
Lifetime stress accelerates epigenetic aging in an
urban, African American cohort: relevance of
glucocorticoid signaling

Anthony S. Zannas, Max Planck Institute of Psychiatry
Janine Arloth, Max Planck Institute of Psychiatry
Tania Carrillo-Roa, Max Planck Institute of Psychiatry
Stella Iurato, Max Planck Institute of Psychiatry
Simone Röh, Max Planck Institute of Psychiatry
Kerry Ressler, Emory University
Charles B. Nemeroff, University of Miami
Alicia Smith, Emory University
Bekh Bradley-Davino, Emory University
Christine Heim, Charité Universitätsmedizin Berlin

Only first 10 authors above; see publication for full author list.
 

Journal Title: Genome Biology
Volume: Volume 16, Number 1
Publisher: BioMed Central | 2015-12-17, Pages 266-266
Type of Work: Article | Final Publisher PDF
Publisher DOI: 10.1186/s13059-015-0828-5
Permanent URL: https://pid.emory.edu/ark:/25593/rgkzb
 

Final published version: http://dx.doi.org/10.1186/s13059-015-0828-5

Copyright information:

© 2015 Zannas et al.
This is an Open Access work distributed under the terms of the Creative
Commons Attribution 4.0 International License
(https://creativecommons.org/licenses/by/4.0/).

Accessed August 24, 2022 3:51 AM EDT

http://open.library.emory.edu/profiles/kressle/
http://open.library.emory.edu/profiles/aksmit3/
http://open.library.emory.edu/profiles/rbradl2/
https://pid.emory.edu/ark:/25593/rgkzb
http://dx.doi.org/10.1186/s13059-015-0828-5
https://creativecommons.org/licenses/by/4.0/


RESEARCH Open Access

Lifetime stress accelerates epigenetic aging
in an urban, African American cohort:
relevance of glucocorticoid signaling
Anthony S. Zannas1,2*, Janine Arloth1,3, Tania Carrillo-Roa1, Stella Iurato1, Simone Röh1, Kerry J. Ressler4,5,6,

Charles B. Nemeroff7, Alicia K. Smith4, Bekh Bradley8,4, Christine Heim9,13, Andreas Menke10,11, Jennifer F. Lange1,

Tanja Brückl1, Marcus Ising11, Naomi R. Wray12, Angelika Erhardt1, Elisabeth B. Binder1,4* and Divya Mehta12

Abstract

Background: Chronic psychological stress is associated with accelerated aging and increased risk for aging-related

diseases, but the underlying molecular mechanisms are unclear.

Results: We examined the effect of lifetime stressors on a DNA methylation-based age predictor, epigenetic clock.

After controlling for blood cell-type composition and lifestyle parameters, cumulative lifetime stress, but not

childhood maltreatment or current stress alone, predicted accelerated epigenetic aging in an urban, African

American cohort (n = 392). This effect was primarily driven by personal life stressors, was more pronounced with

advancing age, and was blunted in individuals with higher childhood abuse exposure. Hypothesizing that these

epigenetic effects could be mediated by glucocorticoid signaling, we found that a high number (n = 85) of

epigenetic clock CpG sites were located within glucocorticoid response elements. We further examined the

functional effects of glucocorticoids on epigenetic clock CpGs in an independent sample with genome-wide DNA

methylation (n = 124) and gene expression data (n = 297) before and after exposure to the glucocorticoid receptor

agonist dexamethasone. Dexamethasone induced dynamic changes in methylation in 31.2 % (110/353) of these

CpGs and transcription in 81.7 % (139/170) of genes neighboring epigenetic clock CpGs. Disease enrichment

analysis of these dexamethasone-regulated genes showed enriched association for aging-related diseases, including

coronary artery disease, arteriosclerosis, and leukemias.

Conclusions: Cumulative lifetime stress may accelerate epigenetic aging, an effect that could be driven by

glucocorticoid-induced epigenetic changes. These findings contribute to our understanding of mechanisms linking

chronic stress with accelerated aging and heightened disease risk.

Keywords: Aging, Aging-related disease, DNA methylation, Epigenetics, Gene expression, Glucocorticoids,

Psychological stress

Background

The last decades have witnessed a dramatic increase in

life expectancy. As a result, the number of older adults

is predicted to more than double over the next two

decades [1, 2]. While this increase in life expectancy

is undoubtedly one of the biggest achievements of

modern medicine, population aging also brings forth

an unprecedented increase in aging-related diseases,

including cardiovascular disease, cancer, and dementia

[3]. Given that these conditions are currently the

leading causes of morbidity and mortality, it is im-

perative to gain insights into factors that impact healthy

aging and contribute to aging-related diseases.

An important risk factor for accelerated aging and

aging-related diseases is psychological stress. Although

stressors are ubiquitous in nature and necessary for

survival [4], excessive and chronic stress has been associ-

ated with accelerated cellular aging [5, 6] and increased
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risk for aging-related disease phenotypes, including car-

diovascular disease, immune dysregulation, and late-life

neuropsychiatric disorders [7–12]. Furthermore, stressors

occurring during sensitive developmental periods, such as

childhood maltreatment, have been linked with later

development of aging-related diseases [13–15]. Lastly,

stress-related psychiatric disorders, including major de-

pression and post-traumatic stress disorder (PTSD), are

themselves risk factors for such diseases [15, 16]. Despite

these observations, the molecular mechanisms linking

psychological stress with accelerated aging and aging-

related diseases remain largely unknown.

