (COP), in

which the quality correlations are used as quality constraints for service se-

lection.

At the stage of service monitoring, we propose an approach as follows:

• SMC4MTS (Service Monitoring based on Criticality for Multi-Tenant SBSs):

SMC4MTS cost-effectively monitors the critical component services in ser-

vice composition of a multi-tenant SBS. The criticality of a component ser-

vice is evaluated based on its impacts on the quality of the SBS upon run-

time anomalies and the tenants sharing the service. The services with higher

criticalities in an SBS are given higher priorities in monitoring. Multiple

monitoring parameters and the corresponding monitoring benefit, moni-

toring resource cost and incurred system overhead are systematically con-

sidered in the formulation of cost-effective monitoring strategies.

At the stage of service adaptation, we propose two approaches as follows:

• SAL4MTS (Service Adaptation based on LSH for Multi-Tenant SBSs):

SAL4MTS is a runtime service adaptation approach based on Locality Sen-

sitive Hashing (LSH), which, upon a runtime anomaly, rapidly finds the re-

placement service for the anomalous component service based on the qual-

ity similarity between the anomalous service and the corresponding can-

didate services. The replacement service can then be used to locally adapt

the multi-tenant SBS to the runtime anomaly in a timely manner to reduce

the adverse impacts on the tenants sharing the anomalous component ser-

vice. If tenants’ quality requirements cannot be satisfied after service re-

placement, SSR4MTS can be used for service re-selection of the entire SBS.
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• FTC4MTS (Fault-Tolerance based on Criticality for Multi-Tenant SBSs):

FTC4MTS formulates cost-effective fault tolerance strategies for multi-tenant

SBSs by providing redundancy for the critical component services in service

composition. The criticality of a component service is the same as that in

SMC4MTS. Redundant services for a component service are selected from

the corresponding candidate services. A fault tolerance strategy specifies

the allocation of redundant services for the critical component services and

their redundancy mode, such as sequence or parallel. Based on the for-

mulated fault tolerance strategy, redundant services can replace anomalous

component services at runtime to significantly reduce the risk of system

quality violation. In contrast to SAL4MTS, FTC4MTS can protect the SBS

from runtime anomalies with higher performance but consume more re-

sources due to the deployment of redundant services.

After a multi-tenant SBS is built with service selection based on SSR4MTS

and SSC4MTS, it is monitored using SMC4MTS to detect the runtime anomalies

to guarantee the quality of the SBS. Once the runtime anomalies are detected,

service adaptation based on SAL4MTS or FTC4MTS can be used to adapt the SBS

to ensure that the SBS remains operational and available. If re-optimisation of

entire SBS is unavoidable upon runtime anomalies, service re-selection process

is carried out to build a new SBS based on the candidate services to fulfil the

tenants’ quality requirements.

3.2 Summary

In this chapter, the framework of LQM4MTS is presented. The proposed ap-

proaches in LQM4MTS for the quality management for multi-tenant SBSs at dif-

ferent lifetime stages, namely service selection, monitoring and adaptation, are

introduced. The fundamentals and application scenarios of these approaches are

also discussed.
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Chapter 4

Composition quality model

Quality evaluation of a service composition is the basis for quality management

for SBSs. In this chapter, we introduce the composition quality model adopted

in this research, including composition pattern, execution path, execution plan,

characteristics of numerical quality, and utility evaluation. This chapter is based

on my paper [80].

This chapter is organised as follows. Section 4.1 introduces the composition

patterns of services. Then Section 4.2 presents the definitions of execution path

and execution plan. Section 4.3 introduces the characteristics of the quality di-

mensions adopted in this thesis. The evaluation of utility is presented in Section

4.4 . Finally, Section 4.5 summarises this chapter.

4.1 Composition pattern

A system engineer selects services from a number of sets of candidate services

(also known as service classes) to compose an SBS with certain composition pat-

terns to serve multiple tenants. Composition patterns describe the order in which

the services are executed in the service composition of an SBS. Similar to other
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Figure 4.1: Composition patterns.

work [13][20], as Fig. 4.1 shows, four basic composition patterns are included in

our model: Sequence, Parallel, Conditional Branch and Loop.

1. Sequence: The services are executed sequentially.

2. Parallel: All the branches {b1, b2, . . . , bn} are executed at the same time.

3. Conditional Branch: There is a set of branches {b1, b2, . . . , bn} in this structure,

and only one of them can be selected to execute at one time with a proba-

bility p(bi)(0 ≤ p(bi) ≤ 1,
∑n

i=1 p(bi) = 1).

4. Loop: In this structure, every loop iterates for i times with a probability p(li),

where 0≤ i ≤MNI ,
∑MNI

i=0 p(li) = 1 and MNI is the expected maximum num-

ber of iterations for the loop.

p(bi) in Conditional Branch and p(li) in Loop can be obtained by the system en-

gineer through the analysis of tenants’ business requirements as well as the cor-

responding SLA.

Fig. 4.2 shows an instance of the example SBS VOVS presented in Fig. 2.1.

Component services s1 to s9 have been selected to create the service composition.

We can identify three types of composition patterns in VOVS: Sequence, Parallel,

and Conditional Branch. For example, in response to each service request, s1, s2, s9
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are executed in sequence; s4, s5 and s6 are performed in parallel; s2, s3 and s8 are

located on conditional branches, only one of which is selected each time with a

probability that depends on the distribution of tenants’ functional requirements.

In this thesis, we mainly focus on Sequence, Parallel and Conditional Branch.

The loop structure is transformed to the conditional branch structure with the

loop peeling method described in [13]. Fig. 4.3 shows an example of the loop

peeling process where the expected maximum number of iterations is 2. This

loop structure is transformed into a conditional branch structure that contains

three branches b1, b2 and b3, which are selected to execute with the probabilities

of p(b1), p(b2) and p(b3) respectively.

4.2 Execution path and execution plan

Due to the branches in a service composition, execution paths and execution

plans can be identified, which are defined as follows:

Definition 4.1. Execution Path. Denoted by ep, an execution path is a flattened

sequence of services from the initial service to the final service in a service com-

position. It does not contain conditional branch and parallel structures. A service

can belong to multiple execution paths.

s1

s4

s3

s2

s7s5 s9

s8

s6

Internet

…

Tenant1

Tenant2

Tenantm

VOVS

Figure 4.2: An SBS instance of VOVS.
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Definition 4.2. Execution Plan. Denoted by epl, an execution plan is a combi-

nation of execution paths with conditional branch or parallel structures, which

accomplishes certain functional requirements. It serves multiple tenants in an

SBS. A service can also belong to multiple execution plans.

As depicted in Fig. 4.4, five execution paths and three execution plans are

identified for the instance of VOVS in Fig. 4.2. epl1 is used for Video on Demand

service, epl2 is for the tenants to upload, edit and publish their video clips, and

epl3 streams live videos.

4.3 Quality characteristics

The quality of an SBS is evaluated based on all its possible execution plans ac-

cording to their execution probabilities, which is calculated based on the execu-

tion probabilities of their execution paths [13]. Table 4.1 shows the aggregation

functions for evaluating the overall quality of an SBS S with four numerical qual-
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Figure 4.4: Execution paths and execution plans of VOVS.

ity dimensions: cost, response time, reliability and throughput, which are typical

quality dimensions considered by many works [20][21][60]. Their quality values

are denoted by qct, qrt, qre and qt p, respectively, and si, j represents the j th service in

the ith service class. epk is the kth execution path and p(eple) is the execution prob-

ability of the eth execution plan. Take response time of VOVS as an example, it can

be calculated by qrt(VOVS) = p(epl1)×qrt(epl1)+p(epl2)×qrt(epl2)+p(epl3)×qrt(epl3),

and the response time of each execution plan is determined by its execution path

with the longest execution time.

The numerical quality dimensions in Table 4.1 can be divided into two cate-

gories: positive and negative, defined as follows:

Definition 4.3. Positive Quality Dimension. If the quality evaluation increases

along with the increase of quality value, the quality dimension is regarded as

positive, such as throughput and reliability.

Definition 4.4. Negative Quality Dimension. A quality dimension is negative if

its evaluation will decrease as its value increases, such as cost and response time.

The model and experiments in this thesis are mainly based on the quality
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dimensions presented in Table 4.1. The quality dimensions introduced in other

literatures can be included as added dimensions in our model.

Table 4.1: Quality Aggregation Functions

Quality Dimension Aggregation Function

Cost
qct(S) =

∑

si, j∈eple
eple∈S

p(eple) × qct(si, j)

Response Time

qrt(eple) = max
epk∈eple

(
∑

si, j∈epk

qrt(si, j))

qrt(S) =
∑

eple∈S

p(eple) × qrt(eple)

Reliability qre(S) =
∏

si, j∈S

qre(si, j)

Throughput

qt p(eple) = min
epk∈eple

( min
si, j∈epk

qt p(si, j))

qt p(S) =
∑

eple∈S

p(eple) × qt p(eple)

4.4 Utility evaluation

Services in the same service class are functionally equivalent but usually differ-

ent in their multi-dimensional quality values. As shown in Fig. 2.1, the Video

on Demand service in VOVS provided by one service provider may have better

performance as well as higher price than a service with the same functionality

provided by another provider. Which service is better in service selection de-

pends on the quality preferences of the tenants sharing the service. In this thesis,

we rank the services in a service class based on their utility, which is defined as

follows:

Definition 4.5. Service Utility. The utility of a service indicates tenants’ gener-

alised preferences for the service. It is calculated based on the quality values of

the service and the tenants’ quality preferences by applying the Simple Additive

Weighting (SAW) technique [83].

Different quality dimensions can be adopted in the calculation of service util-

ity, depending on the scenarios.
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4.4 UTILITY EVALUATION

In order to remove the incomparability between the units of measurement

for different quality dimensions, the original numerical quality values are nor-

malised first using (4.1) for positive quality dimensions and (4.2) for negative

quality dimensions with widely used Min-Max normalisation technique [13][20]:

Qp(si, j)=































qp(si, j)−qmin
p (sci)

qmax
p (sci)−qmin

p (sci)
if qmax

p (sci)6=qmin
p (sci)

1 if qmax
p (sci)=qmin

p (sci)

(4.1)

Qp(si, j)=































qmax
p (sci)−qp(si, j)

qmax
p (sci)−qmin

p (sci)
if qmax

p (sci)6=qmin
p (sci)

1 if qmax
p (sci)=qmin

p (sci)

(4.2)

where qmax
p (sci) and qmin

p (sci) are the maximum and minimum values, respectively,

for the pth quality dimension in the ith service class; qp(si, j) is the pth dimensional

quality value of the j th service in the ith service class; and Qp(si, j) is the normalised

pth quality value of service si, j . In this thesis, a specific quality dimension can

be indicated by both “pth“ and the abbreviations of their names, e.g., “rt“ for

response time, “t p“ for throughput, etc.

Similar to [22][19], for a multi-tenant SBS, we use (4.3) to calculate the average

preference for each quality dimension of a service across all the tenants:

wave
p =

1

τ
×

τ
∑

t=1

wt,p, p = 1, . . . , d (4.3)

where τ is the number of tenants that share a given service, and a system engineer

can usually obtain tenants’ quality preferences from their SLAs. Parameter wt,p

indicates the tth tenant’s preference for the pth quality dimension,
∑d

p=1 wt,p = 1

where d is the number of quality dimensions.

Then, the utility of a given service si, j with d quality dimensions across τ ten-
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ants is calculated by (4.4):

u(si, j) =

d
∑

p=1

wave
p × Qp(si, j) (4.4)

The utility of an execution plan eple can be obtained by (4.5):

u(eple) =
∑

si, j∈eple

u(si, j) (4.5)

Finally, the utility of an SBS S can be calculated by (4.6):

u(S)) =
∑

eple∈S

p(eple) × u(eple) (4.6)

where p(eple) is the execution probabilities of eple. In general, an SBS with higher

utility is more preferable by the tenants.

4.5 Summary

In this chapter, the composition quality model used in this research is presented,

which is the foundation of lifetime quality management for multi-tenant SBSs.

In the following chapters, the quality evaluation in different approaches are all

based on this quality model.
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Part I

Quality management for service

selection
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Chapter 5

Service selection based on service rec-

ommendation

As discussed in Section 1.2, service selection for multi-tenant SBSs is the process

of selecting from a number of candidate services to create service compositions to

fulfil the tenants’ differentiated quality requirements and achieving the optimisa-

tion goals in the meantime, such as the minimised cost, maximised throughput,

etc. It is a Constraint Optimisation Problem (COP) and NP-Complete [14], which

can be computationally expensive to find an optimal solution especially in large-

scale scenarios. Thus, it is of tremendous importance to improve the efficiency of

service selection for multi-tenant SBSs whilst ensuring its high effectiveness. In

this chapter, we introduce SSR4MTS (Service Selection based on service Recom-

mendation for Multi-Tenant SBSs), which supports effective and efficient service

selection using service recommendation based on clustering techniques. Tenants

and candidate services are clustered based on the quality requirements and qual-

ity values respectively, and the similarity between them is explored, by which, the

appropriate candidate services in terms of quality values can be recommended

for the service composition to achieve high effectiveness yet especially high effi-
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5.1 SSR4MTS APPROACH

ciency in service selection. This chapter is based on my paper [19][81].

This chapter is organised as follows. Section 5.1 introduces the SSR4MTS ap-

proach. Then Section 5.2 presents the experimental evaluation of SSR4MTS in

terms of effectiveness and efficiency. Section 5.3 discusses how SSR4MTS can be

used for service adaptation at runtime and how SSR4MTS can be enhanced by

adopting alternative clustering algorithms. Finally, Section 5.4 summarises this

chapter.

5.1 SSR4MTS approach

As discussed in Section 2.2.2, tenants’ quality requirements for a multi-tenant

SBS are often characterised by distinctive features, based on which, the tenants

can be partitioned into different groups, i.e., clusters. Take the SBS VOVS intro-

duced in Section 2.2.1 for example, some tenants that use the Video on Demand

(VoD) service may require minimised video buffering time in spite of higher cost,

whilst others can accept slow response time in order to reduce the overall cost.

In this case, the tenants can be grouped into two clusters based on their quality

requirements. On the other hand, the functionally equivalent candidate services

(e.g., the video transcoding services in VOVS) often provide differentiated multi-

dimensional quality values and trade-offs can be found between them. For ex-

ample, a candidate service for video transcoding service in VOVS can respond

quickly to tenants’ service requests at a higher price, while another candidate

service with same functionality may show a slower response at a more afford-

able price. Based on this, the functionally equivalent candidate services in each

service class can also be categorised into different clusters.

According to the principles of clustering, tenants are similar in the same clus-

ter but different from those in other clusters in terms of quality requirements, and

so do the services with respect to the quality values. Based on such similarity and

diversity, we are able to establish the connections between tenant clusters and ser-
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Figure 5.1: The procedure of SSR4MTS.

vice clusters. For example, the services with lower prices potentially are preferred

by the tenants that have stringent demand on the lower cost. SSR4MTS is to rec-

ommend suitable services for the composition of a multi-tenant SBS by exploring

the similarity between tenants’ quality requirements and services’ quality values.

As shown in Fig. 5.1, SSR4MTS is a five-phase process. We first calculate the

similarity between tenants in phase 1 based on their quality requirements and

partition them into different tenant clusters. After that, in phase 2, the feature

of quality requirements in each tenant cluster is identified and mapped onto the

quality space of services. Then, in phase 3, we cluster the candidate services in

each service class according to the quality features mapped from tenant clusters.

In phase 4, candidate services in each service cluster are ranked according to their

utility. Finally, in phase 5, the services with high utilities in each cluster are rec-

ommended as representatives to build the search space of service selection, and

the solution of service composition is found with Mixed Integer Programming

(MIP) technology. These five phases are detailed one by one in this section.

5.1.1 Phase 1: Tenant clustering

In this phase, with the help of clustering technique in data mining [34], the ten-

ants are partitioned into different clusters based on the similarity and diversity in

their quality requirements. Quality values are often measured on different scales.

We need to normalise them to the same range. In our approach, we use widely

used cost and response time as two example quality dimensions. The tenants’

quality requirements with these two quality dimensions are first normalised us-
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ing (5.1) with widely used Min-Max normalisation technique [13]:

rnp(te)=































rmax
p (T )−rp(te)

rmax
p (T )−rmin

p (T )
if rmax

p (T )6=rmin
p (T )

1 if rmax
p (T )=rmin

p (T )

(5.1)

where rmax
p (T ) and rmin

p (T ) are the maximum and minimum values, respectively,

for the pth quality requirements of all tenants, and rp(te) is the value of the pth

quality requirement of the eth tenant, while rnp(te) is the normalised value.

Then, we use K-Means, a popular algorithm for clustering, to build a list of

tenant clusters TC = {tc0, tc1, ..., tck} according to the tenants’ normalised quality

requirements. K-Means is a lightweight algorithm that can efficiently cluster ten-

ants according to the characteristics of their quality requirements [84][85]. The

selection of k value in K-Means algorithm is domain-specific and can be deter-

mined by the system engineers empirically on a case-by-case basis. In addition,

various approaches have been proposed for optimal k value selection [86], how-

ever, we do not discuss this in detail in this thesis. Because tenants usually have

specific optimisation goals for the system quality [20][22], as an example through-

out this chapter, we consider two optimisation goals of tenants based on the two

example quality dimensions: minimising cost or minimising response time. Ac-

cordingly, the tenants can be categorised into two clusters based on their quality

requirements. Thus we feed K-Means algorithm with k = 2, which indicates the

number of tenant clusters. After clustering, the tenants in a cluster are of high

similarity compared to one another in terms of quality requirements but are very

dissimilar to tenants in any other cluster.

5.1.2 Phase 2: Similarity mapping

Based on the numerical characteristic of quality requirements and quality values,

both tenants and services can be represented as the points in a multi-dimensional

vector space. Although given the fact that tenants’ quality requirements for the
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SBS are global whereas the services’ quality values are local, we can identify a

connection between these two levels of quality. For example, tenant te requires

fast response time and consequently can accept a high cost, and candidate ser-

vice si, j may have the similar quality feature, i.e., it can respond the service re-

quest quickly at a high price. Therefore, si, j has the high potential to participate

in the execution plan that meets te’s quality requirements. When clustering is

completed, there is a centroid in each tenant cluster that represents the feature of

quality requirements in that cluster. Since the tenants’ quality requirements have

been normalised in phase 1 and all quality values have been converted into the

range of [0, 1], thus the centroids of tenant clusters can be mapped to the points

in the multi-dimensional vector spaces that represent the service classes, where

the mapped points will be used as centroids for service clustering in phase 3.

