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1. Introduction

In the past few years, the adS/CFT, [1], more generally called the gauge/gravity corre-

spondence, has been explored to yield insights into strongly coupled field theory. While the

initial particle physics motivation may have been to glean a nonperturbative understanding

of QCD, a more unexpected but extremely fruitful dialogue has emerged with condensed

matter physics (see e.g. [2]), which also has many experimental systems believed to be

governed by strongly coupled physics.

As suggested by the nomenclature adS/CFT, the higher dimensional bulk gravitational

theory asymptotically tends to anti-de Sitter spacetime (adS), yielding a boundary theory

which is typically relativistically invariant. However, while many systems do display such

scale invariance, there is also interest in systems displaying a more general dynamical

scaling:

t→ λzt , x→ λx , (1.1)

where z 6= 1 is the dynamical critical exponent. This splitting of space and time can seem

counter-intuitive for a relativistically invariant theory, however, it is always possible to

single out particular directions by choosing an appropriate background. In [3], Kachru

et al. showed how to construct Lifshitz geometries by switching on fluxes with nontrivial

topological couplings. They constructed a four-dimensional (4D) spacetime with two gauge

fields (a 1- and 2-form) coupled via a topological “B2 ∧ F2” term. The model was, of

course, phenomenological, in that it was constructed to provide a holographic dual with

the requisite dynamical scaling properties, but it was hoped that the model could be put

on firmer footing by finding similar Lifshitz geometries as solutions to String/M-theory. In

this way, genuine dual quantum field theories could be constructed which would hopefully

encapsulate the physics of the condensed matter systems.

Explicit Lifshitz solutions in string theory however have proven surprisingly difficult

to find. The expectation was that standard techniques, such as flux compactifications,
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would be sufficient. Disappointingly, the first attempts with reasonable and quite general

Ansätze led only to various no-go statements [4, 5]. Several schemes which could support

Lifshitz geometries were discussed in [6], and significant progress was made with [7] and,

most recently, [8], where it was shown that Lifshitz solutions with the dynamical exponent

z = 2 can be embedded into D=10 and D=11 supergravity, by compactifying on Einstein

manifolds fibred with a circle. These are important steps forward, however they still are

restricted to one particular value of the critical exponent, and it would certainly be most

interesting to see if they can be generalized to z different from two, as well as to black hole

backgrounds.

In the present paper, we make a first step to answer these questions, and provide a

simple method to obtain explicit string constructions of Lifshitz geometries with general

dynamical exponents, z ≥ 1 (z = 1 being the adS4 limit). Following a bottom-up approach,

the idea is to start by looking for such solutions in d-dimensional supergravities, and then to

uplift them to ten dimensions. This has been an often used trick in the adS/CFT literature

(see e.g. [9]). Supergravities in diverse dimensions offer a host of simple adSq × Ωd−q

backgrounds, with Ωd−q a constant curvature spherical, flat or hyperbolic space (see [10]

for a review). Some of these, it will be seen, can be straightforwardly generalized to simple

Liq × Ωd−q geometries.

Our search led us to two examples of supergravity theories. First, we considered

Romans gauged, massive, N = 4 supergravity in 6D, [11], which has a solution Li4 ×H2,

with general z ≥ 1 and H2 a hyperboloid. The 2D hyperbolic space can then easily

be rendered compact by modding out a non-compact discrete subgroup of the isometry

group. This does not change the local geometry, only the topology, leading to some genus

g Riemann surface, where g depends on the choice of discrete symmetry (for some useful

references on compact hyperbolic spaces, see [9], [12] and [13]). Flux quantization on

the compact manifold leads to a topological restriction on z in terms of the couplings of

the 6D theory. The 6D solution can then be uplifted to massive Type IIA supergravity

following the analysis of [14], and the resulting configuration can be interpreted in terms

of intersecting D-branes of various dimensions. Second, we considered the gauged N = 4

supergravity in 5D, also by Romans [15]. This has solutions Li3 ×H2, again with general

z ≥ 1 (up to quantization conditions). They can be uplifted to Type IIB supergravity

using the results of [16], which leads to configurations that can be interpreted in terms of

intersecting D3 branes, or further to 11D supergravity using [17, 18].

The paper is organized as follows. In Section 2 we review the 6D supergravity theory

and present 4D Lifshitz solutions, and then uplift them to massive Type IIA supergravity.

Then, in Section 3, we present an analogous discussion for 3D Lifshitz solutions in 5D

supergravity, uplifting them to Type IIB string theory. Finally, we conclude in Section 4.

Throughout the paper, our signature is mostly minus, and the curvature tensors are defined

such that the scalar curvature of a sphere is negative. Moreover we choose conventions such

that the d-dimensional Newton constant is κ2d = 2.
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2. Li4 solutions in massive Type IIA via 6D

The first Lifshitz solution we present has four infinite (spacetime) dimensions, and arises

from a compactification of N = 4, 6D gauged massive supergravity. It can provide a dual

description for a 2+1-dimensional strongly coupled field theory. We first review the action

and equations of motion of Romans, [11], then show that a simple Li4×Ω2 Ansatz reduces

the equations of motion to a set of algebraic equations that can be solved straightforwardly.