One plausible mechanism that may mediate the ad-

verse effects of stress on the aging process is epigenetic

regulation. Long-term epigenetic changes can be in-

duced by environmental stimuli, including psychological

stressors, and can shape complex phenotypes [17]. The

most studied epigenetic modification in this context is

DNA methylation. Stressors can induce lasting changes

in DNA methylation [18, 19], an effect that is in part

mediated by the genomic effects of glucocorticoids, a

primary molecular effector of the stress response [20].

Glucocorticoids exert actions in essentially every body

organ via activation of the glucocorticoid receptor (GR),

a transcription factor that regulates gene expression by

the binding of its homodimer to glucocorticoid response

elements (GREs) in regulatory regions of target genes

[21]. Beyond regulating gene transcription, GRE binding

can locally induce lasting changes in DNA methylation,

a form of molecular memory that shapes subsequent re-

sponses to glucocorticoids and stressors [17, 18, 22–24].

Therefore, it is plausible that stress and glucocorticoid

exposure throughout the lifetime could impact cellular

aging via cumulative effects on aging-related DNA

methylation sites.

Aging and aging-related diseases are associated with

profound changes in DNA methylation [25–31]. Rec-

ognizing the importance of DNA methylation in the

aging process has led to recent development of several

DNA methylation-based predictors of aging [27, 32–34].

Among these, a composite predictor comprised of 353

Cytosine-phosphate-Guanosine sites (CpGs) across the

genome (‘epigenetic clock’) was shown to strongly correl-

ate with chronological age across multiple tissues in

humans [27], suggesting its usefulness as a biomarker in

aging-related research. Using this predictor, accelerated

epigenetic aging (Δ-age), defined as the difference be-

tween DNA methylation-predicted age (DNAM-age)

and chronological age, has been associated with

aging-related and other phenotypes, including cancer,

obesity, cytomegalovirus infection, Down’s syndrome,

PTSD, physical and cognitive decline, all-cause mortality,

and the presence of higher self-control and lower socio-

economic status [27, 35–41]. However, no studies have

examined the relationship between this predictor and cu-

mulative lifetime stress nor the potential molecular mech-

anisms underlying this relationship.

In the present study, we first show that cumulative

lifetime stress, but not childhood or current stress alone,

is associated with accelerated epigenetic aging in a

cohort of highly traumatized African American individ-

uals. Examining GR signaling as a potential mechanism

underlying this effect, we identify that a high number of

epigenetic clock CpGs are located within functional

GREs and show dynamic methylation changes following

GR activation by exposure to the GR agonist dexametha-

sone (DEX). Lastly, we show that genes neighboring

these CpGs are dynamically regulated by DEX and that

these DEX-regulated genes show enriched association

for aging-related diseases. Taken together, our findings

support a model of stress-induced acceleration of epi-

genetic aging, overall contributing to our understanding

of mechanisms linking chronic stress with accelerated

aging and heightened disease risk.

Results
Prediction of chronological age using the epigenetic clock

DNAM-age was calculated from peripheral blood from

two independent samples, derived from the Grady

Trauma Project (GTP) and the Max Planck Institute of

Psychiatry (MPIP) cohorts using genome-wide Illumina

HumanMethylation450 BeadChips (450 K), as previously

described [27]. Given that the GTP primarily comprises

(>90 %) African American participants, we excluded

other ethnicities to minimize confounders. This resulted

in a total of 393 participants with DNAM-age data. In

contrast, the MPIP cohort consists only of Caucasian

participants with a total of 124 participants with base-

line DNAM-age data. The mean (SD, range) age was

41.33 years (12.85, range 18 to 77 years) for the GTP

and 39.5 years (14.14, range 21 to 71 years) for the

MPIP. The n (%) of female participants was 278

(70.7 %) for the GTP and 44 (35.5 %) for the MPIP.

To validate the epigenetic clock predictor in our co-

horts, we correlated DNAM-age with chronological

age as previously described [27]. This correlation was

strong for both the GTP (r = 0.90, P <2.2 × 10−16)

(Fig. 1a) and MPIP (r = 0.94, P <2.2 × 10−16) cohorts

(Fig. 1b) and proved robust and similar for both gen-

ders (r = 0.89 for male vs. r = 0.90 for female in the

GTP; r = 0.95 for male vs. r = 0.94 for female in the

MPIP).

Epigenetic age acceleration is associated with cumulative

lifetime stress, but not childhood or current stress alone,

in an urban, African American cohort

We then hypothesized that epigenetic age acceleration

(Δ-age), calculated by subtracting the actual chronological
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age from DNAM-age [27], would be positively associated

with exposure to life stress. This hypothesis was tested in

the highly traumatized GTP cohort. The mean (SD, range)

Δ-age in the GTP was –0.13 years (5.69, range –17.31 to

43.98 years). A total of 304 GTP participants had data

on lifetime stressors assessed by the Stressful Events

Questionnaire (SEQ) and 386 participants had data

on childhood maltreatment assessed by the Childhood

Trauma Questionnaire (CTQ). The individual items

from the SEQ were summed to yield a total score of

lifetime stress exposure (Life Stress), and a similar

total score was generated for the CTQ (Child Stress).

The SEQ additionally assesses stressor exposure over

the last year, and these items were summed to yield a

score of more recent stress exposure (Current Stress).

Linear regression models controlling for sex and age

showed that Life Stress was positively associated with

Δ-age (β = 0.24, SE = 0.08, P = 2.8 × 10−3), and this ef-

fect remained significant after further controlling for

Houseman blood cell counts and technical batch ef-

fects (β = 0.18, SE = 0.08, P = 1.8 × 10−2) (Fig. 2a), life-

style parameters, including body mass index, smoking,

alcohol, cocaine, marijuana, and heroin use (β = 0.31,

SE = 0.11, P = 7.4 × 10−3), as well depressive symptom-

atology, psychiatric treatments, and genome-wide

SNP-based principal components (β = 0.28, SE = 0.13,

P = 2.7 × 10−2).

