
LIFT: A Low-Overhead Practical Information Flow Tracking System for
Detecting Security Attacks

Feng Qin���, Cheng Wang�, Zhenmin Li�, Ho-seop Kim�, Yuanyuan Zhou�, and Youfeng Wu�

� University of Illinois at Urbana-Champaign
� Intel Corporation

� The Ohio State University

Abstract
Computer security is severely threatened by software

vulnerabilities. Prior work shows that information flow
tracking (also referred to as taint analysis) is a promising
technique to detect a wide range of security attacks. How-
ever, current information flow tracking systems are not very
practical, because they either require program annotations,
source code, non-trivial hardware extensions, or incur pro-
hibitive runtime overheads.

This paper proposes a low overhead, software-only in-
formation flow tracking system, called LIFT, which mini-
mizes run-time overhead by exploiting dynamic binary in-
strumentation and optimizations for detecting various types
of security attacks without requiring any hardware changes.
More specifically, LIFT aggressively eliminates unneces-
sary dynamic information flow tracking, coalesces infor-
mation checks, and efficiently switches between target pro-
grams and instrumented information flow tracking code.

We have implemented LIFT on a dynamic binary in-
strumentation framework on Windows. Our real-system
experiments with two real-world server applications, one
client application and eighteen attack benchmarks show
that LIFT can effectively detect various types of security
attacks. LIFT also incurs very low overhead, only 6.2%
for server applications, and 3.6 times on average for seven
SPEC INT2000 applications. Our dynamic optimizations
are very effective in reducing the overhead by a factor of
5-12 times.

1 Introduction

��� ����������

Computer security is severely threatened by software
vulnerabilities, such as buffer overrun, format string vulner-

�The work was done when Feng Qin worked at the University of Illinois
at Urbana-Champaign

abilities, etc. These vulnerabilities allow malicious users to
launch attacks by executing arbitrary code, causing denial
of services, or stealing sensitive data on a vulnerable sys-
tem. For example, the fastest-ever worm, Slammer worm
in 2003, exploited the buffer overrun vulnerability in Mi-
crosoft SQL server. It brought down tens of thousands of
machines within several minutes and cost hundreds of mil-
lions of dollars loss [30].

Although many tools or techniques such as Stack-
Guard [16] and LibSafe [7] were proposed to detect some
security attacks, they are far from effectively detecting at-
tacks that exploit unknown software vulnerabilities because
they are target for specific types of software vulnerabilities.
As demonstrated by prior work [40], none of the five pub-
licly available attack detection tools such as LibSafe [7] can
detect all the designed eighteen types of security attacks,
and even all of them combined together still leave 30% of
attacks uncovered. Additionally, they provide little useful
information regarding the attacks, for example, what are the
attack input signatures, what are the attack steps, etc. This
information is very useful for network-based applications to
filter out future messages that match with attack signatures.

Several recent work [14, 34, 36] demonstrated that in-
formation flow tracking is a promising and effective tech-
nique for detecting many system-compromising security at-
tacks that corrupts control data (e.g. return address, func-
tion pointer, etc.), even for exploitation of unknown types
of software vulnerabilities. Generally this technique tags
(labels) the input data from unsafe channels such as net-
work connections as “unsafe” data, propagates the data tags
through the computation (any data derived from unsafe data
are also tagged as unsafe), and detects unexpected usages of
the unsafe data that switch the program control to the unsafe
data as exemplified in the stack smashing attack. In addition
to the generality of attack detection, information flow track-
ing can also trace back to the input data that exploits the
vulnerability to generate attack input signatures. This fea-
ture has been demonstrated to be very useful for effectively
building a preventive network defense [14, 34].

Table 1 shows an example to demonstrate the informa-
tion flow tracking process. Initially, � is received from the
network, so it is unsafe. The second statement makes the
information of � flowing to �. When the program jumps to
the location pointed by �, the system will raise an alarm if �
is unsafe.

Target Program Information Flow Tracking
receive (&a); ������ � � // unsafe as it is received from network
b=a; ������ � ������
... ...
jmp c; if ������� �� ��, raise alert!

Table 1. An example of information flow tracking

Additionally, information flow tracking can also be used
in detecting information leaking (e.g. leaking passwords,
etc) [31, 32, 39]. In this paper, we focus on detecting
system-comprising security attacks, even though our tech-
nique can also be used for detecting information leaking
with only a small modification.

So far information flow tracking has been implemented
in three different ways. The first approach is track infor-
mation flow at compile time for programs written in spe-
cial type-safe programming languages [18, 19, 24, 31, 32].
While this approach can enforce the information flow secu-
rity policies for programs without runtime overhead, it only
works for programs that are written in the specific program
languages and is therefore inapplicable to a large number of
legacy programs written in type-unsafe languages such as
C/C++. More importantly, due to lack of accurate runtime
information, most tools in this category are designed for de-
tecting sensitive information leaking instead of security at-
tacks. For example, it is hard for them to detect attacks that
alter the target of indirect branches, which can only be re-
solved at runtime.

The second approach is to track information flow and de-
tect malicious exploits at runtime via either source code or
binary code instrumentation. Source-code instrumentation-
based information flow tracking, as done in Xu et al’s
work [42], has lower overhead than the alternative, binary-
code instrumentation-based implementation, but it can-
not track information flow in third-party library code and
thereby will miss security exploits involving these libraries
as reported in US-CERT [5]. Additionally, it requires pro-
grammers to provide a summary for each library function
to allow the information flow through library calls, which
can be an error-prone and tedious task as many library calls
are fairly complex, causing many side-effects in addition
to simple return values. In contrast, implementing infor-
mation flow tracking via binary instrumentation, such as in
TaintCheck [34], can track information accurately even in
libraries, but suffers from a major overhead problem: it can
slow down the program execution by around 37 times – too
large to be used during production runs against security at-
tacks.

The third approach of information flow tracking is to
support it in hardware [17, 36, 39]. For example, the re-
cent work RIFLE [39] and Suh et al’s work [36] proposed
new hardware extensions to track information flow for each
instruction. While this approach is effective in detecting
security attacks with low overhead, it requires non-trivial
hardware extensions. Therefore, it is quite expensive and is
not applicable to existing systems.

��	
�� �����������

This paper proposes a low overhead, software-only, com-
prehensive and practical information flow tracking system,
called LIFT, that minimizes run-time overhead by exploit-
ing aggressive dynamic binary instrumentation and opti-
mizations for detecting various types of security attacks that
corrupt control-data (e.g return address, function pointer,
etc.) without requiring any hardware changes. Dynamic
binary instrumentation and optimizations leverage accurate
runtime information and enable more aggressive optimiza-
tions than static approaches at compile time. For example,
at runtime we can eliminate many unnecessary dynamic in-
formation flow tracking when it can be sure that no unsafe
data are involved in the computation.