The result is a Li4 × H2 geometry, where H2 is a hyperbolic two dimensional geometry,

which can be taken to be compact, (e.g. see [9]). We demonstrate that the solution breaks

supersymmetry, and show how to uplift the configuration to massive Type IIA supergravity.

The action for N = 4 6D supergravity was worked out by Romans in [11], and we use

the conventions found there. The bosonic field content consists of the metric, gµν , dilaton,

φ, an anti-symmetric two-form gauge field, Bµν , and a set of gauge vectors, (A
(i)
µ ,Aµ), for

the gauge group SU(2)×U(1). Fermions fill out the supermultiplets, but they will not be

of interest for our purposes. The bosonic part of the Lagrangian can be written as:

e−1 L = −1

4
R+

1

2
∂µφ∂µφ− e−

√
2φ

4

(
HµνHµν + F (i)µνF (i)

µν

)
+
e2

√
2φ

12
GµνρG

µνρ

− e

8
ǫµνρλστ Bµν ×

(
FρλFστ +mBρλFστ +

m2

3
BρλBστ + F

(i)
ρλ F

(i)
στ

)

+
1

8

(
g2e

√
2φ + 4gme−

√
2φ −m2e−3

√
2φ
)
, (2.1)

where e is the determinant of the vielbein, the spacetime indices µ, ν, . . . run from 1, . . . , 6,

and the gauge indices, (i), (j), . . . run over (1), (2), (3). The field strengths are given by:

Fµν = ∂µAν − ∂νAµ (2.2)

F (i)
µν = ∂µA

(i)
ν − ∂νA

(i)
µ + g ǫijkA(j)

µ A(k)
ν (2.3)

Gµνρ = 3 ∂[µBνρ] , (2.4)

and we also define:

Hµν = Fµν +mBµν . (2.5)

Notice that the theory has two parameters: the gauge coupling, g, and the mass parameter,

m. Romans identified five distinct theories, labelled N = 4+ (for g > 0,m > 0), N = 4−

(for g < 0,m > 0), N = 4g (for g > 0,m = 0), N = 4m (for g = 0,m > 0) and finally

N = 40 (for g = 0,m = 0).
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The equations of motion that follow from the Lagrangian (2.1) read:

Rµν = 2∂µφ∂νφ+ gµνP (φ) + e2
√
2φ
(
G ρλ

µ Gνρλ − gµνG
ρλσGρλσ

)

−e−
√
2φ

(
2H ρ

µ Hνρ + 2F ρ (i)
µ F (i)

νρ − 1

4
gµν

(
HρλHρλ + F ρλ (i)F

(i)
ρλ

))
(2.6)

⊔⊓φ =
∂P

∂φ
+

1

3

√
1

2
e2

√
2φGµνρGµνρ +

1

2

√
1

2
e−

√
2φ
(
HµνHµν + Fµν (i)F (i)

µν

)
(2.7)

Dν

(
e−

√
2φHνµ

)
=

1

6
e ǫµνρλστHνρGλστ (2.8)

Dν

(
e−

√
2φF νµ (i)

)
=

1

6
e ǫµνρλστF (i)

νρGλστ (2.9)

Dρ

(
e2

√
2φGρµν

)
= −me−

√
2φHµν − 1

4
e ǫµνρλστ

(
HρλHστ + F

(i)
ρλ F

(i)
στ

)
, (2.10)

where we have defined the scalar potential function:

P (φ) =
1

8

(
g2e

√
2φ + 4gme−

√
2φ −m2e−3

√
2φ
)
. (2.11)

In order to solve these equations, we make a simple Ansatz for the solution: that

the metric consists of a direct product between a 4D Lifshitz geometry, and a constant

curvature 2D internal space:

ds2 = L2

(
r2zdt2 − r2dx21 − r2dx22 −

dr2

r2

)
− dΩ2

2 , (2.12)

where the ‘internal’ 2D part of the metric takes the form of flat space, or:

dΩ2
2 = a2(dθ2 + sin2 θdϕ2) or dΩ2

2 =
a2

y22

(
dy21 + dy22

)
, (2.13)

with a the radius of curvature of the sphere or hyperboloid respectively. In (2.12). the

parameter z is the dynamical exponent, which measures the anisotropic scaling symmetry:

t→ λzt, xi → λxi, r → λ−1r . (2.14)

Gauge field backgrounds that are invariant under the chosen symmetries are:

F
(3)
tr = αL2rz−1 , F (3)

y1y2 = γ e2 (2.15)

Gx1x2r = βL3r ⇒ Bx1x2
=

β

2
L3r2 , (2.16)

with e2 the determinant of the zweibein on Ω2, and the scalar field is constant with value

φ0.

We take z to be some fixed number in the solution. When z = 1 the Ansatz reduces to

the standard adS4 ×Ω2 one. These solutions were discussed in Romans’ paper [11], where

they were found to exist in the N = 4+ theory, with the internal space being H2. For a

special value of the parameters1 these solutions are supersymmetric thanks to an embedding

1Note, however, that Romans’ condition on the couplings g = 2m can be relaxed by allowing for a

non-zero constant dilaton.
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of the spin connection in the gauge connection, with half of the original supersymmetries

surviving. Later, in [19], these solutions and their deformations were studied in the context

of adS/CFT, along with similar adS4×S2 geometries. Beware, however, that the fixed point

S2 configurations are not solutions to the supersymmetry conditions nor the equations of

motion2. Therefore, in the following we focus on the hyperbolic internal manifold in the

N = 4+ theory.

