
LIFT: Multi-Label Learning with Label-Specific Features

Min-Ling Zhang1,2∗

1School of Computer Science and Engineering, Southeast University, Nanjing 210096, China
2National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210093, China

zhangml@seu.edu.cn

Abstract

Multi-label learning deals with the problem where
each training example is represented by a single in-
stance while associated with a set of class labels.
For an unseen example, existing approaches choose
to determine the membership of each possible class
label to it based on identical feature set, i.e. the
very instance representation of the unseen exam-
ple is employed in the discrimination processes of
all labels. However, this commonly-used strat-
egy might be suboptimal as different class labels
usually carry specific characteristics of their own,
and it could be beneficial to exploit different fea-
ture sets for the discrimination of different labels.
Based on the above reflection, we propose a new
strategy to multi-label learning by leveraging label-
specific features, where a simple yet effective algo-
rithm named LIFT is presented. Briefly, LIFT con-
structs features specific to each label by conducting
clustering analysis on its positive and negative in-
stances, and then performs training and testing by
querying the clustering results. Extensive exper-
iments across sixteen diversified data sets clearly
validate the superiority of LIFT against other well-
established multi-label learning algorithms.

1 Introduction

Multi-label learning deals with objects having multiple la-
bels simultaneously, which widely exist in real-world appli-
cations [Boutell et al., 2004; Elisseeff and Weston, 2002;
Schapire and Singer, 2000]. Formally, let X = R

d be the
d-dimensional input space and Y = {l1, l2, · · · , lq} be the
finite set of q possible labels. Then, the task of multi-label
learning (or multi-label classification) is to learn a function
h : X → 2Y which maps each instance x ∈ X into a set of
proper labels h(x) ⊆ Y .

During the past decade, considerable number of ap-
proaches have been proposed to learn from multi-label data

∗This work was supported by the National Science Foundation
of China (60805022), Ph.D. Programs Foundation of Ministry of
Education of China for Young Faculties (200802941009), and the
Startup Foundation of Southeast University.

[Tsoumakas et al., 2009]. The common strategy adopted by
existing approaches is that identical feature representation of
the instance, i.e. x, is utilized to discriminate all the class
labels in Y . This amounts to induce a family of q functions
{f1, f2, · · · , fq}, where fk : X → R determines the member-
ship of lk to each instance such that h(x) = {lk | fk(x) >
0, 1 ≤ k ≤ q}. Here all functions in the family operate on the
same feature set x. Although this strategy has gained much
success in algorithm design, it might be too straightforward
and away from being optimal for multi-label learning.

For example, in automatic image annotation, suppose sky
and desert are two possible labels in the label space. Intu-
itively, color-based features would be preferred in discrimi-
nating sky and non-sky images, texture-based features would
be preferred in discriminating desert and non-desert images,
while both color- and texture-based features might be useful
in discriminating other labels in the label space. For another
example, in text categorization, features related to terms such
as government, reform and president might be important in
discriminating political and non-political documents, while
features related to terms such as stadium, matches and cham-
pions might be important in discriminating sport and non-
sport documents.

The above observations reflect the fact that, in multi-label
learning different class labels in the label space may carry
specific characteristics of their own. Therefore, we hypothe-
size that if label-specific features, i.e. the most pertinent and
discriminative features for each class label, could be used in
the learning process, a more effective solution to the problem
of multi-label learning can be expected.

To justify this hypothesis, a new algorithm named LIFT,
i.e. multi-label learning with Label specIfic FeaTures , is
proposed in this paper. LIFT tackles multi-label learning
problem with two simple steps. Firstly, for each class label
lk ∈ Y , clustering analysis is conducted on its positive in-
stances as well as negative instances in the training set, and
then features specific to lk are constructed by querying the
clustering results. Secondly, a family of q classifiers are in-
duced where each of them is trained with the generated label-
specific features other than the original features under X . To
thoroughly evaluate the effectiveness of LIFT, extensive ex-
periments over sixteen regular-scale and large-scale data sets
clearly verify that our approach compares favorably against
other state-of-the-art multi-label learning algorithms.

1609

Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence

The rest of this paper is organized as follows. Section 2
briefly discusses existing approaches to multi-label learning.
Section 3 presents the details of the proposed approach. Sec-
tion 4 reports the results of comparative studies. Finally, Sec-
tion 5 concludes and indicates several issues for future work.

2 Related Work

Generally, the task of multi-label learning is rather challeng-
ing due to the exponential number of possible label sets (i.e.
2q) to be predicted for an unseen example. To cope with this
issue, existing approaches focus on exploiting the correla-
tions between labels to facilitate the learning process, which
can be roughly grouped into three categories based on the or-
der of label correlations [Zhang and Zhang, 2010], namely
first-order approaches, second-order approaches and high-
order approaches.