More specifically, LIFT employs three runtime binary
optimizations to minimize the overhead associated with in-
formation flow tracking for detecting general security at-
tacks. The first optimization, referred as Fast Path (FP),
eliminates unnecessary dynamic information flow tracking.
This is based on the observation that, for most applications,
the majority of computation involves safe data, for which
it is unnecessary to track information flow. Therefore, by
dynamically and efficiently performing a simple check be-
fore an execution region (e.g. basic block), LIFT can see
whether involved data is safe or not; if it is, a fast binary
version without any information flow tracking is executed;
otherwise, the execution follows a slow version with de-
tailed information flow tracking. By dynamically switching
between fast and slow versions on demand, LIFT can effec-
tively avoid unnecessary information tracking.

The second optimization, Merged Check(MC), further
reduces the information flow checking overhead by coa-
lescing data safety checks from multiple consecutive basic
blocks into one. This optimization exploits both spatial lo-
cality and temporal locality of memory references because
multiple safety checks for both nearby data and the same
data are combined into one. It not only reduces the num-
ber of checks but also avoids bit operations because the
safety of one byte is indicated by only one bit in the corre-
sponding data tag. This optimization is applied to both con-
secutive basic blocks and dynamic instruction traces (i.e.
dynamically-formed frequently executed code regions).

The last optimization, Fast Switch (FS), reduces the

overhead and number of context switches 1 between the tar-
get program and the information flow tracking code by us-
ing alternative cheaper instructions and status register live-
ness analysis, respectively. To avoid interference with the
target program, most binary instrumentation frameworks
such as PIN [29] and StarDBT [9] usually require sav-
ing/restoring some program execution context, including
the status register and the runtime stack pointers, of the
target program before and after executing the instrumented
code (the reason will be discussed in details in Section 3.3).
This context switch, even though much smaller than OS-
level context switches, can still introduce large runtime
overhead. LIFT minimizes this overhead by cleverly select-
ing cheaper instructions and performing condition register
liveness analysis.

We have implemented LIFT based on a dynamic bi-
nary translator called StarDBT [9] on Windows. Our real-
system experiments with two real-world server applications,
one client application, and eighteen attack benchmarks [40]
show that LIFT can effectively detect various types of se-
curity attacks that corrupt control data. LIFT also incurs
very low overhead, only 6.2% for server applications, and
3.6 times on average for seven SPEC INT2000 applications.
Our dynamic optimizations are very effective in reducing
the overhead by a factor of 5-12 times.

Compared to previous approaches, LIFT provides sev-
eral unique advantages:

� Low-overhead. Compared to other software-only
binary-based information flow tracking system that
slows down program execution by around 37 times,
LIFT incurs significantly less overhead, only 6.2% for
server applications, and 3.6 times on average for seven
SPEC INT2000 applications, which indicate that LIFT
is practical to use during production runs for detecting
security attacks.

� Not requiring any hardware extensions. LIFT is
a software-only approach based on dynamic binary
instrumentation and optimization. Unlike previous
hardware-based approaches [17, 36, 39] that require
non-trivial hardware extensions, LIFT requires no
hardware extension. Therefore, it can be used imme-
diately in existing systems.

� Not requiring source code. Unlike source-level infor-
mation flow tracking [42], LIFT works with binary
code and thereby can work with commercial software
whose source code is unavailable. Most importantly, it
can performs accurate information flow tracking inside
third-party library code and, consequently, can detect
security vulnerabilities and exploits what occur inside
these libraries.

1Note that the context switch here is not the OS-level context switch
between different threads or kernel-user mode.

The rest of the paper is organized as follows. Section 2
describes the design and implementation of our basic infor-
mation flow tracking system (LIFT-basic), followed by the
three optimization techniques described in Section 3. Then
Section 4 and Section 5 evaluate our work, followed by re-
lated work in Section 6. Finally we conclude in Section 7.

2 LIFT Basic Design and Implementation

LIFT tracks information flow at runtime via dynamic
binary translation and optimization to detect general secu-
rity attacks. Similar to other information flow tracking sys-
tems [14, 34, 36], LIFT dynamically instruments the binary
of the target program to perform two tasks: (1) tracking
information flow, and (2) detecting security exploits that
switch the program control flow to unsafe data.

This section describes the basic design and implemen-
tation including the basic dynamic binary instrumentation
framework, tag management, information flow tracking, ex-
ploit detection, an example of information flow tracking,
and protection of tag space and LIFT code. The three dy-
namic optimizations for minimizing overhead will be de-
scribed in the next section.

	�� ������� ������ ���������������
���������

We build LIFT on top of a dynamic binary translator
called StarDBT [9] developed by Intel. StarDBT automati-
cally loads the original program code into memory and ini-
tializes the program execution context at program startup.
Like other dynamic binary instrumentation and translation
frameworks [6, 29, 37], StarDBT manages a code cache to
store the translated code so that the original code is trans-
lated once and executed multiple times in order to amortize
the translation cost. In addition, StarDBT collects profiling
information to form hot traces of frequently executed code.
More details about the basic dynamic binary translation and
instrumentation framework can be found in [9].

At run time, LIFT uses StarDBT to instrument the trans-
lated code with instructions to perform information flow
tracking and attack detection. Besides StarDBT, LIFT can
also be built on top of other dynamic binary instrumentation
tools or translators such as Dynamo [6], PIN [29], etc.

	�	 ��� ����������

Similar to prior work [36], LIFT associates a one-bit tag
(0 for “safe” data and 1 for “unsafe” data) for each byte
of data in memory or general data registers. It can be eas-
ily extended to a multiple-bit tag for each byte as needed.
For example, users may want to use different tags to ex-
press their trustiness for data from different sources such as
network data, disk data, and other data. Using multiple-bit

tags can also reduce some overhead by avoiding bit opera-
tions in information flow tracking as demonstrated in prior
work [42], but it significantly increases the space overhead
for keeping tags and also increases processor cache pollu-
tion. Therefore, the prototype of LIFT uses one-bit tags.

LIFT stores the tags for memory data in a special mem-
ory region, called the tag space, via a one-to-one direct
mapping between a tag bit and a memory byte in the tar-
get program’s virtual address space. Such direct mapping
makes it straightforward and fast (with only one memory
access and a few arithmetic instructions) to get the tag value
for a given memory location.

The current tag space incurs 12.5% space overhead. If
the virtual memory space is limited, we can minimize the
tag space using compression as memory data nearby each
other usually have similar tag values: either all zeros or all
ones. So we may keep only one value for the entire memory
region (e.g. a page). Although this scheme saves memory
space, it has extra runtime overhead for tag look-ups. Since
the current prototype of LIFT is based on 64-bit architec-
tures, where virtual memory space is seldom limited, we
use the flat tag space management without compression.

LIFT stores the tags for general registers in a dedicated
extra register to minimize overhead. Since register accesses
are very frequent in program execution, the register tags are
also accessed frequently. Therefore, for efficient register tag
accesses, LIFT uses an extra 64-bit register to store the tags
for all registers used in the target program. For architectures
with no spare registers, we can use a special memory area
to store tags for general registers. This will not significantly
affect performance since most accesses to these tags will hit
in the L1 cache.