5.1.3 Phase 3: Service clustering

In this phase, candidate services are partitioned into different clusters based on

their multi-dimensional quality. Each service cluster has the similar quality fea-

ture with its corresponding tenant cluster. For the same purpose of eliminating

the incomparability between the measurement scales for different quality dimen-

sions, the quality values of candidate services are first normalised using (5.2) with

Min-Max normalisation technique [13]:

qnp(si, j)=































qmax
p (SCi)−qp(si, j)

qmax
p (SCi)−qmin

p (SCi)
if qmax

p (SCi)6=qmin
p (SCi)

1 if qmax
p (SCi)=qmin

p (SCi)

(5.2)

where qmax
p (SCi) is the maximum value and qmin

p (SCi) is the minimum value for

the pth quality dimension in the ith service class, qp(si, j) is the quality value of the

pth dimension of the j th service in the ith service class, and qnp(si, j) denotes the pth

normalised quality value of si, j .

After that, for each candidate service, the Euclidean distances between the

48
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services and the existing centroids mapped from tenant clusters are calculated

with (5.3). The service is categorised into the service cluster represented by the

centroid with shortest distance to the service.

dEUS =

√

√

√ t
∑

p=1

|qnp(si, j) − qp(csci,l)|
2 (5.3)

where qp(csci,l) is the quality value of the pth dimension of the mapped centroid

of the lth service cluster in the ith service class.

For example, the Euclidean distance between service s0,0 and the two mapped

centroids csc0,0 and csc0,1 are 0.42 and 0.14 respectively. Thus, s0,0 is categorised

into cluster 1 of service class 0. When service clustering completes, we can get

a list SCLUi = {sclui,0, sclui,1, ..., sclui,k} for service class SCi, where each entry

sclui,l(0 ≤ l ≤ k) denotes a service cluster.

5.1.4 Phase 4: Service ranking

Each service class SCi = {si,0, ..., si,m}, SCi ∈ S, contains m functionally equivalent

candidate services with differentiated multi-dimensional quality. It is a complex

multi-attribute decision making problem to select from these services to create a

service composition based on their quality values. For the aim of selecting repre-

sentatives in each service cluster, we rank the services in the same service cluster

according to their utility value. We use the method discussed in Section 4.4 for

service utility evaluation based on tenants’ multi-dimensional quality preferences

on the entire SBS and service’s multi-dimensional quality.

The tenants’ quality preferences are usually differentiated. For example, a

tenant may have strong preference for response time, while another may prefer

high system throughput. In this thesis, we use weights to represent the tenants’

preference trade-off between different quality dimensions. Given the fact that

tenants’ quality preferences are often varied, we use the average weights across

all the tenants that share a given service class SCi to calculate the utility of the
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service.

The average weight on a quality dimension of service class SCi is calculated

by (5.4):

wi,p =
1

ti
×

ti
∑

e=1

we,p, p = 1, ..., d (5.4)

where ti is the number of tenants that share service class SCi, d is the number of

quality dimensions, we,p indicates the eth tenant’s weight for its quality preference

for the pth quality dimension,
∑d

p=1 we,p = 1 and wi,p is the average weight for the

quality preferences for the pth quality dimension across all the tenants that share

SCi. The tenants’ quality preferences can be obtained by the system engineer

through the analysis of tenants’ business requirements as well as the correspond-

ing SLA [87].

The quality values of candidate services have been normalised in Phase 3 to

allow a uniform measurement of the multiple quality dimensions regardless of

their different scales. After that, we calculate the average utility of a given service

si, j using the normalised d-dimensional quality values and d-dimensional average

quality weights. Formula (5.5) is the widely used Simple Additive Weighting

(SAW) method [83]:

u(si, j) =

d
∑

p=1

×qnp(si, j) (5.5)

where qnp(si, j) is the normalised quality value of the pth quality dimension of si, j .

Then, the services in each service cluster are ranked by their utility values.

The services with higher utilities will be recommended for service composition

in the next phase.

5.1.5 Phase 5: Service recommendation for composition

In this phase, service selection for multi-tenant SBS is modelled as a Constraint

Optimisation Problem (COP). Given an SBS S that consists of n(n ≥ 1) tasks and

serves t(t ≥ 1) tenants simultaneously, there are n service classes SCi, i = 1, ..., n,

and each SCi contains m(m ≥ 1) candidate services si, j , j = 1, ...,m, that vary in
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d-dimensional quality values qp, p = 1, ..., d. The aim of service selection for

S is to find a solution to create a service composition with t execution plans

eple, e = 1, ..., t, to meet the corresponding tenants’ overall quality requirements

for the SBS simultaneously and individually, and in the meantime, to achieve the

optimisation goal of service selection collectively, such as maximising the overall

utility of the system.

We first use the tenants’ overall quality requirements as a set of constraints

on the end-to-end quality of the SBS, and model the problem as a Constraint

Satisfaction Problem (CSP), which consists of a set of 0-1 integer variables X =

{x1, ..., xy} and a set of constraints over X. In the process of finding a solution to

the CSP model, each variable is assigned a value of 0 or 1 and thus all constraints

of the CSP can be fulfilled. For an SBS S shared by t tenants, if there are n service

classes and each of them consists of m candidate services, then t × n ×m variables

xe,i, j(e = 1, ..., t, i = 1, ..., n, j = 1, ...,m) are created in the CSP. xe,i, j with value of 1

indicates that the j th service in the ith service class is selected to participate in the

execution plan for the eth tenant, 0 otherwise. In the model, the constraints are as

follows:
m
∑

j=1

xe,i, j = 1, ∀e ∈ [1, t], ∀i ∈ [1, n] (5.6)

t
∑

e=1

m
∑

j=1

xe,i, j = t, ∀i ∈ [1, n], ∀ j ∈ [1,m] (5.7)

qp(eple) ≤ ce,p, ∀e ∈ [1, t], ∀p ∈ [1, d] (5.8)

Constraint family (5.6) guarantees that for each tenant one and only one service

in each service class can be selected for composition, and constraint family (5.7)

ensures that each tenant has an execution plan. Constraint family (5.8) makes

sure that tenants’ overall multi-dimensional quality requirements for the SBS can

be satisfied, where ce,p, e = 1, ..., t, p = 1, ..., d is the pth quality requirement of the

eth tenant.

When solving the CSP problem above, multiple feasible solutions can be found,
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among which the optimal one should be identified in order to achieve the op-

timisation goal of service selection. Therefore we turn the CSP into a COP by

adding to it an objective function that quantifies the optimisation goal. We adopt

maximising the overall system utility as the optimisation goal, which can be ex-

pressed by (5.9):

Ob jective(S) : Maximising(u(S)) (5.9)

where (u(S) is the overall system utility of S, which is calculated as introduced in

Section 4.4.

In order to build the search space of candidate services for the COP, we use a

greedy method by which the representative services with the best utility values

are selected from each service cluster in a multi-round manner. The steps of this

method are as follows:

1. From each service cluster in a service class, T (tcc) × 2R services are selected

and added into the search space in the Rth round, where T (tcc) is the number

of tenants in the cth cluster and
∑k

c=1 T (tcc) = t (k is the cluster number used

for the K-Means algorithm and t is the total number of tenants), and R is the

round in which the solving process is performed.

2. In the Rth round, after inserting the representative services into the search

space, the IP technique is used to solve the COP.

3. If a solution of the COP is found, go to step 4. If no solution can be found

and more candidate services are available, R increases by 1 and go to Step

1 for a new round. If a solution is not found and all the candidate services

are exhausted, the process terminates.

4. After a solution of the COP is found, execution plans can be created based

on the solution to fulfil both the quality requirements of tenants and the

optimisation goal of service selection.

Based on our service recommendation approach, the service selection method
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introduced above is a greedy method intrinsically, which is able to find the near-

optimal solutions to the COP.

5.2 Experimental evaluation

We have conducted a range of experiments to evaluate our service recommenda-

tion approach in terms of effectiveness and efficiency. Section 5.2.1 introduces the

evaluation metrics. Section 5.2.2 describes the experimental setup of our evalua-

tion. Section 5.2.3 analyses the experimental results of SSR4MTS.

5.2.1 Evaluation metrics

Extensive experiments are conducted to evaluate SSR4MTS in terms of effective-

ness and efficiency. The effectiveness is measured by the following two metrics:

• Success rate, which is defined by the percentage of test instances where a

satisfactory solution for service selection is found.

• System optimality, which is evaluated based on the objectives of the COPs.

The efficiency of all approaches is evaluated based on the average computa-

tion time needed for service selection for an SBS.

5.2.2 Experimental setup

We implemented SSR4MTS in Java with JDK 1.6.0. For the aim of comparison

with other existing approaches, we also implemented four other optimisation ap-

proaches. IBM CPLEX v12.6, a popular linear programming tool, is used to solve

the COPs.

The services used in our experiments are created based on QWS [88], a pub-

licly available Web service dataset that consists of more than 2500 real-world

Web services with nine-dimensional quality including response time. We ran-

domly divided them into n (up to 100) service classes. Cost is randomly gener-
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ated and added to each candidate service as an additional quality dimension, and

the trade-off between cost and response time is considered, e.g., the cost of a ser-

vice should be higher if it offers faster response time. The overall system utility is

used to model the optimisation goal of maximising the tenants’ satisfaction over

the SBS.

We run experiments with different n, i.e., the number of service class, and the

experimental results are consistent with those from the experiments on the VOVS

introduced in Section 2.2.1. We use n = 10 as the default setup for the experiments

introduced in next section unless otherwise specified.

For the purpose of simplicity without losing generality, tenants’ quality over-

all requirements for the SBS are generated based on response time and cost, which

are used as representative quality dimensions throughout this chapter. In this

process, the tenants’ optimisation goals based on the two example quality di-

mensions are considered. Thus, as discussed in Section 5.1.1, the tenants are par-

titioned into two clusters. We conducted experiments with different numbers of

tenants (up to 500), and the experimental results are consistent with those from

the experiments demonstrated in this section.

Tenants usually have diverse quality requirements for an SBS, which are mod-

elled as the quality constraints in the COP for service selection. The difficulties

in finding a solution to satisfy these requirements are different, sometimes easy

sometimes hard. These different difficulties are quantified by the difficulty levels

in the experiments. The work in [13] has demonstrated that the difficulty lev-

els of tenants’ quality requirements have a significant impact on the efficiency

of service selection. Therefore, we use the method proposed in [13] to generate

the quality constraints of the COP randomly with different difficulty levels: easy,

medium, and severe. A constraint with difficulty level of easy can be satisfied eas-

ily, while a severe constraint is the most difficult to satisfy due to the stringent

demand imposed on the corresponding quality dimension.

Most existing approaches for service selection are designed for single-tenant
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SBSs [13][20][27]. In the experiments, we implemented an optimisation approach

originated from [49] named Skyline-Global and three other optimisation approaches

proposed in MSSOptimiser [22], which are originated from [27][49] and adjusted

for the purpose of comparison in the context of multi-tenant SBSs:

• Skyline-Global: In each service class, skyline services are identified, and then

clustered using K-Means. Representative service with the highest utility

in each cluster is recommended for service selection. Service clustering,

recommendation and selection are executed in a multi-round and greedy

manner. Execution plans for all the tenants are created in one COP model.

• Exact-Global: Execution plans for all the tenants are created in one COP

model. All the candidate services in each service class are inserted into the

search space at one time.

• Greedy-Global: The search space of candidate services is built in multiple

rounds with a greedy algorithm. The representative services with highest

utility values are prioritised to enter the search space. Execution plans for

all the tenants are also created in one COP model.

• Exact-Local: Execution plans for the tenants are created one by one in respec-

tive COP models. All the candidate services in each service class are added

to the search space at one time.

We conducted the experiments on a machine running Windows 7x64 Enter-

prise with Intel(R) Core (TM) i5-4570 3.2 GHz CPU and 8 GB RAM. For each set

of experiments, the results are collected, averaged and compared from 100 test

instances.

5.2.3 Experimental results

In this section, we evaluate SSR4MTS in terms of its effectiveness and efficiency

in service selection by comparing the success rate and the computation time with
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four other approaches introduced in the previous section.
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Figure 5.2: Selection success rates vs number of tenants.

We first compare the five optimisation approaches in terms of success rates,

which are represented by the percentage of scenarios where a solution of the COP

is found. We fixed the number of candidate services in each service class at 100

and varied the number of tenants from 10 to 60 in steps of 10. The results show

that clustering technique and greedy algorithm used in our approach have no

negative impact on the effectiveness. As shown in Fig. 5.2, the success rates

demonstrated by Skyline-Global and Exact-Local decrease from 100% to 49% and

0% respectively as the number of tenants changes from 30 to 60, while the suc-

cess rates obtained by other three approaches maintain at a relatively high level

(about 90% or above) across all scenarios. The sharp decrease in success rate of

Exact-Local is because it creates execution plan for each tenant in respective COP

model. Once the candidate services are selected to create one execution plan for a

tenant, they will be removed from the search space. This leads to the decrease in

the number of available candidate services for the remaining tenants, which can

cause failures in service selection. The success rate obtained by Skyline-Global

also decreases because the available candidate services are reduced by using sky-

line technique. Other approaches consider all tenants in one COP model and can

use all the candidate services without removing any one from the search space,
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Figure 5.3: Selection computation time at different ratios,
and difficulty levels of quality requirements.

and thus show relatively high success rates.

And then we evaluate the efficiency of SSR4MTS by comparing the compu-

tation time with other approaches. Computation time is used to represent the

computational overhead introduced in building an SBS through service compo-

sition, which is a major concern of the SBS vendor. Due to the fact that tenants

usually have different quality requirements, which can be regarded as the points

in a multi-dimensional vector space, we use the ratio between the numbers of

tenant in the two different clusters to present the distribution of tenants. In this

set of experiments, we fixed the number of tenants at 100 and the number of can-

didate services in each service class at 300. Then we changed the difficulty levels

of tenants’ quality requirements from easy to severe, and the ratio between the

numbers of tenants in the two clusters from 5:5 to 1:9, where 5:5 means the even

distribution of tenants in the two clusters, while 1:9 indicates that there are much

more tenants in the second cluster than in the first cluster.

The experimental results are shown in Fig. 5.3. When the difficulty level of

quality requirements changes from easy to severe, or the ratio varies from 5:5 to

1:9, the computation times shown by all approaches increase. However, com-

pared with four other approaches, SSR4MTS shows a better performance except

when the difficulty level is easy, where all approaches can easily find solutions

to the COPs and SSR4MTS is marginally outperformed by Greedy-Global and
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Skyline-Global. The Exact-Global approach can obtain the global optimal solu-

tion but consumes the most computation time across all the test instances (over

100s on average in the worst case). Exact-Global and Exact-Local are outper-

formed by SSR4MTS in all cases. The computation time obtained by Greedy-

Global increases dramatically when the difficulty level of quality requirements

increases and the ratio becomes uneven, which reaches approximately 70s on av-

erage when difficulty level is severe and ratio is 1:9. Its slight advantage over

SSR4MTS shown in Fig. 5.3 (a) is because SSR4MTS consumes some extra time

in clustering tenants and candidate services, and in the scenarios where the solu-

tions to the COP are easily found, the extra time consumed has obvious impact

on the total computation time. Skyline-Global outperforms SSR4MTS marginally

because it only clusters the skyline candidate services for selection. However,

when quality requirements become hard to satisfy and the ratio becomes uneven,

the extra time introduced by clustering constitutes only a very small portion of

the total computation time, and thus can be neglected. In such circumstance the

advantage of SSR4MTS approach becomes more apparent. As presented in Fig.

5.3 (c), when the difficulty level of quality requirements is severe, indicating that

tenants’ quality requirements are difficult to fulfil, the advantage of SSR4MTS

in outperformance over Greedy-Global starts to increase significantly. The ex-

perimental results show that our service recommendation approach can capture

the differences between tenants’ quality requirements and distribution, based on

which, SSR4MTS can achieve high efficiency in service selection.

In the experiments of this chapter, maximising the overall system utility is

used as optimisation goal of the COP, as indicated by formula (4.6). Accordingly

a higher overall system utility indicates higher system optimality. This can be

used to evaluate the effectiveness of SSR4MTS in finding the optimal solution.

We conducted a set of experiments to investigate the objective values of the solu-

tions found by the five approaches after solving the COPs. The objective value in-

dicates the overall system utility. We combine the utilities with the selection suc-
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5.2 EXPERIMENTAL EVALUATION

Table 5.1: Comparison in System Optimality (Utility ×

Success Rate / UtilityOPT )

Number of tenants:
number of services

SSR4MTS
Greedy-
Global

Exact-
Global

Exact-
Local

Skyline-
Global

10 : 100 98.3% 90.1% 100% 100% 75.2%
20 : 100 98.1% 94.9% 100% 99.9% 74.1%
30 : 100 99.3% 98.7% 100% 59.1% 72.9%
40 : 100 99.6% 99.9% 100% 23.1% 61.4%
50 : 100 100% 100% 100% 2.3% 44.4%

cess rates and compare them with the optimal utilities obtained by Exact-Global,

which considers all the candidate services at one time and thus can find the op-

timal solutions. Similar calculation and comparison of system optimality have

also been employed in [13], which is extended in this thesis by taking success

rate into consideration. We fix the number of candidate services per service class

at 100, and vary the number of tenants from 10 to 50. As demonstrated in Ta-

ble 5.1, the system optimality obtained by SSR4MTS is nearly the same as that of

Exact-Global (more than 98% across all the cases). The Exact-Local and Skyline-

Global show degraded optimalities when the number of tenants increases due to

the success rate of finding a solution decreases dramatically. The experimental

results show that in spite of the greedy method used in service recommendation

and selection, SSR4MTS can still maintain high system optimality because of the

utility-based service ranking process in the service recommendation.

