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Three amplification mechanisms present in turbulent jets, namely lift-up, Kelvin-
Helmholtz, and Orr, are characterized via global resolvent analysis and spectral proper
orthogonal decomposition (SPOD) over a range of Mach numbers. The lift-up mechanism
in turbulent jets, recently analyzed by Nogueira et al. (2019) via local analysis, is
dominant at low Strouhal number (St) and non-zero azimuthal wavenumbers (m). In
these limits, a global SPOD analysis reveals streamwise vortices and streaks similar
to those found in turbulent wall-bounded flows. These structures are in qualitative
agreement with the global resolvent analysis, which shows that they are a response to
upstream forcing by streamwise vorticity near the nozzle exit. Analysis of mode shapes,
energy content, and sensitivity analysis distinguish the three mechanisms and the
regions of wavenumber-frequency space where each dominates. Finally, SPOD analysis
of localized regions shows that the lift-up mechanism is present throughout the jet, with
a dominant azimuthal wavenumber inversely proportional to streamwise distance from
the nozzle, with streaks of azimuthal wavenumber exceeding five near the nozzle, and
wavenumbers one and two most energetic far downstream of the potential core.

1. Introduction

Coherent structures in turbulence are largely responsible for the transport of mass,
momentum, and energy, and the radiation of acoustic waves. Early observations of orderly
structure were found by Mollo-Christensen (1967) and Crow & Champagne (1971) in
turbulent jets and Brown & Roshko (1974) in planar mixing layers. Almost 50 years later,
a full understanding of underlying mechanisms driving the generation and sustenance
of coherent structures remain elusive, yet their connection to longstanding engineering
problems such as jet acoustics (Jordan & Colonius 2013) and drag in wall-bounded flows
(Jiménez 2018) has become increasingly apparent.

Coherent structures in turbulence have generally been interpreted and modeled in
terms of instabilities of (typically steady) basic flows. In jet turbulence, Crighton & Gaster
(1976) hypothesized that coherent structures could be described as linear instability
modes of the mean flow via a modal analysis. Since, significant progress has been made
computing modal and non-modal mechanisms with varying degrees of generality. Earlier
work focused on parabolized stability equations (PSE), and Gudmundsson & Colonius
(2011) showed that PSE solutions for an experimentally measured jet mean flow yielded
good predictions for the dominant frequency/azimuthal mode structures educed from a
near-field caged microphone array. However, fully global studies, Garnaud et al. (2013)
yield a stable spectrum (for jets that are not too highly heated), and instability mecha-
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nisms need to be characterized by transient (non-modal) growth. Resolvent analysis, by
contrast, characterizes linear amplification of disturbances in the frequency domain, and
is therefore easier to relate experimental mechanisms in both transitional and turbulent
flows. McKeon & Sharma (2010) proposed a resolvent framework for the turbulent case,
where nonlinear interactions are regarded as forcing terms to a linearized operator that
amplifies them according to the turbulent mean flow. Resolvent analysis of jets have by
now been computed for a variety of jet mean flows (Jeun et al. 2016; Semeraro et al.
2016; Schmidt et al. 2018; Lesshafft et al. 2019).

These studies have shown the presence of two essentially different linear amplification
mechanisms, one which can be associated with the traditional (parallel-flow) Kelvin-
Helmholtz (KH) instability and an Orr-type mechanism, also identified through PSE
by Tissot et al. (2017). Schmidt et al. (2018) showed that the former KH mechanism
could be represented at low rank, in the sense that there is a large separation between
the dominant and subdominant gains, suggesting an intrinsic mechanism reminiscent
of a modal instability. On the contrary, the Orr mechanism was not low rank, in
that it is more representative of a non-modal mechanism. They also found a close
correspondence between the resolvent spectrum and the spectral proper orthogonal
decomposition (SPOD) modes educed from high-fidelity, large-eddy simulation (LES)
data.

However, previous global resolvent computations neglected the lowest frequency region
of the spectrum, owing largely to computational difficulties, i.e. the large spatial domains
required. Recently, Nogueira et al. (2019) presented evidence, both through SPOD of
particle image velocimetry data and a parallel resolvent analysis, that a third and
uniquely distinct mechanism is at play in the low frequency region of the spectrum,
namely the lift-up mechanism.

The lift-up mechanism and the associated coherent structures, streaks, have long been
understood as an important mechanism in wall bounded flows (see review by Brandt
(2014) and references therein). Parallel to the history of mechanism identification in
jet flows, the lift-up mechanism (as well as Tollmien-Schlichting and Orr from other
references) has been systematically described, first through inspirational observations
(Klebanoff 1971; Kim et al. 1971), then local analyses (Moffatt 1965; Ellingsen & Palm
1975; Landahl 1980), followed by transient growth (Butler & Farrell 1992; Farrell &
Ioannou 1993), and most recently resolvent analysis (Hwang & Cossu 2010; Abreu et al.
2019). The salient properties of the lift-up mechanism include streamwise vortices (rolls
with streamwise vorticity ω′

x) that lift-up low speed fluid from the wall (and push high
speed fluid toward the wall) until viscous dissipation becomes important. The associated
optimal forcing is streamwise rolls (v′,w′ components) which result in growth of the
streamwise velocity component (streaks).

In this paper, these characteristics of the lift-up mechanism, although re-framed for
transport of high/low-speed fluid from the jet core/freestream to the jet freestream/core
respectively, will be shown via global SPOD and resolvent analyses to be present in
turbulent jets, expanding upon the work of Nogueira et al. (2019). We demonstrate
the presence and energetic importance of the lift-up mechanisms over a range of Mach
number, and characterize, as a function of frequency and azimuthal mode number, the
interplay between the (now three) mechanisms (KH, Orr, lift-up). We will show that
previously described experimental (Liepmann 1991; Paschereit et al. 1992; Liepmann &
Gharib 1992; Arnette et al. 1993; Citriniti & George 2000; Alkislar et al. 2007; Cavalieri
et al. 2013) and numerical (Martin & Meiburg 1991; Caraballo et al. 2003; Freund &
Colonius 2009) data show the imprint of streaks, but had yet to be linked to the lift-
up mechanism. Here, resolvent analysis provides the key link between response modes
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observed in the SPOD spectrum and their underlying resolvent forcing modes, shedding
light on the most active linear mechanisms throughout the wavenumber-frequency space.