At the beginning, all tags are cleared to zero. Based
on the application-specific tagging policy, certain data (e.g.
data read from the network or standard input) are tagged
with 1 as “unsafe”. As the program executes, other data
may also be tagged with 1 via information flow. An unsafe
data can become safe if its value is reassigned from some
safe data.

	�� ����������� ���� ��������

As program executes, LIFT propagates the tag informa-
tion from one data to another. It does this by dynamically
instrumenting instructions with information flow track ac-
cording to its type. For data movement-based instructions
such as MOV, PUSH, POP, etc, the tag value of the source
operand is propagated to the tag of the destination (e.g, if
the source operand is unsafe, the destination also becomes
unsafe). For arithmetic instructions, such as ADD, OR, etc,
the corresponding tag values of the two source operands
are OR-ed and the result is propagated to the tag of the
destination operand since the information of the destina-
tion operand comes from both source operands. For in-

structions that involve only one operand, such as INC, etc,
the tag of the operand does not change since the infor-
mation of the operand flows to itself. Similar to previous
work [14, 36, 39, 42], LIFT tracks information flows based
on data dependencies but not control dependencies.

There are a few special instructions whose information
flow tracking in LIFT does not follow the above general
rules. For example, in x86 architecture, the instruction
“XOR eax, eax” initializes the “eax” register to 0, therefore
the tag value of “eax” should be reset to 0 (“safe” data).
However, the general rule for this instruction keeps the tag
of “eax” unchanged. To handle such cases, LIFT identifies
these special instructions such as “XOR reg, reg” and “SUB
reg, reg”, and clear the tags of the corresponding registers
or memory data.

In the baseline case (without any optimization described
in the next section), the information flow tracking code is
instrumented once at runtime and executed multiple times.
The reason for instrumenting before instead of after an in-
struction in the original program is that execution of the in-
struction may change the operand address and thus make
tag propagation more difficult.

	�� !"���� ���������

In addition to information flow tracking, certain instruc-
tions are also instrumented to detect malicious exploits, i.e.
improper usages of unsafe data that violate user-specified
security policies. For example, “unsafe” data cannot be
used as a return address or the destination of an indirect
jump instruction, etc.

By default, similar to previous work [14, 36, 39], LIFT
detects security attacks, regardless of the underlying secu-
rity vulnerabilities, which use “unsafe” data for jump tar-
gets, return addresses, function pointers, or function pointer
offsets. This allows LIFT to detect a wide variety of security
attacks since the last step of many system-compromising
security attacks requires directly or indirectly changing the
program control flow to some unsafe data by altering the
return address, function pointers, or general jump targets.

	�# $� !��"�� �� ����������� ����
�������� ��� %���&�����

Figure 1 shows an example of information flow tracking
instructions for three instructions (with bold font) from a
target program. For different instruction type, the number
of instrumented instructions for information flow tracking
varies. For example, the first instruction moves a constant
to a register, whose information flow tracking takes eight in-
structions, while the second and third instructions from the
target program each requires twenty instructions for infor-
mation flow tracking or exploit detection respectively.

We use the second instruction “ADD ebx, [ecx]” from
the target program as an example to see how the informa-

MOV r10, gs:[30h]
MOV r10, [r10+1488h]
MOV [r10−8], rsp
LEA rsp, [r10−8]
PUSHFQ
AND RegTag, 0xffffff0fh
POPFQ
POP rsp

MOV r10, gs:[30h]
MOV r10, [r10+1488h]
MOV [r10−8], rsp
LEA rsp, [r10−8]
PUSHFQ
XOR r11, r11
LEA r11d, [ecx]
MOV r10d, r11d
SHR r11d, 3
ADD r11, Tag_Space_Base
MOV r13, [r11]
AND r10d, 0x07h
XCHG r10d, ecx
SHR r13, cl
XCHG r10d, ecx
AND r13, 0x0fh
SHL r13, 0x04h
OR RegTag, r13
POPFQ
POP rsp

MOV r10, gs:[30h]
MOV r10, [r10+1488h]
MOV [r10−8], rsp
LEA rsp, [r10−8]
PUSHFQ
XOR r11, r11
MOV r11d, ebx
MOV r10d, r11d
SHR r11d, 3
ADD r11, Tag_Space_Base
MOV r13, [r11]
AND r10d, 0x07h
XCHG r10d, ecx
SHR r13, cl
XCHG r10d, ecx
AND r13, 0x0fh
TEST r13, 0x0Fh
JNZ report_intrusion
POPFQ
POP rsp

MOV ebx, 0x0400h ADD ebx, [ecx] JMP ebx

Figure 1. An example of information flow tracking for
LIFT-basic. The instruction with bold font is an original
instruction from the target program. The unbolded instruc-
tions instrumented before the bolded instruction perform in-
formation flow tracking.

tion flows. Instructions 1-5 do context switch, including
switching to a different stack and saving the conditional
flag register. Instructions 6-16 get the tag of the memory
data “[ecx]”. Instructions 17-18 propagate the tag of source
operand in memory to the tag of destination operand in the
register. The last two instructions restore the context.

	�' (��������� �� ���)"��� ��* %���
�*��

In addition to overhead, another important concern is
that LIFT code or the tag space can be corrupted by some
program errors or carefully-crafted malicious inputs. There-
fore, it is necessary to protect them. To protect the LIFT
code against corruption, we use page protection to make
the memory pages that store the LIFT code read-only. Thus,
any attempt to modify the LIFT code causes a page fault.

To protect the tag space, we use a mechanism similar to
prior work by Xu et al [42]. That is, we turn off the access
permission of the pages that store the tag values of the tag
space itself (note that the tag space is also a part of the vir-
tual memory space, so there is a tag bit for each byte of the
tag space). Thus any instruction in the original program or
some hijacked code accessing the tag space results in infor-
mation flow tracking that needs to access the corresponding
tags and thereby triggers a protection fault.

3 LIFT Binary Optimizations

Section 2 described the baseline system of LIFT that
does not have any optimizations. Similar to previous
software-only information flow tracking systems [34, 14],
it incurs large runtime overhead (up to 47 times as shown
in our experiments). To minimize the overhead associated
with information flow tracking so that it is practical to use
during production runs against security attacks, LIFT em-
ploys three binary optimizations on top of the baseline sys-

tem: (1) Fast Path (FP) that eliminates unnecessary infor-
mation flow tracking, (2) Merged Check (MC) that merges
multiple tag checks into one, and (3) Fast Switch (FS) that
reduces the overhead incurred for switching between instru-
mented code and the original program.

All the above optimizations do not sacrifice the capabil-
ity of detecting security attacks because they are all conser-
vative: never eliminate any necessary tag propagations. In
addition, they are all performed at the binary level so they
work for software and libraries whose source code is un-
available. Even though it is possible to implement the third
optimization, FS, via static instrumentation, the FP and MC
optimizations benefit from the trace linking (also referred as
hot traces) mechanism (each trace combines multiple basic
blocks dynamically) available only in dynamic instrumenta-
tion frameworks. The following three subsections describe
the three optimizations, respectively.