In order to analyse the impact of difficulty level of tenants’ quality require-

ments, we compare the computation time of the five approaches at different dif-

ficulty levels by fixing the ratio at 5:5. As presented in Fig. 5.4, when the diffi-

culty of quality requirements varies from easy to severe, the computation time

observed for all approaches increases. However, due to the greedy methods used

to build service search space, SSR4MTS, Skyline-Global and Greedy-Global beat

Exact-Local and Exact-Global. SSR4MTS outperforms other approaches across

all test cases. Skyline-Global and Greedy-Global achieve computation time sim-

ilar to SSR4MTS, approximately 200ms on average less than that achieved by
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Figure 5.4: Selection computation time at different diffi-
culty levels of quality requirements.

Exact-Local. The computation time obtained by Exact-Global increases exponen-

tially when the difficulty level of quality requirements varies from easy to severe,

which is much higher than those of other approaches.

After comparing with other four approaches in terms of success rate and

computation time, we can see that our service recommendation-based approach

SSR4MTS can ensure high effectiveness of service selection in finding a solution,

and it is the best option in most cases where efficiency is the major concern. When

the tenants’ quality requirements are hard to satisfy and distributed unevenly

with distinctive features, the advantages of SSR4MTS are obvious, because it is

more efficient in service selection by finding appropriate services to fulfil the ten-

ants’ requirements based on the quality similarity between them. Exact-Local is

able to obtain an excellent performance with satisfactory optimality where a large

number of candidate services are available and thus the success rate can be guar-

anteed. Skyline-Global is similar to Exact-Local with higher efficiency but lower

success rates and optimality. Exact-Global might be more preferred in scenarios

with a strong preference in optimality in spite of the potential high computational
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overhead, especially in large-scale scenarios.

5.3 Discussion

SSR4MTS is designed to support effective and efficient service selection at build-

time, however, it also can be used at runtime to improve the efficiency of service

adaptation when re-optimisation of SBS is unavoidable. In fact, our runtime LSH-

based service adaptation approach is based on the service clusters discussed in

this chapter.

We use the widely known clustering algorithm K-Means in SSR4MTS. Due to

the inherent limitations of the K-Means algorithm, the number of clusters must

be pre-specified, and different initial centres may result in different final clusters.

However, these can be overcome by utilising alternative clustering methods. In

fact, SSR4MTS does not rely on the K-Means algorithm. Other clustering algo-

rithms can also be integrated into SSR4MTS in different domains as long as they

serve the domain-specific needs.

5.4 Summary

In this chapter, we present SSR4MTS, a novel approach for service selection using

service recommendation based on clustering techniques. It focuses on the quality

management for multi-tenant SBSs at the lifetime stage of service selection. The

evaluation results show that SSR4MTS can guarantee high effectiveness whilst

significantly improve the efficiency of service selection.
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Chapter 6

Service selection based on correlated

quality requirements

When different dimensions of tenants’ quality requirements for an multi-tenant

SBS become correlated, the quality requirements are no longer deterministic but

dynamically varied, which raises new challenge to the service selection for multi-

tenant SBSs. In this chapter, we introduce Service Selection based on Corre-

lated quality requirements for Multi-Tenant SBSs (SSC4MTS), which supports the

formalisation of quality correlations and service selection for multi-tenant SBSs

based on correlated quality requirements. This chapter is based on my paper

[89].

This chapter is organised as follows. Section 6.1 introduces the SSC4MTS ap-

proach. Then Section 6.2 presents the evaluation of SSC4MTS in terms of effec-

tiveness and efficiency. Section 6.3 discusses some premises of SSC4MTS. Finally,

Section 6.4 summarises this chapter.
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6.1 SSC4MTS approach

SSC4MTS consists of two phases. First, the correlated quality requirements are

formalised with quality correlation functions. Then the service selection for multi-

tenant SBSs based on such quality requirements is modelled as a Constraint Opti-

misation Problem (COP) and Integer Programming (IP) techniques are employed

to find the optimal solution.

6.1.1 Formalisation of correlated quality requirements

The correlated quality requirements for an SBS can be initially expressed with

qualitative and linguistic terms, which then can be formalised empirically by the

system engineers during the Service Level Agreement (SLA) negotiation process.

From the perspective of the system engineer, three examples of correlated quality

requirements on cost and throughput of the online video streaming system VOVS

introduced in Section 2.2.1 are as follows:

• Requirement of tenant 1 (r(t1)): "It is acceptable to pay 1 dollar for each increase

of 1, 000 req/s (requests per second) in throughput, up to 20 dollars in total, and

the throughput cannot be less than 2, 000 req/s".

• Requirement of tenant 2 (r(t2)): "We would like to pay 2 dollars for each increase

of 1, 000 req/s in throughput, but the throughput must be more than 4, 000 req/s

and cost must be less than 32 dollars".

• Requirement of tenant 3 (r(t3)): "We only can pay 0.5 dollars for each increase

of 1, 000 req/s in throughput after paying 6 dollars of basic service charge, and the

throughput of more than 20, 000 req/s is unnecessary."

The correlations, i.e., trade-off, between cost and throughput, as well as the

constraint on each dimension, can be identified from the above quality require-

ments, which can be represented explicitly with three functions, named quality
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6.1 SSC4MTS APPROACH

correlation function in this thesis. For a quality correlation with d (d ∈ N+, d ≥ 2)

dimensions, the function is defined by (6.1):

qp(t) = f (q1(t), ..., qp−1(t), qp+1(t), ..., qd(t)) |

f or ∀i ∈ [1, d], qi(t) ∈ [qmin
i , q

max
i ]

(6.1)

where qi(t) is the variable that represents the ith dimension of quality requirement

from tenant t. qmin
i

and qmax
i

are the minimum and maximum constraints on the ith

quality dimension respectively. Then the three abovementioned correlated qual-

ity requirements can be represented with (6.2) to (6.4):

r(t1) : qct(t1) = qt p(t1), qt p(t1) ≥ 2, qct(t1) ≤ 20 (6.2)

r(t2) : qct(t2) = 2(qt p(t2) − 4), qt p(t2) ≥ 4, qct(t2) ≤ 32 (6.3)

r(t3) : qct(t3) =
1

2
qt p(t3) + 6, 2 ≤ qt p(t3) ≤ 20 (6.4)

where qct and qt p are the variables that represent the quality values of cost and

throughput respectively, and their units are dollars and 103req/s respectively.

Similar to many other research works [13][20][40], in this thesis, we only fo-
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Figure 6.1: Example quality correlation functions.
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cus on the quality dimensions with numerical values. Thus from the perspec-

tive of spatial geometry, a quality correlation function that involves d quality

dimensions can be represented with a graph, e.g., a straight or curved line, in

a d-dimensional Euclidean space. With cost and throughput, Fig. 6.1 shows the

three example quality correlation functions including (6.2) to (6.4). Because the

quality evaluation of throughput increases along with the increase of its quality

value, a higher throughput incurs higher cost. Thus, as demonstrated by the cor-

relation functions in Fig. 6.1, the cost monotonically increases with throughput.

In order to eliminate the impact of different measurement units of quality di-

mensions in quality correlation, we normalise the quality value of each dimen-

sion of a quality requirement into the same range [0, 1]. For a given qp(t), we can

normalise it by (6.5) with widely used Min-Max normalisation technique [20].

Qp(t)=































qp(t)−qmin
p (S)

qmax
p (S)−qmin

p (S)
if qmax

p (S)6=qmin
p (S)

1 if qmax
p (S)=qmin

p (S)

(6.5)

where qp(t) is the variable that represents the quality value of the pth dimension

of quality requirements of tenant t, qmax
p (S) and qmin

p (S) are the pth maximum and

minimum quality values respectively that SBS S can offer based on the available

candidate services, qp(t) ∈ [qmin
p (S), qmax

p (S)], and Qp(t) represents the normalised

pth quality value of the requirement. Then with (6.5), equation (6.6) holds:

qp(t)=(qmax
p (S)−qmin

p (S)) × Qp(t) + qmin
p (S) (6.6)

With (6.1) and (6.6), we can obtain the normalised quality correlation function

(6.7):

Qp(t) = f (Q1(t), ...,Qp−1(t),Qp+1(t), ...,Qd(t)) |

f or ∀i ∈ [1, d], Qi(t) ∈ [Qmin
i , Qmax

i ]

(6.7)
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where Qmin
i

and Qmax
i

are the normalised minimum and maximum constraints on

the ith quality dimension respectively.

Taking the quality correlation functions (6.2) to (6.4) for example. Given the

maximum and minimum throughput in Fig. 6.1 are 20, 000 and 2, 000 req/s re-

spectively, and the maximum and minimum cost of the SBS are 32 and 2 dollars

respectively, we can obtain the normalised quality correlation functions (6.8) to

(6.10) according to (6.5) and (6.6):

R(t1) : Qct(t1) =
3

5
Qt p(t1), Qt p(t1) ≥ 0,Qct(t1) ≤ 1 (6.8)

R(t2) : Qct(t2) =
6

5
Qt p(t2) −

1

5
, Qt p(t2) ≥

1

9
,Qct(t2) ≤ 1 (6.9)

R(t3) : Qct(t3) =
3

10
Qt p(t3) +

1

6
, 0 ≤ Qt p(t3) ≤ 1 (6.10)

Their function graphs are shown in Fig. 6.2.

The maximum and minimum quality values that SBS S can offer can be ac-

quired with greedy methods. For example, for each task in the SBS, we select the

candidate service with the highest cost, and then we can obtain the maximum

cost of the SBS by calculating its overall cost with the corresponding quality ag-

gregation function introduced in Section 4.3.
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There may be multiple quality correlations in a tenant’s requirement, which

can be handled in the same manner. After the quality correlation functions are

normalised, service selection can be performed based on the functions and the

candidate services.

6.1.2 Service selection for multi-tenant SBSs

In the service selection of SBS S, only the service compositions that satisfy the

tenants’ quality requirements in all dimensions can be regarded as satisfactory

solutions. As shown in Fig. 6.3, the grey area is enclosed by the line segments of

the example quality correlation functions (6.8) to (6.9) that represents the tenants’

correlated quality requirements. Only the service compositions with normalised

quality values that fall in this area are satisfactory to the tenants, such as s1 to s4.

There are often optimisation goals in service selection for the SBS, such as

minimised cost, maximised throughput, etc. In such context, service selection

is to select proper services to create service compositions to fulfill tenants’ qual-

ity requirements, while achieving the optimisation goals. As shown in Fig. 6.3,

service composition s1 is the best solution if the optimisation goal is to minimise

S1

S2

S3

S4

Figure 6.3: Service compositions with satisfactory quality.
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the cost, while s4 is definitely better than others when the optimisation goal is

maximised throughput.

In SSC4MTS, we use quality Satisfaction Degree to represent the optimality of

a satisfactory solution. Given a service composition s and the quality correla-

tion function that represents the requirements of tenant ti, f is the point with the

shortest Euclidean distance to s in terms of quality values on the graph that rep-

resents the quality correlation function. The quality satisfaction degree (denoted

by QSD) of s to a tenant ti is defined by (6.11):

QSD(s, ti) = w1 × ‖∆Q1(s, ti)‖ + ... + wd × ‖∆Qd(s, ti)‖, i ∈ [1,T ] (6.11)

where

∆Qp(s, ti) = Qp(s, ti) − Qp( f ), p ∈ [1, d], i ∈ [1,T ] (6.12)

and

wi =

∂Qp( f )

∂Qi( f )

∂Qp( f )

∂Q1( f )
+ ... +

∂Qp( f )

∂Qd ( f )

|

d
∑

i=1

wi = 1 (6.13)

∆Qp is the difference in the pth normalised quality value of tenant ti’s requirement

between f and s. wi represents the tenant’s preference on the ith quality dimen-

sion, which is calculated based on the partial derivatives of the quality correlation

function with respect to each Qi(u) at f . All the points on the graph of quality cor-

relation function have the same quality satisfaction degree with value of 0. Fig.

6.4 shows an example with cost and throughput, where f is the perpendicular

foot of s to the line segment that represents the quality correlation function of

tenant t1.

Then the average QSD of service composition s is calculated by (6.14):

QSD(s) =
1

T

T
∑

i=1

QSD(s, ti) (6.14)

Then we can model the problem of service selection as a Constraint Optimi-

sation Problem (COP). We use maximising the quality satisfaction degree as the
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objective of the COP. Considering an SBS S with n tasks, and each of them is as-

sociated with a service class containing m candidate services, we create a set of

0-1 integer variables xi = {xi,1, xi,2, . . . , xi,m} for the ith service class. xi, j with value

of 1 means that the j th candidate service in the ith service class is selected for the

composition of SBS S. The COP is formulated with (6.15) to (6.18):

Ob jective : Maximising QSD(S) (6.15)

Qp(S) ≺ Cp, p ∈ [1, d] (6.16)

Qp(S, ti) ≺ f (Q1(S, ti), ...,Qp−1(S, ti),Qp+1(S, ti), ...,Qd(S, ti)), i ∈ [1,T ] (6.17)

m
∑

j=1

xi, j = 1, i ∈ [1, n], j ∈ [1,m] (6.18)

where symbol ≺ means "as good as or better than". Constraint family (6.16) en-

sures that tenants’ constraints on every single quality dimension can be fulfilled,

Qp(S) is the normalised pth quality value of S, and Cp is the tenants’ normalised

pth quality constraint for S, which can be obtained based on their quality correla-

tion functions. Constraint family (6.17) guarantees that the quality correlations in

the tenants’ requirements can be satisfied. Constraint family (6.18) ensures that

only one service in each service class can be selected to compose S. We employ

Integer Programming (IP) technique to find the optimal solution of the COP. The

method for finding a point f with the shortest Euclidean distance to a given ser-

vice composition in terms of quality values is domain-specific, which depends

on the quality correlation function. Take the quality correlation functions in Fig.

6.4 for example, f can be found in many ways, such as IP techniques, Lagrange

multiplier methods, etc.

6.2 Experimental evaluation

In this section, we present the experimental evaluation of SSC4MTS. Section 6.2.1

introduces the evaluation metrics. Section 6.2.2 introduces the setup of the ex-

periments. Sections 6.2.3 and 6.2.4 present the evaluation of effectiveness and
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s

Δ Qtp

Δ Qct

f

QSD(s,t1)=(9Δ Qtp+25Δ Qct)/34

Figure 6.4: An example of quality satisfaction degree calcu-
lation.

efficiency of SSC4MTS respectively.

6.2.1 Evaluation metrics

We have conducted a range of experiments in a simulated environment to evalu-

ate SSC4MTS in terms of effectiveness and efficiency by comparing it with other

representative approaches. The effectiveness is again measured by two quantita-

tive metrics: success rate and system optimality.

1. Success rate is defined by the percentage of test cases where a satisfactory

solution for service selection is found.

2. System optimality is evaluated based on the objectives of the COPs, which

are defined in (6.15). The objective values of the solutions found by different

approaches are investigated and compared.

The efficiency of all approaches is evaluated based on the computational over-

head, which is the average computation time needed for service selection for an

SBS.
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6.2.2 Experimental setup

SSC4MTS is implemented in Java with JDK 1.6.0. IBM CPLEX v12.6, a widely

used linear programming tool, is again used to solve the COPs. Two representa-

tive approaches, similar to [22], are implemented for comparison as follows:

• Utility-Optimal: A COP is created for service selection where the objective

is to maximise the system utility. Average user preference for each quality

dimension is adopted.

• Random: A naive and non-optimal approach, which selects a candidate

service randomly from each service class for service composition.

For the demonstration purpose, we use throughput and cost as two represen-

tative quality dimensions. The correlations between them in the quality require-

ments are linear. Other quality dimensions and correlations can be handled in the

similar manner. The services used in the experiments are also generated based

on QWS [88]. For each service, the cost is generated randomly by considering the

trade-off between cost and throughput of the service.

The quality correlation and quality constraints determine the difficulty level

of fulfilling a tenant’s quality requirements. The works in [13][19] have demon-

strated that the difficulty levels of tenants’ quality requirements have signifi-

cant impacts on the performance of service selection, especially the success rates.

Thus, in the experiments, we generate tenants’ quality constraints with different

difficulty levels: easy, medium and severe, which are combined with different

quality correlation functions to simulate the quality requirements in different dif-

ficulty levels. Fig. 6.5 shows an example based on cost and throughput, where

the quality requirement represented by F3 is more difficult to satisfy than that

represented by F1 due to a much small solution space.

In order to compare SSC4MTS with other approaches more comprehensively,

we have mimicked SBSs with different numbers of tasks n (up to 100) and dif-

ferent numbers of candidate services in each service class m (up to 500). The

71



6.2 EXPERIMENTAL EVALUATION

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalised Throughput

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
o
rm

al
ise

d
 C

o
st

Medium

SevereMedium

Easy

F
3

F
1

F
2

Figure 6.5: Difficulty levels of tenants’ quality require-
ments.

findings are consistent with those from the experiments on the VOVS introduced

in Section 2.2.1.

All the experiments were again conducted on a machine running Windows

7x64 Enterprise with Intel(R) Core (TM) i5-4570 3.2 GHz CPU and 8 GB RAM.

The experimental results are collected, averaged and compared from 100 test in-

stances.

6.2.3 Effectiveness evaluation

6.2.3.1 Comparison in success rates

With different n and m, similar comparison results in success rates are observed

by changing difficulty levels of quality requirements. As an example, we fix n

at 10, m at 10, vary the difficulty level of quality requirements from easy to se-

vere, and investigate the success rates obtained by the three approaches in find-

ing the solutions of service selection. As shown in Fig. 6.6, SSC4MTS and Utility-

Optimal achieve the same success rates and outperform Random across all sce-

narios. When difficulty level changes from easy to severe, the success rates of

SSC4MTS and Utility-Optimal decrease from 100% to 68%, while Random shows
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Figure 6.6: Success rates at different difficulty levels of ten-
ants’ quality requirements.

a dramatic decrease from 65% to 0%.

6.2.3.2 Comparison in optimality

Then we compare the three approaches in the system optimality with different

difficulty levels of quality requirements. In this set of experiments, system opti-

mality is measured by comparing SSC4MTS with Utility-Optimal and Random

in terms of the quality satisfaction degree of the SBS. The comparison results are

shown in Table 6.1. SSC4MTS shows the highest system optimality across all sce-

narios as expected. Utility-Optimal outperforms Random significantly with an

average system optimality of 0.86. Random obtains the lowest system optimality,

which is even not available due to the success rate of 0% when the difficulty level

is severe.

