234

IEEE TRANSACTIONS ON COMPUTERS, VOL. 50, NO.3, MARCH 2001

Lifetime-Sensitive Modulo Scheduling
in a Production Environment

Josep Llosa, Eduard Ayguadé, Antonio Gonzalez, Member, IEEE Computer Society,
Mateo Valero, Fellow, IEEE, and Jason Eckhardt

Abstract—This paper presents a novel software pipelining approach, which is called Swing Modulo Scheduling (SMS). It generates
schedules that are near optimal in terms of initiation interval, register requirements, and stage count. Swing Modulo Scheduling is a
heuristic approach that has a low computational cost. This paper first describes the technique and evaluates it for the Perfect Club
benchmark suite on a generic VLIW architecture. SMS is compared with other heuristic methods, showing that it outperforms them in
terms of the quality of the obtained schedules and compilation time. To further explore the effectiveness of SMS, the experience of
incorporating it into a production quality compiler for the Equator MAP1000 processor is described; implementation issues are
discussed, as well as modifications and improvements to the original algorithm. Finally, experimental results from using a set of

industrial multimedia applications are presented.

Index Terms—Fine grain parallelism, instruction scheduling, loop scheduling, software pipelining, register requirements, VLIW,

superscalar architectures.

1 INTRODUCTION

SOFTWARE pipelining [5] is an instruction scheduling
technique that exploits instruction level parallelism out
of loops by overlapping successive iterations of the loop
and executing them in parallel. The key idea is to find a
pattern of operations (named the kernel code) so that, when
repeatedly iterating over this pattern, it produces the effect
that an iteration is initiated before the previous ones have
completed.

The drawback of aggressive scheduling techniques, such
as software pipelining, is their high register pressure. The
register requirements increase as the concurrency increases
[27], [22], due to either machines with deeper pipelines or
wider issue or a combination of both. Registers, like
functional units, are a limited resource. Therefore, if a
schedule requires more registers than available, some
actions, such as adding spill code, have to be performed.
The addition of spill code can degrade performance [22]
due to additional cycles in the schedule or due to memory
interferences.

Some research groups have targeted their work toward
exact methods that find the optimal solution to the problem.
For instance, the proposals in [16] search the entire
scheduling space to find the optimal resource-constrained
schedule with minimum buffer requirements, while the
proposals in [2], [7], [13] find schedules with the actual
minimum register requirements. The task of generating an
optimal (in terms of throughput and register requirements)

e . Llosa, E. Ayguade, A. Gonzalez, and M. Valero are with the Computer
Architecture Department, Technical University of Catalonia, ¢/ Jordi
Girona 1-3, Modul D6, 08034, Barcelona, Spain. E-mail: mateo@ac.upc.es.

o |. Eckhardt is with the Department of Computer Science, Rice University,
Houston, Texas.

Manuscript received 12 Dec. 1999; revised 22 Sept. 2000; accepted 14 Nowv.
2000.

For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number 111112.

resource-constrained schedule for loops is known to be
NP-hard. All these exact approaches require a prohibitive
time to construct the schedules and, therefore, their
applicability is restricted to very small loops. Therefore,
practical algorithms use some heuristics to guide the
scheduling process. Some of the proposals in the literature
only care about achieving high throughput [11], [19], [20],
[31], [32], [37], while other proposals have also been
targeted toward minimizing the register requirements [9],
[12], [18], [24], which result in more effective schedules.

Stage Scheduling [12] is not a whole modulo scheduler
by itself, but a set of heuristics targeted to reduce the
register requirements of any given modulo schedule. This
objective is achieved by moving operations in the schedule.
The resulting schedule has the same throughput, but lower
register requirements. Unfortunately, there are constraints
in the movement of operations that might yield to
suboptimal reductions of the register requirements. Similar
heuristics have been included in the IRIS [9] scheduler,
which is based on the Iterative Modulo Scheduling [11], [31]
in order to reduce the register pressure at the same time as
the scheduling is performed.

Slack Scheduling [18] is a heuristic technique that
simultaneously schedules some operations late and other
operations early with the aim of reducing the register
requirements and achieving maximum execution rate. The
algorithm integrates recurrence constraints and critical-path
considerations in order to decide when each operation is
scheduled. The algorithm is similar to Iterative Modulo
Scheduling in the sense that it uses a limited amount of
backtracking by possibly ejecting operations already sched-
uled to give place to a new one.

Hypernode Reduction Modulo Scheduling (HRMS) [24],
[25] is a heuristic strategy that tries to shorten loop variant
lifetimes, without sacrificing performance. The main con-
tribution of HRMS is the node ordering strategy. The

0018-9340/01/$10.00 © 2001 IEEE

LLOSA ET AL.: LIFETIME-SENSITIVE MODULO SCHEDULING IN A PRODUCTION ENVIRONMENT 235

iteration 1

m F 3 F 5
8 iteration 2 | I
o v
| VT
o y ' I Kernel Code
E) iteration 3

F 3 ninininin’a infelel A

; I

L
'3: iteration 4 e
ciB A 2
E iteration 5 <
<<
L
I_
v

EPILOGUE

Fig. 1. Basic execution model for a software pipelined loop.

ordering phase sorts the nodes before scheduling them such
that only predecessors or successors of a node can be
scheduled before it is scheduled (except for recurrences).
During the scheduling step, the nodes are scheduled as
soon/late as possible if predecessors/successors have been
previously scheduled. The effectiveness of HRMS has been
compared in terms of achieved throughput and compilation
time against other heuristic methods [18], [37] showing
better performance. The main drawback of HRMS is that
the scheduling heuristic does not take into account the
criticality of the nodes.

In this paper, we present a novel scheduling strategy,
Swing Modulo Scheduling (SMS'), which considers the
criticality of the nodes. It is a heuristic technique that has
a low computational cost (e.g., compiling all the innermost
loops without conditional exits and procedure calls of the
Perfect Club takes less than half a minute). The paper also
describes its implementation in a production compiler for
specific VLIW processors targeting digital consumer pro-
ducts. The performance figures reveal the efficiency of the
schedules generated on a variety of customer workloads.

The rest of the paper is organized as follows: Section 2
presents an overview of the main concepts underlying
software pipelining. Section 3 discusses an example to
motivate our proposal, which is formalized in Section 4.
Section 5 shows the main results of our experimental
evaluation of the schedules generated by SMS. Section 6 is
devoted to describing the experience of incorporating SMS
into a production compiler and its evaluation on some real
workloads. The main concluding remarks are given in
Section 7.

2 OVERVIEW OF SOFTWARE PIPELINING

In a software-pipelined loop, the schedule for an iteration is
divided into stages so that the execution of consecutive
iterations which are in distinct stages is overlapped. The
number of stages in one iteration is termed stage count (SC).

1. This paper extends the previously proposed SMS technique [23] with
novel features targeted to a specific DSP processor. It also includes
performance figures for an industrial workload.

The number of cycles between the initiation of successive
iterations (i.e., the number of cycles per stage) in a software
pipelined loop is termed the Initiation Interval (II) [32]. Fig. 1
shows a simple example with the execution of a software-
pipelined loop composed of three operations (V1, V2, and
V3). In this example, II = 4 and SC = 3.

The Initiation Interval II between two successive itera-
tions is bounded by both recurrence circuits in the graph
(RecMII) and resource constraints of the architecture
(ResMII). This lower bound on the II is termed the
Minimum Initiation Interval (MII = max(RecMII, ResMII)).
The reader is referred to [11], [31] for an extensive
dissertation on how to calculate ResMII and RecMII.

Values used in a loop correspond either to loop-invariant
variables or to loop-variant variables. Loop-invariants are
repeatedly used but never defined during loop execution.
Each loop-invariant has a single value for all iterations of
the loop thus requiring one register regardless of the
schedule and the machine configuration.

For loop-variants, a value is generated in each iteration
of the loop and, therefore, there is a different lifetime
corresponding to each iteration. Because of the nature of
software pipelining, lifetimes of values defined in an
iteration can overlap with lifetimes of values defined in
subsequent iterations. This is the main reason why the
register requirements are increased. In addition, for values
with a lifetime larger than the II, new values are generated
before the previous ones are used. To fix this problem,
software solutions (modulo variable expansion [21]) as well
as hardware solutions (rotating register files [10], [17]) have
been proposed.

Some of the software pipelining approaches can be
regarded as the sequencing of two independent steps: node
ordering and node scheduling. These two steps are
performed assuming MII as the initial value for II. If it is
not possible to obtain a schedule with this II, the scheduling
step is performed again with an increased II. The next
section shows how the ordering step influences the register
requirements of the loop.

236

Hardware configuration:
1 add unit
1 mul unit
2 load/store units
Latencies:
add: 2 cycles
mul: 2 cycles
load: 2 cycles
store: 1 cycle

Fig. 2. Dependence graph for the motivating example.

3 MOTIVATING EXAMPLE

Consider the dependence graph in Fig. 2 and an architec-
ture configuration with the pipelined functional units and
latencies specified in the same figure. Since the graph in
Fig. 2 has no recurrence circuits, its initiation interval is
constrained only by the available resources; in this case, the
most constraining resource is the multiplier, which causes
MII = 4/1 = 4.