The manuscript is organized as follows. In § 2 we describe the databases and methods
used in analysis. In § 3.1 we introduce a collection of snapshots from the LES of a
Mach 0.4 jet showing streaky characteristics. In § 3.2 we present the dominant energies
and gains computed using SPOD and resolvent analysis respectively. In § 3.3 SPOD
results approaching Strouhal number St → 0 and resolvent analysis at St = 0 are
shown, identifying streaks and directly identifying the presence of the lift-up mechanism
in turbulent jets. We then compare SPOD and resolvent modes in § 4 at non-zero
azimuthal wavenumbers and frequencies from St = 0.6 to St → 0 and present a sensitivity
analysis delineating the various mechanisms pertaining to KH, Orr, and lift-up, while also
suggesting a mechanism map of the most amplified response mechanism throughout the
wavenumber-frequency space for turbulent jets. We then conclude the manuscript in § 5
addressing the presence of streaks throughout the domain, both near and far from the
nozzle.

2. Methods

The LES database, resolvent analysis and SPOD were described in Schmidt et al.
(2018) and Towne et al. (2018). For brevity, we recall the main details here.

2.1. Large Eddy Simulation database

The LES databases, including subsonic (Mach 0.4), transonic (Mach 0.9), and super-
sonic (Mach 1.5) cases, were computed using the flow solver “Charles” and details on
numerical methods, meshing, and subgrid-models can be found in Brès et al. (2017);
Brès et al. (2018) along with validation cases conducted at PPRIME Institute, Poitiers,
France for the Mach 0.4 and 0.9 jets (Brès et al. 2018). The Mach 0.4 round jet, which
is the jet investigated in detail in this manuscript, corresponds to a Reynolds number
Rej = ρjUjD/µj = 4.5× 105 (Mj = 0.9: Rej = 1.01× 106, Mj = 1.5: Rej = 1.76× 106)
where subscript j indicates the value at the center of the jet, ρ is density, µ is viscosity, and
Mj is the Mach number Mj = Uj/aj , where aj is the speed of sound at the nozzle exit.
The simulated jet corresponds to the experiments in Cavalieri et al. (2013); Jaunet et al.
(2017); Nogueira et al. (2019) with the same nozzle geometry and similar boundary-layer
properties at the nozzle exit.

Throughout the manuscript, variables are non-dimensionalized by the mean jet velocity
Uj , jet diameter D, and pressure ρjU

2

j , with the resulting equation of state p = ρT
γM2

j

,

with T denoting temperature and γ the ratio of specific heats. Frequencies are reported
in Strouhal number, St = fD/Uj , where f is the frequency. The database consists of
10,000 snapshots separated by ∆tc∞/D = 0.2 (Mj = 0.9: ∆tc∞/D = 0.2, Mj = 1.5:
∆tc∞/D = 0.1), where c∞ is the ambient speed of sound, and interpolated onto a
structured cylindrical grid x, r, θ ∈ [0, 30]× [0, 6]× [0, 2π], where x, r, θ are streamwise,
radial, and azimuthal coordinates,respectively. Variables are reported by the vector

q = [ρ, ux, ur, uθ, T ]
T , (2.1)

where ux, ur, uθ are the three velocity components, and a standard Reynolds decompo-
sition separates the vector into mean, q̄, and fluctuating, q′, components

q(x, r, θ, t) = q̄(x, r, θ) + q′(x, r, θ, t). (2.2)

Figure 1 displays one snapshot at the centerline of the streamwise velocity component,
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Figure 1: Large-Eddy Simulation snapshot of a centerline slice of fluctuating streamwise
velocity. The lines show the areas of interest plotted in figure 2.

where blue regions indicate fluctuations below the mean streamwise velocity and red
indicate fluctuations above.

2.2. Spectral Proper Orthogonal Decomposition

Spectral proper orthogonal decomposition is used to determine an optimal set of
orthogonal space-time correlated modes that describe the flow (Towne et al. 2018).
Decomposing the LES database, Q, in the azimuthal and temporal dimensions via the
discrete Fourier transform gives the decomposed data matrices, Qm,ω. The cross-spectral
density tensor at a given frequency ω = 2πSt and azimuthal m is then given by

Sm,ω = Qm,ωQ
H
m,ω (2.3)

and the SPOD eigenvalue problem presented by Lumley (1967, 1970) can be solved

Sm,ωWQs,m,ω = Qs,m,ωΛm,ω. (2.4)

The SPOD modes are represented by the columns of Qs,m,ω (subscript s denoting
SPOD response mode matrix) and are ranked by the diagonal matrix of eigenvalues
Λm,ω = diag(λ1, λ2, ..., λN ). The modes are orthonormal in the norm W , representing
the compressible energy norm of Chu (1965)

〈q1, q2〉E =

∫ ∫ ∫

q∗

1
diag

(

T̄

γρ̄M2
, ρ̄, ρ̄, ρ̄,

ρ̄

γ(γ − 1)T̄M2

)

q2rdrdxdθ (2.5)

and satisfy Q∗

s,m,ωWQs,m,ω = I.
Given SPOD is a discrete method for uncovering turbulent coherent structures, chal-

lenges persist for approaching the limit of St → 0. When performing SPOD a balance
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must be struck between snapshots per block (frequency resolution) and the number of
blocks (convergence). To resolve frequencies over previous ranges of interest, St = [0.2, 1]
for the Mach 0.4 jet, block sizes of 256 snapshots with 50 % overlap (resulting in 78 blocks)
were used in Schmidt et al. (2018). In the case of uncovering stationary-in-time structures
such as streaks, frequency resolution, and therefore block sizes, must be increased to
approach the limit of St → 0. For the global SPOD analysis presented herein, and after
experimentation with block sizes (256, 512, 1024, 2048) and overlap (50%, 75%), we
employ 1024 snapshots with 75% overlap (36 blocks) to attain the necessary frequency
resolution, yet maintain convergence with sufficient blocks as St → 0. We also note that
the use of 2048 snapshots per block produced almost identical SPOD modes as using
1024 snapshots, albeit with a greater uncertainty as the block ensemble was reduced to
16 blocks.

2.3. Resolvent analysis

For the round, statistically-stationary, turbulent jets we consider, the compressible
Navier-Stokes, energy, and continuity equations are linearized through a standard
Reynolds decomposition, and Fourier transformed both temporally and azimuthally to
the compact expression

(iωI − Am)qm,ω = fm,ω. (2.6)

Here Am is the discretized linear operator considering the mean field as the baseflow,
q = [ρ′, u′

x, u
′

r, u
′

θ, T
′] is the state vector, f constitutes the forcing in each variable.