Table 6.1: Comparison in System Optimality
(QSD(S))/QSDoptimal)

Difficult Level SSC4MTS Utility-Optimal Random
Easy 1.0 0.78 0.25
Medium 1.0 0.89 0.51
Severe 1.0 0.92 N/A
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6.2.4 Efficiency evaluation

6.2.4.1 Comparison in computation time

We conduct a range of experiments to evaluate the efficiency of SSC4MTS in this

scenario. We change the number of tasks n, the number of candidate services per

service class m, different quality correlation functions, etc., and compare the com-

putation times consumed by all approaches. The results are consistent, which are

demonstrated by an example in Fig. 6.7. We fix n at 10, difficulty level of quality

requirements at medium, and vary m from 20 to 100 in steps of 20. Random shows

the highest efficiency as expected with an average computation time of 0.01ms.

SSC4MTS, which outperforms Utility-Optimal by 117ms on average, shows an

increase in computation time from 37ms to 91ms when m increases to 100. The

results show again that compared with other approaches, SSC4MTS can find the

optimal solution to the COP with low computational overhead in most, if not all,

scenarios.
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Figure 6.7: Computation time vs the number of candidate
services per service class.
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6.3 Discussion

In SSC4MTS, we focus on the quality requirements that can be represented by the

linear quality correlation functions, however, the more complicated correlation

functions, such as those with quadratic expressions, can be handled in a similar

manner. The limitation is due to the capability of optimisation (linear or non-

linear programming) tools. The quality correlation functions can be provided

and formalised empirically by the system engineers of the SBS through the for-

mulation of SLAs. However, the formalisation of quality correlation functions is

domain-specific, which should be determined on a case-by-case basis.

6.4 Summary

In this chapter, we introduce a novel approach named SSC4MTS for service se-

lection based on correlated quality requirements. The correlations between dif-

ferent quality dimensions of requirements are formalised with quality correlation

functions and integrated into the COP that models the service selection problem.

Quality satisfaction degree is proposed to use as the optimisation goal of service

selection. The experimental results show that, compared with other represen-

tative approaches, SSC4MTS can find the optimal solutions for service selection

with high success rates, high system optimality, and acceptable computational

overhead.
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Chapter 7

Service monitoring based on critical-

ity

As discussed in Section 1.2, it is of tremendous significance to monitor a multi-

tenant SBS to provide quality guarantee to all tenants that share the SBS. Formu-

lating cost-effective monitoring strategies is a challenging but crucial issue to be

addressed. In this chapter, we introduce cost-effective Service Monitoring based

on Criticality for Multi-Tenant SBSs (SMC4MTS), which aims at achieving cost-

effectiveness in service monitoring for multi-tenant SBSs by identifying and pri-

oritising the critical component services, i.e., the component services with high

criticality, in the formulation of monitoring strategies. This chapter is based on

my paper [82].

This chapter is organised as follows. Section 7.1 introduces the SMC4MTS ap-

proach. Then Section 7.2 presents the effectiveness and efficiency of SMC4MTS

based on experimental evaluation. Section 7.3 discusses how the service criti-

cality can be used in other scenarios such as service adaptation for multi-tenant

SBSs. Some premises of SMC4MTS are also discussed. Finally, Section 7.4 sum-

marises this chapter.
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Figure 7.1: System architecture of SMC4MTS.

7.1 SMC4MTS approach

As discussed in Section 2.2.2, when identifying critical component services in the

formulation of monitoring strategy for a multi-tenant SBSs, we must consider

the adverse impacts on the system quality of an SBS caused by the component

services upon runtime anomalies, as well as tenants’ different business scenar-

ios and their differentiated quality preferences. Thus, SMC4MTS calculates crit-

icalities of the component services in a multi-tenant SBS based on the follow-

ing three metrics: a) quality-based criticality, which is evaluated with sensitiv-

ity analysis techniques based on the impacts caused by service anomalies on the

multi-dimensional quality of the SBS, b) tenant-based criticality, which is evalu-

ated based on the impacts caused by service anomalies on multiple tenants in the

SBS, and c) tenants’ differentiated multi-dimensional quality preferences for the

SBS. After the critical component services are identified, monitoring strategies

can be formulated within the system vendor’s monitoring budget by determin-

ing the component services to be monitored, and the corresponding monitoring

parameters, such as number of monitors, monitoring frequency and granularity.

Fig. 7.1 shows the system architecture of SMC4MTS, which includes four

functional components. Their roles are as follows:

1. Criticality Calculator: This component calculates service criticality based
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7.1 SMC4MTS APPROACH

on quality of service, tenants’ quality preferences and their service sharing.

2. Component Service Sorter: This component ranks component services ac-

cording to their criticalities.

3. Local Monitoring Strategy Generator: This component generates local mon-

itoring strategies for each component service in the SBS based on the mon-

itoring parameters, and the corresponding benefits, resource cost and sys-

tem overhead.

4. Global Monitoring Strategy Optimiser: This component formulates an op-

timal global monitoring strategy for the entire SBS based on the local moni-

toring strategies.

SMC4MTS consists of six phases, as shown in Fig. 7.1. In Phase 1, we calculate

the service criticality for each dimension of quality with the Sensitivity Analysis

(SA) technique. In Phase 2, the criticality based on multi-tenancy is evaluated

by analysing tenants’ multi-dimensional quality preferences and service sharing.

Based on the outcomes of Phase 1 and Phase 2, in Phase 3, the overall criticality

of each service is calculated, by which the services in the composition are ranked

in Phase 4. Local monitoring strategies are then generated in Phase 5. Finally,

in Phase 6, formulation of cost-effective monitoring strategy based on criticality

is modelled as an optimisation problem, and the Integer Programming (IP) tech-

nique is used to find the solution. These six phases are detailed one by one in this

section.

7.1.1 Phase 1: quality-based criticality computation

In a dynamic cloud environment, various changes can occur to the component

services of an SBS. The changes can be positive or negative, causing quality upgra-

dation or degradation to the services, which often impacts the quality of the SBS.

In SMC4MTS, we consider only the negative changes, i.e., quality degradation
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Figure 7.2: Execution plan 2 (epl2) of VOVS.

incurred by runtime anomalies occurring to the services, as they can result in

end-to-end system quality violation.

The sensitivities of the quality degradation of the SBS with respect to the qual-

ity degradation of different services may vary. Take Fig. 7.2 for example, as in-

troduced in Section 4.2, there is a parallel structure composed by s4, s5 and s6 in

the execution plan epl2 of VOVS. The execution time of the parallel structure de-

pends on the maximum execution time of s4, s5 and s6. Assume that the execution

time of s4, s5 and s6 are 5ms, 10ms and 15ms respectively, when a delay of 10ms

occurs to each service respectively, the corresponding delays caused to epl2 by

s4, s5 and s6 are 0ms, 5ms and 10ms, which thereby may have different impacts

on the end-to-end response time of the SBS. We adopt the Sensitivity Analysis

method, which is widely used in many areas [90][91][92], to quantify and anal-

yse the impacts of quality degradation of component services on the end-to-end

system quality.

We measure the criticality of a given service by the sensitivity of the quality

degradation of an SBS S in comparison to the quality degradation of that ser-

vice. In order to quantitatively evaluate the quality degradation of a component

service, we first define quality degradation coefficient as follows:

Definition 7.1. Quality Degradation Coefficient. Denoted by qdc
p , the quality

degradation coefficient indicates the maximum quality degradation level of the

pth quality parameter of a component service, represented by the ratio of the vari-
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ation in the pth quality value upon anomaly to the original quality value.

Take s1 in Fig. 7.2 for example, if the quality degradation coefficients for re-

sponse time and throughput are 200% and 80% respectively, the corresponding

quality value of s1 will increase by 200% to 300% of its original value and decrease

by 80% to 20% of its original value respectively upon anomalies.

As shown in formula (7.1), we then degrade the pth quality value of compo-

nent service si by qdc
p in steps of ∆qp percentage for r iterations, e.g., increasing re-

sponse time or decreasing throughput of si by 20% each time. In the kth(0 ≤ k ≤ r)

iteration, we investigate the variation percentage of pth quality value of S relative

to its original value, denoted by ∆q
vp

k,p
(S, si), and divide it by the variation percent-

age of the quality of si which is represented by ∆q
vp

k,p
(si). The results are summed

and averaged based on r iterations as the criticality of the pth quality dimension

of si, denoted by cr
Q
p (si).

crQ
p (si) =

r
∑

k=1

(
∆q

vp

k,p
(S, si)

∆q
vp

k,p
(si)

)

r
, r =

qdc
p

∆qp

(7.1)

When employing (7.1) in an SBS containing n component services, only the

quality value of one service is varied at a time. In reality, however, the other

n− 1 component services may fail at the same time. According to the quality

aggregation functions in Table 4.1 and the composition patterns in Figure 4.1, the

quality degradations caused by multiple anomalous services can cumulate (as

shown in Fig. 7.3 (a)) or mask (as shown in Fig. 7.3 (b)) one another. However,

the effects of different anomalies on the quality of the SBS are independent, which

therefore does not affect the criticalities of the component services.

In real-world scenarios, the quality degradation coefficient varies from ser-

vice to service and thus must be determined empirically on a case-by-case basis.

This is because there are many uncertain factors that may impact the actual qual-

ity degradation caused to a service by a runtime anomaly, e.g., the time taken to
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Figure 7.3: Effects of multiple service anomalies on SBS-
level degradation in response time.

diagnose the anomaly, the difficulty of fixing the anomaly, etc. For the sake of

simplicity, in this thesis we use a unified qdc
p across all the services without af-

fecting the effectiveness of the proposed approach. Alternatively, the maximum

quality degradation level of a specific service can be evaluated by inspecting the

service’ past executions, clients’ feedbacks, system vendors’ profile, the SLA, etc.

In addition, formula (7.1) does not handle the varied failure probabilities of dif-

ferent component services and the scenario where one quality degradation level

is likely to occur more than another. For example, s1 in VOVS may fail more fre-

quently than s2 when processing a same amount of service requests, and a 20%

response time degradation more likely to occur in s1 than a 40% degradation.

However, the probability distributions of service failure and quality degradation

are domain specific. The proposed approach can be adjusted to deal with specific

requirements, e.g., using a weighting process based on probabilities to differen-

tiate the contribution of each service failures to the system quality degradation,

which does not influence the effectiveness of our approach either.

In SMC4MTS, we adopt response time and throughput as example quality

dimensions to calculate the quality-based criticality of a component service. In

terms of reliability, all the component services are equally important in contribut-

ing to the overall system quality according to the quality aggregation functions
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presented in Table 4.1. The cost of a service does not change upon anomalies.

However, reliability and cost can play important roles in criticality calculation in

scenarios where more complicated reliability model and pricing model are ex-

pected, such as the reliability based on the structure of an SBS, the considera-

tion of the cost for fixing a service anomaly, etc. Please note that some criticality

measures other than the one based on sensitivity analysis in this thesis, such as

reliability-based criticality discussed in [73][74][75], can be used for service criti-

cality calculation in a similar manner.

7.1.2 Phase 2: tenant-based criticality computation

As introduced in Section 2.2.2, a multi-tenant SBS such as VOVS often contains

multiple execution plans that serve different tenants with different functional re-

quirements. All the tenants can access the SBS through service requests simulta-

neously, and the SBS is executed upon the receipt of each service request. How-

ever, some component services are not shared by all the tenants, such as the Video

on Demand service and Live Event service in VOVS. From the system vendor’s

perspective, these services are not equally critical and resources should be al-

located to the services that serve more tenants and respond to more service re-

quests. Given the fact that the quality degradation of a component service may

only affect the tenants sharing the service, the tenant-based criticality of a service

is calculated by (7.2):

crT (si) =
τ(si)

τ(S)
×
ξ(si)

ξ(S)
(7.2)

where τ(si) is the number of tenants sharing service si, τ(S) is the number of all

tenants served by the SBS, ξ(si) is the average number of service requests that si

processes per unit of time, e.g., per second, and ξ(S) is the average number of

service requests that SBS S processes within the same unit of time. For example,

we assume that τ(VOVS) is 100, τ(s2) is 35, ξ(VOVS) is 100 req/s, and ξ(s2) is 9

req/s, then we can calculate crT (s2) to be 0.032. The numbers of tenants and ser-
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vice requests in (7.2) can be obtained by the system engineer through the analysis

of tenants’ business requirements as well as the corresponding SLA.

7.1.3 Phase 3: overall criticality computation

A component service may not be of the same criticality according to different

criteria. SMC4MTS aims at providing an integrated solution to the formulation

of monitoring strategy across multiple tenants of the SBS. Therefore, we calcu-

late the overall criticality of a component service in this phase by combining its

multi-dimensional quality-based criticality and tenant-based criticality, consider-

ing tenants’ quality preferences.

First, due to the different methods that can be adopted when calculating quality-

based criticality, we normalise the criticality value with (7.3) to eliminate the im-

pact of different measurement units, where cr
QX
p and cr

QN
p are the maximum and

minimum criticality values, respectively, of the component services for the pth

quality dimension in SBS S, and cr
Q
p (si) is the pth quality-based criticality value of

the ith component service in the composition of S.

crnQ
p(si)=































cr
Q
p(si)−cr

QN
p (S)

cr
QX
p (S)−cr

QN
p (S)

if cr
QX
p (S)6=cr

QN
p (S)

1 if cr
QX
p (S)=cr

QN
p (S)

(7.3)

Having been normalised, the multi-dimensional quality preferences of the

tenants that share si, with the tenant-based criticality of si, are used to calculate

the overall criticality of si with formula (7.4):

crO(si) = (

d
∑

p=1

crnQ
p (si) × wave

p ) × crT (si) (7.4)

where wave
p is calculated with (4.4) and denotes the average preferences for each

quality dimension of si across all the tenants sharing si. Now the criticalities of

the component services of an SBS have been calculated, which are used to rank
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those component services in the next phase.

7.1.4 Phase 4: component service ranking

Table 7.1: Criticality Computation and Service Ranking in
VOVS

Compo-
nent

Services

Response
Time
(ms)

Through-
put

(req/sec)
cr

Q
rt crn

Q
rt cr

Q
tp crn

Q
tp τ(si)/τ(S) ξ(si)/ξ(S) crT crO Rank

s1 90.7 40 0.33 1 0.84 0.92 1 1 1 0.959 1
s2 69.8 22 0.02 0.06 0.05 0 0.35 0.09 0.032 0.001 9
s3 56.6 92 0.15 0.45 0.09 0.04 0.75 0.73 0.548 0.134 5
s4 40.0 46 0.02 0.05 0.34 0.33 0.75 0.73 0.548 0.104 6
s5 35.9 59 0.01 0.02 0.21 0.19 0.75 0.73 0.548 0.056 7
s6 83.5 33 0.23 0.67 0.91 1 0.75 0.73 0.548 0.457 2
s7 73.8 63 0.20 0.59 0.19 0.16 0.75 0.73 0.548 0.206 4
s8 7.4 57 0.01 0 0.28 0.27 0.60 0.18 0.108 0.014 8
s9 16.3 68 0.06 0.17 0.30 0.29 1 1 1 0.228 3

Based on service criticality, the component services of an SBS can be ranked

and the top k (1 ≤ k ≤ n) most critical services can be identified. Table 7.1 shows

the criticality computation and service ranking for VOVS. For the demonstra-

tion purpose, we use qdc
rt =200% and ∆qrt=50% for response time, and use qdc

tp =80%

and ∆qt p=20% for throughput. Take s1 for example, its response time-based and

throughput-based criticalities are 0.334 and 0.838 respectively which are calcu-

lated with (7.1) based on the quality values in Table 7.1. Then the quality-based

criticalities of s1 are normalised to 1 and 0.918 respectively with (7.3). The tenant-

based criticality of s1 is 1 which is calculated with (7.2) based on the service

sharing and service requests distribution in VOVS, represented by τ(si)/τ(S) and

ξ(si)/ξ(S) in Table 7.1. The overall criticality of s1 is 0.959 which is calculated using

(7.4) with equal preferences for response time and throughput across all tenants.

For all the component services in VOVS, the phase-by-phase outcomes of crit-

icality calculation and service ranking from Phases 1 to 3 as described in Sections

7.1.1 to 7.1.3 are presented in Table 7.1. The ranking results show that in this sce-
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nario s1 has the highest criticality and should be given the highest priority in the

allocation of service redundancy.

7.1.5 Phase 5: local monitoring strategy generation

The monitoring strategy of a component service is called local monitoring strat-

egy in our approach, which is implemented according to the configuration of cor-

responding monitoring parameters. Various domain-specific monitoring param-

eters exist. In SMC4MTS, we consider the following three common parameters

as examples [3]:

1. Number of monitors: A monitor is an entity that executes the monitoring

actions. Different monitors can be used to monitor the same component

service for different quality dimensions, e.g., one monitor for each quality

dimension.

2. Monitoring frequency: This parameter indicates how often the status of a

component service is checked. Usually, a higher monitoring frequency al-

lows more timely detection of runtime anomalies.

3. Monitoring granularity: This parameter indicates the extent to which a

monitoring target is inspected. For example, a message can be parsed to

different protocol layer for monitoring purpose. In general, a finer monitor-

ing granularity means a higher monitoring accuracy.

The monitoring benefit, resource cost and system overhead caused by a mon-

itoring strategy are described as follows:

1. Monitoring benefits (B): The monitoring benefits are domain-specific and

can be evaluated in different metrics, e.g., the reduced time of business in-

terruption, the avoided penalty caused by SLA breach, etc. In this thesis

we consider the benefits in terms of quality, which can be quantified as an

overall score that represents the avoided quality degradation in monitored

86



7.1 SMC4MTS APPROACH

quality dimensions, such as response time and throughput. In general, a

high monitoring benefit is achieved via timely and accurate detection of

runtime anomalies.

2. Resource cost (R): Monitoring a service requires software and hardware re-

sources, and sometimes human labour, which incurs resource cost. Usually,

frequent and fine-grain monitoring results in high resource cost.