A possible approach to order the operations to be
scheduled would be to use a top-down strategy that gives
priority to operations in the critical path; with this ordering,
nodes would be scheduled in the following order: <nl, n2,
nb5, n8, n9, n3, n10, n6, n4, n11, n12, n7>. Fig. 3a shows the
top-down schedule for one iteration and Fig. 3c the kernel
code (numbers in brackets represent the stage to which the
operation belongs). Fig. 3b shows the lifetimes of loop
variants. The lifetime of a loop variant starts when the

I's I/s add mul 123456891011

0 [nt [n2]

1| n9 | |

2 ' n5 | né -[N

3 n3 :[_

4 n8

5 n4

6

7 | n7 -

8 ni0 ‘l’

9 ,
10 |
11 nii '_
12 | |
13 n12 |
14
15

(a) (b)

0 [nt[0] n2(0] n1oi2ne[]] [TTT]]1 [|10
1 |n9[0] n12[3] n4[1] 9
2 [[n5[0] [n6[0] I | 11
3 |n711] n3[0] [n11[2] | [110

(©) (d)

Fig. 3. Top-down scheduling: (a) schedule of one iteration, (b) lifetimes
of variables, (c) kernel of the schedule, and (d) register requirements.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 50, NO.3, MARCH 2001

Vs I/s add mul 123456891011
? ni
% n3 | né l

n2 ns
4 nd "' 'I'"'
g n8

n7 | n9
7 -
8 n10 'I
9
1

nii
12 '
13 ni2
14
15
(a) (b)

0 [n1[0]] In10[2] n4[1] | | || 8
1 n12(3) | n8[1] 6
2 |n7[1]/n9[1] | n3[0] | n6[0] 8
3 [n2[0] n5(0] n11[2] I I [19

(c) (d)

Fig. 4. HRMS scheduling: (a) schedule of one iteration, (b) lifetimes of
variables, (c) kernel of the schedule, and (d) register requirements.

producer is issued and ends when the last consumer is
issued. Fig. 3d shows the register requirements for this
schedule; for each cycle, it shows the number of live values
required by the schedule. The maximum number of
simultaneously live values at any cycle can approximate
the number of registers required, which is called MaxLive
(in [33] it is shown that register allocation never required
more than MaxLive + 1 registers for a large number of
loops). In Fig. 3d, MaxLive = 11. Notice that, with this
approach, variables generated by nodes n2 and n9 have an
unnecessarily large lifetime due to the early placement of
the corresponding operations in the schedule; as a con-
sequence, the register requirements for the loop increase.

In HRMS [24], the ordering is done with the aim that all
operations (except for the first one) have a previously
scheduled reference operation. For instance, for the pre-
vious example, they would suggest the following order to
schedule operations <nl, n3, n5, n6, n4, n7, n8, n10, n11, n9,
n2, n12>. Notice that, with this scheduling order, both n2
and n9 (the two conflicting operations in the top-down
strategy) have a reference operation (n8 and n10, respec-
tively) already scheduled when they are going to be placed
in the partial schedule.

Fig. 4a shows the final schedule for one iteration. For
instance, when operation n9 is scheduled, operation 110 has
already been placed in the schedule (at cycle 8), so it will be
scheduled as close as possible to it (at cycle 6), thus
reducing the lifetime of the value generated by n9. Some-
thing similar happens with operation 12, which is placed in
the schedule once its successor is scheduled. Fig. 4b shows
the lifetimes of loop variants and Fig. 4d shows the register
requirements for this schedule. In this case, MaxLive = 9.

The ordering suggested by HRMS does not give
preference to operations in the critical path. For instance,
operation 15 should be scheduled two cycles after the
initiation of operation nl; however, this is not possible
since, during this cycle, the adder is busy executing

LLOSA ET AL.: LIFETIME-SENSITIVE MODULO SCHEDULING IN A PRODUCTION ENVIRONMENT 237

123456891011

|

/s _l/s add mul
n1

n2 n5 l l
n3 | n8 1
n9

n4
ni0 | n6

n7
nii

= |]

OO~ WMN=0O
|
i
==
—
==

—

ni2

(@) (b)

n[0] | n7[2] | n3[1] | n8[1] | [

noi]| nti2)

n5[0] | nd[1]

n12[2Jn1001] né[1] | |
(c) (@)

Fig. 5. SMS scheduling: (a) schedule of one iteration, (b) lifetimes of
variables, (c) kernel of the schedule, and (d) register requirements.

n2[0]

(o3 e B o> R e)]

wnN = O

operation n3, which has been scheduled before. Due to that,
an operation in a more critical path (n5) is delayed in front
of another operation that belongs to a less critical path (1n3).
Something similar happens with operation n11 that conflicts
with the placement of operation 176, which belongs to a less
critical path but the ordering has selected it before. Fig. 5a
and Fig. 5c show the schedule obtained by our proposal and
Fig. 5b and Fig. 5d the lifetime of variables and register
requirements for this schedule. MaxLive for this schedule is
8. The schedule is obtained using the following ordering
<nl12,nll1, n10, n8, n5, n6, nl1, n2, n9, n3, n4, n7>. Notice that
nodes in the critical path are scheduled with a certain
preference with respect to the others. The following section
details the algorithm that orders the nodes based on these
ideas and the scheduling step.

4 SWwING MODULO SCHEDULING (SMS)

Most modulo scheduling approaches consist of two steps.
First, they compute a schedule trying to minimize the II, but
without caring about register pressure, and then variables
are allocated to registers. The execution time of a software
pipelined loop depends on the II, the maximum number of
live values of the schedule (MaxLive) and the stage count.
The II determines the issue rate of loop iterations.
Regarding the second factor, if MaxLive is not higher than
the number of available registers, then the computed
schedule is feasible and then it does not influence the
execution time. Otherwise, some action must be taken in
order to reduce the register pressure. Some possible
solutions outlined in [33] and evaluated in [22] are:

e Reschedule the loop with an increased II. In general,
increasing the II will reduce MaxLive, but it
decreases the issue rate.

e Add spill code. This again has a negative effect since
it increases the required memory bandwidth and it
will result in more memory penalties (e.g., cache
misses). In addition, memory may become the most

utilized resource and, therefore, adding spill code
may require an increase of the II.

Finally, the stage count determines the number of
iterations of the epilogue part of the loop (it is exactly
equal to the stage count minus one).

Swing Modulo Scheduling (SMS) is a modulo scheduling
technique that tries to achieve a minimum II, reduce
MaxLive, and minimize the stage count. It is a heuristic
technique that has a low computational cost while produ-
cing schedules very close to those generated by optimal
approaches based on exhaustive search, which have a
prohibitive computational cost for real programs. In order
to have this low computation cost, SMS schedules each
node only once (unlike other methods that are based on
backtracking [9], [11], [18], [31]. Despite not using back-
tracking, SMS produces effective schedules because nodes
are scheduled in a precomputed order that guarantees
certain properties, as described in Section 4.2.

In order to achieve a minimum II and to reduce the stage
count, SMS schedules the nodes in an order that takes into
account the RecMII of the recurrence to which each node
belongs (if any) and as a secondary factor it considers the
criticality of the path to which the node belongs.

To reduce MaxLive, SMS tries to minimize the lifetime of
all the values of the loop. To achieve that, it tries to keep
every operation as close as possible to both its predecessors
and successors. When an operation is to be scheduled, if the
partial schedule has only predecessors, it is scheduled as
soon as possible. If the partial schedule contains only
successors, it is scheduled as late as possible. The situation
in which the partial schedule contains both predecessors
and successors of the operation to be scheduled is
undesirable since in this case, if the lifetime from the
predecessors to the operation is minimized, the lifetime
from the operation to its successors is increased. This
situation happens only for one node in each recurrence and
it is avoided completely if the loop does not contain any
recurrence.

The algorithm followed by SMS consists of the following
three steps which are described in detail below:

e computation and analysis of the dependence graph,
e ordering of the nodes,
e scheduling.

SMS can be applied to generate code for innermost loops
without subroutine calls. Loops containing conditional
statements (IF) can be handled after applying if-conversion
[1] and provided that either the processor supports
predicated execution [10] or reverse if-conversion [38]
follows pipelining.

4.1 Computation and Analysis of the Dependence

Graph
The dependence graph of an innermost loop consists of a set of
four elements (DG = {V, E, 6, A}):

e Vis the set of nodes (vertices) of the graph, where
each node v € V corresponds to an operation of the
loop.

e E is the set of edges, where each edge (u,v) € E
represents a dependence from operation u to

238

IEEE TRANSACTIONS ON COMPUTERS, VOL. 50, NO.3, MARCH 2001

ha=hp=ho=hg=hg=1

6a,b = 8a,c = 8a,d = 8b,e = 6c,e = 6d,e =0
ASAP, = 0; ASAP, =ASAP,.=ASAPy=1; ASAP, =2

& © @

ALAP, = 0; ALAPy, = ALAP, = ALAPy = 1; ALAP, = 2

MOB, = MOB,, = MOB, = MOB, = MOB, = 0
Da =0,' DszC:Ddz 1,' DE =2

Fig. 6. A sample dependence graph.

operation v. Only data dependences (flow, anti and
output dependences) are included since the type of
loops that SMS can handle only includes one branch
instruction at the end that is associated to the
iteration count. Other branches have been pre-
viously eliminated by the if-conversion phase.

e 4, is called the distance function. It assigns a
nonnegative integer to each edge (u,v) € E. This
value indicates that operation v of iteration I
depends on operation u of iteration I — 6,,.

e), is called the latency function. For each node of the
graph, it indicates the number of cycles that the
corresponding operation takes.?