First-order approaches tackle multi-label learning prob-
lem by decomposing it into a number of independent bi-
nary classification problems. Specifically, a family of q
functions {f1, f2, · · · , fq} are learned in a label-by-label
style, one for each possible class label [Boutell et al., 2004;
Zhang and Zhou, 2007]. First-order approaches are concep-
tually simple, efficient and easy to implement, while may be
less effective due to their ignorance of label correlations.

Second-order approaches tackle multi-label learning prob-
lem by considering pairwise relations between labels. Specif-
ically, a family of q functions {f1, f2, · · · , fq} are learned
by exploring the interactions between a pair of functions fk
and fk′ such as their co-occurrence patterns [Ghamrawi and
McCallum, 2005; Zhu et al., 2005] or their ranking con-
straints [Elisseeff and Weston, 2002; Zhang and Zhou, 2006;
Fürnkranz et al., 2008]. Second-order approaches address la-
bel correlations to some extent and are relatively effective,
while may suffer from the fact that label correlations could
go beyond second-order under real-world scenarios.

High-order approaches tackle multi-label learning problem
by considering high-order relations between labels. Specif-
ically, a family of q functions {f1, f2, · · · , fq} are learned
by exploring the influences among a subset of functions
{fk1

, fk2
, · · · , fkq′

} (q′ ≤ q) [Tsoumakas and Vlahavas,

2007; Read et al., 2009; Zhang and Zhang, 2010] or among
all the functions [Yan et al., 2007; Ji et al., 2008; Cheng
and Hüllermeier, 2009]. High-order approaches could ad-
dress more realistic label correlations, while may exhibit high
model complexities.

A commonness of these existing approaches is that they
deal with multi-label learning problem mainly from the per-
spective of output space, i.e. manipulating correlations be-
tween labels, and identical features inherited from the origi-
nal input space are directly used in discriminating all the la-
bels. In the next section, we will present the LIFT approach
which works mainly from the perspective of input space, i.e.
manipulating label-specific features.

3 The LIFT Approach

Let D = {(xi, Yi) | 1 ≤ i ≤ m} be the training set
with m multi-label training examples, where xi ∈ X is a
d-dimensional feature vector and Yi ⊆ Y is the set of labels

Table 1: Pseudo-code of LIFT.

Y =LIFT(D, r, L, u)

Inputs:

D : the multi-label training set {(xi, Yi) | 1 ≤ i ≤ m} (xi ∈ X ,

Yi ⊆ Y,X = R
d,Y = {l1, l2, · · · , lq})

r : the ratio parameter as used in Eq.(2)

L : the binary learner for classifier induction

u : the unseen example (u ∈ X)

Outputs:

Y : the predicted label set for u (Y ⊆ Y)

Process:

1. for k = 1 to q do

2. Form Pk andNk based on D according to Eq.(1);

3. Perform k-means clustering on Pk and Nk, each with mk

clusters as defined in Eq.(2);

4. Create the mapping φk for lk according to Eq.(3);

5. endfor

6. for k = 1 to q do

7. Form D∗

k accroding to Eq.(4);

8. Induce f∗

k by invoking L on D∗

k, i.e. f∗

k ← L(D∗

k);
9. endfor

10. Y = {lk | f
∗

k (φk(u)) > 0, 1 ≤ k ≤ q}.

associated with xi. Then, LIFT learns from D following two
elemental steps, i.e. label-specific features construction and
classification models induction.

In the first step, LIFT aims to generate distinguishing fea-
tures which capture the specific characteristics of each label
to facilitate its discrimination process. To achieve this, LIFT

employs clustering techniques which have been widely used
as stand-alone tools to gain insights into the properties of data
[Jain et al., 1999]. Specifically, with respect to each class la-
bel lk ∈ Y , the set of positive training instances Pk as well as
the set of negative training instances Nk are denoted as:

Pk = {xi | (xi, Yi) ∈ D, lk ∈ Yi}

Nk = {xi | (xi, Yi) ∈ D, lk /∈ Yi} (1)

In other words, Pk and Nk consist of the training instances in
D with and without label lk respectively.

The popular k-means algorithm [Jain et al., 1999] is
adopted to partition Pk into m+

k disjoint clusters whose cen-

ters are denoted as {pk
1 ,p

k
2 , · · · ,p

k

m
+

k

}. Similarly, Nk is also

partitioned into m−
k disjoint clusters whose centers are de-

noted as {nk
1 ,n

k
2 , · · · ,n

k

m
−

k

}. Here, we choose to set equiva-

lent number of clusters for Pk and Nk, i.e. m+
k = m−

k = mk.
In this way, clustering information gained from positive in-
stances as well as negative instances are treated with equal
importance. Specifically, the number of clusters retained for
both positive and negative instances is set to be:

mk = r ·min (|Pk|, |Nk|) (2)

Here, | · | represents the set cardinality and r ∈ [0, 1] is the ra-
tio parameter controlling the number of clusters thus retained.