In secondary analyses, we examined whether the effect

of lifetime stress on age acceleration depends on the

type of stressor and other moderating variables. Based

on previous work distinguishing between life events that

affect the individual directly vs. life events that affect

one’s social network [42], we separately summed SEQ

items assessing personal life events (Personal Life

Stress) and items assessing network events (Network

Life Stress). Δ-age showed a positive and significant

association with Personal Life Stress (β = 0.26, SE = 0.10,

P = 8.7 × 10−3) (Fig. 2b) and a positive but not significant

association with Network Life Stress (P = 1.1 × 10−1)

(Fig. 2c). No significant interactions were noted between

Life Stress or Personal Life Stress and either sex or age.

However, stratification of the GTP by a median split of

age showed that the effect of Personal Life Stress on Δ-age

was marginally stronger in older (β = 0.33, SE = 0.17,

P = 5.3 × 10−2) (Fig. 2d) as compared to younger par-

ticipants (β = 0.15, SE = 0.14, P = 2.8 × 10−1) (Fig. 2e).

On the other hand, Δ-age was not associated with ei-

ther CTQ score (P = 4 × 10−1) or Current Stress alone

(P = 1.3 × 10−1). However, when participants were

stratified based on the severity of childhood maltreat-

ment, only individuals exposed to lower levels (none

or mild) of sexual and physical childhood abuse

(based on respective CTQ subscale scores) showed

significant effects of Life Stress on Δ-age (Fig. 2f ).

This was not a consequence of differential stress

exposure burden between the two groups, since, as

expected, individuals exposed to higher levels of

childhood abuse also had higher levels of Life Stress

with a mean (SD) Life Stress of 12.32 (3.64) as com-

pared to 10.01 (3.76) in individuals with lower levels

of childhood abuse (t299 = 5.38, P = 1.5 × 10−7). Fur-

thermore, the two strata showed similar correlations

between DNAM-age and chronological age (r = 0.91

for higher vs. 0.92 for lower abuse, Fisher z score = 0.6, P =

5.5 × 10−1). Lastly, we found no association between Δ-age

and current stress-related psychiatric phenotypes, including

depressive (P = 3.4 × 10−1) and PTSD symptomatology (P =

7.9 × 10−1) in the GTP. In line with this finding, depression

diagnosis was not associated with Δ-age in the MPIP co-

hort (P = 2.3 × 10−1, n = 72 controls vs. 52 depressed).

Taken together, these findings show that cumulative life-

time stress, but not childhood trauma or current stress

alone, is associated with accelerated epigenetic aging, an

effect that is primarily driven by personal life events, may

be more evident in advancing ages, and is blunted in par-

ticipants exposed to high levels of childhood abuse.

Fig. 1 Correlation between chronological age and age predicted by

DNA methylation-based predicted age in two independent cohorts.

a GTP cohort (n = 393). b MPIP cohort (n = 124)
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Epigenetic clock CpGs and neighboring genes are

regulated by GR activation and show enriched association

with aging-related diseases

The effect of lifetime stress on epigenetic aging prompted

us to examine susceptibility of individual epigenetic clock

CpGs to glucocorticoids, a primary molecular effector of

stress responses, as a potential mechanism underlying this

association. To address this hypothesis, we first examined

whether epigenetic clock CpGs show DNA methylation

changes 3 h after oral exposure to a GR agonist (1.5 mg of

DEX) in the independent MPIP cohort (n = 124). After

correcting for multiple testing, 110 of the 353 CpGs

showed statistically significant methylation changes (false

discovery rate (FDR)-adjusted P <5 × 10−2). Among the

DEX-regulated CpGs, 98 (89 %) showed decrease in

methylation, whereas 12 (11 %) showed increase in

methylation (Additional file 1: Table S1). We next ex-

amined the effect of acute DEX exposure on the epi-

genetic clock by comparing DNAM-age at baseline vs.

3 h after DEX exposure (n = 124). There was no effect

of DEX on DNA methylation-predicted age (baseline

mean DNAM-age = 45.24 vs. post-DEX mean DNAM-

age = 45.15, paired t123 = 0.31, P = 7.6 × 10−1).

Given that GR binding to GREs can exert changes in

DNA methylation, we then examined whether epigenetic

clock CpGs co-localize with GREs. Among the 353 epi-

genetic clock CpGs, 85 CpGs were located within GREs

as defined by CHIP-Seq peaks in a lymphoblastoid cell

line (LCL) (Additional file 1: Table S1). This CpG-GRE

co-localization significantly differed from the one ex-

pected by chance as determined by randomly drawing

1,000 sets (n = 353 CpGs) of CpG sites from all CpGs

present on the 450 K array (expected mean 48.8, SD 6.1,

range 31 to 68, pperm <1 × 10−3) (Fig. 3a). Proximity to

GREs was particularly observed for DEX-regulated CpGs

(Fig. 3b), with 17 of these sites located right within GREs

and 35 within 1 kb distance from GREs. Because the 353

CpGs were originally derived from the 21,369 (21 K)

CpGs that overlap the 27 K and 450 K Illumina arrays

[27], we next examined whether the epigenetic clock

Fig. 2 Cumulative lifetime stress is associated with epigenetic age acceleration in a highly traumatized human cohort derived from the Grady

Trauma Project. Epigenetic age acceleration (Δ-age) was calculated by subtracting chronological age from DNA methylation predicted age. Δ-age

was regressed on cumulative lifetime stress (Life Stress) after adjusting for covariates (fitted stress measures are shown). a Life Stress was positively

associated with epigenetic age acceleration (β = 0.18, SE = 0.08, P = 1.8 × 10−2), and this association remained significant after further controlling for

lifestyle parameters, including body mass index, smoking, alcohol, cocaine, marijuana, and heroin use (β = 0.31, SE = 0.11, P = 7.4 × 10-3), as well

depressive symptomatology, psychiatric treatments, and genome-wide SNP-based principal components (β = 0.28, SE = 0.13, P = 2.7 × 10−2).