Given anode v € V of the graph, Pred(v) is the set of all the
predecessors of v. Thatis, Pred(v) = {u|u € Vand (u,v) € E}.
In a similar way, Succ(v) is the set of all the successors of v.
That is, Succ(v) = {ulu € Vand (v,u) € E}.

Once the dependence graph has been computed, some
additional functions that will be used by the scheduler are
calculated. In order to avoid cycles, one backward edge of
each recurrence is ignored for performing these computa-
tions. These functions are the following;:

e ASAP, is a function that assigns an integer to each
node of the graph. It indicates the earliest time at
which the corresponding operation could be sched-
uled. It is computed as follows:

If Pred(u) =0 then ASAP, =0
else ASAP, = max(ASAP, + X\, — b,, x MII)
Vv € Pred(u).

e ALAP, is a function that assigns an integer to each
node of the graph. It indicates the latest time at
which the corresponding operation could be sched-
uled. It is computed as follows:

If Succ(u) =0 then ALAP, = maxz(ASAP,)Yv eV
else ALAP, = min(ALAP, — A, + 6y X MII)
Y € Suce(u).

e MOB, is called the mobility (slack) function. For
each node of the graph, it denotes the number of
time slots at which the corresponding operation
could be scheduled. Nodes in the most critical path

2. In some architectures, the latency of an operation may also depend on
the consumer operation (i.e., A,,). The techniques presented in this paper
can be easily adapted to handle this situation.

Ha =2,' HszC:Hd=1; HE=0

have a mobility equal to zero and the mobility will
increase as the path in which the operation is located
is less critical. It is computed as follows:

MOB, = ALAP, — ASAP,.

e D, is called the depth of each node. It is defined as
its maximum distance to a node without predeces-
sors. It is computed as follows:

If Pred(u) =0 then D, =0
else D, = max(D, + X\,)Vv € Pred(u).

e M, is called the height of each node. It is defined as
the maximum distance to a node without successors.
It is computed as follows:

If Succ(u) =0 then H, =0
else H, = mazx(H, + \,)Yv € Succ(u).

4.2 Node Ordering

The ordering phase takes as input the dependence graph
previously calculated and produces an ordered list contain-
ing all the nodes of the graph. This list indicates the order in
which the nodes of the graph will be analyzed by the
scheduling phase. That is, the scheduling phase (see the
next section) first allocates a time slot for the first node of
the list, then it looks for a suitable time slot for the second
node of the list, and so on. Notice that as the number of
nodes already placed in the partial schedule increases there
are more constraints to be met by the remaining nodes and,
therefore, it is more difficult to find a suitable location for
them.

As previously outlined, the target of the ordering phase
is twofold:

e Give priority to the operations that are located in the
most critical paths. In this way, the fact that the last
operations to be scheduled should meet more
constraints is offset by their higher mobility
(MOB,). This approach tends to reduce the II and
the stage count.

e Try to reduce MaxLive. In order to achieve this, the
scheduler will place each node as close as possible to
both its predecessors and successors. However, the
order in which the nodes are scheduled has a severe
impact on the final result. For instance, assume the
sample dependence graph of Fig. 6 and a dual-issue
processor.

LLOSA ET AL.: LIFETIME-SENSITIVE MODULO SCHEDULING IN A PRODUCTION ENVIRONMENT 239

If node a is scheduled at cycle 0 and then node e is
scheduled at cycle 2 (that is, they are scheduled
based on their ASAP or ALAP values), it is not
possible to find a suitable placement for nodes b, c,
and d since there are not enough slots between a and
e. On the other hand, if nodes a and e are scheduled
too far away, there are many possible locations for
the remaining nodes. However, MaxLive will be too
high no matter which possible schedule is chosen.
For instance, if we try to reduce the lifetime from a to
b, we are increasing by the same amount the lifetime
from b to e. In general, having scheduled both
predecessors and successors of a node before
scheduling it may result in a poor schedule. Because
of this, the ordering of the nodes tries to avoid this
situation whenever possible (notice that, in the case
of a recurrence, it can be avoided for all the nodes
except one).

If the graph has no recurrences, the intuitive idea to
achieve these two objectives is to compute an ordering
based on a traversal of the dependence graph. The traversal
starts with the node at the bottom of the most critical path
and moves upward, visiting all the ancestors. The order in
which the ancestors are visited depends on their depth. In
the case of equal depth, nodes are ordered from less to more
mobility. Once all the ancestors have been visited, all the
descendants of the already ordered nodes are visited but
now moving downward and in the order given by their
height. Successive upward and downward sweeps of the
graph are performed alternately until the entire graph has
been traversed.

If the graph has recurrences, the graph traversal starts at
the recurrence with the highest RecMII and applies the
previous algorithm considering only the nodes of the
recurrence. Once this subgraph has been traversed, the
nodes of the recurrence with the second highest RecMII are
traversed. At this step, the nodes located on any path
between the previous and the current recurrence are also
considered in order to avoid having scheduled both
predecessors and successors of a node before scheduling
it. When all the nodes belonging to recurrences or any path
among them have been traversed, then the remaining nodes
are traversed in a similar way.

Concretely, the ordering phase is a two-level algo-
rithm. First, a partial order is computed. This partial
order consists of an ordered list of sets. The sets are
ordered from the highest to the lowest priority set, but
there is no order within each set. Each node of the graph
belongs to just one set.

The highest priority set consists of all the nodes of the
recurrence with the highest RecMII. In general, the ith set
consists of the nodes of the recurrence with the ith highest
RecMII, eliminating those nodes that belong to any previous
set (if any) and adding all the nodes located in any path that
joins the nodes in any previous set and the recurrence of
this set. Finally, the remaining nodes are grouped into sets
of the same priority, but this priority is lower than that of
the sets containing recurrences. Each one of these sets
consists of the nodes of a connected component of the graph
that do not belong to any previous set.

Once this partial order has been computed, then the
nodes of each set are ordered to produce the final and
complete order. This step takes as input the previous list of
sets and the whole dependence graph. The sets are handled
in the order previously computed. For each recurrence of
the graph, a backward edge is ignored in order to obtain a
graph without cycles. The final result of the ordering phase
is a list of ordered nodes O containing all the nodes of the
graph.

The ordering algorithm is shown in Fig. 7, where |
denotes the list append operation and Succ_L(O) and
Pred_L(O) are the sets of predecessors and successors of a
list of nodes, respectively, which are defined as follows:

Pred_L(O) = {v|3u € O such that v € Pred(u) and v ¢ O}
Succ_L(0) = {v|3u € O such that v € Succ(u) and v € O}.

4.3 Filling the Modulo Reservation Table

This step analyzes the operations in the order given by the
ordering step. The scheduling tries to schedule the opera-
tions as close as possible to their neighbors that have
already been scheduled. When an operation is to be
scheduled, it is scheduled in different ways depending on
the neighbors of this operation that are in the partial
schedule.

e If an operation u has only predecessors in the partial
schedule, then u is scheduled as soon as possible. In
this case, the scheduler computes the Early_Start of u
as:

Early—StaTtu - mamvePSP(u) (tv +)\17 - 6’U,7L X II)v

where t, is the cycle where v has been scheduled, A,
is the latency of v, 6,, is the dependence distance
from v to u, and PSP(u) is the set of predecessors of u
that have been previously scheduled. Then, the
scheduler scans the partial schedule for a free slot for
the node u starting at cycle Farly_Start, until the
cycle Early_Start, + II — 1. Notice that, due to the
modulo constraint, it makes no sense to scan more
than II cycles.

e If an operation u has only successors in the partial
schedule, then u is scheduled as late as possible. In
this case, the scheduler computes the Late_Start of u
as:

LCLt@,StCLT’tU = minve]’SS(u) (t’u -)\u + 6u,17 X 11)7

where PSS(u) is the set of successors of u that have
been previously scheduled. Then, the scheduler
scans the partial schedule for a free slot for the node
u starting at cycle Late_Start, until the cycle
Late_Start, — II + 1.

e If an operation u has both predecessors and succes-
sors, then the scheduler computes Early_Start, and
Late_Start, as described above and scans the partial
schedule starting at cycle Early_Start, until the cycle
min(Late_Start,, Barly_Start, + II — 1). This situa-
tion will only happen for exactly one node of each
recurrence circuit.

240

IEEE TRANSACTIONS ON COMPUTERS, VOL. 50, NO.3, MARCH 2001

1 O :=Empty_list

R:=Pred L(O)N"S
order := bottom-up

R :=Succ_L(O)N S
order := top-down
else

~OCoONN AN W

D

order := bottom-up
end if

[
N~

Repeat
if order = top-down
15 while R # @ do

— —
N W

with lowest MOB,,
17 0:=0/<y>

19 endwhile

20 order := bottom-up
21 R :=Pred_ L(O)N S
22 else

23 while R # & do

with lowest MOB,,
25 0:=0/<v>

27 endwhile
28 order := top-down
29 R :=Succ_L(O) S

30 endif
31 untilR=0
32 endfor

2 For each set of nodes S in decreasing priority do
if (Pred_L(O) N\ S) # QD then

else if (Succ_L(O) N\ S) # D then

R := {node with the highest ASAP value in S} ;
if more than one, choose anyone

16 v := Element of R with the highest H,, ;
if more than one, choose node

18 R:=R- {} v (Succ v) N S)

24 v := Element of R with the highest D, ;
if more than one, choose node

26 R:=R-{} U (Pred(v) " S)

Fig. 7. Ordering algorithm.

e Finally, if an operation u has neither predecessors
nor successors, the scheduler computes the
Early_Start of u as:

FEarly_Start, = ASAP,

and scans the partial schedule for a free slot for
the node u from cycle FEarly_Start, to cycle
Early_Start, + IT — 1.