In the familiar case of an adS4×H2 Ansatz, the equations of motion (2.6−2.10) reduce

to a set of algebraic equations. The same is true for the more general Lifshitz Ansatz. For

convenience, we make the following rescalings, which absorb the two quantities φ0 and L

into a redefinition of the other parameters:

α̂ = Lαe−φ0/
√
2 β̂ = Lβe

√
2φ0 γ̂ = Lγe−φ0/

√
2 (2.17)

ĝ = Lgeφ0/
√
2 â = a/L m̂ = Lm e−3φ0/

√
2 . (2.18)

In essence, we are interchanging the freedom to choose the parameters φ0 and L with the

freedom to choose the Lagrangian parameters ĝ and m̂. It is of course straightforward

to recover the values of φ0 and L by inverting these relations. With our Ansatz and

these redefinitions, the field equations (2.6−2.10) simplify to the following set of algebraic

relations.

z β̂ =
m̂2

2
β̂ + 2α̂γ̂ (2.19)

α̂ = γ̂β̂ (2.20)

0 =
1

4

(
ĝ2 − 4ĝ m̂ + 3m̂2

)
− 2β̂2 +

(
m̂2β̂2

4
− α̂2 + γ̂2

)
(2.21)

z(2 + z) = P + β̂2 +

(
m̂2β̂2

8
+

3α̂2

2
+
γ̂2

2

)
(2.22)

2 + z = P − β̂2 +

(
−3m̂2β̂2

8
− α̂2

2
+
γ̂2

2

)
(2.23)

2 + z2 = P − β̂2 +

(
m̂2β̂2

8
+

3α̂2

2
+
γ̂2

2

)
(2.24)

1

â2
= P + β̂2 +

(
m̂2β̂2

8
− α̂2

2
− 3γ̂2

2

)
(2.25)

where

P =
1

8

(
ĝ2 + 4ĝ m̂− m̂2

)
. (2.26)

Although this would appear to be a system of seven equations in six independent variables,

there is a Bianchi identity which relates a combination of (2.19) and (2.20) to a combination

2One of the components of the gravitino supersymmetry equation (component µ = 6 in the case of an

internal sphere, and component µ = 5 for the hyperboloid) gives rise to an extra supersymmetry condition,

ag = 1, not explicitly written in [19]. Together with the BPS conditions given in [19], this singles out H2 as

the only supersymmetric fixed-point solution. It is also straightforward to show that the S2 geometry does

not solve the second order Einstein equations. We thank the authors of [19] for discussions on this point.
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of (2.22), (2.23) and (2.24). Thus a solution exists also for z 6= 1, and is given by:

β̂2 = z − 1 (2.27)

α̂2 = γ̂2(z − 1) (2.28)

γ̂2 =
(2 + z)(z − 3)± 2

√
2(z + 4)

2z
(2.29)

ĝ2 = 2z(4 + z) (2.30)

m̂2

2
=

6 + z ∓ 2
√

2(z + 4)

z
(2.31)

1

â2
= 6 + 3z ∓ 2

√
2(z + 4) . (2.32)

The internal hyperbolic space can be taken to be non-compact or compact. For our

purposes, the compact case is most interesting, and we obtain this case as follows. The

2D hyperboloid can be written as a coset space SO(1, 2)/SO(2), and modding out by a

freely acting, discrete non-compact subgroup of the isometry group, SO(1, 2), we arrive at

a compact manifold. This manifold can be seen as a Riemann surface of some genus, which

depends on the choice of subgroup (see e.g. [13]). Such spaces have been much discussed in

the compactification literature, beginning with [12]. Notice now that, although classically

solutions exist for all dynamical exponents z ≥ 1, the quantization condition for the flux

threading the compact internal manifold provides a relation between z and the parameters

of the 6D theory, g,m.

It is easy to see that all the Lifshitz solutions (z 6= 1) break supersymmetry. The

relevant supersymmetry transformations are the fermionic gravitini and dilatini ones. They

take the form [11]:

δψµ a = Dµǫa −
1

8
√
2

(
geφ/

√
2 +me−3φ/

√
2
)
γµγ7ǫa −

1

24
e
√
2φγ7γ

ρλσGρλσγµǫa

− 1

4
√
2
e−φ/

√
2
(
γνρµ − 6δνµγ

ρ
)(1

2
Hµνδ

b
a + γ7F

(i)
µν T

(i) b
a

)
ǫb (2.33)

δχa =
1√
2
γµ(∂µφ)ǫa +

1

4
√
2

(
geφ/

√
2 − 3m e−3φ/

√
2
)
γ7ǫa −

1

12
e
√
2φγ7γ

ρλσGρλσγµǫa

1

2
√
2
γµν

(
1

2
Hµνδ

b
a + γ7F

(i)
µν T

(i) b
a

)
ǫb . (2.34)

It is sufficient to consider the dilatini transformation. In this case, we can see that the non-

trivial fluxes that support the Lifshitz solution would require us to impose four independent

projection conditions for δχa = 0, and so we cannot preserve supersymmetry. This fact

can also be seen at the level of the ten dimensional, uplifted solution, as we show now.