3. System overhead (O): Monitoring also incurs system overhead, such as oc-

cupying CPU and taking up memory space, which can impose negative im-

pacts on the quality of an SBS. Frequent and fine-grain monitoring usually

causes high system overhead.

Different combinations of monitoring parameters can generate different mon-

itoring benefit, resource cost and system overhead, leading to different trade-offs

between them. Moreover, the monitoring benefits may not always increase with

the increase of allocated monitoring resources, i.e., it is not always the case that

more resources can generate more monitoring benefits. Because the increase in

monitoring benefits obtained by increasing monitoring resource slows down at

some point, where the allocated monitoring resources continue to increase but

generate only insignificant or even no benefits at all.

In order to evaluate and compare the benefits of monitoring a component ser-

vice si from the perspective of the entire SBS, we weight the monitoring benefits

with the overall criticalities of the corresponding component services by (7.5):

Bcri = crO(si) × B (7.5)

where crO(si) is the overall criticality of si calculated with (7.4). Then, a local

monitoring strategy is represented by (7.6):

msi, j = (Ni, j , Fi, j ,Gi, j , B
cri
i, j ,Ri, j ,Oi, j) (7.6)
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where msi, j is the j th monitoring strategy for the ith component service, notations

Ni, j to Oi, j represent the number of monitors, monitoring frequency, monitoring

granularity, monitoring benefit, resource cost, and system overhead respectively.

Based on the tenants’ requirements for the system quality, the system ven-

dor has its own preferences for the monitoring benefit, resource cost and system

overhead in the monitoring strategies, which can be represented by individual

weights with (7.7):

wB + wR + wO = 1 (7.7)

In order to handle the trade-off between the monitoring benefit, resource cost

and system overhead, we propose monitoring utility in this thesis, which is defined

as follows:

Definition 7.2. Monitoring Utility. Denoted by mu, monitoring utility is used to

represent the generalised preferences for the monitoring strategies.

The monitoring utility of a local monitoring strategy is calculated by (7.8):

mu(msi, j) = wB×Bnorm
i, j + wR×Rnorm

i, j + wO×Onorm
i, j (7.8)

where Bnorm
i, j , Rnorm

i, j and Onorm
i, j are the normalised monitoring benefit, resource cost

and system overhead, respectively, of monitoring strategy msi, j (the normalisation

method used can be found in [20]). The monitoring utility of an SBS that contains

n component services is calculated by (7.9):

mu(S) =

n
∑

i=1

mu(msi, j), i ∈ [1, n] (7.9)

where msi, j is the monitoring strategy implemented (if exists) for the ith compo-

nent service in the SBS.

Similar to the service utility introduced by many works in service selection

[13][20], monitoring utility can be used as a metric to evaluate the optimality of a

monitoring strategy.
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7.1.6 Phase 6: global monitoring strategy determination

A global monitoring strategy can be formulated by determining the local mon-

itoring strategies for certain critical component services within the system ven-

dor’s monitoring budget. The constraints for monitoring parameters such as

monitoring granularity must be fulfilled, and the optimisation goal of monitor-

ing, e.g., maximised monitoring utility (see Definition 7.2), must be achieved in

the meantime. This can be modelled as a Constrained Optimisation Problem

(COP). Thus we formulate a COP to find an optimal solution to global monitoring

strategy determination.

Considering an SBS S that consists of n component services, and each of them

is associated with m local monitoring strategies. A set of 0-1 integer variables

xi = {xi,1, xi,2, . . . , xi,m} is created for component service si. xi, j with value of 1 means

that the j th monitoring strategy for the ith component service is selected for the

monitoring strategy of the SBS. The process for solving the COP model is to assign

a value of 0 or 1 to each xi, j and ensure that all constraints are fulfilled and the

objective of the COP is achieved. This is essentially a knapsack problem [21], and

thus is NP-complete.

The COP model is formulated with (7.10) to (7.13):

Ob jective : Maximising(mu(S)) (7.10)
m
∑

j=1

xi, j ≤ 1, 1≤ i≤n, xi, j ∈{0, 1} (7.11)

R(S) ≤ Cb (7.12)

Ni, j ≺ CN ,Ri, j ≺ CR,Gi, j ≺ CG (7.13)

where constraint family (7.11) ensures that at most one local monitoring strategy

can be selected for a component service, constraint family (7.12) guarantees that

the resource cost of monitoring strategy does not exceed the system vendor’s

monitoring budget, constraint family (7.13) ensures that the constraints for the

monitoring parameters of any selected local monitoring strategy are fulfilled, and
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again symbol ≺means "as good as or better than".

The optimal global monitoring strategy can be found by solving the above

COP with the Integer Programming (IP) technique [20]. With this monitoring

strategy, the quality degradation of the SBS upon runtime anomalies can be alle-

viated significantly.

7.2 Experimental evaluation

We conduct extensive experiments to evaluate SMC4MTS by comparing it with

other representative approaches. Section 7.2.1 introduce the metrics for evalua-

tion. Section 7.2.2 introduces the setup of the experiments. The effectiveness and

efficiency of SMC4MTS are evaluated in Sections 7.2.3 and 7.2.4 respectively.

7.2.1 Evaluation metrics

The effectiveness is measured in four metrics as follows:

• Success rate: If a component service is monitored, the runtime anomalies of

this service can be detected and the monitoring is regarded as successful.

The success rate is represented by the ratio between the number of anoma-

lies detected successfully and the total number of anomalies in the SBS.

• Monitoring utility: Based on the COP model mentioned in Section 7.1.6,

monitoring utility represents the optimality of a monitoring strategy. This

is evaluated from the perspectives of entire SBS.

• Quality degradation: The aim of monitoring is to guarantee the overall

quality of an SBS. In the experiments the percentage of quality degrada-

tion is inspected and compared when runtime anomalies occur and a mon-

itoring strategy is in place, which is represented by the ratio between the

quality degradation upon anomalies and the original quality of the SBS.
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• Affected tenant percentage: When anomalies occur to a monitored compo-

nent service, the negative impacts, e.g., quality degradation, to the tenants

that share the service can be avoided. The affected tenant percentage is the

proportion of tenants affected by anomalies to all tenants that share the SBS.

The efficiency is measured in two metrics as follows:

• System overhead: The system overheads incurred by monitoring are sim-

ulated with numerical values in the experiments, which are "the lower, the

better". The system overhead of a global monitoring strategy is the sum of

the system overheads incurred by the selected local monitoring strategies.

• Computation time: The average computation time for formulating a moni-

toring strategy for an SBS.

7.2.2 Experimental setup

A prototype of SMC4MTS is implemented in Java with JDK 1.6.0. The widely

used IBM CPLEX (v12.6) is again employed to find the solutions to the COPs.

Four representative approaches, similar to [3], are implemented to be compared

with SMC4MTS:

1. Non-Monitoring: Denoted by NonMon, no monitoring strategy is formulated

for the SBS in this approach.

2. Random-Monitoring: Denoted by RandMon, the component services and the

corresponding local monitoring strategies are selected randomly.

3. Mu-Greedy-Monitoring: Denoted by MuMon, the component services are

randomly selected and the corresponding local monitoring strategies are

ranked based on their monitoring utilities. The monitoring strategies with

the highest monitoring utilities are selected.

4. Cri-Mu-Greedy-Monitoring: Denoted by CriMuMon, the component services

are first ranked based on their criticalities, and then the monitoring strategy
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with the highest monitoring utility is selected for the corresponding com-

ponent service with the highest criticality.

In order to evaluate SMC4MTS more comprehensively, we extend the SBS

VOVS presented in Section 2.2.1 by randomly generating service compositions

with n tasks. The component services in an SBS instance are randomly gener-

ated with two quality dimensions: response time and throughput. The tenants

and their service sharing in an SBS are also generated randomly. The monitor-

ing parameters are generated randomly to simulate m different local monitoring

strategies for each component service. The monitoring benefit, resource cost and

system overhead are generated randomly according to the rules in their introduc-

tions in Section 7.1.5. We use n=100 and m=20 as default setup unless explicitly

stated otherwise. For the sake of simplicity without losing generality, average

preferences for the monitoring benefit, resource cost and system overhead are

used. The monitoring budget of the system vendor is a numeric value generated

randomly based on the average resource cost of local monitoring strategies. It is

used as an important constraint in the experiments to evaluate the cost effective-

ness of all approaches.

In order to simulate a volatile environment, we inject runtime anomalies ran-

domly to an SBS based on a fixed failure rate in each set of experiments. For ex-

ample, given an SBS that consists of 100 component services and a failure rate of

0.1, we randomly select ten component services to fail. This is a similar approach

as described in [26]. For the purpose of simplicity and consistency without losing

generality, we assume that when anomalies occur to a component service that is

not monitored, the quality of the service degrades according to a unified quality

degradation coefficient (see Definition 7.1), which is calculated by qdc
p = 1−(2)−h

and qdc
p = (2)h, h ≥ 1 for positive and negative quality dimensions respectively.

For example, when h is 1, the quality degradation coefficients for throughput and

response time are 50% and 200% respectively. In order to simulate the varied de-

lays before adaptation caused by different monitoring strategies, when runtime
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Figure 7.4: Comparison in success rates.

anomalies occur to a monitored component service, we randomly generate multi-

dimensional quality degradations to the service, which are more serious with a

lower monitoring frequency or coarser monitoring granularity.

All the experiments are again conducted on a machine running Windows 7x64

Enterprise with Intel(R) Core (TM) i5-4570 3.2 GHz CPU and 8 GB RAM. The ex-

perimental results are collected, averaged and compared from 100 test instances.

7.2.3 Effectiveness evaluation

7.2.3.1 Comparison in success rates

We vary the monitoring budget from 200 to 1600 in steps of 200. Similar results

are observed when the failure rate varies from 0.1 to 0.4. Taking failure rate of

0.1 as example, as shown in Fig. 7.4, the success rates obtained by all approaches

increase (NonMon is not applicable) because more component services are cov-

ered when the monitoring budget increases. However, SMC4MTS achieves the

highest success rates across all cases, which increase from 21.2% to 99% as the

monitoring budget increases from 200 to 1600. On average SMC4MTS outper-

forms MuMon and CriMuMon by 16.5% and 20.1% respectively. RandMon, as

expected, obtains the lowest success rates, which increases from 6.8% to 45.4%.
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7.2.3.2 Comparison in system monitoring utility

We compare the system monitoring utility to evaluate the optimality of monitor-

ing strategies formulated by different approaches except NonMon which is not

applicable. We change the monitoring budget from 200 to 1600 in steps of 200.

Again we demonstrate the results of the experiments with a failure rate of 0.1 as

example in Fig. 7.5. The utilities obtained by all approaches increase with the

increase in the monitoring budget. SMC4MTS outperforms other approaches in

all cases. Its system monitoring utility increases from 13.8 to 61.6 and beats Mu-

Mon by approximately 10% on average. CriMuMon is slightly outperformed by

MuMon across all cases. RandMon, again, achieves the lowest monitoring utility

among all approaches, as low as 18.0 when budget is 1600.

7.2.3.3 Comparison in quality degradation

In this series of experiments, with all the five approaches, the average degra-

dation percentage of response time and throughput of the SBSs are compared

with failure rate increasing from 0.1 to 0.4. Similar phenomena can be seen in

experiments with different failure rates. However, the response time degrada-
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Figure 7.5: Comparison in system monitoring utility.
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tions obtained by all approaches increase when the failure rate becomes higher.

Again we use failure rate of 0.1 as an example. The comparison in response time

degradation is shown in Fig. 7.6. NonMon shows much more serious degra-

dation in response times (330% with slight fluctuations) than other approaches

because of the absence of monitoring strategies. The response time degradations

obtained by other four comparing approaches decrease gradually when the mon-

itoring budget increases. SMC4MTS outperforms the comparing approaches in

all cases and beats CriMuMon, MuMon and RandMon by approximately 47.5%,

66.4% and 72% on average respectively.

Similar comparison results can be seen for throughput degradation in Fig.

7.7. The throughput degradation demonstrated by all approaches except Non-

Mon decrease when the monitoring budget varies from 200 to 1600. SMC4MTS

achieves the best performance across all cases and beats CriMuMon by approx-

imately 12% on average. MuMon shows a significant decrease in throughput

degradation (from 89% to 44%) when the monitoring budget increases from 800 to

1600. NonMon and RandMon obtain the similar throughput degradation, which

remains at approximately 93% when monitoring budget varies.
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Figure 7.6: Comparison in response time degradations.
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Figure 7.7: Comparison in throughput degradations.

7.2.3.4 Comparison in affected tenant percentages

We evaluate the effectiveness of SMC4MTS in supporting multi-tenancy in this

series of experiments. The results with a failure rate of 0.1 are presented in Fig.

7.8. The affected tenant percentages obtained by all approaches increase when

the environment becomes more volatile. By considering tenants’ service shar-

ing in criticality calculation, SMC4MTS reduces the affected tenant percentage

significantly from 57% to 2% when the budget increase to 1600. CriMuMon out-

performs NonMon, RandMon and MuMon by approximately 39%, 21%, and 6%

on average respectively.

7.2.4 Efficiency evaluation

7.2.4.1 Comparison in system overhead

In this series of experiments we evaluate the system overheads incurred by the

monitoring strategies. As shown in Fig. 7.9, all the four approaches show in-

creases in system overheads when monitoring budget increases. RandMon for-

mulates the monitoring strategies with the highest system overheads. SMC4MTS

incurs medium overheads, which are slightly higher than those of MuMon and
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Figure 7.8: Comparison in affected tenant percentages.
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Figure 7.9: Comparison in system overheads.

7.2.4.2 Comparison in computation time

First, we collect and average the computation time of formulating monitoring

strategies by varying the number of tasks in an SBS from 20 to 100 in steps of 20.

The time for calculating service criticality is also evaluated in the meantime. The

results are shown in Fig. 7.10. SMC4MTS consumes the most computation time

(up to 23.3ms) due to the fact that finding an optimal solution is an NP-complete
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Figure 7.10: Computation time vs number of tasks.

problem. Approximately 8% of the consumed time on average of SMC4MTS is

used for criticality calculation. The computation time consumed by CriMuMon

is slightly higher than those of MuMon and RandMon, which are approximately

0.2ms. Next, we evaluate the computation time of the four approaches by chang-

ing the number of local monitoring strategies from 200 to 1000 in steps of 200.

The COP scales up when more monitoring strategies are involved. As shown in

Fig. 7.11, the time used by SMC4MTS increases from 309ms to 1625ms, consum-

ing more time than the other approaches across all cases. CriMuMon, MuMon

and RandMon consume 13.4ms, 10.3ms and 71.3ms on average. Overall, the ex-

perimental results demonstrate that the efficiency of SMC4MTS is acceptable in,

if not all, most scenarios.

7.3 Discussion

Identifying the critical component services in an SBS is a challenging but impor-

tant issue in service monitoring. In this chapter, the multi-dimensional quality

used in service criticality calculation is linear and deterministic. The non-linear

quality constraints and parameters are not considered in the COP model. For

example, a quadratic expression can be used as quality constraint or optimisa-
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Figure 7.11: Computation time vs number of local monitor-
ing strategies.

tion objective of the COP, and the values of a quality dimension can be nomi-

nal, such as the reputation of a service. However, this is not a significant lim-

itation to our approach. On one hand, linear quality constraints and dimen-

sions have been the same basis of many other research efforts, such as the work

presented in [13][14][20][21][60]. Considering only the linear quality constraints

and dimensions does not influence the comparison in the experiments between

SMC4MTS and existing approaches. On the other hand, non-linear quality con-

straints and dimensions can be handled with various techniques [93], e.g. Se-

quential Quadratic Programming [94], or transformed into the linear expressions

[95].

The service criticality proposed in this chapter can also be used in other life-

time stages of quality management such as service adaptation. In Chapter 9, we

will explore the usage of service criticality in formulating cost-effective fault tol-

erance strategies for multi-tenant SBSs.
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7.4 Summary

In this chapter, we introduce SMC4MTS, a novel approach for formulating cost-

effective monitoring strategies for multi-tenant SBSs. Service criticality is em-

ployed to prioritise the component services in monitoring resource allocation.

Monitoring utility is proposed to handle the trade-off between monitoring ben-

efit, resource cost and system overhead. The optimal monitoring strategy of an

SBS can be formulated based on a Constraint Optimisation Problem (COP) model.

Extensive experiments show that SMC4MTS can significantly reduce the quality

degradation of an SBS upon anomalies.
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Part III

Quality management for service

adaptation

101



Chapter 8

Service adaptation based on LSH

As discussed in Section 2.2.2, in order to achieve efficient service adaptation upon

runtime anomalies, a quick service re-selection that replaces only the anomalous

ones with alternative services with equivalent functionalities is much more prac-

tical than an overhaul of the entire SBS. Therefore, it is critical but challenging to

select the appropriate services for rapid runtime system adaptation for multi-

tenant SBSs. In this chapter, we introduce Service Adaptation based on LSH

(Locality-Sensitive Hashing) for Multi-Tenant SBSs (SAL4MTS). In our approach,

given a faulty service, LSH is firstly used to find its approximate nearest neigh-

bour from the candidate services, which has the most similar quality performance

with it, and thus the tenants’ quality requirements can still be satisfied with a high

probability after system adaptation. This chapter is based on my paper [19].

This chapter is organised as follows. Section 8.1 introduces the SAL4MTS ap-

proach including the preliminary knowledge of LSH. Then Section 8.2 presents

the evaluation of SAL4MTS in terms of effectiveness and efficiency. Section 8.3

discusses how LSH can be used for other scenarios of quality management for

SBSs. Some premises of SMC4MTS are also discussed. Finally, Section 8.4 sum-

marises this chapter.
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8.1 SAL4MTS approach

8.1.1 LSH preliminary

LSH is a well-known randomised algorithm that allows one to quickly find simi-

lar entries in a high-dimensional large dataset [96]. It can reduce the dimensional-

ity of high-dimensional data. In this research, we seek to achieve high efficiency

in runtime service adaptation. LSH can sufficiently capture our need to find a

service similar to the faulty service in terms of multi-dimensional quality val-

ues for quick service replacement. The basic idea of LSH is to hash similar data

points into the same “buckets” with high probability [97]. It has much in common

with data clustering and nearest neighbour search and has been widely used in a

variety of areas, such as near-duplicate detection, hierarchical clustering, image

similarity identification, etc.