If no free slots are found for a node, then the II is
increased by 1. The scheduling step is repeated with the
increased II, which will provide more opportunities for
finding free slots. One of the advantages of our proposal is
that the nodes are ordered only once, even if the scheduling
step has to do several trials.

4.4 Examples
This section illustrates the performance of SMS by means of
two examples. The first example is a small loop without
recurrences and the second example uses a dependence
graph with recurrences.

Assume that the dependence graph of the body of the
innermost loop to be scheduled is that of Fig. 2, where all

the edges represent dependences of distance zero. Assume
also a four-issue processor with four functional units
(one adder, one multiplier, and two load/store units) fully
pipelined with the latencies listed in Fig. 2.

The first step of the scheduling is to compute the MII and
the ASAP, ALAP, mobility, depth, and height of each node of
the graph. MII is equal to 4. Table 1 shows the remaining
values for each node.

Then, the nodes are ordered. The first level of the
ordering algorithm groups all the nodes into the same set
since there are not recurrences. Then, the elements of this
set are ordered as follows:

e Initially, R = {n12} and order = bottom-up.

o Then, all the ancestors of n12 are ordered depending
on their depth and their mobility as a secondary
factor. This gives the partial order O = <n12, nll,
n10, n8, n5, n6, n1, n2, n9>.

e Then, the order shifts to top-down and all the
descendants are ordered based on their height and
mobility. This gives the final ordering O = <n12, n11,
n10, n8, n5, n6, n1, n2, n9, n3, n4, n7>.

LLOSA ET AL.: LIFETIME-SENSITIVE MODULO SCHEDULING IN A PRODUCTION ENVIRONMENT 241

TABLE 1
ASAP, ALAP, Mobility (M), Depth (D), and
Height (H) of Nodes in Fig. 2

Node | ASAP | ALAP M D H
nl 0 0 0 0 10
n2 0 2 2 0 8
n3 2 6 4 2 4
n4 4 8 4 4 2
ns 2 2 0 2 8
n6 2 6 4 2 4
n7 6 10 4 6 0
n8 4 4 0 4 6
n% 0 4 4 0 6

nl0 6 6 0 6 4
nll 8 8 0 8 2
nl2 10 10 0 10 0

The next step is to schedule the operations following the
previous order. II is initialized to MII and the operations are
scheduled, as shown in Fig. 5:

o The first node of the list, n12, is scheduled at cycle 10
(given by its ASAP) since there are neither pre-
decessors nor successors in the partial schedule.’
Once the schedule is folded, this will become cycle 3
of stage 2.

e For the remaining nodes, the partial schedule
contains either predecessors or successors of it, but
not both of them. Nodes are scheduled as close as
possible to their predecessors/successors. For in-
stance, node nl1l is scheduled as late as possible
since the partial schedule only contains the successor
of it. Because of resource constraints, this is not
always possible as it happens for nodes n8 and n3.
For instance, n8 tries to be scheduled as late as
possible, which should be cycle 5 in Fig. 5. However,
at this cycle, the multiplier is already occupied by
n1l, which forces node n8 to move one cycle above.

The second example consists of a loop with a more

complex dependence graph with recurrences, as depicted in
Fig. 8. We will assume a four-issue machine with four
general-purpose functional units fully pipelined and with
two-cycle latency.

In this example, MII is equal to 6. The first step of the

ordering phase is to group nodes into an ordered list of sets.
As a result, the following list of three sets is obtained:

e S1={A,C, D, F}. This is the first set since it contains
the recurrence with the highest RecMII (i.e.,
(3 nodes x 2 cycles)/(1 distance) = 6).

e S2={G,], M, I}. This is the set that contains the
second recurrence

(RecMII = (3 nodes x 2 cycles)/(2 distance) = 3)

and the nodes in all paths between S1 and this
recurrence (i.e., node I).

3. In fact, the resulting schedule stretches from cycles —1 to 10, but, in all
the figures, we have normalized the representation, always starting at cycle
0, so n12 is in cycle 11 of Fig. 5.

Fig. 8. A sample dependency graph.

e S3={B,E H,K, L} This is the set with all remaining
nodes.

Then, the nodes are ordered as follows:

e First, the nodes of S1 are ordered, producing the
partial order O = <F, C, D, A>.

e Then, the ordering algorithm computes the prede-
cessors of these four nodes, but finds that none of
them belongs to S2. It then computes the successors
and finds that I and G belong to S2, so it proceeds
with a top-down sweep. This produces the following
partial ordering: O = <F, C, D, A, G, I, |, M>.

e Finally, the nodes of S3 are considered. The traversal
proceeds with the predecessor of S1 and S2 and
performs a bottom-up sweep which produces the
partial order O = <F, C, D, A, G, I, |, M, H, E, B>.
Then, the direction shifts to top-down and all the
successors are traversed producing the final order:
O=<F,CD,AGILJ MHE-BNL K>

The scheduling phase generates the schedule shown in

Fig. 9.

5 PERFORMANCE EVALUATION

5.1 Experimental Framework

In this section, we present some results of our experimental
study. We compare SMS with two other scheduling
methods: HRMS and Top-Down.* Both methods have been
implemented in C++ using the LEDA libraries [29]. For this
evaluation, we used all the innermost loops of the Perfect
Club benchmark suite [4] that have neither subroutine calls
nor conditional exits. Subroutine calls prevent the loops
from being software pipelined (unless they are inlined).
Although loops with conditional exits can be software
pipelined [36], this experimental feature has not been added
to our scheduler and is out of the scope of this work. Loops
with conditional structures in their bodies have been IF-
converted [1] so that they behave as a single basic block
loop. The dependence graphs of the loops have been
obtained with the compiler described in [3].

A total of 1,258 loops that represent the 78 percent of the
total execution time of the Perfect Club (measured on a
HP-PA 735) have been scheduled. From those loops, 438
(34.8 percent) have recurrence circuits, 18 (1.4 percent) have
conditionals, and 67 (5.4 percent) have both, while the

4. A comparison with other scheduling approaches can be found in [23].

242
ful fu2 fu3d fud ful fu2 fu3 fu4
Cycle
y ? a b] Cycleg Moo i [1 | biol
ooty s 1 K{1]
3 2 | ¢l | dio] | mi1] | efo]
g flalh 3 I
6 T 4 | fi0] | g0 | hio]
7 k 5
8 m |
9 [
10
11
(a) (b)

Fig. 9. SMS scheduling of the dependence graph of Fig. 6. (a) Schedule
of one iteration and (b) kernel of the scheduling.

remaining 735 (58.4 percent) loops have neither recurrences
nor conditionals. Also, 152 (12 percent) of the loops have
nonpipelined operations (i.e., modulo operations, divisions,
and square roots) that complicate the scheduling task. The
scheduled loops have a maximum of 376 nodes and
530 dependence edges, even though the average is slightly
more than 16 nodes and 20 edges per graph.

We assume unit latency for store instructions, a latency
of 2 for loads, a latency of 4 for additions and multi-
plications, a latency of 17 for divisions, and a latency of
30 for square roots. The loops have been scheduled for a
machine configuration with two load/store units,
two adders, two multipliers, and two Div/Sqrt units. All
units are fully pipelined except the Div/Sqrt units, which
are not pipelined at all.

5.2 Performance Results

Table 2 shows some performance figures for the three
schedulers. Notice that SMS obtains an II equal to the MII
for more loops than the other methods. It also requires
fewer registers and obtains schedules with fewer stages
than the other methods. In general, it produces results
much better than the Top-Down scheduler, somewhat
better than HRMS and very close to the optimal (SMS only
fails to obtain a schedule with II = MII for 18 loops; in other
words, it is optimal for at least 98.6 percent of the loops).
There is only one parameter (stage count, SC) for which it
obtains worse results than the Top-Down scheduler, but it is
due to the fact that Top-Down obtains larger initiation
intervals. Larger initiation intervals mean that less paralle-
lism is exploited and that less overlapping between
iterations is obtained, requiring, in general, fewer stages
but a higher execution time. Despite this, notice that SMS

TABLE 2
Comparison of Performance Metrics for the Three Schedulers

Metric SMS HRMS Top-Down
210 8815 8839 10113
11/ MII 1.0101 1.0128 1.1588
Loops with II > MII 18 31 157
2 SC 5302 5408 5039
Z Regs. 15157 15332 17183

IEEE TRANSACTIONS ON COMPUTERS, VOL. 50, NO.3, MARCH 2001

— SMS
HREMS
== Top-Down
100 —
// T
95
w
S
_‘—: o) <
ES
85
B0 T T
16 32 48 64 80

Number of registers

Fig. 10. Cumulative distribution of the register requirements of loop-
variants

has smaller initiation intervals than HRMS, but it requires
slightly fewer stages. This is because SMS has been
designed to optimize all three parameters: II, register
requirements, and SC.

Once the loops have been scheduled, a lower bound of
the register requirements (MaxLive) can be found by
computing the maximum number of live values at any
cycle of the schedule. As shown in [33], the actual register
allocation almost never requires more than MaxLive + 1
registers; therefore, we use MaxLive as a measurement of
the register requirements.