Statistically significant association was found for Personal Life Stress (β = 0. 26, SE = 0.10, P = 8.7 × 10−3) (b), whereas the effect of Network

Life Stress was not significant (P= 1.1 × 10−1) (c). Age stratification by a median split showed that the effect of Personal Life Stress on Δ-age was stronger in

older (β = 0.33, SE = 0.17, P = 5.3 × 10−2) (d), as compared to younger participants (β = 0.15, SE = 0.14, P = 2.8 × 10−1) (e). Stratification of the

effect of cumulative life stress on epigenetic age acceleration based on the presence or not of moderate to severe physical or sexual

child abuse showed that Life Stress was positively associated with Δ-age in participants with no or mild physical and sexual child abuse

(β = 0.34, SE = 0.11, P = 2.5 × 10−3, n = 212) but not in those with moderate to extreme child abuse (P = 3.9 × 10−1, n = 174) (f)
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CpG-GRE co-localization differs from the one present in

the 21 K background. Epigenetic clock CpG-GRE co-

localization did not differ from the one expected by

chance when randomly drawing 1,000 CpG sets (n = 353

CpGs) from the 21 K CpG sites (expected mean 3,094,

SD 50.7, range 2,927–3,270, pperm = 9.7 × 10−1). Given

that this lack of enrichment could be the result of high

CpG-GRE co-localization already present in the 21 K, as

a last step we compared the co-localization present in

the 21 K with the 450 K background and we noted sig-

nificantly higher CpG-GRE co-localization in the 21 K

as compared to the 450 K background (pperm <1 × 10−3).

These findings suggest that the increased epigenetic

clock CpG-GRE co-localization is a more general

property of the 21 K CpGs used to develop the epigen-

etic clock. Yet the presence of a high number of epigen-

etic clock CpGs within functional GREs is in line with

our hypothesis that these sites may be highly susceptible

to GR activation.

We then assessed whether genes that have transcrip-

tion start sites (TSS) in the proximity of epigenetic clock

CpGs are also dynamically regulated by GR activation.

For this purpose, we used peripheral blood genome-wide

gene expression array data in the MPIP cohort to exam-

ine the DEX-induced changes in the expression of genes

with transcription start sites (TSS) close to epigenetic

clock CpGs based on the 450 K annotation from [43].

Using these criteria, we annotated 344 unique genes. Of

these, 333 genes were present on the gene expression

microarray and a total of 170 genes, corresponding to

220 epigenetic clock CpGs, were expressed above back-

ground in the MPIP cohort (Additional file 2: Table S2).

Transcription of these genes was detected by 216 unique

gene expression array probes. After FDR-based correc-

tion for multiple testing, 167 out of the 216 detected

probes, corresponding to 139 unique genes (81.7 %),

showed significant changes in gene expression following

DEX exposure (FDR-adjusted P values <0.05) (Fig. 4).
Fig. 3 Epigenetic clock CpGs co-localize with functional glucocorticoid

response elements (GREs) and show methylation changes following

GR activation. a Epigenetic clock CpGs co-localize with functional GREs.

GRE peaks were derived from ENCODE NR3C1 ChIP-seq data

from lymphoblastoid cell lines. Among the 353 epigenetic clock

CpGs, 85 CpG sites were noted to be located within GR ChIP-Seq peaks

in a lymphoblastoid cell line (shown with the red dotted line)

(Additional file 1: Table S1). This number significantly differed

(pperm <0.001) from the CpG-GRE overlap predicted by 1,000 randomly

selected sets of CpGs covered by the 450 K array (mean 48.8, SD 6.14,

range 31 to 68). b Epigenetic clock CpGs that are significantly

regulated by DEX exposure are in proximity to GREs. GRE peaks

were derived from ENCODE NR3C1 ChIP-seq data from lymphoblastoid

cell lines. Volcano plot was zoomed for +/− 10 kb distance around the

GRE peaks. The dotted red line in the volcano plot represents the level

of statistical significance (P = 5 × 10−2) after FDR correction for multiple

comparisons. Further details on DEX-regulated CpGs are given in

Additional file 1: Table S1

Fig. 4 Glucocorticoid receptor activation regulates the expression of

genes with transcription start sites (TSS) near epigenetic clock CpGs.

Gene TSS near epigenetic clock CpGs were identified based on the

annotation from [43]. The volcano plot shows DEX-induced fold change

in gene expression plotted against their corrected P values (q values).

The dotted red line represents the corrected level of statistical

significance (q = 5 × 10−2) after FDR correction for multiple comparisons.

Among the 216 unique array probes, 167 probes, corresponding to 139

unique genes, showed significant changes in gene expression following

DEX. Fifty-eight per cent of these probes (n = 97) showed upregulation

and 42 % (n = 70) showed downregulation. The mean (SD, range)

distance of each regulated gene TSS to the corresponding epigenetic

clock CpGs was ±419.3 bp (336.65 bp, range 1 to 1,423 bp). Marked in

red are the probes showing fold changes in gene expression >1.1.

Further details are provided in Additional file 2: Table S2
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Fifty-eight per cent of these probes (n = 97) showed up-

regulation and 42 % (n = 70) showed downregulation.