The influence of viscosity in the linear operator, Am, has previously been based upon
the molecular viscosity, Rej , however, recent resolvent analyses incorporating an eddy-
viscosity model, Pickering et al. (2019) for turbulent jets and Morra et al. (2019) in
channel flow, have shown substantial improvement for SPOD-resolvent comparisons.
Thus, we proceed by including an eddy-viscosity model based upon the turbulent kinetic
energy (TKE) suggested for turbulent jets by Pickering et al. (2019). This model was
primarily chosen due to its simplicity and availability of the corresponding quantities
from the LES database. The model takes the form

µT = ρ̄ck1/2lm, (2.7)

where c is a scaling constant, k is the mean flow turbulent kinetic energy, and lm is
a chosen length scale representative of the mean shear layer thickness. lm is chosen as
the width of the shear layer where the turbulent kinetic energy is more than 10% of its
maximum value at each streamwise location, and the scaling constant c = 0.0065 is used
considering the favorable SPOD-resolvent alignments previously shown over m = 0 − 3
and St = 0.05− 1.

With the inclusion of an eddy-viscosity model the forward operator becomes (iωI −
Am − Am,T (µT )), where Am,T (µT )) only possesses terms that include µT (equations
for Am,T (µT ) are included in Pickering et al. (2019)). The discretization scheme and
boundary condition treatment are the same as those used in Schmidt et al. (2018) and
refer the reader to that paper for further numerical details.

We can rewrite equation 2.6 by defining the resolvent operator, Rω,m = (iωI −Am −
Am,T (µT ))

−1,

qm,ω = Rm,ωfm,ω. (2.8)

Introducing the compressible energy norm Chu (1965) via the matrix W to the forcing
and response, where W = Wf = Wq gives the weighted resolvent operator

Hm,ω = W
1

2

q Rm,ωW
−

1

2

f . (2.9)
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Taking the singular value decomposition of the modified resolvent operator gives

Hm,ω = Qm,ωΣFH
m,ω, (2.10)

where Qm,ω = [q1

m,ω, q
2

m,ω, ..., q
N
m,ω] are the optimal response modes, Fm,ω =

[f1

m,ω,f
2

m,ω, ...,f
N
m,ω] are the optimal forcing modes, and Σ = diag(σ1, σ2, ..., σN )

are the gains. Accounting for the numerical quadrature and Chu energy weighting
matrices normalize each forcing and response mode such that they are orthonormal and
may be compared directly to their corresponding SPOD modes.

2.4. Resolvent-based sensitivity analysis

Since each resolvent mode may have contributions arising from different instability
mechanisms, we aim to identify both the regions of the flow and components that drive
optimal responses for each turbulent jet mechanism. As shown by Qadri & Schmid (2017),
a component-wise spatial sensitivity tensor can be calculated highlighting regions in the
flow where small perturbations have a large effect on the resolvent gain and are influential
to linear non-modal amplification of disturbances. The component-wise sensitivity tensor
is computed as

Si,j = σ2Re(fi ◦ q
∗

j ), (2.11)

where subscripts i, j denote the i-th or j-th component of the forcing or response, and ◦
denotes component-wise multiplication, giving the spatial sensitivity for each i, j forcing-
response combination to the gain, σ. The sensitivity is calculated for the three forcing
and response velocities of the momentum equation, presenting a 3× 3 sensitivity tensor.

Further, we determine the relative, total sensitivity of each component, described by

S′

i,j =
||Si,j ||F,W

∑

i,j ||Si,j ||F,W
× 100%, (2.12)

where || · ||F,W represents the weighted Frobenius norm by W and S′

i,j provides a
percentage measure of the dominance of one forcing-response sensitivity to the overall
sensitivity.

3. Lift-up mechanism & streaks

For the remainder of this manuscript we report results for the Mach 0.4 turbulent jet.
Similar analyses are provided for both the Mach 0.9 and 1.5 jets in the appendix.

3.1. LES Visualization

Previous SPOD and resolvent analysis of turbulent jets (Schmidt et al. 2018) showed
that the energy of the most amplified mode increases for nonzero azimuthal wavenumber
as St → 0. Therefore, considering significant energy is found at low frequencies, we expect
to find elongated, streak-like structures to be visually present in the LES snapshots.
Instantaneous snapshots are provided for four cylindrical surfaces at r/D = 0.2, 0.55, 1,
and 2.5. Figure 1 demonstrates where each surface is plotted from the LES snapshot
and figure 2 shows the resulting unwrapped surfaces of fluctuating streamwise velocity,
u′

x. The figures are plotted with the circumferential location of the unwrapped surface,
rθ/D, as the y-axis (to maintain the physical aspect ratio of the data) against streamwise
distance. Note that the plots are increasingly zoomed into the near nozzle region as the
radial position is decreased.

These visualizations are analogous to experimental visualizations of Nogueira et al.
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Figure 2: Instantaneous LES snapshots of streamwise fluctuating velocity, u′

x, taken at
radial locations r/D = 0.2, 0.55, 1, 2.5 with the y-axis representing the unwrapped surface
rθ. Only 2/5 of the r/D = 2.5 surface is shown in the last plot.

(2019) for a Mach 0.4 jet using Taylor’s hypothesis. In their analysis, elongated streaky
structures were found comparable to the LES visualizations for turbulent boundary layers
of Eitel-Amor et al. (2014) using Taylor’s hypothesis. They also noted how closely their
structures possessed similar qualities to streaky structures found in channel flow (Monty
et al. 2007), pipe flow (Hellström et al. 2011), and boundary layers (Hutchins & Marusic
2007). The visualizations presented here show similar characteristics of streaky behavior,
but do not use Taylor’s hypothesis and instead present instantaneous snapshots of the
flow.