Intuitively, the retained cluster centers characterize the un-
derlying structure of input space, and can be used as the bases
for label-specific features construction with regard to lk. In

1610

Table 2: Characteristics of the experimental data sets.

Data set |S| dim(S) L(S) F (S) LCard(S) LDen(S) DL(S) PDL(S) Domain URL�

emotions 593 72 6 numeric 1.869 0.311 27 0.046 music URL 1
genbase 662 1185 27 nominal 1.252 0.046 32 0.048 biology URL 1
medical 978 1449 45 nominal 1.245 0.028 94 0.096 text URL 2
enron 1702 1001 53 nominal 3.378 0.064 753 0.442 text URL 2
image 2000 294 5 numeric 1.236 0.247 20 0.010 images URL 3
scene 2407 294 6 numeric 1.074 0.179 15 0.006 images URL 1
yeast 2417 103 14 numeric 4.237 0.303 198 0.082 biology URL 3
slashdot 3782 1079 22 nominal 1.181 0.054 156 0.041 text URL 2

corel5k 5000 499 374 nominal 3.522 0.009 3175 0.635 images URL 1
rcv1 (subset 1) 6000 944 101 numeric 2.880 0.029 1028 0.171 text URL 1
rcv1 (subset 5) 6000 944 101 numeric 2.642 0.026 946 0.158 text URL 1
bibtex 7395 1836 159 nominal 2.402 0.015 2856 0.386 text URL 1
corel16k (sample 1) 13766 500 153 nominal 2.859 0.019 4803 0.349 images URL 1
corel16k (sample 2) 13761 500 164 nominal 2.882 0.018 4868 0.354 images URL 1
corel16k (sample 3) 13760 500 154 nominal 2.829 0.018 4812 0.350 images URL 1
ohsumed 13929 1002 23 nominal 1.663 0.072 1147 0.082 text URL 2

� URL 1: http://mulan.sourceforge.net/datasets.html

URL 2: http://meka.sourceforge.net/#datasets

URL 3: http://cse.seu.edu.cn/people/zhangml/Resources.htm#data

detail, LIFT creates a mapping φk : X → Zk from the orig-
inal d-dimensional space X to the 2mk-dimensional label-
specific feature space Zk as follows:1

φk(x) =[
d(x,pk

1), · · · ,d(x,p
k
mk

),d(x,nk
1), · · · ,d(x,n

k
mk

)
]

(3)

Here, d(·, ·) returns the distance between two instances and
is set to the Euclidean metric in this paper.

Note that we do not claim that the above process is the
best possible practice for label-specific features construction.
Actually, the mapping φk can be implemented in alternative
ways, such as setting different number of clusters for positive
and negative instances (i.e. m+

k �= m−
k), utilizing more so-

phisticated distance for d(·, ·) other than the Euclidean met-
ric, or even employing kNN rule [Wang et al., 2010] to iden-
tify the bases for feature mapping other than invoking the k-
means procedure, etc. Nevertheless, LIFT’s simple construc-
tion process of label-specific features suffices to yield com-
petitive performance as shown in Section 4.

In the second step, LIFT aims to induce a family of q clas-
sification models {f∗

1 , f
∗
2 , · · · , f

∗
q } with the generated label-

specific features. Specifically, for each class label lk ∈ Y ,
a binary training set D∗

k with m examples is created from D
and φk as follows:

D∗
k = {(φk(xi), Yi(k)) | (xi, Yi) ∈ D} where

Yi(k) = +1 if lk ∈ Yi; Otherwise, Yi(k) = −1 (4)

Based on D∗
k, any binary learner can be applied to induce

a classification model f∗
k : Zk → R for lk. Given an un-

seen example u ∈ X , its associated label set is predicted as

1Note that in multi-label learning, the distribution of positive
instances and negative instances for each label is usually imbal-
anced with |Pk| � |Nk|. Thus, the dimensionality of Zk, i.e.
2·r ·min(|Pk|, |Nk|), would be of reasonable size in most cases. As
an intance, for the ohsumed data set with 13929 examples and 1002
features (Table 2), the dimensionality of the label-specific feature
space is only around 100± 93 across all labels with r = 0.1.

Y = {lk | f∗
k (φk(u)) > 0, 1 ≤ k ≤ q}. In principle, the

classifiers induction process of LIFT is similar to those of the
first-order approaches discussed in Section 2. The major dif-
ference lies that LIFT induces the classifier on each label with
label-specific features instead of the original ones.