Let Rd be a d-dimensional space, andH be a family of hash functions mapping

Rd to some universe U. d1 < d2 are two distance values and p1 > p2 are two

probability values. Given any two points x, y ∈ (R), we choose a hash function

h from H randomly and observe the probability of h(x) = h(y). The family H is

called (d1, d2, p1, p2)-sensitive if it satisfies the following conditions.

• If ‖x − y‖ ≤ d1 then PrH [h(x) = h(y)] ≥ p1

• If ‖x − y‖ ≥ d2 then PrH [h(x) = h(y)] ≤ p2

where h(x) = h(y) means x and y are similar objects and hashed into the same

bucket.

In recent years, a variety of LSH families have emerged with different dis-

tance metrics, e.g., Hamming distance [98] and Jaccard distance [99]. Euclidean

distance, as a metric widely used in the area of service computing to find the sim-

ilar items, is used in this thesis, and l2 LSH family based on 2-stable distribution,
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i.e., Gaussian distribution, is adopted. The hash function is given by

ha,b(~v) = ⌊
~a × ~v + b

w
⌋ (8.1)

where ~v is a query point in a d-dimensional space (R), and ~a is a vector with com-

ponents that are randomly selected from a Gaussian distribution. b is a random

variable that uniformly distributes in [0,w], and w is the width of each bucket.

8.1.2 Service adaptation based on LSH

Our approach of service adaptation based on LSH consists of two phases: build-

time preprocessing and runtime system adaptation.

8.1.2.1 Phase 1: build-time preprocessing

In SAL4MTS, a service is regarded as a point in the d-dimensional Euclidean

space Rd and is described by a vector that uses multi-dimensional quality of ser-

vice as the components. For service S with d-dimensional quality, the vector gen-

erated is described by (8.2):

vs =< q1, ..., qk, ..., qd > (8.2)

where qk is the k(th) quality value of service S. Usually, services with similar qual-

ity values should stay close in Rd . An example is shown in Fig. 8.1, where two

kinds of quality are considered: cost and response time. In such a 2-dimensional

Euclidean space, the distance between S1 and S2 is close and these two services

will fall into the same bucket with high probability if hashed accordingly, due to

their similar quality performance. If S1 is selected for service composition and

failed at runtime, as the nearest neighbour of S1, S2 is potentially the best candi-

date for service replacement.

In order to facilitate rapid system adaptation at runtime, we build the hash
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Figure 8.1: Services in 2-dimensional Euclidean space.

tables at build-time. The hash tables are built in two steps:

1. Randomly choose K functions hk, k = 1, . . . ,K , from the LSH family H to

generate the combined hash key of a service, by concatenating the K single

hash values together, i.e., g = (h1, h2, . . . , hK). Combined hash keys are used

to build a hash table with respect to the chosen hash functions, which can

significantly reduce the error of putting distant candidates into the same

buckets.

2. Repeat Step 1 multiple times to build L hash tables. Multiple hash tables are

employed to mitigate the problem that combined hash keys are possibly too

strict to allow some buckets in a single hash table to have enough similar

services. When querying approximate nearest neighbours of a service, we

can seek simultaneously in the L hash tables and identify candidates from

all query results.

As shown in Fig. 8.2, when the hash tables are constructed, all the candidate

services are hashed into one or more hash tables, which can be used at runtime to

quickly find the candidate services with similar quality performance as the faulty
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Figure 8.2: Query process of candidate services.

service. When a service joins or leaves a service class, or its quality changes,

we only need to process that service without rebuilding all the hash tables. The

time complexity for preprocessing is O(nLKt), where n is the number of points,

L is the number of hash tables, K is the number of hash functions, and t is the

time to evaluate a hash function on an input point. The space complexity of LSH

algorithm used in this thesis is O(nL). The query time complexity is O(L(Kt +

dnpK
2
)), where d is the number of dimensions of the vector used for representing

a point, p2 is the maximum probability that two points are similar objects when

their distance is more than a given threshold.

8.1.2.2 Phase 2: runtime system adaptation

At runtime, once the anomalies are detected in the service monitoring process,

adaptation should be triggered immediately and automatically in order to guar-

antee the quality of SBS.

The query process for a given faulty service S is as follows:

1. Retrieve the services in the bucket gj(S) in the j th hash table.
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2. For each service in the bucket, compute the distance from S to it.

3. Rank the candidate services according to the distance calculated in Step 2

and report the nearest neighbour of S.

As shown in Fig. 8.2, for each faulty service, the approximate nearest neighbour

is selected for adaptation, and then is deployed to replace the faulty service. The

overall quality requirements of all tenants sharing the faulty service are evalu-

ated by replacing the faulty service with selected candidate service in quality

aggregations of corresponding execution plans. If the end-to-end quality cannot

be guaranteed after service replacement, the approach introduced in Chapter 5

is used, i.e., a system re-optimisation process is triggered to expand the adapta-

tion scope to other services that are running normally by creating a new service

composition for the SBS.

8.2 Experimental evaluation

We have conducted extensive experiments to evaluate SAL4MTS in terms of ef-

fectiveness and efficiency. Section 8.2.1 introduces the metrics used in the eval-

uation. Then, Section 8.2.2 presents the experimental setup. The experimental

results in effectiveness and efficiency are introduced in Section 8.2.3 and Section

8.2.4 respectively.

8.2.1 Evaluation metrics

The effectiveness is measured based on the success rates of service adaptation. If

after service adaptation all tenant’s quality requirements can still be satisfied, the

service adaptation is regarded as successful. The efficiency is evaluated based on

the computation time used for service adaptation at runtime and preprocessing

at build-time.
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8.2.2 Experimental setup

We implemented SAL4MTS in Java with JDK 1.6.0. We use the E2LSH (Exact Eu-

clidean LSH) method, which is based on the Locality-Sensitive Hashing scheme

described in [96].

The services used in our experiments are again created based on QWS [88].

Cost and throughput are randomly generated and added to each candidate ser-

vice as two additional quality dimensions.

Similar to Section 5.2.2, we also use the method proposed in [13] to gener-

ate the quality constraints for the SBS randomly with different difficulty levels:

easy, medium, and severe, which represent the difficulties in finding a solution to

satisfy tenants’ quality requirements.

For the purpose of comparison with other approaches for runtime system

adaptation in terms of effectiveness and efficiency, we also implemented exist-

ing service replacement and system re-optimisation approaches as follows:

• Random: One service is selected randomly as the candidate to replace the

faulty service. The system adaptation is regarded as unsuccessful if the

end-to-end quality of the SBS cannot fulfil the requirements of tenants after

service replacement.

• Optimal-Global: This approach originates from [22] and has been adjusted

to realise system re-optimisation upon runtime anomalies. This approach

recreates a new service composition from the scratch, and every service in

the original composition may be replaced to fulfil tenants’ quality require-

ments and achieve the optimisation goal, which is to maximise the system

utility.

Same as before, the experiments are conducted on a machine running Win-

dows 7x64 Enterprise with Intel(R) Core (TM) i5-4570 3.2 GHz CPU and 8 GB

RAM. For each set of experiments, the results are collected, averaged and com-

pared from 100 test instances.
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8.2.3 Effectiveness evaluation

In order to evaluate the effectiveness and efficiency of SAL4MTS for runtime sys-

tem adaptation, we simulate a volatile cloud environment for an SBS by injecting

one anomaly to a randomly selected service each time, and then trigger the sys-

tem adaptation. We change the difficulty level of tenants’ quality constraints from

easy to severe and compare SAL4MTS with the other two approaches described

in Section 8.2.2 in terms of adaptation success rates. If the tenants’ quality con-

straints can still be satisfied after system adaptation, we think that it is a success-

ful system adaptation. As shown in Fig. 8.3, when the difficulty level of quality

constraints changes from easy to severe, the success rates obtained by all the ap-

proaches decrease. SAL4MTS maintains the similar high success rate (about 87%

or above) as the Optimal-Global approach when the difficulty level of quality con-

straints changes. With the lowest performance among the three approaches, the

random approach also gains a better performance when the quality constraints

are easy to satisfy. The results show that due to the advantage of LSH-based

service adaptation in finding replacement services with the most similar quality

values to the faulty services, the tenants’ quality requirements can be satisfied

with a high probability after system adaptation.
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Figure 8.3: Adaptation success rates vs difficulty level of
quality constraints.
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Table 8.1: Comparison in System Optimality (Utility ×

Success Rate/UtilityOPT )

Difficulty level of
quality constraints

SAL4MTS Random Optimal-Global

Easy 99.8% 57.5% 100%
Medium 99.9% 45.8% 100%
Severe 99.9% 38.4% 100%

Then, we compare the system optimality obtained by these approaches. In this

set of experiments, we use maximising the overall system utility as optimisation

goal of the COP. Thus, a higher overall system utility represents higher system

optimality. The utilities obtained by different approaches are combined with the

corresponding adaptation success rates and compared with the optimal utilities

obtained by Optimal-Global, which re-optimise the entire SBS with the highest

utility. We fix the numbers of tenants and candidate services per service class

at 100 and 1000 respectively, and vary the difficulty level of quality constraints

from easy to severe. As shown in Table 8.1, the system optimality obtained by

SAL4MTS is nearly the same as that of Optimal-Global (more than 99% across

all the cases). Due to the low success rates, Random obtains the lowest system

optimality, which is approximately 47.2% on average.

8.2.4 Efficiency evaluation

We run a series of experiments with the aim of comparing the efficiency of these

approaches by their computation time. We fix the number of tenants at 100 and

change the number of candidate services from 200 to 1000. The experiments

with different difficulty levels of quality constraints show similar results that

the computational overhead of SAL4MTS is slightly higher than the random ap-

proach but much lower than Optimal-Global. As presented in Fig. 8.4 where

the difficulty level of quality constraints is medium, when the number of candi-

date services increases, the computation times of Optimal-Global and SAL4MTS

also increase gradually, while SAL4MTS increases more slightly than Optimal-
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Figure 8.4: Adaptation success rates vs difficulty level of
quality constraints.

Global. Random always remains the best performance when the number of ser-

vices changes. However, its low success rate has been observed in Fig. 8.3. The re-

sults show that compared with the optimal approach, SAL4MTS is much quicker

because of the high efficiency of the LSH algorithm used.

As discussed in Section 8.1.2.1, SAL4MTS builds index structure with hash ta-

bles for all the candidate services at build-time. In order to evaluate the efficiency

of SAL4MTS in this preprocessing step, we conducted a series of experiments

to investigate the computational overhead it introduces, which is measured by

means of, again, the computation time. We focus on four parameters that affect

the computation performance significantly in building index structure, includ-

ing the numbers of candidate services per service class, quality dimensions, used

hash tables and hash functions. The default setup used for these four parameters

are (1000, 2, 2, 4). When one parameter varies, other parameters use the default

values. As shown in Fig. 8.5 from (a) to (d), the increase of computation time

can be seen across all the experiments. However, the time consumed for building

index structure of candidate services is relatively very short (less than 12ms when

there are 1000 candidate services with two-dimensional quality values, two hash

tables and 32 hash functions). Compared with the advantage in computation time

gained by our LSH-based approach over the approach of system re-optimisation,
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Figure 8.5: Adaptation success rates vs difficulty level of
quality constraints.

the computation time consumed for building hash tables in preprocessing step is

negligible.

The experiments on system adaptation show that due to the high computa-

tional time, optimal approaches are often impractical in the dynamic and volatile

cloud environment. SAL4MTS is able to find appropriate replacement services

efficiently with a high success rate.
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8.3 Discussion

Locality-sensitive hashing (LSH) can efficiently reduce the dimensionality of high-

dimensional data and is widely used in the nearest neighbour search. In this

chapter, we innovatively use LSH in service adaptation at runtime by effectively

and efficiently finding the similar replacement services in terms of quality values

to the anomalous services. However, LSH-based service adaptation is local adap-

tation strategies, and once the tenants’ quality requirements cannot be satisfied

after adaptation, a system re-optimisation is unavoidable. Thus, we employ the

SSR4MTS approach introduced in Chapter 5 to achieve this goal. Moreover, The

efficiency of SAL4MTS can be further improved with the clustering techniques

introduced in Chapter 5, which can categorise candidate services into different

clusters and then the search space of finding replacement services can be further

reduced.

8.4 Summary

In this chapter, we introduce SAL4MTS, a novel approach for service adaptation

based on LSH for multi-tenant SBSs. Alternative services are found efficiently by

LSH upon runtime anomalies to replace the faulty services in an SBS to continue

fulfilling the quality requirements of tenants. Experimental results demonstrate

that our LSH-based service adaptation approach can facilitate rapid runtime sys-

tem adaptation at a high success rate with much less computational cost com-

pared with the system re-optimisation approach.
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Chapter 9

Fault tolerance based on criticality

As discussed in Section 1.2, fault tolerance is another promising way to provide

quality guarantee for multi-tenant SBSs. By running component services and re-

dundant services in certain redundancy mode, such as sequence or parallel, the

impacts of runtime anomalies on the system quality of an SBS can be alleviated

or mitigated. In order to support cost-effective fault tolerance within the system

vendor’s budget, the critical component services in an SBS must be identified and

prioritised in the formulation of fault tolerance strategies. In this chapter, we in-

troduce Fault Tolerance based on Criticality for Multi-Tenant SBSs (FTC4MTS), an

approach for formulating cost-effective fault tolerance strategies for multi-tenant

SBSs based on the service criticality introduced in Section 7.1. This chapter is

based on my paper [80].

This chapter is organised as follows. Section 9.1 introduces the FTC4MTS

approach. Then, Section 9.2 demonstrates the evaluation of FTC4MTS in terms

of effectiveness and efficiency. Section 9.3 discusses some premises of FTC4MTS.

Finally, Section 9.4 summarises this chapter.
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Figure 9.1: System architecture of FTC4MTS.

9.1 FTC4MTS approach

As shown in Fig. 9.1, the system architecture of FTC4MTS includes four func-

tional components. The method of calculating service criticality is the same as

that in Chapter 7, and the roles of Criticality Calculator and Component Service

Sorter have been introduced in Section 7.1. The functionalities of other two com-

ponents are as follows:

• Service Redundancy Generator: This component generates service redun-

dancy schemes for component services, which consists of redundant ser-

vices and redundancy mode.

• FT Strategy Optimiser: This component determines the optimal fault toler-

ance strategy of an SBS, including the component services to allocate fault

tolerance and the corresponding fault tolerance schemes.

FTC4MTS consists of three major phases, as shown in Fig. 9.1. In Phase 1, we

calculate the criticalities for the component services, based on which, the com-

ponent services are ranked. Redundancy schemes are then generated in Phase

2. Finally, in Phase 3, formulation of cost-effective fault tolerance strategy with

service redundancy based on criticality is modelled as an optimisation problem,
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9.1 FTC4MTS APPROACH

and the Integer Programming (IP) technique is used to find the solution. These

three phases are detailed one by one in this section.

9.1.1 Criticality calculation and service ranking

In this phase, criticalities of the component services in the SBS are evaluated by

analysing the quality of component services, multiple tenants’ preferences for

multi-dimensional system quality, and the service sharing across the tenants in

the SBS. Overall service criticality of a component services is calculated based on

quality-based criticality and tenant-based criticality. Then, the component ser-

vices of the SBS are ranked based on their overall criticalities. The detailed pro-

cess of criticality calculation has been introduced when we present our approach

for criticality-based service monitoring in Chapter 7. Readers can refer to Section

7.1 for more information.

9.1.2 Service redundancy scheme generation

In this phase, FTC4MTS generates the service redundancy scheme, which is defined

as follows:

Definition 9.1. Service Redundancy Scheme. Denoted by SRS, service redun-

dancy scheme is the combination of its member services (denoted by MS, in-

cluding the component service and redundant services) and the corresponding

redundancy mode (denoted by RM), such as sequence or parallel.

Various redundancy modes have been proposed to improve the reliability of

critical applications in conventional software system [100][101][102]. In this thesis

we consider two modes widely adopted: Sequence and Parallel, as shown in Fig.

9.2. Other modes can be included in FTC4MTS in a similar manner. The two

modes function as follows:

1. Sequence. The services are executed sequentially from the first service until

one of them completes successfully.
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Figure 9.2: Service redundancy modes.

2. Parallel. The services are executed concurrently, and the first service that

completes successfully determines the final result.

In both cases, a redundancy mode fails only if all the services fail. Similar to other

work [13][20][21], in this thesis we assume that a task can be bound to any func-

tionally equivalent candidate service in its corresponding service class, which

means that these services are idempotent and the service requests are handled

in an idempotent manner. In general, service redundancy schemes with Sequence

mode have lower cost but may suffer from poor response time performance in

volatile environments, while Parallel schemes can obtain faster response time at

the cost of more resources consumed.

Let SRSi, j be the j th service redundancy scheme of service class sci containing

mi candidate services. For SRS
sq

i, j with RMi, j =Sequence, and MSi, j = (si, j0 , si, j1 , ..., si, jm),

si, j0 = si, 1≤m≤mi, the quality aggregation functions are in (9.1):

qct(SRS
sq

i, j) =

m
∑

f=0

(

f
∑

r=0

qct(si, jr ) ×

f−1
∏

r=0

(1 − qre(si, jr )))

qrt(SRS
sq

i, j) =

m
∑

f=0

qrt(si, j f
) ×

f−1
∏

r=0

(1 − qre(si, jr ))

qre(SRS
sq

i, j) = 1 −

m
∏

r=0

(1 − qre(si, jr ))

qt p(SRS
sq

i, j) =

m
∑

f=0

qt p(si, j f
) ×

f−1
∏

r=0

(1 − qre(si, jr ))

(9.1)
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where qre(si, jr ) is the reliability of the rth service in SRS
sq

i, j , and service si, jr will be

executed only when all the preceding services in the same scheme have failed.

Hence, the cost, response time and throughput of all the services in SRS
sq

i, j should

be summed, and each weighted by the probability that the service is executed.