Fig. 10 shows the cumulative distribution of the register
requirements for the three schedulers. Each point (x, y) in
the graph represents that y percent of the loops can be
scheduled with x registers or less. Since SMS and HRMS
have the objective of minimizing the register requirements,
there is little difference among them, even though SMS is
slightly better in all aspects. This plot only considers the
register requirements caused by the loop variants; the
requirements for the loop invariants do not depend on the
quality of the scheduling.

5.3 Compilation Time

In the context of using software pipelining as a code
generation technique, it is also important to consider the
cost of computing the schedules. In fact, this is the main
reason why integer linear programming approaches are not
used. The time to produce the schedule has, for instance,
extreme importance when dynamic rescheduling techni-
ques are used [6]. Fig. 11 compares the execution time of the
three schedulers running on a Sparc-10/40 workstation.
SMS only requires 27.5 seconds to schedule the 1,258 loops
of the Perfect Club. Fig. 11 also compares the time required
to compute the MII, to order the nodes (or compute the
priority of the nodes), and the time required to perform the
scheduling. Notice that Top-Down (which is the simplest
scheduler) requires less time than the others to compute the
priority of the nodes, but, surprisingly, it requires much
more time to schedule the nodes. This is because, when the
scheduler fails to find a schedule with MII cycles, the loop is

LLOSA ET AL.: LIFETIME-SENSITIVE MODULO SCHEDULING IN A PRODUCTION ENVIRONMENT 243

O Scheduling
@ Priority function
m Find recurrences and compute MII

Top-Down
HRMS
SMS

L P I L L B B
0 10 20 30 40 S0 60 70

Time (seconds)

Fig. 11. Time to schedule all the 1,258 loops in the Perfect Club.

rescheduled with an increased initiation interval, and
Top-Down has to reschedule the loops much more often
than the other schedulers.

HRMS obtains much better schedules (requiring less
time to schedule the loops) at the expense of a sophisticated
and more time-consuming preordering step. SMS uses a
simple, but very effective, heuristic to order the nodes that
requires almost the same time as Top-Down to order the
nodes and the same time as HRMS to schedule them. In
total, it is about twice as fast as the two other schedulers.

6 SMS IN A PRODUCTION COMPILER

In this section, we describe an industrial implementation of
SMS in the Equator Technologies, Inc. (ETI) optimizing
compiler (introduced in [8]). ETI is a descendent of
Multiflow Computer, Inc. [26] that produces a family of
VLIW processors for digital consumer products.

6.1 Target Architecture

ETI’'s MAP1000 processor is the target architecture used
here. It is the first implementation of ETI’s series of Media
Accelerated Processors (MAP). The experiments were
executed on a preproduction (engineering prototype)
MAP1000 chip running at 170 MHz. The MAP1000 is a
quad-issue VLIW processor, composed of two identical
clusters cl0 and cl1, as depicted in Fig. 12.
Each cluster contains:

e [-ALU unit (32-bit integer, load/store, and branch
subunits),

e JFG-ALU unit (single-precision floating-point, DSP,

and 64-bit integer subunits),

general register file (64 x 32-bit registers),

predicate register file (16 x 1-bit predicate registers),

special-purpose PLV register (1 x 128 bits),

special-purpose PLC register (1 x 128 bits).

An instruction word is 136-bits long and consists of four
operations to drive the two clusters. Most operations can
only be executed on either an I-ALU or an IFG-ALU.
However, some operations, such as simple integer opera-
tions, can execute on both units, which gives a software
pipeliner more flexibility when placing them. All functional
units except for the divide units are fully pipelined and thus
can accept a new operation on every cycle.

Branch instructions are delayed—the branch is issued at
cycle i, but does not commit until cycle i + 2. Thus, there are
11 operations in the “delay slots” that must be filled (three
operations in the instruction word containing the branch
plus eight operations in the two following instruction

Cluster O Cluster 1
I-ALU I-ALU
GR GR
PR, | IFG-ALU PR, | IFG-ALU
PLV PLV

16 Kbyte Data Cache

16 Kbyte Instruction Cache

Fig. 12. MAP1000 block diagram.

words). This is significant for modulo scheduling as it
forces Minll to be at least three cycles and those kernels
with three cycles of work or less execute entirely in the
delay slots. Of course, it is sometimes necessary to unroll
small loops in order to produce enough work to populate
these cycles.

The architecture contains limited support for software-
pipelined loops, including a fully predicated instruction set
(supporting if-conversion, for example) and speculative
memory operations. Further, a select instruction is provided
which selects one of two general register inputs based on a
third predicate input. There is no other hardware support
for overlapped loops—specifically, there are no rotating
register files or corresponding loop instructions. Thus, for
each pipelined loop, we must generate prologue and
epilogue compensation and at least one copy of the
compacted kernel (more if there are any lifetimes that
overlap themselves).

Processor resources must be managed precisely by the
compiler as there is no hardware interlocking (with the
exceptions of bank stalls and cache misses). Further, due to
the clustered functional units and register files, the compiler
must be concerned with the cost of data movement between
clusters. Cross-cluster movement can be accomplished by a
simple register-register copy operation or by result broad-
casting. Broadcasting refers to the ability of an operation to
target its result to both the local register file as well as a
register file on a remote cluster.

Each general-purpose register file holds integer, floating-
point, and multimedia data. The registers are viewed as a
set of overlapping classes depending on the instructions
used to write or read them. These classes present complica-
tions for the software pipeliner and register allocator.
Instructions with a restricted register operand, for example,
must read the operand from r0 through r7 or r16 through
r23. Further, instructions that broadcast can only write
destination registers r0 through r15. Finally, 64-bit instruc-
tions read and write register pairs rN:rN+1 (where N is
even and the instruction references N).

One class of operations, the sigma operations, needs
special mention as they significantly affect the implementa-
tion of SMS. Consider one such operation

srshinprod.ps64.psl16 rd, rs, iw, ip,

244

where rd and rs are general register pairs and iw and ip
are immediate operands:

PLV =rs[8 x (ip+itw) —1: 8 x ip| | PLV[127 : 8 X iw]

7
rd = Z PLC.16i x PLV.16i.
=0

The notation [x : y] denotes a range of bits and x | y
represents concatenation of bits. The operation first updates
the PLV register by shifting it to the right with the leftmost
bits being replaced by bits from rs. Then, an inner product
is computed into rd by treating the 128-bit PLC and PLV
registers each as a vector of eight signed 16-bit integers. Due
to the fact that there is only one PLV register per cluster, it is
not possible to have more than one corresponding lifetime
intersecting in any given cycle (on the same cluster). This
causes a problem for software pipelining which attempts to
overlap operations. Section 6.2 addresses the issue in more
detail, along with a method to handle such operations.

6.2 Improvements and Modifications to SMS

While the addition of SMS to the existing software pipeliner
was fairly straightforward, there were a few aspects that
needed special attention. Some modifications were done
without changing the essential characteristics of SMS, but
rather to allow it to perform better when dealing with the
complexities presented by the target VLIW architecture.

First of all, the interaction of the ordering algorithm with
the ETI dependence graph structure presented a problem.
Consider the section of the algorithm in Fig. 7 between
lines 15 and 19 (and the analogous section between lines 23
and 27). An implicit assumption made here is that nodes are
topologically distinguishable based on their height or
depth. That is, it is assumed that nodes with dependence
relationships will have distinct values for height and depth
that correspond to their topological position in the graph.
This is a reasonable assumption, yet the ETI graph structure
does not satisfy it because some nodes may have an
associated latency of 0. In fact, a negative latency will exist
for nodes that constrain a branch due to the branch delay
slots of the architecture. For example, if the latency of a
node (with one successor) is 0, then that node and its
successor will have the same height and depth. In these
cases, the SMS algorithm cannot rely on just the height/
depth values since they can be ambiguous when nonposi-
tive latencies are involved. A simple modification is made
in the ETI version so that, when choosing between related
nodes (e.g., lines 16 and 24 in Fig. 7), the intervening graph
edges are examined and not just the height/depth values. In
other words, we pay attention to the full graph structure
when height and depth don’t give a complete characteriza-
tion of the graph topology. This is slightly more expensive,
but is only necessary in compilers with graph representa-
tions allowing nodes with nonpositive latencies, which is a
feature not used by many compilers.

A second modification relates to a special group of
operations that are particularly troublesome for pipelining.
The sigma operations, in addition to using the general
registers, rely on an exclusive register resource. This
special-purpose 128-bit register (PLV) is larger than the
general registers but only one of them exists per cluster.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 50, NO.3, MARCH 2001

IALUO IFGO PLV (CLO)
0 ssetinprod
1] _cmp
2
31| bra
4 srshinprod
5
(a) (b)
IALUO IFGO PLV (CLO)
0 ' | 2
1| _cmp[0] rshinprod[1] 1
2 |_tid 64[0] 1
(c) (d)

Fig. 13. lllegal sigma-op schedule: (a) schedule of one iteration,
(b) lifetime of PLV register only, (c) kernel, (d) PLV register
requirements.