In summary, Table 1 presents the complete description
of LIFT. Based on the multi-label training examples, LIFT

firstly constructs label-specific features for each possible
class label (steps 1 to 5); After that, a family of q binary clas-
sification models are induced based on the constructed fea-
tures in a round-robin style (steps 6 to 9); Finally, the unseen
example is fed to the learned system for prediction (step 10).

Note that the idea of exploiting label-specific features
should be regarded a meta-strategy to multi-label learning,
and LIFT serves as one possible instantiation of this strat-
egy. There are learning algorithms such as decision trees
which can implicitly do feature selection during their learn-
ing process. However, this is only a by-product of these al-
gorithms and should not be regarded a stand-alone tool for
feature construction. Employing algorithms such as decision
trees in first-order approaches could yield similar methods to
LIFT. However, the major difference lies in that the former
one wraps around the construction of label-specific features
and the induction of learning models, while LIFT constructs
label-specific features independent of the model induction.

4 Experiments

4.1 Configuration

To thoroughly evaluate the performance of our approach, a
total of sixteen real-world multi-label data sets are studied in
this paper. For each data set S = {(xi, Yi) | 1 ≤ i ≤ p}, we
use |S|, dim(S), L(S) and F (S) to denote the properties of
number of examples, number of features, number of possible
class labels, and feature type respectively. In addition, several
other multi-label properties [Read et al., 2009; Tsoumakas et
al., 2009] are denoted as:

1611

Table 3: Experimental results of each comparing algorithm (mean±std. deviation) on the eight regular-scale data sets.

Evaluation criterion Algorithm emotions genbase medical enron image scene yeast slashdot

LIFT 0.188±0.021 0.003±0.001 0.012±0.001 0.046±0.003 0.156±0.017 0.077±0.009 0.193±0.010 0.038±0.002

BSVM 0.199±0.022 0.001±0.001 0.010±0.001 0.060±0.003 0.176±0.007 0.104±0.006 0.199±0.010 0.047±0.002

Hamming loss ↓ ML-KNN 0.194±0.013 0.005±0.002 0.016±0.002 0.052±0.002 0.170±0.008 0.084±0.008 0.195±0.011 0.052±0.001

BP-MLL 0.219±0.021 0.004±0.002 0.019±0.002 0.052±0.003 0.253±0.024 0.282±0.014 0.205±0.009 0.047±0.002

ECC 0.192±0.027 0.001±0.001 0.010±0.001 0.055±0.004 0.180±0.015 0.096±0.010 0.208±0.010 0.046±0.003

LIFT 0.243±0.074 0.000±0.000 0.157±0.044 0.244±0.041 0.266±0.037 0.196±0.026 0.221±0.020 0.392±0.023

BSVM 0.253±0.070 0.002±0.005 0.151±0.054 0.308±0.050 0.314±0.021 0.250±0.027 0.230±0.023 0.479±0.024

One-error ↓ ML-KNN 0.263±0.067 0.009±0.011 0.252±0.045 0.313±0.035 0.320±0.026 0.219±0.029 0.228±0.029 0.639±0.017

BP-MLL 0.318±0.057 0.000±0.000 0.327±0.057 0.237±0.038 0.600±0.079 0.821±0.031 0.235±0.031 0.381±0.026

ECC 0.216±0.085 0.000±0.000 0.099±0.034 0.212±0.026 0.289±0.026 0.226±0.034 0.176±0.022 0.377±0.034

LIFT 0.281±0.022 0.018±0.011 0.039±0.022 0.220±0.017 0.168±0.019 0.065±0.007 0.452±0.015 0.106±0.006

BSVM 0.295±0.027 0.011±0.005 0.047±0.011 0.425±0.037 0.189±0.021 0.089±0.009 0.514±0.018 0.203±0.010

Coverage ↓ ML-KNN 0.300±0.019 0.021±0.013 0.060±0.025 0.247±0.014 0.194±0.020 0.078±0.010 0.447±0.014 0.187±0.008

BP-MLL 0.300±0.022 0.025±0.012 0.047±0.024 0.204±0.012 0.343±0.029 0.374±0.024 0.456±0.019 0.102±0.007

ECC 0.322±0.022 0.013±0.007 0.071±0.023 0.387±0.032 0.199±0.020 0.091±0.008 0.516±0.015 0.156±0.015

LIFT 0.144±0.024 0.004±0.006 0.026±0.020 0.074±0.008 0.143±0.018 0.062±0.008 0.163±0.011 0.091±0.006

BSVM 0.156±0.034 0.001±0.002 0.032±0.012 0.180±0.022 0.169±0.019 0.089±0.011 0.200±0.013 0.180±0.008

Ranking loss ↓ ML-KNN 0.163±0.022 0.006±0.006 0.042±0.021 0.093±0.007 0.175±0.019 0.076±0.012 0.166±0.015 0.173±0.010