100

80

60

40

20

0

D
is

tr
ib

ut
io

n
(%

)

98.05

0.64 0.67 0.65

S−>S S−>U U−>S U−>U

Figure 2. Distribution of four groups of tag propagation in
Apache

��� ���� (��+ ,�(-
"����.�����

The Fast-Path (FP) optimization is based on an observa-
tion that, for most server applications, majority of tag prop-
agations are zero-to-zero, i.e., from safe data sources to a
safe destination. To validate the above hypothesis, we col-
lect some statistics of a running Apache web server. In the
experiments, all data received from the network are tagged
as one (unsafe). At run time, LIFT collect statistics on
the distribution of different types of tag propagations: (1)
� � �: both the sources and the destination are safe; (2)
� � � : a safe data overwrites an unsafe data in the des-
tination; (3) � � �: the instruction propagates an unsafe
data to a memory/register location that stores safe data. and
(4) � � � : the instruction propagates an unsafe data to a
memory/register location that stores unsafe data.

As shown on Figure 2, majority of tag propagation be-
longs to the first type: � � �. This is because, for most
server applications, only data received from network are
tagged as unsafe initially, and most other data that do not
have data dependency on these data will remain safe, for
at least many execution periods (even though it may not be
always safe for the entire execution). Therefore, any com-

putation among these safe data corresponds to zero-to-zero
tag propagation.

The above observation provides a good dynamic opti-
mization opportunity to eliminate unnecessary tag propa-
gation. Specifically, before a code segment (either a basic
block or a hot trace [9, 29])), we can insert some checks to
see if all its live-in and live-out registers or memory data are
safe or not. If so, then there is no need to do any information
flow tracking inside this code segment. Checking the safety
of all live-ins at the very beginning of a code segment is
very intuitive as they are the source operands. We also need
to check the safety of all live-out locations at the very be-
ginning of a code segment because they may currently store
unsafe data, and may be overwritten by some safe data in-
side this code segment, in which case it is necessary to do
information flow tracking inside this code segment. There
is no need to check other data because they are either not
used in this code segment, or dead at the beginning or end
of this code segment.

The Fast-Path (FP) optimization is based on the above
idea. It inserts information checks before entering a code
segment. If all live-ins and live-outs are safe, it runs the
fast binary version, referred as the check version, without
any information flow tracking. Otherwise, it runs the slow
version, referred as the track version, which performs infor-
mation flow tracking. By dynamically switching between
fast and slow versions, LIFT can effectively avoid unneces-
sary information flow tracking for dynamic code segments
(dynamic instances of code segments) that do not involve
any unsafe data. Since it always performs tag checks first
to decide whether to run the track version, it does not affect
the capability of detecting security attacks.

LIFT can easily check the tags for all the registers used
in a program region. Essentially, it associates with each
code segment a bit vector, called ����������	
� , which
records the live-in and live-out registers whose tags need to
be checked. As demonstrated in Figure 3, at the beginning
of a code segment, a check is inserted by performing an
AND operation on the ����������	
� and �� ���� ,
which records the tags for all general data registers. If
the result is zero, it follows the check version, otherwise
it jumps to the track version.

Unfortunately, to know the memory live-ins and live-
outs at the beginning of a code segment is much harder be-
cause some addresses may not be known at the beginning of
the code segment. Therefore, as demonstrated on Figure 3,
to handle memory data tags, LIFT postpones the informa-
tion check of a memory location until its address is known,
usually right before this memory instruction. If its tag is
zero, it continues the check version; otherwise, it jumps to
the corresponding instruction in the track version.

The granularity of a code segment can be either a basic
block, or a hot trace which is formed dynamically at run-

REG_TAGS & BitVectorMask == 0?
(2 instructions)

Tag<[eax]>==0?
(14 instructions)

yes
. . .

Code segment entry

yes

 MOV edx, [eax]
 ADD edx, ecx
 . . .
 MOV [eax+4], edx

. . .

. . .

 Tag<edx> = Tag<[eax]>
 (21 instructions)

 MOV [eax+4], edx

 MOV edx, [eax]

 ADD edx, ecx

 Tag<edx> = Tag<ecx>|Tag<edx>
 (12 instructions)

 Tag<[eax+4]> = Tag<edx>
 (24 instructions)

Next code segment

check version track version

. . .

no

no

. . .

Figure 3. An example of the FP and MC optimizations.
A code segment here can be a basic block or a hot trace,
which is formed dynamically at runtime and can consist of
multiple basic blocks.

time and can consist of multiple basic blocks. At run time,
if multiple basic blocks are frequently accessed one after an-
other, the dynamic binary instrumentation engine will link
them together by replacing indirect or conditional jump into
a move and a direct jump. Then all these multiple basic
blocks form a hot trace which is then stored in the trace
cache. Obviously, it is better to perform the optimization
at the trace granularity than at the basic block granularity
because the former performs only one check for registers at
the beginning of a trace and also provide opportunity for the
next optimization, MC, to merge more memory tag checks
into one.

The FP can be dynamically adapted to different behav-
iors of different code segments. For some code segments,
the program may always execute the track version since
there are always some “unsafe” data involved. For exam-
ple, the functions that receive and directly process network
data alway access “unsafe” data. After dynamically observ-
ing such behavior for some code segments, LIFT will re-
translate these code segments to directly switch the program
control to the track version and thus avoid useless checks in
the check version.

��	 �����* +��� ,�-
"����.�����

Even after the FP optimization, many information checks
are redundant or semi-redundant, which provides an oppor-
tunity for our second optimization: Merged Check(MC) op-
timization. MC reduces the number of information checks
by combining multiple tag checks into one. Similar to the
FP optimization, it is more beneficial to perform the MC
optimization at the trace granularity.

To combine multiple checks into one, MC exploits both
temporal locality and spatial locality of memory references
commonly exhibited in many applications. Temporal lo-
cality says that a recently accessed data is likely to be ac-
cessed again in a near future, whereas spatial locality means

that after an access to a location, memory locations that are
nearby are also likely to be accessed again in near future.
To exploit the temporal locality characteristic, if a trace has
multiple memory references to the same location, MC com-
bines the tag checks and performs it only once right before
the first memory reference. Secondly, MC exploits the spa-
tial locality of memory references and merge multiple tag
checks of nearby memory locations into one check.

To perform the optimization, MC needs to find ahead of
time what memory accesses are to the same or nearby loca-
tions. It does this by performing memory reference analy-
sis and then clustering the memory references into different
groups. More specifically, MC first scans all the instructions
in a trace and constructs a data dependency graph for each
memory reference. The dependency graph for a memory
reference consists of the version numbers of the registers
and offsets for computing the address of this memory refer-
ence. It increments the version number of a register every
time it is defined by an instruction explicitly or implicitly.
For example, the stack operations may implicitly modify
the stack pointer register. From these dependency graphs,
MC can easily cluster the nearby/same memory references
into a group. For example, if multiple references depend on
the same version of the same register and the same offset,
they are to the same memory location. And if their offsets
differ by a small number, they are to nearby memory in-
structions. At the end, MC inserts one tag check before the
first instruction of each group.