The quality of service redundancy scheme SRS
pl

i, j with the Parallel mode is

calculated with (9.2):

qct(SRS
pl

i, j)=

m
∑

r=0

qct(si, jr )

qrt(SRS
pl

i, j)=

2m−1
∑

λ=1

min
si,jr∈MSλ

qrt(si,jr )×
∏

si,jr∈MSλ

qre(si,jr)

×
∏

si,jr /∈MSλ

(1−qre(si,jr))

qre(SRS
pl

i, j) =1−

m
∏

r=0

(1−qre(si, jr ))

qt p(SRS
pl

i, j)=

2m−1
∑

λ=1

qtp(SMRT
si,jr∈MSλ

(si,jr))×
∏

si,jr∈MSλ

qre(si,jr)

×
∏

si,jr /∈MSλ

(1−qre(si,jr))

(9.2)

where MSλ is the λth non-empty subset of MSi, j . Since all the services in SRS
pl

i, j are

performed simultaneously, the costs of all services in the scheme are summed,

while the response time is calculated by summing the minimum response time

of all MSλ, which is weighted by the probability that only the services in MSλ are

executed successfully. In Parallel mode the throughput is determined by the first

service in MSλ that completes successfully. The operator SMRT returns the service

in MSλ with minimum response time.

In both redundancy modes, the reliability of a service redundancy scheme is

the probability that at least one service completes successfully.

In order to capture the requirements of formulating cost-effective fault toler-

ance strategy for an SBS, we introduce Fault Tolerance Budget and Fault Tolerance

Cost in this thesis. Fault tolerance budget indicates how much the SBS vendor

is willing to pay for the deployment of fault tolerance, while fault tolerance cost
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represents how much the SBS vendor has to pay for that. The cost of the j th ser-

vice redundancy scheme in the ith service class can be calculated with (9.3):

q f t(SRSi, j) = qct(SRSi, j) − qct(si) (9.3)

where qct(si) is the cost of component service si in the ith service class.

The fault tolerance cost of an SBS S can be calculated by (9.4):

q f t(S) =
∑

SRSi, j∈eple
eple∈S

p(eple) × q f t(SRSi, j) (9.4)

where p(eple) is the execution probability of the eth execution plan of S.

9.1.3 Fault tolerance strategy determination

Fault tolerance strategy determination is the process of allocating service redun-

dancies for some or all of the component services in an SBS. To determine the fault

tolerance strategy for the SBS, we formulate a Constraint Optimisation Problem

(COP). Considering an SBS S with n component services {s1, s2, . . . , sn}, and each

of them is associated with a service class sci containing mi (mi ≥ 1) candidate

services {si,1, si,2, . . . , si,mi
}. The system engineer needs to determine the fault tol-

erance strategy based on the criticalities of component services under the fault

tolerance budget. The objective of optimisation is to maximise the sum of criti-

calities of component services to be protected, which means the impacts on the

system quality upon service anomalies can be minimised under a limited budget.

Fault tolerance strategy determination is a complex decision making process,

which is NP-complete and often very time-consuming given a large number of

service redundancy schemes. In order to find a solution rapidly, FTC4MTS first

ranks the candidate services within each service class by their utilities, which are

calculated with the approach introduced in Section 4.4, and then use a greedy

method that increases the number of redundant services gradually in a multi-

round manner. Given a service class containing mi candidate services, in each

round, the top kr candidate services with the highest utilities in each service class

are selected to generate service redundancy schemes, where kr is incremental in

119



9.1 FTC4MTS APPROACH

each round. A solution to the optimisation model can be found more rapidly

with a larger kr . In FTC4MTS we use kr = 2ν (1 ≤ ν ≤ ⌈mi/2⌉) and ν is the round in

which the optimisation is performed. kr can be bounded by the system engineer

by specifying a maximum round number νmax, which can reduce the complexity

of fault tolerance strategy determination.

In each round of fault tolerance strategy determination, we create a set of 0-1

integer variables xi = {xi,1, xi,2, . . . , xi,l} for service class sci, where l is the number

of service redundancy schemes in the ith service class. xi, j with value of 1 means

that the j th service redundancy scheme in the ith service class is selected for the

formulation of fault tolerance strategy for SBS S. We also create a 0-1 integer vari-

able yi for component service si, which is 1 if service redundancy is to be allocated

for the component service si, and 0 otherwise. The process of finding a solution

to the COP model is to assign a value of 0 or 1 to each variable and ensure that all

constraints can be satisfied, including the quality constraints. This is equivalent

to a knapsack problem, thus is an NP-complete problem, which makes it compu-

tationally expensive, if not impractical, to find an optimal solution in large-scale

scenarios.

The COP model is formulated by (9.5) to (9.9):

Ob jective(S) : {Maximising(

n
∑

i=1

crO(si) × yi)} (9.5)

qpos
p (S)≥ C pos

p

qneg
p (S)≤ Cneg

p

(9.6)

q f t(S) ≤ Cb (9.7)

yi+1 ≤ yi, i = 1, . . . , n − 1 (9.8)

l
∑

j=1

xi, j = yi, xi, j , yi ∈ {0, 1} (9.9)

where constraints family (9.6) ensures that the multi-dimensional quality con-

straints for the SBS can be satisfied, where q
pos
p and q

neg
p are the pth end-to-end

quality of S, which may be positive or negative quality dimension. C
pos
p and C

neg
p
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are the pth quality constraints over S. Constraints family (9.7) ensures that fault

tolerance cost cannot exceed budget Cb. Constraints family (9.8) ensures that only

most critical component services can have redundant services. Constraints fam-

ily (9.9) guarantees that at most one service redundancy scheme can be selected

if the ith component service is to be protected. Formula (9.5) shows the optimisa-

tion objectives for the COP model: maximising the sum of overall criticalities of

component services that will be allocated service redundancy.

After the COP model is created, the Integer Programming (IP) technique is

employed to find the optimal solution. Once the fault tolerance strategy is de-

termined, the redundant services in the selected redundancy schemes can be de-

ployed in the SBS.

The computational overhead introduced by FTC4MTS includes two main parts:

the computation time of generating service redundancy schemes from candidate

services, and the computation time of determining the fault tolerance strategy

based on the COP model. As discussed in Section 9.1.2, the increase in the num-

ber of redundant services can result in a rapid increase in the number of ser-

vice redundancy schemes, which may make it more computationally expensive

to find the solution based on the COP model. However, the fault tolerance strat-

egy is formulated at design time or in an offline manner at runtime, and thus

does not cause extra computational overhead at runtime. In very large scenarios,

the redundancy schemes can be enumerated in parallel by different machines

with distributed computing techniques, such as MapReduce. On the other hand,

service recommendation or filtering approaches, e.g., clustering-based service

recommendation[19], and skyline techniques[49], can be used on candidate ser-

vices as well as service redundancy schemes to further improve the efficiency of

FTC4MTS. In overall terms, the computational overhead caused by FTC4MTS is

much less significant than that introduced by the conventional runtime adapta-

tion approaches, especially in extremely volatile environments where frequent

runtime adaptation is needed.
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9.2 Experimental evaluation

We have conducted a range of experiments in a simulated volatile environment,

aiming at evaluating FTC4MTS in terms of effectiveness and efficiency in fault

tolerance by comparing it with other representative approaches.

Section 9.2.1 presents evaluation metrics. Section 9.2.2 describes the setup of

the experiments. Sections 9.2.3 and 9.2.4 evaluate the effectiveness and efficiency

of FTC4MTS respectively.

9.2.1 Evaluation metrics

The effectiveness of fault tolerance is measured by three quantitative metrics as

follows:

1. Success rate of fault tolerance: The percentage of successful fault tolerance

in all test instances given the same fault tolerance budget. If anomalies oc-

cur and the component service has service redundancy in position, the fault

tolerance is regarded as successful unless the component service and all re-

dundant services fail at the same time.

2. Quality degradation: Including that in response time and throughput, qual-

ity degradation is represented by the average variation percentage of the

end-to-end quality value of an SBS upon runtime anomalies.

3. Affected tenant percentage: The proportion of tenants affected by anomalies

to all tenants that share the SBS.

In addition, the impacts of the environment volatility is also analysed. Ef-

ficiency of all approaches is evaluated based on the computational overhead,

which is the average computation time needed for formulating a fault tolerance

strategy for an SBS.
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9.2.2 Experimental setup

Same as before, FTC4MTS is implemented in Java with JDK 1.6.0 and Eclipse Java

EE IDE. IBM CPLEX v12.6 is again employed to solve the COPs. We have also

implemented three representative and state-of-the-art approaches for compari-

son in the context of this research. These approaches, namely Quality-Optimal,

FTCloud and Random, are described as follows:

• Quality-Optimal: Originated from the work presented in [60], this approach

formulates fault tolerance strategies without taking service criticality into

account. All component services are considered equally important. COP

models are created only based on the quality performance, and the optimi-

sation goal is to maximise the system utility. For the sake of fair comparison,

Quality-Optimal in our experiments uses the same quality dimensions and

constraints as FTCloud, Random and FTC4MTS.

• FTCloud: This approach is originated from [26], which evaluates the criti-

calities of component services of an SBS based on the invocation structure

and invocation frequencies of the component services. A component ser-

vice invoked more frequently by other services is considered more impor-

tant. Service redundancy schemes are generated accordingly. Based on the

service redundancy schemes, a COP model is created to formulate the fault

tolerance strategies aiming at reducing the system failure probability. Lo-

cal rather than global quality constraints, i.e., the constraints on individual

component service instead of the service composition of SBS, are adopted in

the COP. However, for this approach in the experiments, FTCloud employs

the global quality constraints, the same as other approaches, for a fair and

objective comparison.

• Random: A service redundancy scheme is created for a given component

service by choosing redundancy mode and redundant services randomly.
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The component services are also selected in a random manner and each

of them can be selected once only. Same quality dimensions as FTC4MTS

are adopted and the quality constraints on the SBS must not be violated in

this process. This approach is also used in [26] as an existing approach to

compare with.

In order to simulate a volatile cloud environment, we adopt the similar ap-

proach as described in [26]. Each component service has a failure rate. The more

service requests it receives, the more failures may occur. In our series of experi-

ments, same as works in [3][26][76], we set the failure rate at a fixed value, such as

1%, and then inject service anomalies to the SBS at runtime. In order to create dif-

ferent levels of volatility in the experimental environment, we vary the number of

anomalies injected at one time and the quality degradation coefficient (see Defini-

tion 7.1) of service, and their impacts are analysed. For the purpose of simplicity

and consistency without losing generality, when anomalies occur to a component

service without service redundancy, we assume that the quality degrades accord-

ing to a unified quality degradation coefficient, which is calculated by qdc
p = (2)h

and qdc
p = 1−(2)−h, h ≥ 1 for negative and positive quality dimensions respectively.

For example, when h is 1, the response time and throughput degrade to 200% and

50% of their original values respectively. This is the same experimental setup as

that in Section 7.2.2.

In all the experiments conducted, we use fault tolerance budgets as a critical

constraint in the formulation of fault tolerance strategies. In this way, we eval-

uate the effectiveness of FTC4MTS in formulating cost-effective fault tolerance

strategy by comparing with the Quality-Optimal, FTCloud and Random.

The services used in the experiments are also generated based on QWS [88].

For each service, the cost and throughput are generated randomly based on nor-

mal distribution.

Though we conducted experiments on the motivating example VOVS intro-

duced in Section 2.2.1 as a case study, in order to compare FTC4MTS with existing
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Figure 9.3: Comparison in success rates.

approaches more comprehensively, we have mimicked SBSs with different num-

bers of tasks n (up to 100). The findings are consistent with those from the exper-

iments on VOVS. For each test instance, a business process consisting of n tasks

is constructed first with randomly generated composition patterns introduced in

Section 4.1. After that, 100 candidate services are created for each service class,

based on which a service composition is formulated with IP techniques.

For each test instance with n service classes, 10 × n tenants are created and

distributed randomly when conditional branches exist in the service composition.

Tenants’ quality preferences are also generated randomly.

Same as before, all the experiments were conducted on a machine running

Windows 7x64 Enterprise with Intel(R) Core (TM) i5-4570 3.2 GHz CPU and 8 GB

RAM. The experimental results are collected, averaged and compared from 100

test instances.
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9.2.3 Effectiveness evaluation

9.2.3.1 Comparison in success rates

In order to examine the effectiveness of FTC4MTS compared to Quality-Optimal,

FTCloud and Random, we compare the success rates of fault tolerance obtained

by these approaches. For a fixed number of service classes, we fix νmax at 2 and

increase the fault tolerance budget in steps of 200. One anomaly is injected to

the SBS in each test instance. The experimental results show that, when budget

increases, the success rates obtained by all approaches increase, and FTC4MTS

outperforms other approaches in all scenarios. We use test instances with n =

100 as samples to demonstrate the results. As shown in Fig. 9.3, FTCloud and

Quality-Optimal achieve similar performance and are beaten by FTC4MTS by

approximately 5% on average. Random obtains the lowest success rates among

all the approaches as expected.

9.2.3.2 Comparison in quality degradation

In order to evaluate the effectiveness of FTC4MTS in alleviating system quality

degradation upon runtime anomalies against existing approaches, we conduct a

set of experiments, where different approaches in comparison are employed, to

observe the quality degradations in response time and throughput caused by run-

time anomalies. In this set of experiments, the quality of a faulty service degrades

to the maximum degradation level, which is represented by the quality degrada-

tion coefficient (see Definition 7.1). For a fixed number of service class n, the

fault tolerance budget is increased in steps of 200. One anomaly is injected to the

SBS in each test instance. The experimental results show that quality degradation

of both quality dimensions can be alleviated with all approaches when the bud-

get increases, while FTC4MTS outperforms other three approaches significantly.

Again, we use test instances with n = 100 as examples to demonstrate the results.

As shown in Fig. 9.4 (a), in terms of response time degradation, Quality-Optimal
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Figure 9.4: Comparison in SBS-level quality degrada-
tion. (a) Degradation of response time; (b) Degradation of
throughput.

gains a similar performance with FTCloud and outperforms it slightly when the

budget exceeds about 600. FTC4MTS outperforms Quality-Optimal and FTCloud

by 10% on average. Random, as expected, is beaten by other three counterparts

significantly. From the perspective of throughput degradation, a similar result

can be seen in Fig. 9.4 (b), where FTC4MTS shows the best performance and

outperforms FTCloud and Quality-Optimal by 4.5% and 8.3% on average respec-

tively.

The reason for the noticeable advantage of FTC4MTS over other approaches
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under a constrained fault tolerance budget is that with FTC4MTS, the component

service that may cause more severe quality degradation has a higher criticality,

and thus is given higher priority in the allocation of service redundancy. As a re-

sult, the severity of system quality degradation caused by runtime anomalies can

be alleviated. When the budget is high enough, all approaches except Random

can achieve similar and satisfactory results.

9.2.3.3 Comparison in affected tenant percentage

When an anomaly occurs to a component service of a multi-tenant SBS without

a proper fault tolerance strategy, all the tenants sharing that component service

may experience unexpected quality degradation. When quality degradation is

unavoidable, the common practice is to limit the degradation to as few tenants

as possible. With the same setup of the experiments in Section 9.2.3.2, we con-

duct experiments, where different approaches in comparison are employed, to

observe the affected tenant percentage. The results are presented in Fig. 9.5.

As demonstrated, FTC4MTS prevents significantly more tenants from being af-

fected by runtime anomalies than the other approaches. When fault tolerance

budget varies from 200 to 1600, the affected tenant percentages obtained by all

approaches decrease gradually and drop more quickly with FTC4MTS and FT-

Cloud. Due to the consideration of service sharing across the tenants when calcu-

lating service criticality, FTC4MTS gains the most obvious advantage (over 20%

on average) when budget is between 200 and 1000.

9.2.3.4 Impact of environment volatility

In this series of experiments, we evaluate the impacts of environment volatility

on the quality of the SBS from two perspectives: the impacts of the number of

anomalies occurred to the SBS concurrently and the quality degradation severity

of a failed component service. The latter depends on the quality degradation coef-

ficient (see Definition 7.1) in this thesis. The experimental results show that when
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the operating environment is extremely volatile (e.g., large-scale service unavail-

ability in the event of natural disaster), severe quality degradation is inevitable.

In such an operating environment, FTC4MTS outperforms other approaches by

relatively larger margins when the operating environment becomes more volatile.

A sample is shown in Fig. 9.6 (a), where we vary the number of anomalies

in each test instance from 10 to n (n = 100), fix fault tolerance budget at 500 and

the quality degradation coefficient at 2, and observe the degradation (increase) in

system response time. As depicted in Fig. 9.6 (a), when the number of concurrent

anomalies rises, the response time degradation shown by other three approaches

increases more rapidly than that presented by FTC4MTS, which shows a signif-

icant advantage over Quality-Optimal with a response time degradation margin

of approximately 50% on average. With FTCloud and Random, which are much

more vulnerable to the anomalies among the four approaches in this experiment,

the response time degrades dramatically (roughly from 47% to 270% on average)

along with the growth of the number of anomalies that occurred to the SBS con-

currently.

We conduct another set of experiments with regards to the impact of quality

degradation severity, which is determined by the quality degradation coefficient.
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Figure 9.5: Comparison in affected tenant percentages.
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Figure 9.6: Impact of environment volatility. (a) Impact of
the number of anomalies that occurred to the SBS concur-
rently; (b) Impact of quality degradation coefficient.

As described in Section 9.2.2, the quality degradation coefficients for response

time and throughput are defined by (2)h and 1− (2)−h respectively. As an ex-

ample, we use 100 service classes, fix fault tolerance budget at 500, and vary

quality degradation coefficient of response time by increasing h from 1 to 7 in

steps of 1. One anomaly is injected to the SBS in each test instance. Fig. 9.6 (b)

compares the increases in system response time when the four approaches are

adopted. When the quality degradation coefficient varies from 200% to 12800%,

the increases in response time obtained by the four approaches are approximately
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34.6% (FTC4MTS), 172.1% (Quality-Optimal), 196.8% (FTCloud), and 274.7% (Ran-

dom) on average. Fig. 9.6 (b) illustrates that quality degradations occurred and

worsened regardless of the adopted approach. However, FTC4MTS has an obvi-

ous advantage over the other three.