Six dimensional Romans’ gauge supergravity can be uplifted via an S4 to massive Type

IIA supergravity in ten dimensions [14]. Indeed, using the results of [14], it is trivial to

uplift any solution of the 6D field equations to a solution of the 10D equations of motion.

We now do so for the Li4 ×H2 configuration identified above. In order to go from the six

dimensional action used in [14] to Romans’ conventions used here, we make the following

– 6 –



redefinitions3 (a tilde denotes quantities in [14] notation):

g̃µν = −gµν , φ̃− 2φ̃0 = −2φ , (2.35)

e2
√
2 φ̃0 =

3m

g
, g̃ =

(
3mg3

)1/4

2
, (2.36)

1

2
e−

√
2 φ̃0B̃2 = B2 ,

1

2
e
√
2/2 φ̃0F̃

(i)
2 = F

(i)
2 . (2.37)

Using this dictionary, we can now write the 10D solution using the formulae in [14]. Defining

k0 = eφ0/
√
2
( g

3m

)1/4
(2.38)

C(ρ) = cos ρ , S(ρ) = sin ρ (2.39)

∆(ρ) = k0 C
2 + k−3

0 S2 (2.40)

U(ρ) = k−6
0 S2 − 3k20 C

2 + 4k−2
0 C2 − 6k−2

0 , (2.41)

as well as the constants

k1 =
8

g2
g

3m
e
√
2φ0 , k2 =

2

g2

( g

3m

)1/4
e−φ0/

√
2, k3 = −4

√
2

3

1

g3

( g

3m

)3/4
, (2.42)

k4 = 3g2e2
√
2φ0k3 , k5 = 3gk3 , k6 = −2

√
2 e−3φ0/

√
2

g2
, k7 = 2

(
3m

g

)1/2

,

the ten dimensional, uplifted configuration that results is

ds210 = S1/12 k
1/8
0

[
∆3/8(Li4 ×H2)− k1∆

3/8 dρ2 − k2∆
−5/8C2

3∑

i

(h(i))2

]
,

F4 = k3 S
1/3 C3∆−2 U dρ ∧ ǫ3 + k4 S

1/3C ⋆6 G3 ∧ dρ
+k5 S

1/3 C F
(3)
2 ∧ h(3) ∧ dρ+ k6 S

4/3 C2∆−1 F
(3)
2 ∧ σ(1) ∧ σ(2) , (2.43)

G3 = k7 S
2/3G3 , F2 = 0 ,

eΦ = S−5/6 ∆1/4 k
−5/4
0 ,

where

h(i) = σ(i) − g A
(i)
1 , (2.44)

with σ(i) the left-invariant 1-forms on S3, and ǫ3 = h(1) ∧ h(2) ∧ h(3). The parameters of

the 6D theory are related to the Type IIA mass parameter via m =
(
2m g3/27

)1/4
. Notice

that the ten dimensional RR F2 field strength vanishes, while the RR F4 field and the NS

G3 field are switched on. The uplifted solution (2.43) contains the six dimensional fields

F
(3)
2 , G3 and ⋆6G3, which we recall here:

F
(3)
2 = γ̂ e

√
2φ0
2

[√
z − 1Lrz−1dt ∧ dr + a2

Ly22
dy1 ∧ dy2

]

G3 = e−
√
2φ0 L2

√
z − 1 r dx1 ∧ dx2 ∧ dr (2.45)

⋆6G3 = e−
√
2φ0

a2

y22

√
z − 1 rz dt ∧ dy1 ∧ dy2 .

3In addition, we take conventions where κ2
6 = 2 rather than κ2

6 = 1/2 as was taken in [14].
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We can see the effects of the various charges in the 10D solution. The 3-form flux, G, lifts

both directly to the 3-form G3, as well as contributing to the 4-form. F4 also contains

a geometric term and contributions from the gauge field F
(3)
2 , which now appears as a

Kaluza-Klein (KK) field in the angular directions of the transverse 4D space4. The fluxes

in 10D will give rise to further quantization conditions. At ρ = π/2, the metric has a

coordinate singularity, as can be seen by considering the limit k2/∆k1 → 1/4 as ρ→ π/2.

Due to the overall factors S1/12, the metric is also singular at ρ = 0, π.

The previous configuration can be interpreted as a system of D4-D8 branes, intersect-

ing with D2 branes and an NS5 brane. We can understand this as follows. Take first

z = 1, in this case the NS gauge field turns off, as well as the parts of the RR F4 field that

contain a time component. Therefore, F4 is magnetically sourced by D4 branes, whereas

F10 (associated with the IIA mass) is sourced electrically by D8 branes. One ends up

with a D4-D8 system, which can preserve supersymmetry for certain configurations, see

e.g. [19]. In contrast, when z > 1, the NS field, as well as the remaining components of

the RR F4 field are turned on. These fields are, respectively, sourced magnetically by NS5

branes and electrically by D2 branes, which all intersect the previous D4-D8 system. Con-

sequently, the four dimensional space-time symmetry is reduced from Lorentz to Lifshitz,

and supersymmetry is broken completely.