��� ����)����+ ,�)-
"����.�����

In most general instrumentation frameworks such as
PIN [29] and StarDBT [9], when the program execution
switches between the original binary code and the instru-
mented code, i.e. the information flow tracking/checking
code, it requires saving and restoring the context, includ-
ing the condition register and the runtime stack registers
(switching to a separate stack). The reason for saving the
condition register before switching to the instrumented code
is straightforward: the instrumented code may change the
value of the condition register. The reason for using a sepa-
rate stack for the instrumented code is for avoiding mod-
ifying the original data in the stack when executing the
instrumented code. More explanation about this context
switch requirement and process can be found in previous
work [9, 29].

This context switch, even though much smaller than
OS-level context switches, can still introduce large runtime
overhead, especially the instrumentation is inserted at many
locations as in our case for information flow tracking. LIFT
minimizes the above switch overhead by cleverly selecting
cheaper instructions and performing liveness analysis.

First, the FS optimization of LIFT reduces the overhead
associated with each context switch. Similar to previous

work [34, 14], the baseline system of LIFT saves/restores
the context of the original code to/from the stack using
simple but expensive ��
��������� instructions in the x86
architecture. To make each context switch cheaper, LIFT
uses two cheaper instructions �	�� �
	�� to save/restore the
condition register to other free registers. By eliminating
��
��������� , it also avoids the need of a separate stack
for executing the information flow tracking/checking.

Second, with the FS optimization, LIFT performs con-
dition register liveness analysis to eliminate those unneces-
sary condition register save and restore operations. In the
x86 architecture, an ��	�
 register saves the program con-
ditional flags. Our liveness analysis tracks the define and
use of eflags bits for each instruction within a program re-
gion of the original code. In many cases, the eflags register
value is dead at the beginning of many program regions (e.g.
instruction traces). Therefore, it is unnecessary to save it be-
fore switching to the instrumented code, i.e. the information
tracking or checking code.

4 Evaluation Methodology
Test Platform Our experiments are conducted on real ma-
chines. The evaluated applications run on an EM64T ma-
chine with two 64-bit Xeon processors of 3.0GHz, 512KB
L2 cache, and 1GB memory, running the Windows XP 64-
bit version. For the network applications, we also use a
second machine to act as the other party of the evaluated
application. This machine has two Xeon processors of 2.2
GHz, 512KB L2 cache, and 512MB memory, runs Linux
2.6.9 and is connected to the EM64T machine via 100Mbps
Ethernet network. We implement LIFT on StarDBT [9], a
dynamic binary translator developed by Intel.

Apps Vers Exploits App Description

Apache 1.3.24 overwrite a function pointer a web server
Savant 3.1 overwrite a return address a web server
Putty 0.53 overwrite a return address a telnet program
ATK 2003 18 different types of exploits a buffer overflow

testbed

Table 2. Applications and security exploits (Apps means
applications, Vers means versions, ATK means attack
benchmarks.

Applications We evaluate the functionality and perfor-
mance of LIFT with a variety of applications, including
three real-world network applications (two servers and one
client) and two benchmark suites. The network applica-
tions include Apache Web server [1], Savant Web server [3]
and Putty [38]. The first benchmark suite consists of eigh-
teen different attack benchmarks developed by John Wi-
lander [40] and covers a variety of different security ex-
ploits. We port the attack benchmarks from Linux version
to Windows version. The second benchmark suite consists
of seven SPEC INT2000 applications.

Exploits Targets Detected #/Exploits #
(Exploits #) StackGuard Stack Shield ProPolice LibSafe and Libverify LIFT

Return Address (3) 3/3 3/3 2/3 1/3 3/3
Base Pointer (3) 2/3 3/3 2/3 1/3 3/3

Function Pointer (6) 0/6 0/6 3/6 1/6 6/6
Longjmp buffer (6) 0/6 0/6 3/6 1/6 6/6

Total (18) 5/18 6/18 10/18 4/18 18/18

Table 3. Results of LIFT for attack benchmarks

To evaluate LIFT’s capability in detecting general types
of security attacks, we use three network applications as
well as the eighteen attack benchmarks, as listed in Table 2.
To play the real-world attacks for the three network appli-
cations, we leverage the Metasploit [2] framework to send
the malicious inputs. The experiments cover a variety of
different exploits, including overwrite function pointer, re-
turn address, etc. For example, the exploit in Savant Web
server overwrites the return address in the stack. The attack
benchmarks cover eighteen types of exploiting methods, in-
cluding different overwrite techniques (direct or indirect),
different buffer locations (stack or heap/BSS/data), and dif-
ferent attack targets (return address, base pointer, function
pointer, or longjmp buffers).

For real-world network applications, we use Windows
Layered Service Provider [25] technique to intercept net-
work data and tag received data as “unsafe”. This tagger
works in the network layer and requires no source code of
target programs. Since the attack benchmarks simulate net-
work input, we have to modify the testbed to tag the simu-
lated network input data as “unsafe”.

To evaluate LIFT’s overhead and the effects of our opti-
mizations on latency and throughput, we use seven SPEC
INT2000 benchmark and the Apache Web server. For
Apache, we label all data received from network as “un-
safe” and measure the throughput and response time. For
SPEC benchmarks, we measure their performance with two
input data tagging schemes: one tags all the input data from
disk files as “unsafe” for simulating network data; the other
tags all the input data from disk files as “safe” for measuring
performance upper bounds.

5 Experimental Results

#��)������� $����� ���������

Table 3 shows the effectiveness of LIFT in detect-
ing a wide range of security attacks that corrupt control
data. We compare LIFT’s results with those reported by
prior work [40] that evaluated five existing tools, includ-
ing StackGuard [16], Stack Shield [4], ProPolice [20],
and LibSafe+LibVerify [7, 8], using the same eighteen at-
tack benchmarks. We classify the eighteen types of at-
tacks into four groups based on their exploiting targets, in-
cluding return address, base pointer, function pointer, and

Configs Throughput Response Time
RT OD RT OD

(MBps) (%) (millisec) (%)
Native 8.06 0 1.1 0
StarDBT 7.79 3.4 1.5 36.4
LIFT-basic 6.40 20.6 5.1 363.6
LIFT-FS 6.97 13.6 3.5 220.0
LIFT-FS-FP 7.49 7.1 2.3 109.1
LIFT 7.56 6.2 2.1 90.9

Table 4. The throughput and response time of Apache
running on native machine and with different optimiza-
tion techniques applied (RT means results, OD means over-
head). “Native” means that the Apache runs directly on the
machine, “StarDBT” refers to our base line binary trans-
lation framework without any LIFT-related instrumenta-
tion. “LIFT-basic” is the basic LIFT system without any
optimizations. “LIFT-FS” is LIFT-basic with the Fast-
Switch optimization. “LIFT-FS-FP” is LIFT-basic with
Fast-Switch and Fast-Path optimizations, and “LIFT” is
LIFT-basic with all three optimizations. The requested file
sizes are uniformly distributed among 4KB, 8KB, 16KB, to
512KB.

longjmp buffer. Those targets can be either in the stack or
heap/BBS/data regions.