The mean (SD, range) distance of each regulated gene

TSS to the corresponding epigenetic clock CpGs was

±419.3 bp (336.65 bp, range 1 to 1,423 bp). To rule out

potential bias derived from the 21 K background, we

then asked whether genes neighboring epigenetic clock

CpGs are more responsive to GR activation compared to

genes neighboring the 21 K CpGs. A total of 5,443

unique genes, corresponding to 21,015 21 K CpGs,

showed significant DEX-induced mRNA expression

changes (FDR-adjusted P values <5 × 10−2). The number

of DEX-regulated genes was significantly higher for the

genes with TSS close to epigenetic clock CpGs as com-

pared to 21 K CpGs (Fisher’s exact test P = 6.3 × 10−5).

Taken together, these data demonstrate enhanced

responsivity of genes neighboring epigenetic clock CpGs

to GR activation.

Lastly, we performed disease enrichment analysis in

WebGestalt using the set of unique DEX-regulated genes

(n = 139) as the input for the analysis and the genes

expressed above background in our peripheral blood

gene expression arrays as the reference set of genes.

After FDR correction for multiple testing, this resulted

in enriched association for aging-related diseases, includ-

ing coronary artery disease, arteriosclerosis, and leuke-

mias (FDR-adjusted P <5 × 10−2 each) (Additional file 3:

Table S3).

Discussion

The present study sought to determine the effect of life

stressors on epigenetic aging, as measured with the epi-

genetic clock [27] in peripheral blood samples. While

previous studies found associations of the epigenetic

clock with several phenotypes [27, 35–41], this is the

first study to use this predictor in a highly traumatized

cohort. As hypothesized, accelerated epigenetic aging

was associated with cumulative lifetime stress burden.

Given that epigenetic effects of the stress response can

be mediated by GR signaling, we further examined the

molecular basis of this association by annotating epigen-

etic clock CpG sites in relation to GREs and examining

the impact of GR activation on these sites. We found

that GREs co-localize with epigenetic clock CpGs and

that glucocorticoid activation can induce dynamic

methylation changes of these sites as well as changes in

the expression of genes neighboring epigenetic clock

CpGs. Taken together, these converging findings support

a model of stress-induced accelerated epigenetic aging,

plausibly mediated by the lasting effects of cumulative

stressor exposure and aberrant glucocorticoid signaling

on the epigenome.

Further examination of the relationship between life

stress and epigenetic aging led us to several interesting

observations. First, this relationship was apparent for

cumulative stress exposure throughout the lifetime,

whereas no significant association was found with child-

hood maltreatment or current stress alone. This finding

is in accordance with a recent study observing no effect

of childhood trauma on epigenetic aging in combat vet-

erans [35] and suggests that cumulative stressors over

the lifetime, rather than time-limited stressors either

during childhood or adulthood, have a stronger or more

lasting effect on epigenetic aging. Nonetheless, it is also

possible that these null findings may be due to lack of

power, the timing of DNA methylation assessments, or

reversibility of epigenetic aging, possibilities that could

be addressed by future longitudinal studies. Second, the

effect of lifetime stress was driven by personal stressors

– affecting the participant directly – rather than network

stressors that occur to someone within the participant’s

network. This is congruent with previous studies show-

ing that personal life events are more strongly correlated

with genetic factors as compared to network events [44].

In line with the effects of lifetime vs. current stress,

these effects were more pronounced in older individuals,

suggesting cumulative epigenetic vulnerability in older

individuals. Lastly, the epigenetic effects of lifetime stress

were blunted in individuals with higher levels of child-

hood abuse. This finding could not be attributed to dif-

ferences in the levels of lifetime stress, since individuals

exposed to higher levels of childhood abuse also had

higher levels of cumulative lifetime stress burden. Thus,

it is possible that early trauma exposure triggers add-

itional mechanisms of risk and resilience that may inter-

fere with subsequent effects of stressors on epigenetic

aging, a hypothesis that remains to be tested by future

studies.

The effects of lifetime stress on epigenetic aging in

peripheral blood are likely mediated by persistent

neuroendocrine alterations induced by cumulative stress

exposure. Stressors and glucocorticoids can drive persist-

ent changes in the expression of glucocorticoid-responsive

genes and concomitant changes in DNA methylation at

CpGs located at or near GREs [17, 18, 22, 45]. Supporting

this hypothesis, we noted that a high number of epigenetic

clock CpG sites are located within functional GREs and

show dynamic methylation changes following DEX ex-

posure. Notably, most of these CpGs show DEX-

induced decrease in methylation, whereas far fewer

sites show increased methylation (98 vs. 12). This is in

accordance with previous studies showing that activa-

tion of the GR results in local demethylation of CpGs

in the proximity of a GRE [18, 22, 23] and that site-

specific decreases in methylation have been implicated

in aging-related phenotypes [46]. CpG demethylation

has been proposed to be potentially mediated by at

least two enzymatic processes, base excision repair and

Zannas et al. Genome Biology  (2015) 16:266 Page 6 of 12



oxidation [47, 48]. Examining the role of these pro-

cesses may provide further insights into mechanisms of

stress-induced epigenetic aging. Furthermore, an open

question concerns the sequence of molecular events

that determine whether some stress-induced DNA

methylation changes become embedded and longlast-

ing, while other changes are dynamic and reversible.

Given the low dose and acute exposure to glucocorticoids

in our study, additional experiments with different doses

and more chronic in vitro or in vivo GR activation will be

necessary to better elucidate this mechanism.