BP-MLL 0.173±0.020 0.008±0.006 0.032±0.018 0.068±0.006 0.366±0.037 0.434±0.026 0.171±0.015 0.087±0.007

ECC 0.233±0.040 0.008±0.008 0.098±0.032 0.241±0.025 0.245±0.024 0.135±0.013 0.285±0.022 0.255±0.020

LIFT 0.821±0.033 0.995±0.006 0.877±0.035 0.703±0.027 0.825±0.023 0.886±0.014 0.770±0.017 0.699±0.017

BSVM 0.807±0.037 0.998±0.004 0.871±0.047 0.591±0.035 0.796±0.015 0.849±0.016 0.749±0.019 0.589±0.020

Average precision ↑ ML-KNN 0.799±0.031 0.989±0.010 0.806±0.036 0.626±0.022 0.792±0.017 0.869±0.017 0.765±0.021 0.500±0.016

BP-MLL 0.779±0.027 0.988±0.010 0.782±0.042 0.705±0.025 0.601±0.040 0.445±0.018 0.754±0.020 0.713±0.017

ECC 0.796±0.042 0.994±0.006 0.872±0.033 0.640±0.025 0.794±0.016 0.852±0.016 0.728±0.019 0.682±0.025

LIFT 0.848±0.021 0.988±0.014 0.931±0.038 0.739±0.021 0.860±0.018 0.948±0.010 0.685±0.023 0.863±0.014

BSVM 0.833±0.017 0.989±0.014 0.942±0.026 0.711±0.035 0.831±0.022 0.916±0.008 0.642±0.017 0.841±0.018

AUC ↑ ML-KNN 0.840±0.020 0.981±0.017 0.852±0.036 0.639±0.024 0.833±0.020 0.934±0.013 0.681±0.012 0.610±0.019

BP-MLL 0.829±0.015 0.984±0.013 0.910±0.037 0.756±0.031 0.666±0.024 0.703±0.032 0.674±0.019 0.865±0.025

ECC 0.824±0.025 0.982±0.016 0.857±0.040 0.661±0.019 0.820±0.021 0.914±0.010 0.604±0.007 0.767±0.016

• LCard(S) = 1
p

∑p

i=1 |Yi| : label cardinality which mea-

sures the average number of labels per example;

• LDen(S) = LCard(S)
L(S) : label density which normalizes

LCard(S) by the number of possible labels;

• DL(S) = |{Y |(x, Y) ∈ S}| : distinct label sets which
counts the number of distinct label combinations in S;

• PDL(S) = DL(S)
|S| : proportion of distinct label sets which

normalizes DL(S) by the number of examples.

Table 2 summarizes the detailed characteristics of those
multi-label data sets used in our experiments. Roughly or-
dered by |S|, eight regular-scale data sets (first part, |S| <
5000) as well as eight large-scale data sets (second part,
|S| ≥ 5000) are included. As shown in Table 2, the sixteen
data sets cover a broad range of cases whose characteristics
are diversified with respect to different multi-label properties.

In this paper, LIFT is compared with four well-established
multi-label learning algorithms, including BSVM [Boutell
et al., 2004], ML-KNN [Zhang and Zhou, 2007], BP-MLL

[Zhang and Zhou, 2006] and ECC [Read et al., 2009]. As
discussed in Section 2, BSVM and ML-KNN are first-order
approaches which work in a similar way as LIFT by generat-
ing classifiers in a label-wise style, though under the original
feature space X . In addition, BP-MLL is a second-order ap-
proach and ECC is a high-order approach both of which con-
sider exploiting label correlations in their learning processes.
For fair comparison, LIBSVM (with linear kernel) [Chang and
Lin, 2001] is employed as the binary learner for classifier in-
duction to instantiate LIFT, BSVM and ECC.

As shown in Table 1, in addition to set L as linear kernel

LIBSVM, the other factor needed to be specified for LIFT is r,
i.e. the ratio parameter as used in Eq.(2). In this paper, r is set
to be 0.1 for all data sets.2 Furthermore, parameter configura-
tions suggested in respective literatures are used for the other
comparing algorithms. For BSVM, models are learned via the
cross-training strategy [Boutell et al., 2004]; For ML-KNN,
the number of nearest neighbors considered is set to be 10
[Zhang and Zhou, 2007]; For BP-MLL, the number of hidden
neurons is set to be 20% of the input dimensionality and the
maximum number of training epochs is set to be 100 [Zhang
and Zhou, 2006]; For ECC, the ensemble size is set to be 10
and the sampling ratio is set to be 67% [Read et al., 2009].