Sigma operations read the value of the cluster-local PLV
and write a new value to it (in addition to the general
register destination). Because there is only one PLV (per
cluster), the modifying operations must be issued sequen-
tially. Typically, sigma operations appear in chains of four
or more (at least in the programs developers are produ-
cing). Since these instructions appear in groups and they
read/modify an exclusive resource, it is important that they
be issued as close as possible to each other. This increases
the chance that the MII will be achieved or that the chains
can be issued at all. In most cases, the kernel is not large
relative to the size of the chain and, so, issuing them
atomically is crucial. To achieve this, SMS has been
extended by treating a chain of sigma operations like a
recurrence, that is, as a high priority subgraph. During the
first phase of SMS, chains are detected and a separate set is
created for each one. The sets are ordered with the longest
chains having highest priority. These sets are prioritized
higher than recurrence sets since the resources consumed
on a recurrence will likely prevent a chain from being able
to be issued. It is usually easier to schedule all other nodes
around the chains. Fig. 13 depicts the problem presented by
the exclusive PLV resource. The ssetinprod operation
initializes the PLV register while the srshinprod opera-
tion consumes the PLV, resulting in the lifetime shown in
Fig. 13b. However, the PLV requirement of the kernel
(Fig. 13d) is greater than one in cycle 0, which is illegal.
Normal operations can simply write to another register, but,
for sigma operations, the scheduler must ensure that such a
situation never arises.

Two additional improvements aim at obtaining the
smallest possible II by ensuring good resource compaction.
SMS tries to simultaneously optimize a number of factors,
such as register pressure, II, and Stage Count. Sometimes,
optimizing one factor can have a negative impact on
another. In a few cases, the optimization of register usage
by SMS produced schedules with a larger II than could have
been achieved. This does not happen frequently, but can be
seen more often on machines with very complex resource
usage. The behavior has been observed on the target VLIW,
which has multiple clusters and end-of-pipeline resource

LLOSA ET AL.: LIFETIME-SENSITIVE MODULO SCHEDULING IN A PRODUCTION ENVIRONMENT 245

contention, such as register write ports (all managed by the
scheduler). Because of the resource complexity, it is possible
to place certain operations which will prevent others from
being placed even when there are enough total resources
available. The third modification involves the choice of
nodes that occur at various points in the algorithm: lines 10,
16, and 24. In all three cases, there is the possibility that
more than one node matching the criteria will be available
to choose from. The original algorithm will arbitrarily pick
one of the multiple nodes. The actual node picked could
depend on the data structure tracking the nodes or other
factors. In this way, an undesirable node might be chosen
which would later lock-out another node, thereby increas-
ing the II. The modified version replaces the random choice
with a guess based on resource consumption of the node.
For instance, if one node is a long latency, nonpipelined
divide operation and the other a single-cycle addition
operation, it is assumed choosing the first would probably
result in better resource compaction. Similarly, if we notice
that, between two nodes, one is more constraining in terms
of read or write port resources than the other, we choose it.

The fourth modification tries to obtain tight resource
compaction by adding a symmetric case in the initialization
of work set R (lines 3 to 12). The order of the conditions
gives preference to the bottom-up direction which is
desirable in most cases. The symmetric case below would
give preference to the top-down direction instead:

3" if (Succ-L(O)N S) # O then

4 R:=Succ.L(O)NS

5 order := top-down

6" else if (Pred_-L(O)NS) # 0 then

7 R:=Pred L(O)NS

8 order := bottom-up

9" else

10" R := {node with the smallest ASAP value in S};
if more than one, choose anyone

11’ order := top-down

12’ end if

In the actual implementation, the loop is first scheduled
with the original method and only scheduled a second time
with the symmetric case if MII is not achieved. If the second
attempt results in the same II as the first (or larger), then the
first schedule is chosen since the bottom-up preference
usually produces better lifetime reduction given the same II.
A similar idea of using multiple scheduling attempts at each
II is also used by the SGI MIPSpro compiler described in
[34] and the PGI i860 compiler [28]. However, neither of
those compilers simultaneously schedules some operations
bottom-up and others top-down as in the SMS method.

6.3 Performance Results

In this section, we evaluate the effectiveness of SMS
compared to the original ETI modulo scheduler and
validate that the effort spent implementing it in a produc-
tion compiler was worthwhile. The experiments here are
based on a small number of critical customer application
programs from the areas of signal processing and 2D/3D
graphics as well as some benchmark codes. Table 3
describes the industrial workbench.

TABLE 3
Industrial Workbench
Name Description

UWICSL A library of signal and image processing
routines from the University of
Washington Image Computing Systems
Lab.

Omika A customer benchmark for 3D geometry
setup and lighting calculations.

Rasterizer | Selected routines from a software 3D
rasterizer.

MPEG2 ETI's MPEG?2 video decoder.

Modem A software v.34 modem.

NAS A C language version of the NAS Parallel
Benchmarks appbt and appsp.

There are 75 total loops with the following character-
istics: 15 (20 percent) contain nontrivial recurrences; 17 (22.7
percent) contain conditionals; and five (6.7 percent) contain
both recurrences and conditionals. While a detailed instruc-
tion breakdown is not presented, many of the loops contain
complex operations such as nonpipelined divides and
chains of sigma operations which complicate scheduling.

We first compare the two schedulers from the point of
view of initiation interval, stage count (SC), replication
factor (RF), and register requirements assuming an infinite
number of registers. The replication factor is the number of
copies of the kernel needed to perform modulo variable
expansion [20]. Later, we consider the addition of spill code
and its effect in performance when a finite number of
registers is considered (64 registers per cluster).

Table 4 compares some performance metrics. The total
register requirements are shown as well as per-cluster totals
(CLO, CL1). First of all, both schedulers achieve the MII for
all the loops except two (one loop in UWICSL and one in
the NAS APPBT applications) due to resource conflicts;
they obtain the same II in the two loops.

The average number of registers per loop is 47.2 for SMS
compared to 55.6 for top-down. Further, a detailed analysis
of the individual results show that, of the 75 loops, SMS
uses fewer registers than top-down in 63 of them. In six
other cases, the register usage is identical. The top-down
scheduler uses fewer registers than SMS in only six of the

TABLE 4
Static Comparison of the Two Schedulers
in ETI before Adding Spill Code

Metric SMS Top-Down
2 II (average) 1670 (22.3) 1670 (22.3)
11/ MII 1.0103 1.0103
2 SC (average) 291 (3.9) 328 (4.4)
2 RF (average) 203 (2.7) 272 (3.6)
X CL0O/XCL1 1823 /1720 2109 /2063
X Regs. (average) 3543 (47.2) 4172 (55.6)

246
TABLE 5
Analysis of Individual Loop Results—Registers and Replication

Factor

Method Registers Replications

< = < = >

SMS 63 6 6 44 26 5

Top-down 6 6 63 5 26 44

loops. Table 5 also shows that SMS performs considerably
better than top-down in terms of RF (more on this later).

Although the average register requirements are reason-
able for the architecture we are considering, it is important
to look to the requirements of the individual loops in more
detail. Fig. 14 shows the cumulative register requirements
for this workbench. Notice that, in this case, the register
pressure for this collection of software pipelined loops is
much higher than the pressure for the loops in the Perfect
Club. In particular, SMS is able to schedule only 45 percent
and 81 percent of the loops with 32 and 64 registers,
respectively; the original top-down approach does the same
for only 40 percent and 71 percent of the loops.

The target architecture described earlier includes a
128-register file organized as two clusters of 64 registers
each. For this configuration, we see that only two loops
need the addition of spill code when scheduled using SMS;
however, six loops need spill code when scheduled using
the top-down approach. Table 6 shows the final II that is
obtained after adding spill code and rescheduling the loops.

What is a bit more interesting than a static loop-level
comparison is the dynamic speed up of the applications
containing the affected loops. In the MPEG2 application, for
example, the bottleneck loop (accounting for 70 percent of
total run-time) was significantly slower when scheduled
with top-down than with SMS. This is due to a larger final
II, extra memory references resulting from spill code, and a
larger replication factor that affected the instruction cache
performance. As shown in Table 7, the resulting total

— SMS
------- Top-Down
100 ——
80 ;
2 60
e
=
s
s
S 40+
204
0
0 32 64 96 128 160 192 224 256

Number of registers

Fig. 14. Cumulative distribution of the register requirements for the
industrial workbench.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 50, NO.3, MARCH 2001

TABLE 6
Static Comparison of the Two Schedulers in ETI after Adding
Spill Code (128 Registers)

Metric SMS Top-Down
2 II (average) 1702 (22.7) 1735 (23.1)
II/MII 1.03 1.05
of loops w/ spills 2 6

MPEG2 speedup is 11 percent when compiled with SMS
rather than top-down. This is one of ETI's most critical
applications, so obtaining this improvement with a simple
recompile is exciting. Also shown are the other affected
applications and their speed-ups.

On the 128-register MAP1000, most of the loops are
scheduled without needing spill code. Even in cases where
spill code is not necessary, it is still important to reduce
register pressure. An inner-loop reduction of register
requirements can increase the availability of registers to
outer-loops and to the overall surrounding code. However,
we can get a better idea of the positive impact of SMS on
this particular workbench by assuming a smaller number of
registers. To this end, another experiment was performed
by forcing the compiler to assume only 64 total general-
purpose registers (two clusters of 32 registers each). The
results of rescheduling the loops with the smaller config-
uration are shown in Table 8. For this trial, 13 loops
required spilling with SMS, whereas 21 loops required
spilling with top-down. One loop from the UWICSL suite
could not be compiled at all with 64 registers due to its very
high register requirements. This loop was excluded from
the computations in the table.