Beginning with radial surface r/D = 0.2 we attain a viewpoint from within the
potential core. For x/D = [3, 6] structures appear to have a dominant rθ/D dimension
and may be associated to KH m = 0, 1 instabilities (i.e. non-streaky) extending into
the potential core. At x/D ≈ 6, where the potential core ends, the turbulent kinetic
energy increases and streamwise elongated structures begin to appear; they become
more pronounced further downstream. For the radial surface r/D = 0.55, we see streaky
structures of smaller scale close to the nozzzle, and larger scale further downstream,
are similar to the structures visualized by Nogueira et al. (2019) at this radial location.
These structures also meander as they propagate downstream, a quality also observed
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Figure 3: Energy of the most amplified mode from SPOD (left) and resolvent (right)
analyses. The top row (a,b) displays the energies and gains for the first six azimuthal
wavenumbers. The bottom row (c,d) recasts the plots as a percentage of the sum of
energy at each azimuthal wavenumber with contours ranging from 0-40%.

in boundary layer flows by Hutchins & Marusic (2007). Comparable behavior is seen
for both r/D = 1 and 2.5. In each, one may note that directly prior to the emergence
of streamwise elongated structures (once the surface crosses into the turbulent region)
faint structures elongated in the circumferential direction are detected, likely related to
high-frequency, m = 0, 1 KH signatures.

3.2. SPOD and Resolvent Analysis

SPOD (using the parameters of Schmidt et al. (2018)) and resolvent analyses were
performed over a range of Strouhal frequencies and azimuthal wavenumbers. Figures
3(a,b) show the SPOD (ESPOD

m,St ≡ λm,St) and resolvent (Eresolvent
m,St ≡ σ2

m,St) en-
ergies/amplifications of the leading mode. In figures 3(c,d) the same data are nor-
malized at each frequency with the sum of energy over all azimuthal wavenumbers
(Em,St/

∑

m Em,St× 100) and plotted in the m−St plane. This highlights the dominant
wavenumbers at each frequency and facilitates the identification of different instabilities.
The map is interpolated for non-integer wavenumbers despite their discrete nature. This
representation was chosen because we found it easier to visually interpret the trends,
and to more readily compare it to wavenumber-frequency maps familiar from boundary
layer flows where wavenumber is continuous (Monokrousos et al. 2010). For reference the
semi-discrete representation of figure 3 is provided in the appendix.)
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m = 1 a) SPOD m = 3

m = 1 b) Resolvent m = 3

Figure 4: Streaks deduced via SPOD and resolvent analyses for m = 1 and 3. a) Most
energetic SPOD mode at St → 0 for m = 1 (left) and m = 3 (right). Isosurfaces of
streamwise velocity (red, blue) and streamwise vorticity (yellow, green), both at ±25%
of their maximum value. b) Global resolvent forcing and response for m = 1 (left) and
m = 3, (right) at St = 0. The streamwise forcing vorticity is shown in magenta-cyan with
isosurfaces ±0.05||fωx

||∞ for m = 1 and ±0.15||fωx
||∞ for m = 3 , streamwise response

vorticity is shown in yellow-green with isosurfaces ±0.5||qωx
||∞, and streamwise response

velocity is shown in red-blue with isosurfaces ±0.25||qux
||∞.

There is a qualitative agreement between the SPOD and resolvent energy content.
There are two overlapping regions in m−St space where there exist energetic structures.
The region near St = 0.6 at low azimuthal wavenumbers (particularly m = 0) is
associated with the KH mechanism At low frequencies, meaning St → 0, the m = 0
mode has an anomalous behavior, with the dominant mode switching from KH to Orr
mechanism for St < 0.2 (Schmidt et al. 2018). At low frequencies and mainly for m = 1
and 2, a second energetic region is observed. This region comprises the lift-up mechanism
that is described more fully in what follows. In the wavenumber-frequency contour plots,
these trends resemble those obtained for laminar boundary layers (Monokrousos et al.
2010), where lift-up dominates as streamwise wavenumbers approach 0, or equivalently
the frequency approaches zero for spatially developing flows. For nonzero azimuthal
wavenumbers, where the lift-up mechanism is expected to be found due to its three-
dimensional characteristics, m = 1 provides the largest energy across all frequencies, save
m = 2 at St ≈ 0, followed by a gradual reduction for higher azimuthal wavenumbers.

3.3. Global characteristics of streaks

The SPOD modes for St → 0 are shown in figure 4, calculated using 1024 snapshots
and 75% overlap (36 blocks). The streaks are visualized and identified in physical space
based on the reconstructed streamwise perturbation velocity:

u′

x(x, r, θ) = Re(u′

xm
(x, r)exp(−imθ)). (3.1)

For m = 1, a well-defined streak is observed throughout the domain starting close to the
end of the potential core. In the m = 3 plot, streaks are seen upstream and downstream
of the potential core, however, at about x/D = [15, 20] the streaks are less dominant
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Figure 5: Cross plane at x/D = 5 of rolls and streaks computed via resolvent in figure
4. The contours for (a-d) present streaks with values set at ±0.75||qux

(x/D = 5)||∞, red
and blue respectively. (a,b) and (c,d) correspond to m = 1 and m = 3 respectively, while
the overlaid vectors represent the forcing rolls in (a,c) and response rolls in (b,d).

and appear to slightly rotate. The slight rotation is likely an artifact of imperfect SPOD
convergence at St → 0, as approaching zero frequency still includes small, but non-zero,
frequencies. Interestingly, the slight rotation of these modes are rather similar to energetic
POD modes found by Freund & Colonius (2009).

Further evidence these structures are due to the lift-up mechanism is shown by the
yellow-green isosurfaces of streamwise vorticity included in figure 4. The presence of
streamwise vorticity, or rolls, and their particular location, situated precisely between
positive and negative streamwise velocity contours, are indicative of the lift-up mecha-
nism. The observation of such streamwise vortices in jets has previously been reported
by a number of authors, Liepmann (1991); Martin & Meiburg (1991); Paschereit et al.
(1992); Liepmann & Gharib (1992); Arnette et al. (1993); Alkislar et al. (2007), while
both Citriniti & George (2000) and Caraballo et al. (2003) noted that large streamwise
velocity accompanied such vortices. Given our current observations, and those of resolvent
analysis to follow, we suggest these streamwise vortices previously observed are linked to
the lift-up mechanism.