3. Li3 solutions in Type IIB via 5D

In this section we present three dimensional Lifshitz string solutions, which are dual to

field theories in 1+1 dimensions. We find the solutions via compactifications of N = 4 5D

gauged supergravity, which can be uplifted to Type IIB supergravity in ten dimensions, or

eleven dimensional supergravity. The steps are very similar to the 6D case of the previous

section. After presenting the 5D action and field equations, we find the general Li3 × Ω2

solutions, where Ω2 again turns out to be restricted to a hyperboloid. We show that

supersymmetry is broken, and then we explain how to embed the solution in Type IIB

string theory.

The N = 4 5D gauged supergravity was developed in [15], and our conventions are

the same as the original reference. The field content consists of the metric, gµν , dilaton, φ,

gauge fields, (A
(i)
µ ,Aµ), for an SU(2)×U(1) gauge group, two antisymmetric tensor fields,

Bα
µν (α indicates the real two dimensional vector representation of U(1)), and the fermionic

partners. The bosonic part of the Lagrangian is:

e−1L = −1

4
R+

1

2
DµφD

µφ− 1

4
ξ−4FµνFµν −

1

4
ξ2
(
F (i)
µν F

µν (i) +BµναBα
µν

)

+
1

4
e ǫµνρσλ

(
1

g1
ǫαβB

α
µνDρB

β
σλ − F (i)

µν F
(i)
ρσ Aλ

)
+ P (φ) , (3.1)

where we have defined ξ ≡ e

√
2
3
φ
, and the scalar field potential is

P (φ) =
g2
8

(
g2 ξ

−2 + 2
√
2 g1 ξ

)
. (3.2)

4The presence of a KK gauge field is similar to the Type IIB Lifshitz solution presented in [8].
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Also, the field strengths are as usual:

Fµν = ∂µAν − ∂νAµ (3.3)

F (i)
µν = ∂µA

(i)
ν − ∂νA

(i)
µ + g2 ǫ

ijkA(j)
µ A(k)

ν , (3.4)

and g2, g1 are the gauge couplings for SU(2) × U(1), respectively. The 5D gauged super-

gravity thus has two independent parameters, g1, g2, which give rise to three physically

distinct theories. Following Romans [15], when g1g2 > 0, we call the theory N = 4+, when

g2 = 0 we call it N = 40, and when g1g2 < 0 we have N = 4−.

The equations of motion that result from the Lagrangian (3.1):

Rµν = 2∂µφ∂νφ+
4

3
gµνP − ξ−4

(
2FµρFρ

ν − 1

3
gµνFρσFρσ

)

−ξ2
(
2F (i)

µρ F
ρ (i)
ν − 1

3
gµν F

(i)
ρσ F

ρσ (i)

)
(3.5)

⊔⊓φ =
∂P

∂φ
+

√
2

3
FµνFµν −

√
1

6
ξ2 F (i)

ρσ F
ρσ (i) (3.6)

Dν

(
ξ−4Fνµ

)
=

1

4
e−1ǫµνρστ F (i)

νρ F
(i)
στ (3.7)

Dν

(
ξ2F νµ (i)

)
=

1

2
e−1ǫµνρστ F (i)

νρ Fστ , (3.8)

where we have set the antisymmetric tensor fields Bα
µν to zero, in view of our Ansatz below.

The maximally symmetric solutions to these equations were studied in [15]. The N = 4+

theory was found to have vacua of the form adS3 × Ω2 for Ω2 a sphere, hyperboloid or

flat space. The N = 40 and N = 4− theories admit similar vacua, but only for Ω2 a

hyperboloid.

Given the above, we assume an Ansatz of the form Li3 × Ω2, with any constant

curvature internal 2D space. The metric is then:

ds2 = L2

(
r2zdt2 − r2dx2 − dr2

r2

)
− L2dΩ2

2 , (3.9)

where, dΩ2
2 is given by flat space or (2.13) for the sphere or hyperboloid, as before. Similarly,

our Ansatz for the gauge fields, motivated by the symmetries, is:

Frt =
ξ20 α1

L
rz−1 ; Frx =

ξ20 β1
L

; Fy1y2 =
ξ20 γ1
L

e2 (3.10)

F
(3)
rt =

ξ−1
0 α2

L
rz−1 ; F (3)

rx =
ξ−1
0 β2
L

; F (3)
y1y2 =

ξ−1
0 γ2
L

e2 , (3.11)

and the scalar field is constant, φ = φ0. Here, e2 is the square-root of the determinant of

the metric dΩ2
2. Finally, it again proves useful to rescale the quantities g1 and g2 in such

a way as to absorb into their values the free parameters L and φ0:

g1 =
ĝ1ξ

−2
0

L
(3.12)

g2 =
ĝ2ξ0
L

. (3.13)
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Thus in the following we will consider ĝ1 and ĝ2 as free parameters, to be fixed by the

equations of motion.