An important implication of our findings is the poten-

tial role of stress-induced epigenetic aging in health and

disease. Increasing age and aging-related diseases have

been associated with global and site-specific changes in

DNA methylation [25–30, 39]. The age-related epigenetic

clock CpGs co-localize with genes that show enrichment

for cell growth and survival, organismal development, and

cancer [27]. Furthermore, we show that DEX-regulated

genes neighboring epigenetic clock CpGs show enriched

association for aging-related diseases, including coronary

artery disease, arteriosclerosis, and leukemias. These find-

ings raise the possibility that lifetime stress may contribute

to these diseases via its cumulative impact on epigenetic

regulation of genes implicated in aging-related diseases.

The findings of the present study should be viewed in

the context of its limitations. Although we observe an

association between epigenetic age acceleration and

lifetime stressors in the GTP cohort, the cross-sectional

design of the study limits conclusions regarding the dir-

ection of causality. As discussed above, it is plausible

that epigenetic aging of peripheral blood cells results

from persistent alterations of the neuroendocrine but

also immune milieu induced by repetitive stressor expos-

ure. However, accelerated epigenetic aging might alterna-

tively represent a vulnerability marker that predisposes

individuals to expose themselves to stressful environ-

ments. It is also important to acknowledge that, while

the high levels of traumatic events in the GTP make

this cohort highly suitable for examining the effects

of lifetime stress on the epigenome, they may also

limit generalizability of these findings to other less

traumatized cohorts. Moreover, the present study ex-

amined epigenetic aging in peripheral blood only.

While this tissue is easily accessible and relevant for

biomarker research, other tissues may be more sus-

ceptible to psychological stress and should be exam-

ined in the context of specific diseases. For example,

disease-specific effects on the epigenetic clock have

been demonstrated for liver tissue in the context of

obesity [39]. Another limitation is the use of Chip-Seq

data from lymphoblastoid cell lines to examine epigenetic

clock CpG-GRE co-localization. This cell line represents

the best available proxy for peripheral blood, the source

tissue for our methylation data, but this approach may

also be limited by the tissue specificity of functional GREs

and the altered epigenetic landscapes of immortalized cell

lines. Lastly, although we corrected for several con-

founders that might influence DNA methylation, such as

sex, age, smoking, body mass index, substance abuse,

current psychiatric symptoms and treatments, other fac-

tors not captured by our methods may have confounded

the observed relationships. These limitations may be over-

come in future studies by employing detailed prospective

measurements of lifestyle factors, stressor exposure, DNA

methylation, and incidence of stress-related phenotypes at

different time points throughout the lifetime.

Conclusions

The present study provides evidence that cumulative life

stress exposure is associated with accelerated epigenetic

aging and that these effects may be mediated by gluco-

corticoid signaling. Our findings further suggest that DNA

methylation-based age prediction in peripheral blood may

be a useful molecular marker to incorporate in future stud-

ies examining the effects of life stress exposure. These find-

ings offer novel insights into the molecular mechanisms

linking psychological stress with diseases of the aging.

Methods

Clinical samples

The effect of lifetime stress on epigenetic aging was ex-

amined in the Grady Trauma Project (GTP), a large

study conducted in Atlanta, Georgia, that investigates

the role of genetic and environmental factors in shaping

responses to stressful life events. The GTP includes

more than 7,000 participants from a predominantly

African American, urban population of low socioeco-

nomic status [49, 50]. This population is characterized

by high prevalence and severity of trauma over the life-

time and is thus particularly relevant for examining the

effects of stressors on epigenetic markers. For this pur-

pose, we used a subsample of GTP participants with

genome-wide DNA methylation data. All participants

provided written informed consent and all procedures

were approved by the Institutional Review Boards of

the Emory University School of Medicine and Grady

Memorial Hospital (IRB00002114).

We examined glucocorticoid-induced methylation

changes of epigenetic clock CpGs and responsivity of

genes closest to these CpGs in 297 Caucasian participants

recruited at the Max Planck Institute of Psychiatry

(MPIP). Recruitment strategies and characterization of

participants have been previously described [51, 52].

These consisted of 200 male (83 healthy probands and

117 inpatients with depressive disorders) and 97 female

(48 healthy probands and 49 depressed) individuals. Base-

line whole blood samples were obtained at 18:00 after 2 h

Zannas et al. Genome Biology  (2015) 16:266 Page 7 of 12



of fasting and abstention from coffee and physical activity

(baseline). Participants then received 1.5 mg oral dexa-

methasone (DEX) and a second blood draw was

performed at 21:00, 3 h after DEX ingestion (post-DEX).

The study was approved by the local ethics committee

(approval number: 318/00) and all individuals gave written

informed consent. All experimental methods comply with

the Helsinki Declaration.

Psychometric instruments

Childhood trauma was measured in the GTP with the

Childhood Trauma Questionnaire (CTQ), a validated

self-report questionnaire that assesses five types of mal-

treatment during childhood: sexual, physical, and emo-

tional abuse, as well as emotional and physical neglect

[53]. Scores for each type of maltreatment were derived

from participant responses to questionnaire items and

scores from all types were summed to yield a total CTQ

score reflecting overall burden of childhood maltreat-

ment. Moderate to extreme sexual abuse was defined by

a cutoff score of 8 or above in the CTQ sexual abuse

subscale, and moderate to extreme physical abuse was

defined by a cutoff score of 10 or above in the physical

abuse subscale as previously described [54].

Stressful lifetime events in the GTP were assessed with

the Stressful Events Questionnaire (SEQ), a 39-item self-

report instrument that has been described in detail [55].

The SEQ covers a wide range of stressor exposure, ranging

from personal life events, such as divorce, unemployment,

crime, and financial stressors, to network life events,

such as knowing someone who was murdered. Partici-

pants report whether they have experienced these

events either in the past year or at any time in their

life. Although the SEQ assesses life event exposure

throughout the lifetime, it does not include questions

specific for childhood maltreatment. Life events are

summed to yield a total score that reflects the number of

stressors experienced over the last year (Current Stress) or

cumulative number of stressors experienced throughout

one’s lifetime (Life Stress).