4.2 Results

Performance evaluation in multi-label learning is more com-
plicated than traditional single-label learning, as each exam-
ple could be associated with multiple labels simultaneously.
Firstly, five evaluation criteria popularly used in multi-label
learning are employed, i.e. hamming loss, one-error, cover-
age, ranking loss and average precision [Schapire and Singer,
2000; Tsoumakas et al., 2009].3 Briefly, these criteria evalu-
ate the quality of the predicted label set for each test example
and then return the averaged value across all the test exam-
ples. In addition, we also employ the AUC criterion (area

2In preliminary experiments, a number of values have been tested
for r by increasing it from 0.02 to 0.2 (stepsize 0.02). Results show
that the performance of LIFT becomes stable as r approaches 0.1.

3Due to page limit, formal definitions on these criteria can be
found in the references therein. In this paper, the coverage crite-
rion is further normalized by |Y| so that all reported performance
measures vary between [0,1].

1612

Table 4: Experimental results of each comparing algorithm (mean±std. deviation) on the eight large-scale data sets.

rcv1 rcv1 corel16k corel16k corel16k

Evaluation criterion Algorithm corel5k (subset 1) (subset 5) bibtex (sample 1) (sample 2) (sample 3) ohsumed

LIFT 0.009±0.001 0.026±0.001 0.022±0.001 0.012±0.001 0.019±0.001 0.017±0.001 0.018±0.001 0.056±0.001

BSVM 0.011±0.001 0.026±0.001 0.023±0.001 0.016±0.001 0.019±0.001 0.018±0.001 0.019±0.001 0.064±0.001

Hamming loss ↓ ML-KNN 0.009±0.001 0.027±0.001 0.024±0.001 0.014±0.001 0.019±0.001 0.018±0.001 0.018±0.001 0.071±0.001

BP-MLL 0.010±0.001 0.033±0.001 0.029±0.001 0.016±0.001 0.019±0.001 0.018±0.001 0.018±0.001 0.081±0.001

ECC 0.014±0.001 0.033±0.003 0.028±0.002 0.016±0.001 0.030±0.001 0.028±0.001 0.029±0.001 0.067±0.001

LIFT 0.674±0.028 0.414±0.018 0.405±0.030 0.375±0.025 0.674±0.012 0.666±0.010 0.666±0.012 0.352±0.012

BSVM 0.822±0.034 0.396±0.013 0.432±0.090 0.444±0.011 0.868±0.008 0.863±0.015 0.848±0.011 0.386±0.009

One-error ↓ ML-KNN 0.737±0.016 0.548±0.018 0.499±0.029 0.589±0.019 0.732±0.011 0.732±0.013 0.740±0.012 0.646±0.011

BP-MLL 0.732±0.022 0.714±0.017 0.718±0.019 0.431±0.024 0.710±0.015 0.732±0.009 0.712±0.013 0.384±0.010

ECC 0.655±0.016 0.441±0.028 0.408±0.044 0.341±0.022 0.657±0.020 0.663±0.019 0.660±0.013 0.347±0.011

LIFT 0.288±0.017 0.122±0.007 0.118±0.008 0.137±0.006 0.308±0.006 0.299±0.009 0.301±0.009 0.171±0.006

BSVM 0.519±0.019 0.219±0.008 0.200±0.011 0.226±0.010 0.328±0.006 0.318±0.006 0.320±0.005 0.185±0.005

Coverage ↓ ML-KNN 0.306±0.017 0.219±0.010 0.198±0.009 0.340±0.008 0.335±0.005 0.326±0.010 0.332±0.006 0.308±0.007

BP-MLL 0.261±0.013 0.222±0.010 0.229±0.008 0.096±0.005 0.287±0.005 0.292±0.007 0.286±0.005 0.161±0.005

ECC 0.734±0.016 0.353±0.017 0.342±0.013 0.347±0.011 0.566±0.009 0.567±0.010 0.557±0.013 0.241±0.005

LIFT 0.122±0.008 0.048±0.003 0.047±0.004 0.073±0.005 0.155±0.002 0.149±0.004 0.150±0.005 0.105±0.003

BSVM 0.258±0.012 0.097±0.004 0.091±0.008 0.127±0.006 0.182±0.003 0.174±0.003 0.176±0.003 0.117±0.004

Ranking loss ↓ ML-KNN 0.134±0.008 0.105±0.005 0.095±0.005 0.209±0.006 0.173±0.002 0.166±0.005 0.168±0.003 0.228±0.006

BP-MLL 0.116±0.006 0.115±0.006 0.118±0.004 0.051±0.003 0.147±0.001 0.156±0.004 0.149±0.004 0.099±0.004

ECC 0.586±0.014 0.382±0.025 0.369±0.025 0.411±0.013 0.628±0.018 0.640±0.013 0.640±0.013 0.287±0.009

LIFT 0.293±0.015 0.594±0.009 0.626±0.021 0.568±0.013 0.323±0.007 0.320±0.006 0.323±0.005 0.696±0.007

BSVM 0.154±0.026 0.588±0.008 0.600±0.047 0.516±0.010 0.189±0.004 0.186±0.006 0.194±0.005 0.663±0.006

Average precision ↑ ML-KNN 0.244±0.010 0.478±0.011 0.530±0.019 0.350±0.011 0.287±0.004 0.282±0.006 0.279±0.006 0.444±0.009