Performing a global resolvent analysis m = 1, 3 at St = 0 allows for further under-
standing of the forcing mechanisms which give rise to the observed behavior of the SPOD
modes. We begin by comparing response mode shapes of SPOD and resolvent analyses,
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as well as the associated resolvent forcing, in figure 4 for both azimuthal wavenumbers. In
each figure we see the canonical lift-up progression. The optimal forcing acts on the cross-
stream components upstream at the nozzle, with associated streamwise vorticity fωx

, in
order to optimally generate rolls, ωx. The rolls, in turn, give rise to streamwise velocity
responses, ux , i.e. streaks. The spatial location of the forcing and responses are correctly
inline with the description of the lift-up mechanism in wall bounded flows (Monokrousos
et al. 2010). Further, the responses in both streamwise vorticity and velocity shown by the
SPOD modes in figure 4 agree quite well with the resolvent findings for both azimuthal
wavenumbers.

Although the 3D representation of figure 4 presents many of the salient characteristics
of the lift-up mechanism, a 2D cut at x/D = 5 shown in figure 5 highlights the radial
and azimuthal velocity components of forcing and response rolls with respect to streaks.
In figure 5 (a,c) the forcing velocity vectors show the lifting of high/low-speed fluid from
the center/outer jet inducing positive/negative streaks, respectively. More precisely, the
forcing rolls show strong radial velocities coincident with maximum streamwise response
for both azimuthal wavenumbers, while strictly azimuthal velocities are located exactly
between positive and negative streaks. It is worth noting that this observation has
implications to results found via the resolvent sensitivity analysis and will be discussed
further in § 4.

Additionally, the forcing rolls give rise to response rolls shown in figure 5 (b,d)
presenting similar velocity characteristics as the forcing vectors, however, the response
vectors show the vortices are centered near the jet, a quality not shared with the
forcing vectors. Again, it is these response vortices that are likely the components of
the streamwise vortices observed by the numerous authors referenced earlier.

Figure 6 shows quantitative comparisons between the compressible energy inner prod-
uct computed at each streamwise position for SPOD (St → 0) and resolvent (St = 0), for
the first 5 resolvent/SPOD modes. It is worth noting that the full compressible energy
inner product of the 5 variables over the streamwise direction is unity by construction.
The curves from SPOD and resolvent are trend-wise similar, with noise in the SPOD
results due to statistical convergence issues. The streamwise velocity response (i.e.
streaks) is clearly the dominant response variable throughout the domain for both the
resolvent and SPOD analyses. For the forcing terms, the radial and azimuthal velocities
dominate throughout the domain by two orders of magnitude and correspond to the
streamwise vorticity (i.e. rolls). Both the forcing and response energy curve observations
provide strong evidence of the lift-up mechanism.

The streaky structures identified above are reminiscent of the dominant kinetic-
energy-based structures educed by Freund & Colonius (2009) using snapshot POD from
numerical simulations and by Citriniti & George (2000) performing local SPOD (from
a hot-wire array) three diameters downstream of a round jet nozzle, but they had not
been linked to the lift-up mechanism in the previous studies. Based on global energy, we
find that m = 1 is the most amplified azimuthal wavenumber, with spatial development
downstream of the potential core where the shear layers merge. Later, in § 5 we show that
streaks of higher azimuthal wavenumbers are also present near the nozzle, but they are
considerably less energetic such that they can only be identified with localized analysis
(§5).

The generation of streaks through the lift-up mechanism is also observed for the
transonic, M = 0.9, and supersonic, M = 1.5 cases, showing similar trends. SPOD
and resolvent analyses results for both additional jets are shown in appendix A.
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Figure 6: Component-wise energy evolution in the streamwise direction of the streaks
for St = 0 and m = 1 and 3. Optimal response (top) and forcing (bottom) energy from
resolvent (solid) and SPOD (dotted) analyses as a function of streamwise coordinate
from the nozzle exit.

4. Interplay of lift-up, Kelvin-Helmholtz, and Orr mechanisms

Figure 7 a) summarizes the regions of dominance between the KH, Orr, and lift-up
mechanisms as a function of frequency and azimuthal mode number. KH is dominant
along the frequency axis (i.e. m = 0) for St > 0.3, while lift-up is dominant along the
azimuthal wavenumber axis (St = 0) for m > 0. Orr, on the other hand, is always present
and appears as the dominant mechanism only when KH is not dominant (St < 0.3)
and lift-up is absent (m = 0). To further elucidate the physics of these mechanisms, we
compare their SPOD and resolvent representations at the specific wavenumber-frequency
pairs (combinations of m = [0, 1, 3] and St = [0.05, 0.2, 0.6] denoted by white circles on
the figure.

Figure 7 shows the streamwise velocity of the most energetic/amplified SPOD (b)
and resolvent response (c) modes and resolvent forcing (d) modes for these 9 azimuthal
wavenumber-frequency pairs. Figures 8 and 9 show the associated radially integrated
energy plots for SPOD and resolvent response modes and resolvent forcing modes,
respectively. Finally, sensitivity of the resolvent gain with respect to forcing and response
variables plotted for selected cases associated with KH, Orr, and lift-up mechanisms in
figure 10.

These plots are analyzed in what follows below. Overall, one can see that the resolvent
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Figure 7: Cartoon mechanism map (a), most energetic SPOD (b), resolvent response (c),
and resolvent forcing (d) modes for azimuthal wavenumbers m = [0, 1, 3] and frequencies
St = [0.05, 0.2, 0.6]. Streamwise velocity perturbation, u′

x, component is shown with
contours corresponding to ±0.5||u′

x||∞, with projection coefficients, |qsWq|, between the
full SPOD responses, qs, and resolvent responses, q, provided in c). The locations of the
white circles mirror the placement of the subsequent SPOD and resolvent analyses and
denote their location in the wavenumber-frequency space.

and SPOD analyses show significant agreement between the mode shapes and their
relative energy content, particularly for higher frequencies where KH low-rank behavior
is exhibited.

4.1. Kelvin-Helmholtz + Orr (St = 0.6, m = 0, 1)

At [m,St] = [0, 0.6], the response is dominated by the KH mode, which is spatially
unstable near the nozzle. These modes and their low-rank behaviour are also described
in Schmidt et al. (2018), with the exception that here the streamwise velocity component
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Figure 8: Streamwise evolution of component-wise energy for resolvent (solid lines) and
SPOD (dotted lines) analyses. The layout of the figure mirrors that of figure 7 with m = 3
represented in the first row followed by m = 1, 0, and the first column displaying the
lowest St increasing with columns to the right. Note that the truncated domains shown
in figure 7 are maintained for each m− St pair.

is shown rather than the pressure component. The structures near the nozzle are tilted
at an angle ∼ 45◦ and within a diameter they become vertically aligned, and there is a
90 degree phase shift at a critical layer where the apparent phase speed is equal to the
mean flow speed †. These observations provide evidence of a KH response. Once the KH
mode saturates, approximately 5 diameters downstream of the nozzle, the wavepacket
continues to tilt, reaching finally an angle of −45◦. The tilting phases are evidence of the
Orr mechanism (Tissot et al. 2017). Similar behavior is observed for m = 1 wavenumbers
at St = 0.6, for which the KH response is also dominant.