As before, this Lifshitz Ansatz reduces the field equations to a set of (ten) algebraic

equations5:

α2 = 2γ2β1 + 2γ1β2 (3.14)

zβ2 = 2α2γ1 + 2γ2α1 (3.15)

α1 = 2γ2β2 (3.16)

zβ1 = 2α2γ2 (3.17)

0 = z(z + 1)− 4

3
P − 4

3
(α2

1 + α2
2)−

2

3
(β21 + β22)−

2

3
(γ21 + γ22) (3.18)

0 = z + 1− 4

3
P +

2

3
(α2

1 + α2
2) +

4

3
(β21 + β22)−

2

3
(γ21 + γ22) (3.19)

0 = z2 + 1− 4

3
P − 4

3
(α2

1 + α2
2) +

4

3
(β21 + β22)−

2

3
(γ21 + γ22) (3.20)

0 = α1β1 + α2β2 (3.21)

0 = − λ

a2
− 4

3
P +

2

3
(α2

1 + α2
2)−

2

3
(β21 + β22) +

4

3
(γ21 + γ22) (3.22)

0 =

√
3

2

dP

dφ
+ 2(β21 + γ21 − α2

1)− (β22 + γ22 − α2
2) , (3.23)

with

P =
ĝ2
8

(
ĝ2 + 2

√
2ĝ1

)
(3.24)

dP

dφ
=

√
2

3

ĝ2
4

(
−ĝ2 +

√
2ĝ1

)
. (3.25)

Here, we have introduced the parameter λ = 1, 0,−1, to include the cases of the 2D sphere,

flat space and hyperboloid, respectively, at once.

In total we have nine free parameters, αk, βk, γk, a, ĝ1, ĝ2, with k = 1, 2, to fix

by means of the equations. Although we have more equations than unknowns, as before

it turns out that not all the equations are independent and solutions can exist for every

value of z ≥ 1. Indeed, it is straightforward to solve the previous system of equations

completely, as we demonstrate in detail in Appendix A. There are two sets of solutions,

which are qualitatively similar:

• α1 = 0 = β2

5We are grateful to Jerome Gauntlett and Aristomenis Donos for pointing out that Equation (3.21) was

missing in the original version of this paper.
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The solution takes the form

α2
2 =

z(z − 1)

2
(3.26)

β21 =
(z − 1)

2
(3.27)

γ21 = 0 (3.28)

γ22 =
z

4
(3.29)

2λ

a2
= −3z (3.30)

ĝ22 = 2z2 + 3z − 2 (3.31)

ĝ21 =
√
2 (1 + z) . (3.32)

We must have z ≥ 1.

• α2 = 0 = β1

The solution takes the form

α2
1 =

z(z − 1)

2
(3.33)

β22 =
(z − 1)

2
(3.34)

γ21 = 0 (3.35)

γ22 =
z

4
(3.36)

2λ

a2
= −3z (3.37)

ĝ22 = −2z2 + 3z + 2 (3.38)

ĝ21 =
1√
2

(
2z2 + z + 1

)
. (3.39)

Here, to ensure that the gauge couplings are real, we must restrict 1 ≤ z ≤ 2.

Notice that, since λ < 0 in both cases, the geometry turns out to be restricted to Li3×
H2. Also, similar to the 6D case, quantization of the internal fluxes implies a topological

relation between z and the 5D gauge couplings, g1, g2.

Although some of the adS3 ×Ω2 solutions partially preserve supersymmetry, breaking

N = 4 to N = 1 [15], it is again easy to see that the Lifshitz fluxes prevent any supersym-

metric Lifshitz configurations. The spinorial supersymmetry transformations are (setting
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Bα
µν = 0):

δψµa = Dµǫa + γµ

(
1

6

√
1

2
g2ξ

−1 +
1

12
g1ξ

2

)
Tabǫ

b

−1

6

√
1

6

(
γ νρ
µ − 4δνµγ

ρ
)
(
ξF (i)

νρ T(i) ab −
√

1

2
ξ−2FνρΩab

)
ǫb (3.40)

δχa =

√
1

2
γµ(∂µφ)ǫa +

(
1

2

√
1

6
g2ξ

−1 − 1

2

√
1

3
g1ξ

2

)
Tabǫ

b

−1

2

√
1

6
γµν

(
ξF (i)

µν T(i) ab −
√
2ξ−2FµνΩab

)
ǫb , (3.41)

where T
(i)
ab , Tab are generators of the SU(2) × U(1) gauge group, and Ωab is a metric used

to raise and lower any spinor index. Plugging our Lifshitz solutions into the dilatino

supersymmetry transformation, we see that three independent projection conditions would

be required to make it vanish, showing that no supersymmetry can survive.

The 5D Romans’ theory has been lifted to Type IIB supergravity in ten dimensions in

[16] by means of an S5 reduction. Building on this result, 11D interpretations of the 5D

theory were given in [17] and [18]. Here, we use the results of [16] to uplift our 5D Lifshitz

solutions to solutions of the Type IIB supergravity equations of motion.