BP-MLL 0.239±0.009 0.388±0.012 0.391±0.005 0.557±0.013 0.313±0.004 0.281±0.005 0.288±0.005 0.682±0.006

ECC 0.234±0.011 0.475±0.020 0.507±0.028 0.512±0.013 0.257±0.010 0.247±0.010 0.250±0.009 0.644±0.007

LIFT 0.719±0.016 0.925±0.011 0.925±0.015 0.911±0.005 0.689±0.008 0.707±0.008 0.703±0.012 0.860±0.007

BSVM 0.661±0.018 0.900±0.011 0.908±0.010 0.875±0.006 0.687±0.008 0.697±0.007 0.695±0.011 0.835±0.007

AUC ↑ ML-KNN 0.541±0.004 0.667±0.018 0.685±0.016 0.676±0.007 0.571±0.004 0.587±0.006 0.573±0.008 0.599±0.006

BP-MLL 0.734±0.008 0.862±0.012 0.853±0.011 0.933±0.005 0.752±0.006 0.761±0.004 0.752±0.008 0.865±0.004

ECC 0.567±0.009 0.613±0.004 0.612±0.006 0.733±0.011 0.577±0.006 0.581±0.006 0.578±0.004 0.777±0.008

under the ROC curve) to evaluate the quality of the predic-
tions for each class label and then return the averaged value
across all the class labels.

On each data set, ten-fold cross validation is conducted and
the mean value and standard deviation of each evaluation cri-
terion is recorded. For AUC and average precision, the larger
the values the better the performance; While for the other four
criteria, the smaller the values the better the performance. All
the above criteria serve as good indicators for comprehensive
comparative studies as they evaluate the performance of an
algorithm from various aspects.

Tables 3 and 4 report the detailed experimental results on
the regular-scale and large-scale data sets respectively. For
each evaluation criterion, “↓” indicates “the smaller the bet-
ter” while “↑” indicates “the larger the better”. Furthermore,
the best performance among the five comparing algorithms is
highlighted in boldface.

Across all the 96 configurations (i.e. 16 data sets × 6 crite-
ria as shown in the two tables), LIFT ranks in 1st place among
the five comparing algorithms at 47.9% cases, in 2nd place at
45.8% cases, in 3rd place at only 6.3% cases, and never ranks
in 4th and 5th places. To perform comparative analysis in
more well-founded ways, Friedman test is further examined
which is a favorable statistical test for comparisons of more
than two algorithms over multiple data sets [Demšar, 2006].

For each evaluation criterion, Friedman test at 0.05 signifi-
cance level (five algorithms, sixteen data sets) rejects the null
hypothesis of “equal” performance, which leads to the use
of post-hoc tests to find out which algorithms actually differ.
Specifically, Nemenyi test is utilized where the performance

of two algorithms is significantly different if their average
ranks over all data sets differ by at least one critical differ-
ence (CD). Figure 1 gives the CD diagrams [Demšar, 2006]

for each evaluation criterion, where the average rank of each
comparing algorithm is marked along the axis (lower ranks to
the right). Groups of algorithms that are not significantly dif-
ferent according to Nemenyi test are connected with a thick
line. The critical difference (CD=1.525 at 0.05 significance
level) is also shown above the axis in each subfigure.

To summarize, out of all the 24 comparisons (4 algorithms
to compare × 6 criteria), LIFT achieves statistically compa-
rable performance in only 33% cases, i.e. the 8 comparisons
against ML-KNN on hamming loss (Fig.1 a), against ECC on
one-error (Fig.1 b), against BSVM and BP-MLL on cover-
age (Fig.1 c), on ranking loss (Fig.1 d), and on AUC (Fig.1
f). Rather impressively, LIFT achieves statistically superior
performance in all the other 67% cases and no algorithms
have once outperformed LIFT. These results clearly validate
the superior effectiveness of our approach to the other well-
established multi-label learning algorithms.

5 Conclusion

The major contributions of our work are two-fold: 1) A new
strategy to multi-label learning via label-specific features is
proposed, which suggests a new direction for learning from
multi-label data; 2) A simple algorithm named LIFT is de-
signed to justify the proposed strategy, whose effectiveness is
thoroughly validated based on extensive comparative studies.