The energy curves for [m,St] = [0, 0.6] are also reminiscent of KH instability with
rapid, exponential growth, dominated by streamwise and radial velocity, starting from
the nozzle exit followed by saturation and decay by x/D ≈ 5. For nonzero azimuthal
wavenumbers, the azimuthal perturbation velocity is increasingly important. At this
frequency, forcing modes for all azimuthal wavenumbers are concentrated upstream with

† For global modes, the phase speed is estimated using the procedure in Schmidt et al. (2018)
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Figure 9: Streamwise evolution of component-wise energy for resolvent forcing modes.
The layout and streamwise extent of each plot is identical to figure 8.

the maximum forcing energy occurring within x/D 6 0.1 along the lip line. The forcing
decays by at least two orders of magnitude within the first two jet diameters. Although
the dominant response is KH for this frequency the shape for each of the forcing modes
are Orr-type, where structures lean against the direction of mean shear by an angle of
∼ 45◦ and are concentrated along the critical layer (Tissot et al. 2017). Meanwhile the
gain sensitivity (figure 10 a) ) is localized to the inner edge of the shear layer terminating
around the close of the potential core, with similar sensitivity to both nonzero velocity
components and their forcings. This is in contrast with the sensitivity map associated
with the Orr and lift-up mechanisms discussed next.

4.2. Orr (St → 0, m = 0)

For a fixed domain size, we expect the dominance of the Orr mechanism as the
frequency of the axisymmetric mode, m = 0, is reduced. Decreasing the frequency, the
KH mode becomes less unstable and the maximum amplification region moves further
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downstream. This behavior is observed as the frequency is reduced to St = 0.2, and
further to St = 0.05, for m = 0.

At [m,St] = [0, 0.05] the Orr mechanism is dominant. The response modes are spatially
distributed and possess a continuous turning from −45◦ to +45◦ throughout their
envelope. We still observe a phase change across the critical layer, however this behavior
is rather weak when comparing to the KH dominated modes described above (St = 0.6).
By contrast with KH, the response is less strongly amplified, peaking some 20 diameters
downstream and only weakly damped thereafter. The forcing is entirely dominated by
streamwise velocity, and is spatially distributed; for m = 0 and St = 0.05 it has nearly
constant amplitude up to x/D = 20. Finally, the sensitivity map (figure 10 b) ) shows
high sensitivity far downstream and near the centerline, and is dominated by a sensitivity
of the streamwise velocity to forcing of the streamwise velocity. Again, this behavior can
be contrasted with the lift-up mechanism discussed next.

4.3. Lift-up + Orr (St → 0, m > 0)

For m 6= 0, as we approach zero frequency, the wavepackets show a different structure
from the KH dominated regimes. While the response mode structures are tilted at +45◦

and the forcing modes are tilted at −45◦, as they are for the Orr mechanism, the energy
curves provide evidence of lift-up. For [m,St] = [3, 0.05] the streamwise velocity is,
by approximately an order of magnitude, larger than the other components, whereas
for [m,St] = [0, 0.05] (i.e. Orr only) both streamwise and radial velocities contribute
similarly to the total mode energy. The significance of additional streamwise velocity
energy content is directly associated with the presence of streaks. The forcing, by contrast,
shows a dominance of radial and azimuthal velocities, producing streamwise vorticity. In
tandem, these observations describe the lifting of fluid, via cross-plane rolls, from high-
and low-speed regions of the jet to the fluctuating streamwise-velocity response.

The lift-up mechanism persists to nonzero frequencies, where the streaks are not
stationary, and rotate about the jet. Evidence of streaks are seen for all nonzero wavenum-
bers up to frequencies of St ≈ 0.2. As the streaks slowly rotate about the jet, their
intersection with a 2D plane presents mode shapes similar to the Orr-type mechanism,
which may explain why they were not observed in earlier studies.

Further evidence for the lift-up mechanism is given by the sensitivity map (figure 10
c) ). Unlike KH and Orr, the largest sensitivity is found in radial forcing to streamwise
response along with a spatial region of sensitivity that is unique when compared to
KH and Orr. The shift of sensitivity to the radial-forcing, streamwise-response pair,
is expected for the lift-up mechanism as the radial forcing component is responsible
for lifting high- and low-speed regions of the jet to the streamwise response. The
sensitivity also has a varied spatial location and is found lifted off the centerline, in
both upstream and downstream locations. Together, these two observations indicate the
lift-up mechanism is a dominant mechanism found in turbulent jets, providing significant
contributions to the perturbation energy of the flow at low frequency, non-zero azimuthal
wavenumbers.

One additional, and surprising, result of the sensitivity analysis for lift-up is the lack of
sensitivity for the streamwise response to the azimuthal forcing, a forcing component that
is necessary for the presence of forcing vortices. The large sensitivity to the radial forcing
and zero sensitivity in the azimuthal forcing may be explained by the azimuthal location
of the radial and azimuthal forcing components with respect to the streaks. Sensitivity
to the gain is defined as the real of the outer product of the forcing and response,
effectively presenting largest sensitivities for forcings and responses which are coincident
in space. This is observed in figure 5 (a,c) in § 3.3 where the largest regions of radial



17

a) m = 0, St = 0.6. KH dominated.

b) m = 0, St = 0.05. Orr dominated.

c) m = 3, St = 0. Lift-up dominated.