Overall, LIFT detects all the eighteen exploits of various
types because it is oblivious to the specific exploit method
such as smashing a return address, overwriting a function
pointer, etc. All these exploit methods need to switch the
program control to some “unsafe” data in order to hijack the
program, so they are all detected by LIFT. In contrast, the
other five tools shown in Table 3 can only detect some of the
exploits since they are designed for certain types of exploits
and cannot deal with other unknown exploits. For example,
StackGuard and Stack Shield can only detect those attacks
that try to smash a return address and a base pointer.

Our evaluation with three real-world network applica-
tions, including two popular Web servers (Apache and Sa-
vant) and one network client (Putty), shows that LIFT can
also detect various types of attacks in real-world scenario.
For example, the vulnerabilities in Savant Web server and
Putty are exploited to overwrite the return address and
switch the program control to some “unsafe” code. LIFT
successfully reports these two attacks. For Apache, a long
request overwrites the whole stack and triggers an exception
when attempting to write beyond the stack bottom. The de-
fault signal handler in a system library fetches a function

��
��
��

��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

���� ���� ��
��
��
��
��

��
��
��
��
��

���
���
���

���
���
���

���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���

���
���
���

������
���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���

���� ��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
�� ������

���
���
���
���
���

���
���
���
���
���

���
���
���
���

�
�
�
�

�
�
�
�

��
��
��
��

50

40

30

20

10

0

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

gzip vpr gcc bzip2 crafty twolf mcf average

LIFTLIFT−FS−FPLIFT−FSLIFT−basicStarDBTNative

(a) all the input data is tagged safe

��
��
��

��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��
��

���� ��
��
��
��
��

��
��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���

���
���
���
���

������
���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���

���� ��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

������
���
���
���
���
���

���
���
���
���
���

���
���
���

���
���
���

�
�
�
�

�
�
�
�

��
��
��
��

50

40

30

20

10

0

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

gzip vpr gcc bzip2 crafty twolf mcf average

LIFTLIFT−FS−FPLIFT−FSLIFT−basicStarDBTNative

(b) all the input data is tagged unsafe

Figure 4. Comparison of normalized execution time. “Native”, “StarDBT”, “LIFT-basic”, “LIFT-FS”, “LIFT-FS-FP”, and “LIFT”
have the same meaning as in Table 4. All the input data from disk files are tagged safe in (a) and unsafe in (b).

pointer from the corrupted stack and switch the program
control via that “unsafe” function pointer. In our experi-
ments, we observe LIFT marking all the data in the cor-
rupted stack as “unsafe” and theoretically it can catch this
attack once the program control is switched via the “unsafe”
function pointer. However, LIFT does not report this attack
since the current version of StarDBT does not provide ac-
curate exception handling. We are improving StarDBT on
this issue.

LIFT raises no false alarms in all our experiments.
We run LIFT normally with network applications such as
Apache Web server and Putty and other small utilities such
as Notepad without any false alarms reported. In addition,
we tag all the input data from disk files for the tested SPEC-
INT programs as “unsafe”, LIFT still runs through all the
tests without raising any false alarms.

#�	 (���������� /������

5.2.1 Overhead with Apache

Table 4 shows that LIFT incurs low runtime overhead for
Apache. With all three optimizations, LIFT incurs only
6.2% for the throughput of Apache, close to 3.4% incurred
by StarDBT. This is because LIFT aggressively applies dy-
namic optimization to eliminate unnecessary information
flow tracking and provide a fast switch between the in-
strumented code and the original code. For example, the
Fast Switch (FS) optimization reduces the overhead for the

throughput from 20.6% to 13.6% and the overhead for the
response time from 363.6% to 220%. The Fast Path (FP)
optimization further improves the performance, bringing
down the overhead for the throughput to 7.1% and the over-
head for the response time to 109.1%.

The overhead of LIFT comes from several sources. The
first is the StarDBT binary translation framework which in-
curs 3.4% overhead. The second source comes from the dy-
namic translating, instrumenting, optimizing and maintain-
ing the binary code. The third source, the most significant
one, is the overhead for executing the instrumented code to
perform tag checks, tag propagation, and attack detection.

5.2.2 Overhead with SPEC INT Benchmarks

Figure 4 shows that LIFT incurs low runtime overhead for
the seven SPEC programs. Benefited from the three opti-
mizations, LIFT incurs 1.7-7.9 times overhead and an aver-
age of 3.6 times overhead when all the input data from disk
files are tagged “unsafe”, much smaller than the large over-
head (37 times slowdown) reported for a previous binary
instrumentation-based information flow tracking tool [34].
This is because LIFT aggressively applies dynamic opti-
mization to eliminate unnecessary information tracking and
provide a fast switch between instrumented code and the
original code.

Figure 4 also shows that the three optimizations effec-
tively reduce the overhead incurred in the basic LIFT sys-

1

0.8

0.6

0.4

0.2

0

C
he

ck
 V

er
si

on
 E

xe
c

/ T

ot
al

 E
xe

c
#

Apache gzip vpr gcc bzip2 crafty twolf mcf

Figure 5. The check version execution percentage for
SPEC. The execution number of the check version and the
track version for basic blocks in Apache and SPEC. For
SPEC, all the input data are tagged “unsafe”. The total ex-
ecution number is the sum of the execution number of both
the check version and the track version.

tem. For example, without any optimization, LIFT-basic
slows down the program execution by 12.0-46.5 times and
on average 26.6 times, which are effectively reduced by the
three dynamic optimizations to an average of 3.6 times over-
head, a factor of 7.4 times reduction in overhead!

With input data tagged “safe” or “unsafe”, LIFT-basic
shows no difference in terms of runtime overhead since the
tag is propagated regardless it is “safe” or not. In contrast,
LIFT, with all optimizations, does incur different overheads.
For example, with all the input data tagged “safe” for vpr,
LIFT incurs only 0.6 times overhead, and with all the in-
put data tagged “unsafe” for vpr, it incurs 1.7 times over-
head. This is because, if all the input data is tagged safe,
LIFT always run the check version, which is much faster
than the track version. Note here, even with all input data
tagged “unsafe”, LIFT does not necessarily always runs the
track version since there still exists much computation that
does not involve any “unsafe” data (because usually infor-
mation flow tracking systems do not track control depen-
dencies [14, 34, 36, 39]).

5.2.3 Effects of Optimizations

Figure 4 shows that the three optimizations can effectively
reduce the runtime overhead caused by LIFT-basic. Now
let us examine the effect of each individual optimization.
First, we apply the FS optimization to LIFT-basic since
LIFT-basic has very frequent and heavy context switches.
With all the input data tagged “unsafe”, the FS optimiza-
tion can reduce the overhead significantly by a factor of 4.4
times. This is because it reduces both the cost of each con-
text switching by using cheaper instructions and the number
of context switches by using eflags liveness analysis.