In the future, it is interesting to see whether LIFT can be
further improved by incorporating label correlations into its

1613

�� �� �� �� ��

�	�

���
�
�����

�����

����

����

�

�� �� �� �� ��

�	�

����

���

����

�

�����

�
�����

�� �� �� �� ��

�	�

���
����

�

�����

�
�����

����

(a) Hamming loss (b) One-error (c) Coverage

�� �� �� �� ��

�	�

���
����

�

�����

�
�����

����

�� �� �� �� ��

�	�

���
�
�����

����

�

�����

����

�� �� �� �� ��

�	�

���
����

�

�����

�
�����

����

(d) Ranking loss (e) Average precision (f) AUC

Figure 1: CD diagrams [Demšar, 2006] of the comparing algorithms under each evaluation criterion.

label-specific features construction step as well as classifi-
cation models induction step. Furthermore, designing other
ways to fulfill the strategy of label-specific features is a direc-
tion very worth studying.

Acknowledgments

The author wishes to thank the anonymous reviewers for their
helpful comments and suggestions.

References

[Boutell et al., 2004] M. R. Boutell, J. Luo, X. Shen, and
C. M. Brown. Learning multi-label scene classification.
Pattern Recognition, 37(9):1757–1771, 2004.

[Chang and Lin, 2001] C.-C. Chang and C.-J. Lin. LIBSVM:
A library for support vector machines, 2001. Software
available at http://www.csie.ntu.edu.tw/˜cjlin/libsvm.

[Cheng and Hüllermeier, 2009] W. Cheng and
E. Hüllermeier. Combining instance-based learning
and logistic regression for multilabel classification.
Machine Learning, 76(2-3):211–225, 2009.

[Demšar, 2006] J. Demšar. Statistical comparisons of classi-
fiers over multiple data sets. Journal of Machine Learning
Research, 7(Jan):1–30, 2006.

[Elisseeff and Weston, 2002] A. Elisseeff and J. Weston. A
kernel method for multi-labelled classification. In NIPS
14, pages 681–687. 2002.

[Fürnkranz et al., 2008] J. Fürnkranz, E. Hüllermeier,
E. Loza Mencı́a, and K. Brinker. Multilabel classifi-
cation via calibrated label ranking. Machine Learning,
73(2):133–153, 2008.

[Ghamrawi and McCallum, 2005] N. Ghamrawi and A. Mc-
Callum. Collective multi-label classification. In CIKM,
pages 195–200, 2005.

[Jain et al., 1999] A. K. Jain, M. N. Murty, and P. J. Flynn.
Data clustering: A review. ACM Computing Surveys,
31(3):264–323, 1999.

[Ji et al., 2008] S. Ji, L. Tang, S. Yu, and J. Ye. Extracting
shared subspace for multi-label classification. In KDD,
pages 381–389, 2008.

[Read et al., 2009] J. Read, B. Pfahringer, G. Holmes, and
E. Frank. Classifier chains for multi-label classification.
In ECML PKDD, pages 254–269, 2009.

[Schapire and Singer, 2000] R. E. Schapire and Y. Singer.
Boostexter: A boosting-based system for text categoriza-
tion. Machine Learning, 39(2/3):135–168, 2000.

[Tsoumakas and Vlahavas, 2007] G. Tsoumakas and I. Vla-
havas. Random k-labelsets: An ensemble method for mul-
tilabel classification. In ECML, pages 406–417, 2007.

[Tsoumakas et al., 2009] G. Tsoumakas, M.-L. Zhang,
and Z.-H. Zhou. Learning from multi-label data. In
ECML PKDD Tutorial, 2009. Available at http://www.
ecmlpkdd2009.net/wp-content/uploads/2009/08/learning-
from-multi-label-data.pdf.

[Wang et al., 2010] H. Wang, C. Ding, and H. Huang. Multi-
label classification: Inconsistency and class balanced k-
neareast neighbor. In AAAI, pages 1264–1266, 2010.

[Yan et al., 2007] R. Yan, J. Tešić, and J. R. Smith. Model-
shared subspace boosting for multi-label classification. In
KDD, pages 834–843, 2007.

[Zhang and Zhang, 2010] M.-L. Zhang and K. Zhang. Multi-
label learning by exploiting label dependency. In KDD,
pages 999–1007, 2010.

[Zhang and Zhou, 2006] M.-L. Zhang and Z.-H. Zhou. Mul-
tilabel neural networks with applications to functional ge-
nomics and text categorization. IEEE Trans Knowledge
and Data Engineering, 18(10):1338–1351, 2006.

[Zhang and Zhou, 2007] M.-L. Zhang and Z.-H. Zhou. ML-
kNN: A lazy learning approach to multi-label learning.
Pattern Recognition, 40(7):2038–2048, 2007.

[Zhu et al., 2005] S. Zhu, X. Ji, W. Xu, and Y. Gong. Multi-
labelled classification using maximum entropy method. In
SIGIR, pages 274–281, 2005.

1614