Figure 10: Resolvent-based spatial sensitivity plots for all 9 velocity combinations for
[m,St] = [0, 0.6] (a), [m,St] = [0, 0.05] (b), and [m,St] = [3, 0] (c). Contours are set for
each of the three plots by the maximum sensitivity, ±||f ◦ q∗||∞ , across all 9 velocity
pairs. Note for the KH case the domain is reduced to x/D = [0, 15] and r/D = [0, 2]
to highlight the upstream behavior, as no sensitivity is observed outside this domain.
The white, dotted lines provide reference to the envelope of the jet that is > 10% of the
maximum turbulent kinetic energy.

forcing are found to be coincident with the most energetic regions of the streaks (i.e. large
sensitivity), while the greatest azimuthal forcing regions are found where streaks have zero
amplitude (i.e. zero sensitivity). An analogous result, in terms of coincidence of forcing
and response, is seen for the KH sensitivity in figure 10 a). The KH response extends
many diameters downstream, however, the sensitivity is localized along the potential core
where both the forcing, located near the nozzle and along the shear layer, and response
are active. Overall, the sensitivity analysis to the resolvent gain provides a useful tool for
identifying mechanisms by distilling both the most important forcing components and
their spatial properties.

4.4. Mechanism Map

Following identification of the salient properties of each turbulent jet mechanism, we
propose the the mechanism map shown in figure 11, estimating the regions of mechanism
dominance in the wavenumber-frequency space for turbulent jets. The mechanism map is
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Figure 11: Mechanism map estimating the dominant mechanisms in the wavenumber-
frequency space of the most amplified resolvent response for turbulent jets. Black, red,
and blue represent the Orr, KH, and lift-up mechanisms, respectively.

determined through metrics of the relative sensitivity, S′

i,j , assessing the overall influence
one forcing-response pair has on the total sensitivity. From figure 10 b) and c) we see
that for Orr dominated responses the primary sensitivity is from the fux

◦ qux
pair, while

lift-up has primary sensitivity in fur
◦ qux

. KH dominated responses, on the contrary,
show an even mix of relative sensitivity between forcing-response pairs. Considering these
observations two metrics are defined, lift-up is determined to be dominant when S′

ur,ux
>

30% and Orr is dominant when S′

ux,ux
> 55%.

The resulting map in figure 11 presents a rather consistent estimate of the regions of
dominant mechanism for all three turbulent jets. For m = 0 the map presents the shift
in dominance of the KH at moderate Strouhal numbers to Orr at low frequencies, with
mechanism shifts occurring at St ≈ 0.3 for M = 0.4, 1.5 and St ≈ 0.45 for M = 0.9. For
the lift-up mechanism, the region of dominance is rather consistent among all three jets
and the region of lift-up dominance may be estimated as StLU 6 0.1m. It is important
to stress that this map is an estimate of mechanism dominance and mechanisms are
simultaneously present at the boundaries of dominant mechanism regions. As such, small
changes in the metric values will lead to small changes in the cutoff regions for each
mechanism, however, the general trends (i.e. Orr at low frequencies and the lift-up region
scaling as StLU 6 m) reported are maintained.

5. Local analysis for higher azimuthal modes

Up to now, all results have used the full computational domain extending to 30
diameters downstream. The dominant azimuthal wavenumber for much of the frequency
range is m = 1, and as St → 0 the dominant azimuthal wavenumber is m = 2. However,
the question rises as to what the dominant azimuthal wavenumber is at various locations
in the flow, particularly as St → 0.

To answer this question, we performed an SPOD analysis restricted to 2D cross-
stream planes throughout the range x/D = [0.5−30]. The three azimuthal wavenumbers
exhibiting the largest energy are plotted versus x/D in figure 12. We see that the
maximum energy for x/D = 30 is inline with the global analysis result, occurring at
an azimuthal wavenumber m = 2; however, as the plane moves upstream we see a trend
towards higher azimuthal wavenumbers. In fact, this trend scales as mmax ∼ 1/x + 1
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Figure 12: Wavenumbers of the three largest SPOD energies from the St → 0 SPOD bin
as a function of streamwise distance. Here SPOD was performed locally on 2D streamwise
cross sections and present a scaling of maximum azimuthal wavenumber as ∼ 1/x+ 1.

(i.e. the maximum wavenumber approaches 1). This scaling is inversely proportional to
the linear scaling of the shear layer of the jet, ∼ x (Schmidt et al. 2018), and has also
been reported from experimental observations of a turbulent Mach 0.4 jet by Nogueira
et al. (2019) for axial stations x/D 6 8. This suggests that the width of the shear layer
determines support for particular azimuthal wavenumbers as St → 0.

Considering figure 12, one can observe that a local analysis allows for the identifi-
cation of streaks of higher azimuthal wavenumbers. However, through the choice of a
domain, which encompasses many diameters, the energetic effect of any given azimuthal
wavenumber is integrated with all others. In our global analysis, we consider the Chu
compressible energy norm. This norm greatly weights behavior found downstream that
includes large spatial domains, which in turn contain significant amounts of energy. If
one were interested in analyzing the role of azimuthal wavenumber m = 10 streaks in
turbulent jets, it is difficult to converge a coherent SPOD mode that is only energetic at
x/D around 1.25 through the use of a global domain.

To isolate streaks related to azimuthal wavenumbers m = 5, 10 the truncated domains
x = [0, 2], [0, 5], [0, 10] are examined. Considering azimuthal wavenumbers m = [0, 15] we
perform SPOD analyses on the truncated domains and first report the SPOD spectra and
semi-discrete azimuthal wavenumber-frequency maps of relative energy (as a percentage)
among wavenumbers at each frequency in figure 13.

The SPOD spectra and wavenumber-frequency maps in figure 13 provide insight into
both the total energy and the overall influence of each wavenumber as the domain is
truncated towards the nozzle. The largest domain, x/D = [0, 10], shows energy peaking
at low frequencies and dominated by low azimuthal wavenumbers, similar to the global
spectrum in figure 3. We also immediately see that the peak azimuthal wavenumber at
St → 0 has shifted from m = 2 to m = 4, yet the high frequency behavior associated with
KH remains active for low azimuthal wavenumbers, same as the x/D = [0, 30] analysis.
Truncating the domain in half to x/D = [0, 5] presents a relative shift in total energy
towards higher frequencies and the KH content maintains its strong m = [0, 1, 2] behavior
at these frequencies, while the distribution of energy at low frequencies is now centered
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a) SPOD Spectra

b) Wavenumber-frequency maps

Figure 13: SPOD spectra of λ1 for truncated domains of x/D = [0, 2], [0, 5], [0, 10] left to
right respectively, for azimuthal wavenumbers m = [0, 15]. a) SPOD spectrum curves for
all wavenumbers. b) Semi-discrete wavenumber-frequency maps showing the distribution
of energy (as a percentage) among wavenumbers at each frequency with contour levels
at 0-20%.

at m = 6. The final truncation, x/D = [0, 2], shows a significant drop in energy at
low frequencies and higher frequencies dominate the energy spectrum, however the peak
maximum azimuthal wavenumber at low frequencies has shifted much higher, centered at
m = 10 near zero frequency. More importantly, the figures show a quite clear separation
between the lift-up mechanism’s influence in the low frequency portion of the energy map
versus the KH mechanism’s influence in higher frequency regions. This finding supports
the idea that the large energies seen at moderately low frequency (i.e. St = [0,≈ 0.3])
and non-zero azimuthal wavenumbers in the global sense are indeed a superposition
of mechanisms in which the lift-up mechanism is a significant provider of energy, and
perhaps, the largest contributor.