First, we write down the dictionary to go from the conventions in [16] to Romans’ con-

ventions used above. This requires the following redefinitions of the fields and parameters6

(a tilde denotes quantities in [16] notation):

g̃µν = −gµν , φ̃+ 2φ̃0 = 2φ (3.42)

√
2 e3

√
2/3 φ̃0 =

g2
g1
, g̃ =

(
g1 g

2
2

16

)1/3

(3.43)

1

2
e2
√

2/3 φ̃0 Ã1 = A1 ,
1

2
e−

√
2/3 φ̃0 F̃

(i)
2 = F

(i)
2 . (3.44)

Using this dictionary, we can immediately write down our ten dimensional solution using

the formulae in [16]. It is convenient to define:

k0 = ξ−1
0

(
g2

g1
√
2

)1/3

(3.45)

C(ρ) = cos ρ , S = sin ρ (3.46)

∆(ρ) = k−2
0 S2 + k0 C

2 (3.47)

U(ρ) = k−1
0 S2 + k20 C

2 + k−1
0 , (3.48)

along with the constants:

k1 =
4
√
2

ξ0 g1g2
, k2 =

(
g1 g

2
2

2

)1/3

, k3 =
2ξ20
g2k2

, k4 = − 8k20
k22ξ

2
0

,

k5 = − 4

k42
, k6 = − 4ξ20

g2k22
, k7 =

√
2 ξ0k1
k2

, k8 = − 2

ξ20k0k
3
2

. (3.49)

6We should also take into account the convention κ2
5 = 1/2 taken in [16]. Note also that in the final 10D

expressions in [16] they absorbed g1, g2 in a single g̃.
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The solution then reads:

ds210 = ∆1/2(Li3 × dΩ2
2)− k1∆

−1/2

[
∆dρ2 + k0S

2(dη − g1A1)
2 +

C2

4k20

3∑

i

(h(i))2

]

F5 = k2Uǫ5 + k3 C
2 ⋆5 F

(3)
2 ∧ σ(1) ∧ σ(2) − 2k3 S C ⋆5 F

(3)
2 ∧ h(3) ∧ dρ

+k4 ⋆5 F2 ∧ dρ ∧ (dη − g1A1)

F3 = 0, G3 = 0, Φ = 0, χ = 0 , (3.50)

and we may also write down the ten dimensional Hodge dual of the RR five-form as:

⋆F5 = k5 S C
3 U ∆−2dρ ∧ (dη − g1A1) ∧ σ(1) ∧ σ(2) ∧ h(3)

+k6 S
2 C2∆−1F

(3)
2 ∧ σ(1) ∧ σ(2) ∧ (dη − g1A1) (3.51)

+k7 S C F
(3)
2 ∧ h(3) ∧ dρ ∧ (dη − g1A1) + k8 C

4∆−1F2 ∧ σ(1) ∧ σ(2) ∧ h(3) .

Here, the 1-forms h(i) are now given in terms of the left-invariant 1-forms on S3 as:

h(i) = σ(i) − g2A
(i)
1 , (3.52)

and ǫ5 is the volume form in the five dimensional Li3 × Ω2 space. We also recall the 5D

fields F2, ⋆5F2, F
(3)
2 and ⋆5F

(3)
2 :

F2 =
ξ20
L

[
α1r

z−1 dr ∧ dt + β1 dr ∧ dx
]
,

⋆5F2 = ξ20 r
z e2

[
−α1r

1−z dx ∧ dy1 ∧ dy2 − β1 dt ∧ dy1 ∧ dy2
]
,

F
(3)
2 =

ξ−1
0

L

[
α2r

z−1 dr ∧ dt + β2 dr ∧ dx + γ2 e2 dy1 ∧ dy2
]
,

⋆5F
(3)
2 = ξ−1

0 rz e2
[
−α2r

1−z dx ∧ dy1 ∧ dy2 − β2 dt ∧ dy1 ∧ dy2 + γ2 e
−1
2 dt ∧ dx ∧ dr

]
,

(3.53)

where αk, βk (k = 1, 2), γ2, ξ0 and L are z dependent constants to be read off from the 5D

solution, and in particular αk, βk are vanishing when z = 1.

As with the previous Lifshitz example, we see the presence of KK gauge fields when

uplifting the 5D solutions, due to the non-trivial backgrounds for A
(3)
1 and A1. However in

this case, our ten dimensional metric is everywhere regular (apart from the usual coordinate

singularities). Again, flux quantization conditions in the 10D system, will lead to further

constraints on z, g1 and g2.

We can geometrically interpret the ten dimensional uplifted configuration as follows.

When z = 1, the parameters αk and βk vanish, so that the 5D F2 vanishes and F
(3)
2 has

components only in the internal directions. The ten dimensional dual of F5, (3.51), is then

sourced magnetically by various intersecting D3 branes, and if the D3 brane configuration

satisfies certain conditions, the system can be supersymmetric. Meanwhile, when z > 1,

additional components of ⋆F5 are turned on, which are sourced both magnetically and

electrically by further D3 branes. The overall effect is to reduce the symmetry of the three

infinite dimensions from Lorentz to Lifshitz, and to break supersymmetry completely.
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4. Discussion

In this paper, we provided a simple method that allowed us to obtain explicit string con-

structions of Lifshitz geometries for general dynamical exponents, z ≥ 1. Following a

bottom-up approach, our starting point was to look for Lifshitz solutions in d-dimensional

supergravities, appropriately deforming adSq × Ωd−q solutions already known in the liter-

ature. Then we uplifted them to ten dimensional configurations. First, we considered the

gauged, massive N = 4 six dimensional supergravity, and showed that it admits a solution

of the form Li4 × H2, with Li4 characterized by dynamical exponents z larger than one,

which may be subject to quantization conditions, and H2 a hyperboloid that can be com-

pact. Then we discussed the uplifting of this geometry to massive Type IIA string theory,

giving a basic interpretation of the resulting configuration in terms of intersecting branes

of various dimensions. Second, we considered gauged N = 4 five dimensional supergravity.