Participants underwent the Structured Clinical Inter-

views for DSM-IV defined psychiatric diagnoses. Given

the observed relation between stress-related psychiatric

disorders and accelerated cellular aging, we also exam-

ined major depression and PTSD as variables of interest.

In the GTP, current depressive symptomatology was

assessed with the 21-item validated Beck Depression In-

ventory (BDI) [56, 57] and current PTSD symptomatol-

ogy was assessed with the validated 17-item PTSD

Symptom Scale (PSS) [49, 58].

DNA methylation

Genomic DNA from the GTP cohort (n = 393) and the

MPIP (n = 124) was extracted from whole blood using

the Gentra Puregene Blood Kit (QIAGEN). DNA quality

and quantity was assessed by NanoDrop 2000 Spectro-

photometer (Thermo Scientific) and Quant-iT Picogreen

(Invitrogen). Genomic DNA was bisulfite converted

using the Zymo EZ-96 DNA Methylation Kit (Zymo

Research) and DNA methylation levels were assessed

for >480,000 CpG sites using the Illumina Human-

Methylation450 BeadChip array. Hybridization and

processing was performed according to manufacturer’s

instructions as previously described [59]. Quality

control of methylation data, including intensity read

outs, filtering (detection P value >0.01 in at least

75 % of the samples), cellular composition estima-

tion, as well as beta and M-value calculation was

done using the minfi Bioconductor R package version

1.10.2 [60].

For the GTP cohort, X chromosome, Y chromosome,

and non-specific binding probes were removed [61]. We

also excluded probes if single nucleotide polymorphisms

(SNPs) were documented in the interval for which the

Illumina probe is designed to hybridize. Given that the

GTP cohort includes individuals from different ethnici-

ties, we also removed probes if they were located close

(10 bp from query site) to a SNP which had Minor Allele

Frequency of ≥0.05, as reported in the 1,000 Genomes

Project, for any of the populations represented in the

samples. Technical batch effects were identified by

inspecting the association of the first principal compo-

nents of the methylation levels with plate, sentrix array,

and position (row) and by further visual inspection of

principal component plots using the shinyMethyl

Bioconductor R package version 0.99.3 [62]. This

procedure identified row and slide as technical

batches. The raw methylation data and all related

phenotypes for the GTP cohort have been deposited

into NCBI GEO (GSE72680).

For the MPIP cohort, filtered beta values were reduced

by eliminating any CpG sites/probes on sex chromo-

somes, as well as probes found to have SNPs at the CpG

site itself or in the single-base extension site with a MAF

≥1 % in the 1,000 Genomes Project European population

and/or non-specific binding probes according to [61].

Additionally, we performed a re-alignment of the array

probe sequences using Bismark (doi: 10.1093/bioinfor-

matics/btr167). This yielded a total of 425,883 CpG sites

for further analysis. Using the same procedure for batch

identification as above, we identified processing (experi-

ment) date as technical batch in the MPIP. The data

were then normalized with functional normalization

[63], an extension of quantile normalization included in

the minfi R package and batch-corrected using ComBat.

The raw methylation data and all related phenotypes for

the MPIP cohort have been deposited into NCBI GEO

(GSE74414).
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Gene expression

In the DEX-treated (MPIP) cohort (n = 297, including

the 124 individuals used for the MPIP methylation

analysis), both baseline and post-DEX whole blood

RNA was collected using PAXgene Blood RNA Tubes

(PreAnalytiX), processed as described previously [51, 52].

Samples had a mean RNA integrity number (RIN) of

8 ± 0.51 SD. Blood RNA was hybridized to Illumina

HumanHT-12 v3 and v4 Expression BeadChips (Illumina,

San Diego, CA, USA). Raw probe intensities were

exported using Illumina’s GenomeStudio and further stat-

istical processing was carried out using R. All 29,075

probes present on both microarrays, excluding X and Y

chromosomes as well as cross-hybridizing probes identi-

fied by using the Re-Annotator pipeline (http://dx.doi.org/

10.1101/019596) were first filtered with an Illumina detec-

tion P value of 0.05 in at least 50 % of the samples, leaving

11,994 expressed probes for further analysis. Subse-

quently, each transcript was transformed and normalized

through variance stabilization and normalization (VSN)

[64]. Using the same procedure for batch identification as

for the methylation data, we identified slide, amplification

round, array version, and amplification plate column as

technical batches. The data were then adjusted using

ComBat [65] and have been deposited into NCBI GEO

(GSE64930).

Statistical analyses

All statistical analyses were conducted in R version 3.1.0

(http://www.r-project.org/) [66]. Unless indicated other-

wise, P values are nominal and two-tailed. All correc-

tions for multiple testing were performed using the FDR

method of Benjamini and Hochberg. The level of statis-

tical significance was set a priori at 0.05 (5 × 10−2).

DNA methylation-based age prediction was performed

using the R code and statistical pipeline developed by

Horvath [27]. This predictor was developed using 82

Illumina DNA methylation array datasets (n = 7,844)

involving 51 healthy tissues and cell types [27]. The

raw data were normalized using BMIQ normalization

method [67] implemented in the Horvath DNA

methylation-based age predictor R script [27]. Robust-

ness and reproducibility of the epigenetic age pre-

dictor was tested using 40× technical replicates of an

individual control sample, randomized across microarray

chips and batches used to measure DNA methylation in

the GTP cohort. The average epigenetic age (DNAM-age)

of the control sample (true age = 32 years) was 32.64 (SD:

0.23) years with an average correlation r = 0.97 (0.001).