The FP optimization reduces the overhead incurred by
LIFT-FS for all applications to different extent. For exam-
ple, with all the input data tagged “unsafe”, OPT-FP fur-

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

�
�
�
�

1

0.8

0.6

0.4

0.2

0

N
or

m
al

iz
ed

 M
em

or
y

C
he

ck
 E

xe
c

#

Apache gzip vpr gcc bzip2 crafty twolf mcf

w/−MCw/o−MC

Figure 6. The execution number of memory checks for
SPEC. All the input data are tagged as “unsafe”. “w/o-MC”
means run LIFT-FS-FP without the MC optimization ap-
plied. “w/-MC” refers to LIFT with all three optimizations
including MC.

ther reduces the overhead of LIFT-FS for crafty from 7.7
times to 3.1 times, while reducing the overhead of LIFT-
FS for mcf from 2.9 times to 2.4 times. This is because
the amount of overhead reduction depends on the percent-
age of check versions executed for each applications. As
shown in Figure 5, with all input data tagged “unsafe”, sig-
nificant amount (98.9%) of the execution for crafty is in the
check version, resulting in the large reduction of the over-
head incurred by LIFT-FS, while mcf only has 7.2% of the
execution in the check version.

MC further reduces the overhead of LIFT after the first
two optimizations, FS and FP, for all cases. For example,
the overhead of Apache’s throughput decreased from 7.1%
to 6.2% after applying MC. For SPEC applications the over-
head reduction varies. For example, MC reduce the over-
head for crafty from 3.1 times to 2.4 times, while it has
no visible effects on the overhead for twolf (reducing from
7.97 times to 7.96 times). This is because the overhead re-
duction depends on how many executed memory checks are
reduced and how many percentage the program executes the
check version since only the check version contains mem-
ory checks. Figure 6 shows the normalized executed mem-
ory checks number with and without applying MC after for
all the input data tagged as “unsafe”. We can see that MC
reduced 46% of executed memory checks for crafty, while
it only reduced 4% of executed memory checks for twolf.

6 Related Work

Our work is related to many previous studies. Due to
space limitation, this section only briefly describes closely
related work that is not discussed in previous sections.

Information Flow Tracking. Information flow tracking
systems can be implemented in three different ways, in-
cluding language-based approaches [18, 19, 24, 31, 32],
software-only approaches either in binary level [11, 14, 34]
or in source level [42], or hardware extensions [17, 36, 39].

As discussed in Section 1, each approach suffers from its
own limitations. In contrast, our LIFT is a low-overhead,
comprehensive information flow tracking system that does
not require any hardware extension and works for software
and libraries whose source code are unavailable.

Dynamic Binary Instrumentation and Optimization
There are many dynamic binary instrumentation tools, such
as Dynamo [6], DynamoRIO [37], PIN [29], Valgrind [33],
etc. They use similar techniques as StarDBT. They can be
used for profiling, improving reliability [33], and software
fault detection [35].

As for optimization, LIFT borrows some ideas from
prior work. Computation reuse [28] and memorization [13,
12] save the computation results and reuse them later when
the same computation is performed again. Unlike them,
LIFT dynamically detects and eliminates unnecessary tag
propagations. Some work such as DynamoRIO [37] and
PIN [29] also found that save/restore eflags operations are
very expensive. They, respectively, propose to leverage al-
ternative cheaper instructions [10] and eflags liveness anal-
ysis [29] to reduce overheads. LIFT combines these two
techniques in OPT-FS. Additionally, the other two opti-
mizations, FP and MC, make FS more effective because the
faster check version provides more opportunities to remove
unnecessary save/restore eflags operations than the original
track version.

Security Attack Detection Methods Some software-
based dynamic methods detect certain types of vulnerabil-
ities at runtime by statically or dynamically instrumenting
source code [22, 26] or binary code [23, 33]. They incur
large runtime overhead due to checking of each memory
access. Therefore they are often used for in-house testing
instead of production runs. Some software-based dynamic
methods detect certain types of exploits at runtime via pro-
gram transformation [15, 16] or library changes [7]. Unlike
LIFT, these dynamic methods are limited to specific types
of software vulnerabilities or exploits.

Several security attack detection or prevention methods,
such as program randomization [41], program shepherd-
ing [27], and statistics-based intrusion detection [21], can
also be used for detecting security attacks. For example,
randomization shuffles program regions in memory during
program load time and makes control flow jump to some
bizarre point instead of the expected location and thereby
causes program crash instead of being compromised. Statis-
tical intrusion detection methods capture various invariants
such as system call invariants and mark violations of those
invariants as security attacks. Although these techniques
are not limited by some specific types of software vulner-
abilities, they provide little useful information regarding
the attacks, for example, what are the attack input signa-
tures, what are the attack steps, etc. Such information is

very useful for effectively building a preventive network de-
fense [14, 34].

7 Conclusion and Future Work

In summary, LIFT is a low-overhead, cheap (no hard-
ware extension), comprehensive (works with libraries), and
practical information flow tracking system for detecting a
wide range of security attacks that corrupt control data (e.g.
return address, function pointer, etc.). It minimizes runtime
overhead by exploiting dynamic binary instrumentation and
optimization including the Fast-Path, Merged-Check and
Fast-Switch optimizations.

Our real-system experiments with three real-world net-
work applications, including two Web servers and one
client application, and eighteen attack benchmarks show
that LIFT can effectively detect all tested 21 security at-
tacks of various types, much more than five of the previ-
ous tools that can only detect at most ten attacks as shown
in prior study [40]. More importantly, compared to other
software-only binary-based information flow tracking sys-
tem that slows down program execution by more than 40
times [34], LIFT incurs significantly less overhead, only
6.2% for server applications, and 3.6 times on average for
seven SPEC2000 applications. The three optimizations also
effectively reduce the overhead by a factor of 5-12 times.

We plan to extend and improve LIFT in several ways
in our future work. First, we are in the process of further
reducing LIFT’s overhead by performing more aggressive
optimizations such as learning from dynamic execution his-
tory to build a hybrid version that combines both informa-
tion checks for some instructions and information tracking
for others. Second, even though LIFT targets for detecting
system-compromising security attacks, it can easily extend
to detect information leaking in a way similar to previous in-
formation tracking systems such as RIFLE [39]. Third, sim-
ilar to most previous information tracking systems, our cur-
rent prototype does not support multi-threaded programs.
Extending LIFT for multi-threaded programs is a challeng-
ing task and remains as our immediate future work. Finally,
similar to previous work, LIFT does not track implicit in-
formation flow via control dependency since it is rarely ex-
ploited by security attacks.

8 Acknowledgments

The authors would like to thank the anonymous review-
ers for their invaluable feedback. We appreciate useful dis-
cussion with the OPERA group members. This research
is supported by Intel gift grant, IBM Faculty Award, NSF
CNS-0347854 (career award), NSF CCR-0305854 grant
and NSF CCR-0325603 grant.