As seen in Table 9, SMS compiled applications have
significantly better dynamic run-time in 12 instances. As
expected, SMS is more effective as the register file size
decreases. The MPEG speed-up in the 64-register model
was slightly less than in the 128-register model because, this
time, both SMS and top-down schedules had some amount
of spilling (there was no spilling for SMS in the 128-register
case). The dynamic results indicate that, for typical RISC
processors with 32 registers, lifetime-sensitive modulo
scheduling would be very beneficial.

Finally, because SMS reduces register lifetimes, it seems
intuitive that the replication factor might also be reduced.
The experiments support this intuition. On average, loops
scheduled with SMS require one less copy of the kernel than
loops scheduled with the top-down scheduler (Table 4).
While not completely unexpected, the results shown in

TABLE 7
Dynamic Speed-Up of SMS Compiled Applications of the
Prototype MAP1000 (128 Registers)

Application or SMS Top-Down | Speed-
function (cycles) (cycles) | up
UWICSL: hurst 10,124,474 10,657,342 5%
Omika 983,627 1,101,662 12%
MPEG2 5,812,230 6,451,576 11%
Modem 38,315,392 39,081,699 2%

LLOSA ET AL.: LIFETIME-SENSITIVE MODULO SCHEDULING IN A PRODUCTION ENVIRONMENT 247

TABLE 8
Static Comparison of the Two Schedulers in ETI after Spill Code
Is Added (64 Registers)

Metric SMS Top-Down
Y I (average) 1390 (18.8) 1471 (19.9)
II/MII 1.06 1.12
of loops w/ spills 13 21

Fig. 15 were a bit surprising. SMS was able to schedule
54 percent of the loops with two replications and 92 percent
of the loops with four replications. Top-down, on the other
hand, scheduled only 21 percent and 77 percent of the loops
with two and four replications, respectively. Since most of
the literature on modulo scheduling assumes that the target
architectures have rotating register files, little attention is
given to the replication factor issue. However, the VLIW
targeted here has a relatively small instruction cache and
code size reduction is very important. Examination of the
replication factors shows a possible area for improvement
in the ETI pipeliner, even considering the SMS results.

6.4 Additional Implementation Observations

Finally, we outline three additional aspects, primarily
related to the target processor architecture, that have not
been included in the current implementation and that need
further attention. Future research is needed to determine
how these aspects interact with our lifetime-sensitive
software pipelining.

First, SMS was not originally designed to take into
account the limited connectivity of clustered (partitioned)
architectures (e.g., the MAP1000) and the data movement
required when assigning functional units. This implies that
minimizing lifetimes may not necessarily produce a register
reduction since an imbalance across clusters may result.
Even so, SMS performs quite well on average and the
problem is rarely observed in the applications compiled. It
is possible that the behavior would be more pronounced on
a machine with more than two clusters. SMS has been
extended to deal with clustered architectures [[35]. Other

TABLE 9
Dynamic Speed-Up of SMS Compiler Applications on the
Prototype MAP1000 (64 Registers)

Application or SMS Top-Dovn | Speed-
function (cycles) (cycles) up
UW: median3 1,182,304 1,288,712 9%
UW: affine8 2,696,915 3,020,544 12%
UW: persp8 4,912,518 5,860,634 19%
UW: rotate8 751,798 856,000 14%
UW: rgb2cmyk 2,825,179 2,912,760 3%
UW: div8 261,238 276,387 6%
UW: cfft 4,110,541 4,521,592 10%
Omika 1,658,147 1,940,033 17%
Rasterizer 1,118,834 1,208,341 8%
MPEG2 7,174,036 7,834,048 9%
NAS 61,697,495 64,165,395 4%
Modem 39,614,976 40,644,966 3%

— SMS
------ Top-Down
100 / —
80 H
2 60
S
2
E=
=)
:\o 40 -
20
0
1 2 3 4 5 6 7

Replication factor

Fig. 15. Cumulative distribution of the replication factors for the industrial
workbench.

modulo scheduling techniques for clustered architectures
can be found elsewhere [14], [30].

Second, the broadcast feature mentioned earlier con-
tributes to register pressure on both clusters simulta-
neously, so it is worthwhile to make any register-sensitive
scheduler take it into consideration. Also important is
determining which operations should broadcast their
results. Another issue relates to certain operations requiring
an operand to be in a restricted register—a register from a
subset of the register file. These restricted register operands
can cause high register pressure within the restricted subset
(which is only 25 percent of the registers) even though there
may not be high contention in the nonrestricted subset. It
would be beneficial for SMS to take into account that these
restricted lifetimes are usually more important to minimize
than others.

And, third, applying loop unrolling before pipelining
may provoke undesirable effects in the SMS algorithm. The
dependence graph of a loop body unrolled n times will be
roughly n times “wider” than it would be without
unrolling. Further, each of the unrollends has the same
length critical path as each of the others. SMS will begin
ordering at the bottom-most node of one of the unrollends.
It will then proceed to order all of the nodes at the same
depth but from distant parts of the whole graph (i.e., from
the different unrollends). Thus, the final node order may
cause too wide a computation to be in progress at some
point during scheduling. That is, too many simultaneously
live values from distinct unrollends may consume all
available registers. The problem is analogous to top-down
list schedulers that order nodes in a breadth-first fashion,
potentially causing too much parallelism and the corre-
sponding increase in register pressure. One possible
solution for reducing the register requirements would be
to confine the ordering phase to smaller sections of the
graph. For example, if it is assumed the unrolled graph
contains no recurrences, then the current ordering phase is
presented with one large set containing the entire graph (all
the unrollends). This set could be partitioned into m new
sets such that n/m unrollends are contained in each. During

248

scheduling, the final ordering would allow a narrower
computation with less register pressure, albeit probably at
the expense of a larger stage count.

7 CONCLUSIONS

We have presented a novel software pipelining technique
that is called Swing Modulo Scheduling (SMS). It is a heuristic
technique that produces near optimal schedules in terms of
initiation interval, prologue/epilogue size, and register
requirements while requiring a very low compilation time.

The technique has been deeply evaluated using
1,258 loops of the Perfect Club that represent about
78 percent of the total execution time of this benchmark
suite. We have shown that SMS outperforms other heuristic
approaches in terms of quality of the obtained schedules,
which is measured by the attained initiation interval,
register requirements, and stage count. In addition, it
requires less compilation time (about half of the time of
the schedulers used for comparison).

In the paper, we have also evaluated an implementa-
tion of SMS in a production compiler for VLIW
architectures targeted to digital consumer products.
Experimental results show that it outperforms the original
available software pipeliner implementation on a variety
of customer workloads.

ACKNOWLEDGMENTS

This work has been supported by the Ministry of Education
of Spain (CICYT) under contract TIC98-0511.

REFERENCES

[1] J.R. Allen, K. Kennedy, and]J. Warren, “Conversion of Control
Dependence to Data Dependence,” Proc. 10th Ann. Symp. Principles
of Programming Languages, Jan. 1983.

[2] E.R. Altman and G.R. Gao, “Optimal Modulo Scheduling through
Enumeration,” Int’l |. Parallel Programming, vol. 26, no. 3, pp. 313-
344, 1988.

[3] E. Ayguade, C. Barrado, J. Labarta, D. Lopez, S. Moreno, D.
Padua, and M. Valero, “A Uniform Representation for High-Level
and Instruction-Level Transformations,” Technical Report UPC-
CEPBA 95-01, Universitat Politecnica de Catalunya, Jan. 1995.

[4] M. Berry, D. Chen, P. Koss, and D. Kuck, “The Perfect Club
Benchmarks: Effective Performance Evaluation of Supercompu-
ters,” Technical Report 827, Center of Supercomputing Research
and Development, Nov. 1988.

[5] A.E. Charlesworth, “An Approach to Scientific Array Processing:
The Architectural Design of the AP120B/FPS-164 Family,”
Computer, vol. 14, no. 9, pp. 18-27, Sept. 1981.

[6] T.M. Conte and S.W. Sathaye, “Dynamic Rescheduling: A
Technique for Object Code Compatibility in VLIW Architectures,”
Proc. 28th Int'l Ann. Symp. Microarchitecture, pp. 208-218, Nov.
1995.

[71 J. Cortadella, RM. Badia, and F. Sanchez, “A Mathematical
Formulation of the Loop Pipelining Problem,” Proc. XI Design of
Integrated Circuits and Systems Conf. (DCIS "96), Oct. 1996.

[8] B.F. Cutler, “Deep Pipelines Schedule VLIW for Multimedia,”
Electronic Eng. Times, no. 1034, 9 Nov. 1998.

[91 AXK. Dani, V. Janaki, and R. Govindarajan, “Register-Sensitive

Software Pipelining,” Proc. Merged 12th Int’l Parallel Processing

Symp. and Ninth Int’l Symp. Parallel and Distributed Processing, Mar.

1998.

J.C. Dehnert, P.Y.T. Hsu, and]J.P. Bratt, “Overlapped Loop

Support in the Cydra 5,” Proc. Third Int'l Conf. Architectural

Support for Programming Languages and Operating Systems, pp. 26-

38, 1989.

(10]

IEEE TRANSACTIONS ON COMPUTERS, VOL. 50, NO.3, MARCH 2001

(1]

(12]

(13]

(14]

[15]

(16]

[17]

(18]

[19]

(20]

(21]

(22]

(23]

(24]

(25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

J.C. Dehnert and R.A. Towle, “Compiling for Cydra 5,”].
Supercomputing, vol. 7, nos. 1/2, pp. 181-227, 1993.