Age acceleration (Δ-age) was defined (as previously)

as the average difference between DNAM-age and

chronological age. One GTP participant had extreme

Δ-age (43.98 years), and using the Grubbs’ test (http://

graphpad.com/quickcalcs/grubbs2/) was noted to be the

only outlier (Z = 3.80, P <5 × 10−2). Although primary ana-

lyses were conducted without this outlier, inclusion of this

individual did not substantially alter the reported results.

Generalized linear regression models tested the relation-

ship of Δ-age with stressors and stress-related phenotypes

(GTP cohort). Because DNAM-age is calculated from raw

beta values (before Combat correction for batches), tech-

nical batches identified for the GTP (row and slide) and

the MPIP cohort (processing date) were tested as potential

confounders in the respective regression models. In the

GTP, models were further adjusted for age, sex, House-

man cell counts, body mass index, smoking, alcohol,

current substance abuse, and the principal components

from population stratification checks. In the MPIP, models

were adjusted for gender, age, body mass index, and

Houseman cell counts.

To determine if methylation signals or gene expression

levels are significantly different before and after DEX

stimulation in the MPIP cohort, likelihood ratio tests

accounting for gender, age, body mass index, disease

status, and estimated cell-type counts were applied to

each CpG site (n = 353) and expression array probe

(n = 11,994), respectively. DNA methylation and gene

expression changes were corrected for multiple com-

parisons using FDR. The 353 epigenetic clock CpGs

were annotated to a total of 344 genes. Among these,

170 genes were detected in peripheral blood by 216

gene expression array probes (163 genes were expressed

below background and 11 genes were not covered by the

gene expression arrays).

To account for population stratification due to dis-

crepancies between self-reported and actual race in the

GTP, we used genome-wide SNP data that were available

for 382 participants. Of the 700 k SNPs present on the

Omni Quad and Omni express arrays, 645,8315 auto-

somal SNPs were left after filtering with the following

criteria: minor allele frequency of >1 %; Hardy-Weinberg

equilibrium of 0.000001; and genotyping rate of >98 %.

The samples were clustered to calculate rates of identity

by descent (IBD). We then ran multidimensional scaling

analysis on the IBD matrix using PLINK2 (https://

www.cog-genomics.org/plink2) and plotted the first ten

axes of variation against each other. No outliers were de-

tected. The first two principal components were used as

covariates in regression models to adjust for population

stratification.

To identify whether epigenetic clock CpG sites are

co-localized with GREs, we used ENCODE NR3C1

ChIP-Seq data from lymphoblastoid cell lines (acces-

sion: ENCSR904YPP) for which no aligned tracks are

currently available. Initial filtering was performed using

FASTX Toolkit (v. 0.0.14, http://hannonlab.cshl.edu/

fastx_toolkit/index.html) and Prinseq (v. 0.20.3) [68] to

eliminate artefacts and low quality reads. Alignment on
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hg19 was performed using BWA (v. 0.7.10) [69] allowing

only uniquely mappable alignments with an alignment

quality of above 20. Reads from both ChIP-Seq and both

control libraries were pooled leading to 46,453,650 and

68,227,580 used reads, respectively. Peak-calling was car-

ried out by MACS14 (v. 1.4.2) [70] using default settings,

resulting in approximately 23,000 annotated signals. The

average length of ChIP-Seq signal as defined by the peak

calling was 746.3 bps (SD: 370.6). We generated 1,000 sets

(n = 353 CpGs) of randomly drawn CpG sites (without re-

placement) from the set of all CpGs present on the 450 K

BeadChip array (excluding X and Y chromosomes). For

every set we counted the percentage of CpG sites within a

GRE ChIP-Seq signal (+/− 0 bp). On this basis we

constructed the null distribution and compared it to the

observed percentage of clock CpG sites within a GRE

ChIP-Seq signal to measure the enrichment statistics.

Disease enrichment analysis was performed using the

WEB-based GEne SeT AnaLysis Toolkit (WebGestalt;

http://bioinfo.vanderbilt.edu/webgestalt/) [71, 72]. This

was performed by using as input the set of unique DEX-

regulated genes neighboring epigenetic clock CpGs

(n = 139) and as reference the set of genes expressed

above background in our peripheral blood gene ex-

pression arrays. The minimum number of genes for

the enrichment analysis was set at 5, the statistic

performed was hypergeometric test, and results were

corrected for multiple testing using FDR.

Additional files

Additional file 1: Table S1. Location of epigenetic clock CpGs in

relation to the nearest glucocorticoid response element (as shown by

within GR ChIP-Seq peaks in a lymphoblastoid cell line) and their

methylation changes in response to the glucocorticoid receptor

agonist dexamethasone. (DEX). (XLSX 68 kb)

Additional file 2: Table S2. Annotation of genes with transcription

start sites (TSS) near epigenetic clock CpGs and their expression changes

in response to DEX. Gene annotation was based on [43]. (XLSX 26 kb)

Additional file 3: Table S3. WebGestalt Disease enrichment analysis of

the set of unique DEX-regulated genes (n = 139) with TSS near epigenetic

clock CpGs. For the primary analysis, we used as reference the set of

genes expressed above background in our peripheral blood gene

expression arrays. This analysis was repeated using a more condensed

background comprised only of the genes neighboring 21 K CpGs that

showed DEX-induced mRNA expression changes (n = 5,443). While this

post-hoc analysis yielded no statistically significant results after correction

for multiple testing (P values presented in the last column), the top 10

diseases were very similar (with higher but nominally significant P values

for the top three hits) with the analysis using the broader reference set

of genes. (XLSX 10 kb)
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