References

[1] Apache http server project. http://httpd.apache.org, 2006.
[2] Metasploit project. http://www.metasploit.com/, May 2006.
[3] Savant web server. http://savant.sourceforge.net/, May 2006.
[4] Stack shield – a “stack smashing” technique protection tool

for Linux. http://www.angelfire.com/sk/stackshield/, 2006.
[5] US-CERT. http://www.us-cert.gov/, 2006.
[6] V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: A trans-

parent runtime optimization system. In PLDI, Jun 2000.
[7] A. Baratloo, N. Singh, and T. Tsai. Transparent run-time

defense against stack smashing attacks. In Proceedings of
the USENIX Annual Technical Conference, 2000.

[8] A. Baratloo, T. Tsai, and N. Singh. Libsafe: Pro-
tecting critical elements of stacks. White Paper,
http://pubs.research.avayalabs.com/pdfs/ALR-2001-
019-whpaper.pdf, 1999.

[9] E. Borin, C. Wang, Y. Wu, and G. Araujo. Software-based
transparent and comprehensive control-flow error detection.
In CGO, 2006.

[10] D. Bruening. Efficient, Transparent, and Comprehensive
Runtime Code Manipulation. PhD thesis, EECS, MIT, 2004.

[11] J. Chow, B. Pfaff, T. Garfinkel, K. Christopher, and
M. Rosenblum. Understanding data lifetime via whole sys-
tem simulation. In USENIX Security, 2004.

[12] D. Citron and D. Feitelson. Hardware memoization of math-
ematical and trigonometric functions. Technical report, He-
brew University of Jerusalem, Mar 2000.

[13] D. A. Connors and W. mei W. Hwu. Compiler-directed dy-
namic computation reuse: Rationale and initial results. In
Micro-32, Nov 1999.

[14] M. Costa, J. Crowcroft, M. Castro, A. Rowstron, L. Zhou,
L. Zhang, and P. Barham. Vigilante: End-to-end contain-
ment of internet worms. In SOSP, 2005.

[15] C. Cowan, S. Beattie, J. Johansen, and P. Wagle. Point-
Guard: Protecting pointers from buffer overflow vulnerabil-
ities. In USENIX Security, Aug 2003.

[16] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beat-
tie, A. Grier, P. Wagle, Q. Zhang, and H. Hinton. Stack-
Guard: Automatic adaptive detection and prevention of
buffer-overflow attacks. In USENIX Security, Jan 1998.

[17] J. R. Crandall and F. T. Chong. Minos: Control data at-
tack prevention orthogonal to memory model. In MICRO-
37, Dec 2004.

[18] D. E. Denning. A lattice model of secure information flow.
Communications of the ACM, 19(5):236–243, 1976.

[19] D. E. Denning and P. J. Denning. Certification of programs
for secure information flow. Communications of the ACM,
20(7):504–513, 1977.

[20] H. Etoh. GCC extension for protecting
applications from stack-smashing attacks.
http://www.trl.ibm.com/projects/security/ssp/, 2006.

[21] J. Farshchi. Statistical-based intrusion detection.
http://www.securityfocus.com/infocus/1686, Apr 2003.

[22] D. Grossman, G. Morrisett, T. Jim, M. Hicks, Y. Wang, and
J. Cheney. Region-based memory management in Cyclone.
In PLDI, Jun 2002.

[23] R. Hastings and B. Joyce. Purify: Fast detection of mem-
ory leaks and access errors. In Proceedings of the USENIX
Winter 1992 Technical Conference, Dec 1992.

[24] N. Heintze and J. G. Riecke. The SLam calculus: Program-
ming with secrecy and integrity. In POPL, 1998.

[25] W. Hua, J. Ohlund, and B. Butterklee. Unraveling the mys-
teries of writing a winsock 2 layered service provider. In
Microsoft Systems Journal, May 1999.

[26] R. W. M. Jones and P. H. J. Kelly. Backwards-compatible
bounds checking for arrays and pointers in C programs. In
AADEBUG, May 1997.

[27] V. Kiriansky, D. Bruening, and S. P. Amarasinghe. Secure
execution via program shepherding. In USENIX Security,
pages 191–206, 2002.

[28] B. Li, G. Venkatesh, B. Calder, and R. Gupta. Exploiting a
computation reuse cache to reduce energy in network pro-
cessors. In 2005 International Conference on High Perfor-
mance Embedded Architectures&Compilers, Nov 2005.

[29] C.-K. Luk, R. S. Cohn, R. Muth, H. Patil, A. Klauser, P. G.
Lowney, S. Wallace, V. J. Reddi, and K. M. Hazelwood. Pin:
Building customized program analysis tools with dynamic
instrumentation. In PLDI, Jun 2005.

[30] D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford,
and N. Weaver. Inside the slammer worm. IEEE Security
and Privacy, 1(4):33–39, 2003.

[31] A. C. Myers. JFLow: Practical mostly-static information
flow control. In POPL, 1999.

[32] A. C. Myers and B. Liskov. Protecting privacy using the
decentralized label model. ACM Transaction on Software
Engineering and Methodology, (4):410–442, 2000.

[33] N. Nethercote and J. Seward. Valgrind: A program super-
vision framework. Electroic Notes in Theoretical Computer
Science, 89(2), 2003.

[34] J. Newsome and D. Song. Dynamic taint analysis for au-
tomatic detection, analysis, and signature generation of ex-
ploits on commodity software. In NDSS, Feb 2005.

[35] G. A. Reis, D. August, R. Cohn, and S. S. Mukherjee.
Software fault detection using dynamic instrumentation. In
Proceedings of the Fourth Annual Boston Area Architecture
Workshop, Feb 2006.

[36] G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas. Secure
program execution via dynamic information flow tracking.
In ASPLOS-XI, Oct 2004.

[37] G. T. Sullivan, D. L. Bruening, I. Baron, T. Garnett, and
S. Amarasinghe. Dynamic native optimization of inter-
preters. In IVME ’03: Proceedings of the 2003 workshop
on Interpreters, virtual machines and emulators, 2003.

[38] S. Tatham. PuTTY: A free Telnet/SSH client.
http://www.chiark.greenend.org.uk/˜sgtatham/putty/,
May 2006.

[39] N. Vachharajani, M. J. Bridges, J. Chang, R. Rangan, G. Ot-
toni, J. A. Blome, G. A. Reis, M. Vachharajani, and D. Au-
gust. RIFLE:an architectural framework for user-centric
information-flow security. In MICRO-37, Dec 2004.

[40] J. Wilander and M. Kamkar. A comparison of publicly avail-
able tools for dynamic buffer overflow prevention. In NDSS,
Feb 2003.

[41] J. Xu, Z. Kalbarczyk, and R. K. Iyer. Transparent runtime
randomization for security. 22nd International Symposium
on Reliable Distributed Systems (SRDS’03), 00:260, 2003.

[42] W. Xu, S. Bhatkar, and R. Sekar. Taint-enhanced policy en-
forcement: A practical approach to defeat a wide range of
attacks. In USENIX Security, Aug 2006.