9.2.3.5 Analysis of statistical significance

In order to assess the statistical significance of the advantages held by FTC4MTS

over other approaches, we conduct t-test based on the results collected in the

experiments in Sections 9.2.3.1 to 9.2.3.3 respectively. The t-test results are shown

in Table 9.1, where all the null hypothesises that FTC4MTS has no difference to

the second best approach in each set of experiments are rejected. Thus we can

conclude that FTC4MTS produces significant advantages in effectiveness over

other three approaches.

Table 9.1: t-test Results with Critical Value of 2.365 (95%
Confidence Interval)

Sample Data t-values p
Reject/Accept

Null Hypothesis
Success Rates 3.254 0.0140 Reject
Response Time Degradation 2.991 0.0202 Reject
Throughput Degradation 3.014 0.0195 Reject
Affected Tenant Percentage 3.085 0.0177 Reject

9.2.4 Efficiency evaluation

In order to evaluate the efficiency of FTC4MTS, we conduct a set of experiments

to assess its computational overhead. The impacts of two parameters are evalu-

ated: the maximum number of redundant services for a component service and

the number of service class. These two parameters have important influences on

the complexity of the fault tolerance strategy formulation, which, as described

in Section 9.1.3, is an NP-complete problem. The results show that with the in-

crease in complexity, the computational overhead introduced by all approaches
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Figure 9.7: Comparison in computational overhead. (a) Im-
pact of νmax; (b) Impact of the number of service class.

increases. However, FTC4MTS shows a better or similar performance compared

with other approaches except Random, which is a naive and non-optimal ap-

proach.

We first evaluate the impacts of maximum redundant service number on the

computational overhead. In this set of experiments, we fix n at 10, fault tolerance

budget at 500 and change νmax from 1 to 4 to vary the value of kr (kr = 2ν, 1 ≤

ν ≤ νmax), and then collect the average computation time achieved by the four ap-

proaches for finding solutions successfully. In order to examine the performance
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of these approaches in the worst-case scenarios and compare the efficiency on an

equal basis, we let ν = νmax in each round. Fig. 9.7 (a) shows that the computation

times presented by all approaches grow rapidly along with the increase of νmax.

This is because the scale of service redundancy scheme grows with the increase

of νmax (here ν = νmax), which consequently increases the complexity of the opti-

misation problem and makes it increasingly difficult to find an optimal solution.

However, a large νmax is not necessary in practice considering the overhead it in-

troduces and the improvement it brings to the system quality, which is analysed

in Section 9.3.

Fig. 9.7 (b) shows the impacts of service class number n on the computational

overhead. We fix νmax at 2 and fault tolerance budget at 500, and vary n from

10 to 100. The results show that the computation times consumed by all four

approaches increase when n rises. The computational overheads introduced by

FTC4MTS, Quality-Optimal and FTCloud increase much more significantly (from

about 130ms to approximately 600ms on average) than that of Random, which

stays stably at around 100ms.

9.3 Discussion

In this chapter, we use response time and throughput as two example quality di-

mensions. Other quality dimensions can be used in the similar manner. Similar to

the service monitoring discussed in Section 7.3, the non-linear quality constraints

and dimensions are not considered in the COP model either.

kr is a factor that may impact the experimental comprehensiveness in this

chapter. It represents the maximum number of redundant services determined

by νmax in a service redundancy. We use a relatively small kr in the experimental

setup, because on one hand a large kr would inevitably cause heavy computa-

tional overhead. On the other hand, deploying more services for fault tolerance

introduces higher cost but may not yield significant improvement in system qual-
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ity. For example, from the reliability point of view, the probability of that the

component service and all redundant services fail at the same time is very small.

We assume there are three redundant services deployed for a component service

in a service redundancy and each service has a reliability of 90%, then theoreti-

cally the overall reliability of formulated service redundancy can reach 99.9999%,

which is very high. Therefore, we believe that kr is not a major limitation in prac-

tice.

9.4 Summary

Quality-aware cost-effective fault tolerance for multi-tenant SBS is a critical is-

sue in the dynamic and volatile cloud environments. This chapter introduces a

novel approach named FTC4MTS that formulates fault tolerance strategies for

SBSs based on the service criticality. Component services are ranked by their crit-

icalities and critical component services are given the priorities in the allocation

of service redundancy. By doing so, the fault tolerance capabilities of SBSs can be

improved significantly. To evaluate the effectiveness and efficiency of FTC4MTS,

we have conducted a series of experiments, where we compared FTC4MTS with

three representative approaches and analysed the impacts of various factors. The

results show that FTC4MTS can formulate fault tolerance strategies for SBSs un-

der a limited budget, which effectively and efficiently reduce the risk of system

quality degradation for multi-tenant SBSs.
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Chapter 10

Conclusions and future work

In this chapter, we summarise this thesis and present the contribution of this re-

search. Some future research directions of lifetime quality management for multi-

tenant SBSs are discussed.

10.1 Summary of this thesis

The aim of this research is to investigate a novel and systematic solution named

LQM4MTS to address the issues in lifetime quality management for multi-tenant

SBSs. LQM4MTS includes a set of approaches that focus on the quality manage-

ment for different lifetime stages of multi-tenant SBSs, namely service selection,

service monitoring and service adaptation, which are organised in Part I to Part

III respectively in this thesis. The chapters in this thesis are summarised as fol-

lows:

• Chapter 1 introduces the concept of multi-tenant SBSs including their life-

time stages of service selection, service monitoring and service adaptation.

The key issues to be addressed in this research and the structure of this the-

sis are also introduced.
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• Chapter 2 first reviews the related work in each lifetime stage. Then, based

on a motivating example, the research requirements are presented, which

argue that a systematic, effective and efficient solution is needed for quality

management across all the lifetime stages of multi-tenant SBSs.

• Chapter 3 presents the framework of LQM4MTS (Lifetime Quality Manage-

ment for Multi-Tenant SBSs), which consists of a set of techniques to address

the key issues in the entire lifetime of a multi-tenant SBS.

• Chapter 4 introduces the composition model used in this research, includ-

ing service composition pattern, execution path and execution plan, quality

characteristics, and utility evaluation. The composition model presented is

the basis of the techniques proposed in this thesis.

• Chapter 5, as the first chapter of Part I, introduces SSR4MTS (Service Se-

lection based on service Recommendation for Multi-Tenant SBSs), which

supports efficient service selection using service recommendation based on

clustering techniques. Tenants are firstly clustered according to the char-

acteristics of their quality requirements, based on which, the candidate ser-

vices are also clustered and the services with similar quality features are rec-

ommended for service selection. Experimental results show that SSR4MTS

can significantly improve the efficiency of service selection for multi-tenant

SBSs with high effectiveness.

• Chapter 6, as the second chapter of Part I, presents SSC4MTS (Service se-

lection based on Correlated quality requirements for Multi-Tenant SBSs),

which supports service selection that fulfils tenants’ multi-dimensional qual-

ity requirements with correlation between different quality dimensions. The

quality correlations are firstly formalised with correlation functions, and

then the service selection are modelled as Constraint Optimisation Prob-

lems. Quality Satisfaction Degree is proposed to represent the goal of sys-

tem optimisation. According to the experimental results, SSC4MTS can sup-
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port the service selection based on correlated quality requirements in an

effective and efficient way.

• Chapter 7, as Part II, introduces SMC4MTS (Service Monitoring based on

Criticality for Multi-Tenant SBSs), which is designed for formulating cost-

effective monitoring strategies for multi-tenant SBSs based on service crit-

icality. Quality-based criticality and tenant-based criticality are calculated

and integrated as the overall service criticality, based on which, the compo-

nent service in an SBS are ranked and those with higher criticalities are pri-

oritised in the formulation of monitoring strategies. The monitoring bene-

fits, resource cost for monitoring and incurred system overhead are compre-

hensively considered in the proposed model. The evaluation results show

that SMC4MTS can significantly reduce the quality degradation of an SBS

upon runtime anomalies with high efficiency and effectiveness especially

cost-effectiveness.

• Chapter 8, as the first chapter of Part III, presents SAL4MTS (Service Adap-

tation based on LSH for Multi-Tenant SBSs), which supports rapid runtime

system adaptation for multi-tenant SBSs by selecting the alternative services

with equivalent functionalities to replace the anomalous component ser-

vices. Locality-Sensitive Hashing is used to find the candidate services with

most similar quality performance with the faulty services. The experimen-

tal results demonstrate that SAL4MTS is able to find proper replacement

services efficiently with high effectiveness.

• Chapter 9, as the second chapter of Part III, introduces FTC4MTS (Fault Tol-

erance based on Criticality for Multi-Tenant SBSs), which supports formu-

lating cost-effective fault tolerance strategies for multi-tenant SBSs based on

service criticality. In our research, this is the other scenario that service crit-

icality is used to find the critical component services in a multi-tenant SBS.

Service redundancy is allocated to the component services with high crit-
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icalities in the formulation of fault tolerance strategies. The experimental

evaluation shows that FTC4MTS can alleviate the system quality degrada-

tion for a multi-tenant SBS within the limited budget in an effective and

efficient way.

10.2 Contributions of this thesis

The significance of this research is that it addresses the problem of quality man-

agement for multi-tenant SBSs at different lifetime stages, including service se-

lection, service monitoring and service adaptation. We propose a novel and sys-

tematic solution which consists of a set of approaches that supports the quality

management activities across the entire lifetime of multi-tenant SBSs. The effec-

tiveness and efficiency of the proposed approaches have been evaluated by ex-

tensive experiments. The major contributions of the work presented in this thesis

are as follows:

• The challenges and issues in lifetime quality management for multi-tenant

SBSs are identified and a systematic solution named LQM4MTS is pro-

posed to address the issues. LQM4MTS consists of a set of innovative ap-

proaches support effective and efficient quality management at different

lifetime stages of multi-tenant SBSs.

• Two innovative approaches are proposed for effective and efficient service

selection: SSR4MTS and SSC4MTS. SSR4MTS is suitable for the scenario

where tenants and services are clusterable with distinctive features in their

quality requirements and quality values respectively. By innovatively ex-

ploring the similarity between tenants’ quality requirements and candidate

services’ quality values, SSR4MTS uses service recommendation based on

clustering techniques to achieve effective and efficient service selection for

multi-tenant SBSs. SSC4MTS is used to handle tenants’ correlated qual-

ity requirements for an SBS in service selection. It considers the correla-
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tions between different quality dimensions of tenants’ quality requirements.

The methods for formalising the quality correlations and calculating quality

satisfaction degree are proposed to facilitate the optimal service selection.

SSC4MTS effectively and efficiently addresses a challenging issue in service

selection existed in a real-world scenario but is insufficiently considered.

• A novel approach named SMC4MTS is proposed to support formulation

of cost-effective service monitoring strategies. Service criticality is used to

identify the critical component services in a multi-tenant SBS to achieve

cost-effective service monitoring within limited monitoring budget. Service

criticality is calculated based on three metrics: tenants’ multi-dimensional

quality, tenants’ service sharing in the SBS, and their quality preferences

for the SBS. The typical and important monitoring parameters are consid-

ered in the formulation of monitoring strategies, including the number of

monitors, monitoring frequency and monitoring granularity. We propose

monitoring utility to model the trade-off between monitoring benefit, mon-

itoring resource cost and system overhead caused by different monitoring

parameters. The optimal solution to cost-effective service monitoring can

be found by solving a constraint optimisation problem, which is proposed

to model the formulation of monitoring strategies.

• Two new approaches for service adaptation are proposed to provide quality

guarantee for multi-tenant SBS: SAL4MTS and FTC4MTS. By using Locality-

Sensitive Hashing (LSH) to find the nearest neighbours of the faulty ser-

vices in terms of quality performance, SAL4MTS supports effective and ef-

ficient service adaptation with service replacement upon runtime anoma-

lies. When tenants’ quality requirements cannot be satisfied after service

replacements, SSR4MTS is adopted to re-optimise the system to ensure the

system quality. As another effective way for service adaptation, fault toler-

ance strategies are formulated by FTC4MTS based on service redundancy.
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Service criticality is used again to achieve cost-effectiveness and high effi-

ciency in fault tolerance within limited budget. The component services

with high criticalities are prioritised in fault tolerance and run with the

redundant services in certain redundancy mode. In this way, the quality

degradation caused by runtime anomalies can be alleviated effectively and

efficiently.

10.3 Future work

In the future, further investigation into lifetime quality management for multi-

tenant SBSs can be carried out in several directions:

• For service selection, we plan to exploit the alternative clustering algorithms

to overcome the limitations of K-Means, which is used in SSR4MTS for clus-

tering tenants and services, e.g., the issues of pre-specified number of clus-

ters, and sensitivity to outliers. More runtime scenarios with respect to ser-

vice recommendation and selection will be investigated, such as the change

of tenants’ quality requirements, joining and leaving of new tenant, etc. As

extension of SSC4MTS, more types of quality correlations will be investi-

gated, and more comparison with other approaches such as those based on

fuzzy logic will also be carried out.

• For service monitoring, the model of SMC4MTS will be enhanced by consid-

ering more monitoring parameters and exploring more flexible monitoring

patterns.

• For service adaptation, more complicate and comprehensive adaptation strat-

egy will be explored, e.g., adaptation based on quality prediction, using

diverse adaptation actions, etc. The runtime adaptation of the formulated

fault tolerance strategy will be investigated.

• At present, we focus on the linear quality constraints and dimensions or
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those that can be linearised. In the future, we plan to extend the proposed

approaches by considering the handling of non-linear quality constraints

and dimensions, with which the constraint optimisation problem modelled

in most of the approaches becomes a non-linear programming problem.

• In this thesis, the service sharing among tenants are deterministic. As a

future work, the tenants’ correlation in service sharing will be investigated,

based on which, the sharing of services among different tenants becomes

probabilistic.

• The quality handled in our approaches are also deterministic, and the prob-

abilistic quality will be investigated as one of the future works.
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Appendix A

Notation summary

Table A.1: Notation Summary for This Thesis.

Symbol Description

Bi, j The monitoring benefits for the j th local monitoring strategy for

the ith component service.

C
neg
p The pth constraint of a negative quality parameter.

C
pos
p The pth constraint of a positive quality parameter.

crO(si) The overall criticality of si.

crT (si) The tenant-based criticality of si.

cr
QN
p The minimum criticality for the pth quality parameter.

cr
QX
p The maximum criticality for the pth quality parameter.

cr
Q
p (si) The criticality of the pth quality parameter of the ith component

service.

crn
Q
p (si) The normalised pth quality-based criticality of the ith component

service.

epi The ith execution path.
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Continuation of Table A.1

Symbol Description

epli The ith execution plan.

Fi, j The monitoring frequency for the j th local monitoring strategy

for the ith component service.

FTC4MTS Fault-Tolerance based on Criticality for Multi-Tenant SBSs.

Gi, j The monitoring granularity for the j th local monitoring strategy

for the ith component service.

kr The number of redundant services in a fault tolerance scheme.

LQM4MTS Lifetime Quality Management For Multi-Tenant Service-based

Systems.

msi, j The j th local monitoring strategy for the ith component service.

mu(msi, j) The monitoring utility of local monitoring strategy msi, j .

mu(S) The monitoring utility of SBS S.

MSi, j The member services of the j th service redundancy scheme in the

ith service class.

MSλ The λth non-empty subset of MSi, j .

Ni, j The number of monitors for the j th local monitoring strategy for

the ith component service.

O System overhead caused by service monitoring.

p(bi) The execution probability of the ith branch in a composition pat-

tern.

p(eple) The execution probability of the eth execution plan.

qp(si, j) The pth quality value of service si, j .

Qp(si, j) The normalised pth quality value of service si, j .

qmax
p (sci) The maximum quality value for the pth quality parameter in the

ith service class.

qdc
p The quality degradation coefficient of the pth quality parameter.
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Continuation of Table A.1

Symbol Description

qmin
p (sci) The minimum quality value for the pth quality parameter in the

ith service class.

qnp(si, j) The pth normalised quality value of si, j .

qp(csci,l) The quality value of the pth dimension of the mapped centroid of

the lth service cluster in the ith service class.

QSD(s) The average quality satisfaction degree of service composition s

to all tenants.

QSD(s, ti) The quality satisfaction degree of service composition s to a ten-

ant ti.

rmax
p (T ) The maximum values for the pth quality requirements of all ten-

ants that share SBS S.

rmin
p (T ) The minimum values for the pth quality requirements of all ten-

ants that share SBS S.

rp(te) The value of the pth quality requirement of the eth tenant for SBS

S.

rnp(te) The normalised value of the pth quality requirement of the eth ten-

ant for SBS S.

R Resource cost for service monitoring.

Rd A d-dimensional space.

ξ(S) The number of service requests that SBS S processes per unit of

time.

ξ(si) The number of service requests that the ith component service

processes per unit of time.

S The SBS.

si, jr The rth redundant service in SRSi, j .

si, j The j th candidate service in the ith service class.
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Continuation of Table A.1

Symbol Description

si The ith component service.

sci The ith service class.

SAL4MTS Service Adaptation based on LSH for Multi-Tenant SBSs.

SMC4MTS Service Monitoring based on Criticality for Multi-Tenant SBSs.

SRSi, j The j th service redundancy scheme in the ith service class.

SSC4MTS Service Selection based on Correlated quality requirements for

Multi-Tenant SBSs.

SSR4MTS Service Selection based on service Recommendation for Multi-

Tenant SBSs.

T (tcc) The number of tenants in the cth cluster.

τ(S) The number of tenants sharing S.

τ(si) The number of tenants sharing si.

ti The number of tenants that share service class SCi.

u(si, j) The utility of service si, j .

we,p The eth tenant’s weight for the pth quality dimension.

wt,p The tth tenant’s preference for the pth quality parameter.

wave
p The tenants’ average preference for the pth quality parameter.

∆qp The percentage of quality degradation for the pth quality param-

eter in each iteration.

∆Qp The difference in the pth normalised quality value of tenant ti’s

requirement between f and service composition s. f is the per-

pendicular foot of s to the line segment that represents the quality

correlation function of tenant t1.

∆q
vp

k,p
(si) The variation percentage of the pth quality value of si in the kth

iteration.
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Continuation of Table A.1

Symbol Description

∆q
vp

k,p
(S, si) The variation percentage of the pth quality value of S in the kth

iteration.

ν The round in which the optimisation is performed.

νmax The maximum value of ν.
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