A.E. Eichenberger and E.S. Davidson, “Stage Scheduling: A
Technique to Reduce the Register Requirements of a Modulo
Schedule,” Proc. 28th Int’l Ann. Symp. Microarchitecture, pp. 338-
349, Nov. 1995.

A.E. Eichenberger, E.S. Davidson, and S.G. Abraham, “Optimum
Modulo Schedules for Minimum Register Requirements,” Proc.
Int’l Conf. Supercomputing, pp. 31-40, July 1995.

M. Fernandes,]J. Llosa, and N. Topham, “Distributed Modulo
Scheduling,” Proc. Fifth Int'l Symp. High-Performance Computer
Architecture (HPCA ’99), pp. 130-134, Jan. 1999.

P.N. Glaskowsky, “MAP1000 Unfolds at Equator,” Microprocessor
Report, vol. 12, no. 16, Dec. 1998.

R. Govindarajan, E.R. Altman, and G.R. Gao, “Minimal Register
Requirements under Resource-Constrained Software Pipelining,”
Proc. 27th Int’l Ann. Symp. Microarchitecture, pp. 85-94, Nov. 1994.
L. Gwennap, “Intel Discloses New 1A-64 Features,” Microprocessor
Report, vol. 13, no. 3, pp. 16-19, 8 Mar. 1999.

R.A. Huff, “Lifetime-Sensitive Modulo Scheduling,” Proc. ACM
SIGPLAN '93 Conf. Programming Language, Design and Implementa-
tion, pp. 258-267, 1993.

S. Jain, “Circular Scheduling: A New Technique to Perform
Software Pipelining,” Proc. ACM SIGPLAN 91 Conf. Programming
Language Design and Implementation, pp. 219-228, June 1991.

M.S. Lam, “Software Pipelining: An Effective Scheduling Techni-
que for VLIW Machines,” Proc. ACM SIGPLAN ’88 Conf.
Programming Language Design and Implementation, pp. 318-328,
June 1988.

M.S. Lam, A Systolic Array Optimizing Compiler. Kluwer Academic,
1989.

J. Llosa, “Reducing the Impact of Register Pressure on Software
Pipelined Loops,” PhD thesis, UPC, Universitat Politécnica de
Catalunya, Jan. 1996, http://www.ac.upc.es/hpc/HPC.ILP.html.
J. Llosa, A. Gonzalez, M. Valero, and E. Ayguade, “Swing Modulo
Scheduling: A Lifetime-Sensitive Approach,” Proc. Fourth Parallel
Architectures and Compilation Techniques (PACT 96), pp. 80-86, Oct.
1996.

J. Llosa, M. Valero, E. Ayguade, and A. Gonzalez, “Hypernode
Reduction Modulo Scheduling,” Proc. 28th Int’l Ann. Symp.
Microarchitecture, pp. 350-360, Nov. 1995.

J. Llosa, M. Valero, E. Ayguade, and A. Gonzalez, “Modulo
Scheduling with Reduced Register Pressure,” IEEE Trans. Compu-
ters, vol. 47, no. 6, pp. 625-638, June 1998.

P.G. Lowney, S.M. Freudenberger, T.]. Karzes, W.D. Lichtenstein,
R.P. Nix, J.5S. O’Donnell, and]J.C. Ruttenberg, “The Multiflow
Trace Scheduling Compiler,” J. Supercomputing, vol. 7, nos. 1/2,
pp. 51-142, 1993.

W. Mangione-Smith, S.G. Abraham, and E.S. Davidson, “Register
Requirements of Pipelined Processors,” Proc. Int’l Conf. Super-
computing, pp. 260-271, July 1992.

L. Meadows, S. Nakamoto, and V. Schuster, “A Vectorizing,
Software Pipelining Compiler for LIW and Superscalar Architec-
tures,” Proc. RISC '92, Feb. 1992.

K. Mehlhorn and S. Naher, “LEDA, a Library of Efficient Data
Types and Algorithms,” Technical Report TR A 04/89, Universitat
des Saarlandes, Saarbriicken, 1989 (available from ftp://
ftp.mpi-sb.mpg.de/pub/LEDA).

E. Nystrom and A.E. Eichenberger, “Effective Cluster Assignment
for Modulo Scheduling,” Proc. 31st Int’l Symp. Microarchitecture,
pp. 103-114, Dec. 1998.

B.R. Rau, “Iterative Modulo Scheduling: An Algorithm for
Software Pipelining Loops,” Proc. 27th Ann. Int'l Symp. Micro-
architecture, pp. 63-74, Nov. 1994.

B.R. Rau and C.D. Glaeser, “Some Scheduling Techniques and an
Easily Schedulable Horizontal Architecture for High Performance
Scientific Computing,” Proc. 14th Ann. Microprogramming Work-
shop, pp. 183-197, Oct. 1981.

B.R. Rau, M. Lee, P. Tirumalai, and P. Schlansker, “Register
Allocation for Software Pipelined Loops,” Proc. ACM SIGPLAN 92
Conf. Programming Language Design and Implementation, pp. 283-
299, June 1992.

J. Ruttenberg, G.R. Gao, W. Lichtenstein, and A. Stoutchinin,
“Software Pipelining Showdown: Optimal vs. Heuristic Methods
in a Production Compiler,” Proc. ACM SIGPLAN 96 Conf.
Programming Language Design and Implementation, pp. 1-11, 1996.

LLOSA ET AL.: LIFETIME-SENSITIVE MODULO SCHEDULING IN A PRODUCTION ENVIRONMENT 249

[35] J.Sanchez and A. Gonzalez, “The Effectiveness of Loop Unrolling
for Modulo Scheduling in Clustered VLIW Architectures,” Proc.
Int’l Conf. Parallel Processing (ICPP "2000), pp. 555-562, Aug. 2000.

[36] P. Tirumalai, M. Lee, and M.S. Schlansker, “Parallelisation of
Loops with Exits on Pipelined Architectures,” Proc. Supercomput-
ing '90, pp. 100-212, Nov. 1990.

[37] J. Wang, C. Eisenbeis, M. Jourdan, and B. Su, “Decomposed
Software Pipelining: A New Perspective and a New Approach,”
Int’l]. Parallel Programming, vol. 22, no. 3, pp. 357-379, 1994.

[38] N.J. Warter, S.A. Mahlke, WW. Hwu, and B.R. Rau, “Reverse If-
Conversion,” Proc. SIGPLAN 93 Conf. Programming Language
Design and Implementation, pp. 290-299, June 1993.

Josep Llosa received his degree in computer
science in 1990 and his PhD degree in computer
science in 1996, both from the Polytechnic
University of Catalonia (UPC), Barcelona, Spain.
In 1990, he joined the Computer Architecture
Department at UPC, where he is presently an
associate professor. His research interests
include processor microarchitecture, memory
hierarchy, and compilation techniques, with a
special emphasis on instruction scheduling.

Eduard Ayguadé received the Engineering
degree in telecommunications in 1986 and the
PhD degree in computer science in 1989, both
from the Universitat Politécnica de Catalunya
(UPC), Spain. Since 1987, he has been lecturing
on computer organization and architecture and
optimizing compilers. Currently, and since 1997,
he is a full professor in the Computer Architec-
ture Department at UPC. His research interests
cover the areas of processor microarchitecture
and memory hierarchy, parallelizing compilers for high-performance
multiprocessor systems, and tools for performance analysis and
visualization. He has published more than 90 papers on these topics
and participated in several long-term research projects with other
universities and industries, mostly in the framework of the European
Union ESPRIT and IST programs.

Antonio Gonzalez received his degree in
computer science in 1986 and his PhD degree
in computer science in 1989, both from the
Universitat Politécnica de Catalunya, Barcelona,
Spain. He has occupied different faculty posi-
tions in the Computer Architecture Department
at the Universitat Politécnica de Catalunya since
1986, with tenure since 1990, and he is currently
‘ an associate professor in this department. His

research interests center on computer architec-
ture, compilers, and parallel processing, with a special emphasis on
processor microarchitecture, memory hierarchy and instruction schedul-
ing. Dr. Gonzalez is a member of the IEEE Computer Society.

Mateo Valero obtained his telecommunication
engineering degree from the Polytechnic Uni-
versity of Madrid in 1974 and his PhD degree
from the Polytechnic University of Catalonia
(UPC) in 1980. He is a professor in the
Computer Architecture Department at UPC. His
current research interests are in the field of high
performance architectures, with special interest
a in the following topics: processor organization,
memory hierachy, interconnection networks,
compilation techniques, and computer benchmarking. He has published
approximately 200 papers on these topics. He served as the general
chair for several conferences, including ISCA-98 and ICS-95, and has
been an associate editor for IEEE Transactions on Parallel and
Distributed Systems for three years. He is a member of the
subcommittee for the Ecker-Mauchly Award. Dr. Valero has been
honored with several awards, including the Narcis Monturiol, presented
by the Catalan Goverment, the Salva i Campillo presented by the
Telecommunications Engineer Association and ACM, and the King
Jaime | by the Generalitat Valenciana. He is the director of the C4
(Catalan Center for Computation and Communications). Since 1994, he
has been a member of the Spanish Engineering Academy and, since
January 2001, he has been an IEEE fellow.

Jason Eckhardt is currently attending Rice
University, where he is pursuing a PhD degree
in computer science. Previously, he spent eight
years designing and developing optimizing
compilers for companies such as Convex
Computer Corporation, Equator Technologies,
and Cygnus. His research interests include
instruction scheduling, high-level loop transfor-
mations, and processor microarchitecture.