We found that this admits solutions of the form Li3 × H2. The resulting geometry can

be uplifted to IIB string theory, and can be interpreted as a system of intersecting D3

branes. It would be interesting to study more deeply the brane interpretations of our 10D

configurations.

Our results indeed suggest various issues that deserve further investigation. In Ref.

[8], the authors argue that their 10/11D Lifshitz compactifications can be supersymmetric

when they are based on Sasaki-Einstein manifolds. In our case in contrast, it is easy to

see that supersymmetry is broken. For example, looking at the dilatino supersymmetry

transformation in 6D supergravity, the 4D fluxes which we use to support the Lifshitz

geometry lead to a proliferation of projection conditions. Since we do not have supersym-

metry, there is no reason to believe that our solutions are stable, and it would be important

to investigate this issue. Along these lines, it is intriguing to recall a parallel discussion in

the literature on non-relativistic Schrödinger solutions. Also there, both supersymmetric

and non-supersymmetric solutions have been found in string theory. Among these are the

supersymmetric solutions of [20] (albeit with kinematical supersymmetry only [21]), which

were surprisingly found to be unstable. Moreover it was argued in [20] that turning on

supersymmetry breaking fluxes can actually help to restore stability.

We should also note that not all known adSq × Ωd−q supergravity solutions can be

generalized to Lifshitz solutions. For example, N = 2 8D gauged supergravity has an

adS4 × S4 background [22], but it turns out that the simple extension to a Lifshitz Ansatz

is inconsistent with the equations of motion. The same can be said of the adS3×S3 solution

to N = 4 gauged, massless, 6D supergravity [11]. It would be interesting to understand

what makes our working examples special. One characteristic that seems to distinguish

them is that the internal space is a negative curvature hyperboloid, although we do not

know yet whether or not this is a coincidence.

Lastly, the main advantage of our approach is its simplicity and the solutions presented

may be useful in developing the Li/CMP correspondence further. A possible next step is

to find Lifshitz black hole solutions and study their properties, which we leave for future

work.
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A. Appendix: Details of the five dimensional solution

In this appendix, we analyse in detail the system of the ten equations (3.14)−(3.23) asso-

ciated with Lifshitz configurations in five dimensional gauged supergravity. We determine

the general solutions to these equations, providing the values of the nine free parameters

αk, βk, γk, a, ĝ1, ĝ2 as a function of z.

There are combinations of the equations that provide simple relations among the previ-

ous free parameters. Taking the differences between (3.18) and (3.20), and between (3.18)

and (3.19), we obtain

z − 1

2
= β21 + β22 (A.1)

z(z − 1)

2
= α2

1 + α2
2 . (A.2)

The first of the previous equations show that z ≥ 1. These two equations also imply

α2
1 − zβ21 = zβ22 − α2

2 . (A.3)

Meanwhile, multiplying together Eqs. (3.16) and (3.17), and imposing (3.21), leads to the

condition:

α1β1 = 0 = α2 β2 . (A.4)

Thus, we may take either α1 = 0 = β2 or α2 = 0 = β1. In both cases, Eqs. (3.14)-(3.17)

then imply γ1 = 0 and γ22 = z/4. Now, combining Eqs. (3.19), (3.22) and (3.23) one finds

λ

a2
= −2β21 + 2γ22 − 2β22 − z − 1 (A.5)

ĝ22
4

=
z + 1

2
+ 2β21 − α2

1 + α2
2 − γ22 (A.6)

ĝ1ĝ2√
2

= z + 1 + 2β22 + 2α2
1 . (A.7)

There are two sets of solutions, which are qualitatively similar:

• for α1 = 0 = β2, then 2β21 = z− 1, 2α2
2 = z(z− 1), γ21 = 0, 4γ22 = z, and Eqs. (A.5)-(A.7)

imply

λ

a2
= −3

2
z (A.8)

ĝ22 = 2z2 + 3z − 2 (A.9)

ĝ21 =
√
2(1 + z) (A.10)
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This solution is valid for all z ≥ 1. Notice that the internal space corresponds to a

hyperboloid, since λ has to be negative.

• for α2 = 0 = β1, then 2β22 = z−1, 2α2
1 = z(z−1) , γ21 = 0, 4γ22 = z, and Eqs. (A.5)-(A.7)

imply

λ

a2
= −3

2
z (A.11)

ĝ22 = −2z2 + 3z + 2 (A.12)

ĝ21 =
1√
2

(
2z2 + z + 1

)
(A.13)

This solution is physical only for 1 ≤ z ≤ 2. The internal space is again a hyperboloid.
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