To determine the total energetic contribution of each azimuthal wavenumber in the
three truncated domains, figure 14 presents the integrated energy of λ1. Figure 14 a) gives
the total energy of each azimuthal wavenumber with integration bounds of St = [0, 1],
where each domain has m = 1 as the dominant wavenumber. This finding would usually
be associated with the KH mechanism, but splitting the integration into St = [0, 0.2] and
St = [0.25, 1] (figure 14 b) and c) ) shows the contrary. The low frequency integration
isolates energy due to the lift-up mechanism for each domain. This presents a rather
smooth, Rayleigh-like distribution of energy among azimuthal wavenumbers with peaks
greater than m = 1, inline with the findings of Cavalieri et al. (2013) found at the lip-
line for PIV planes x/D = [1, 1.5, 2, 2.5, 3]. Additionally, the nonzero azimuthal energy
peaks observed here also follow similar results of Citriniti & George (2000) and Freund &
Colonius (2009), however, the exact azimuthal wavenumber peaks vary compared to these
studies due to varying domains and norms used. The higher frequency integration then
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a)

b)

c)

Figure 14: Integrated energy of λ1 for each azimuthal wavenumber. a-c) present different
bounds of integration in frequency with St = [0, 1], St = [0, 0.2], and St = [0.25, 1]
respectively.

encompasses frequencies dominated with the KH mechanism, with all domains exhibiting
the largest energy at m = 1 and rapidly decaying for higher azimuthal wavenumbers.
Considering we have already shown that lift-up is active at low frequencies and that the
SPOD energy spectrum contains the largest energy contributions to the flow, the lift-up
mechanism is now shown to be the greatest contributor to turbulent jet dynamics.

To further show that the St → 0 SPOD energies in this truncated domain analysis
correspond to streaks, we show their 3D reconstructions of streamwise velocity and
streamwise vorticity for m = 5, 10 in figure 15. It is worth noting that for these SPOD
modes no special treatment for snapshot number or overlap was needed due to significant
reductions in downstream energy that had previously hindered convergence. Therefore,
SPOD parameters of 256 snapshots and a 50% overlap were employed.

All six plots shown for m = 5 and 10 display smooth streaks of streamwise velocity,
accompanied with streamwise rolls indicative of the lift-up mechanism, for all domains
considered. Azimuthal wavenumber m = 5 presents a case in which streaks are present
with significant energy for each truncated domain, and as such, give rise to rather well



22

Figure 15: Three dimensional reconstruction of the first SPOD mode for m = [5, 10]
(top and bottom, respectively) at three truncated domains x/D = [0, 2], [0, 5], [0, 10]
(left to right, respectively) for St → 0. streamwise velocity, u′

x, is denoted as red-blue
with isosurfaces ±25% the maximum streamwise velocity and streamwise vorticity, ω′

x,
is shown as yellow-green with isosurfaces as ±50% of the maximum streamwise vorticity.

defined streaks that inhabit the entire domain. For the m = 10 streaks with truncated
domains x/D = [0, 2] and [0, 5], both streamwise velocity streaks and streamwise vorticity
rolls are easily identified. However, the x/D = [0, 10] domain gives a differing behavior. In
the upstream region of the domain the streaks from the smaller domains are still readily
present, however, another low-frequency, slowly-rotating streak enters towards the end
of the domain. This can be attributed to the various domain and convergence issues
described earlier, where a larger domain introduces additional energetic structures and
noise which may be aliased into the St → 0 bin. Again, for the global results presented
earlier in the paper, this was averted by increasing the number of snapshots in the DFT
and reducing the bin sizes. Nevertheless, these results show that although high azimuthal
wavenumbers do not appear to provide significant energy to the full flow field energy (e.g.
figure 3), their energetic impact is significant in the near nozzle region and is a result of
the lift-up mechanism.

6. Conclusions & Outlook

We have extended the linear resolvent and data-driven SPOD analyses of turbulent
jet mean flow fields to the zero-frequency limit. The main result is a confirmation and
extension of the local analysis of Nogueira et al. (2019), namely the identification of
the lift-up mechanism as an important amplifier of disturbances in turbulent jets. We
found lift-up responsible for the generation of streamwise elongated structures, known
as streaks, at low frequency, nonzero azimuthal wavenumbers for turbulent round jets at
Mach numbers 0.4, 0.9, and 1.5. At higher frequencies, KH becomes the globally dominant
mechanism, and the Orr mechanism is active over all frequencies but plays a subdominant
role at those frequencies and azimuthal wavenumbers where lift-up and KH are active. For
all regimes, there is a reasonable agreement between the resolvent analysis and SPOD
modes from the associated LES database, confirming that the theoretical mechanisms



23

are active (and dominant) in the turbulent regime. This agreement is predicated on the
addition of an eddy viscosity model in the linear resolvent Morra et al. (2019); Pickering
et al. (2019). While the simple model we employed suffices to establish the link between
theory and observation, further refinements to the model would be required to establish
a resolvent analysis that is predictive of turbulence structure.

Streaks observed using SPOD show similar structure to (space-only) POD modes
reported by Freund & Colonius (2009) and SPOD modes with limited spatial extent by
Citriniti & George (2000), and predicted by resolvent analyses for m > 0 at St = 0. Both
SPOD and resolvent modes provide significant qualitative agreement in both streamwise
vorticity and streamwise velocity, which are related to rolls and streaks, respectively. The
resolvent results show optimal forcing in the form of streamwise vortices ( rolls, fωx

) from
the nozzle exit decaying slowly downstream, followed by a response of streamwise vortices
(qωx

), and finally, further downstream appears a response of streamwise velocity (qux
),

or streaks. These characterizations of the flow, from both resolvent and SPOD, now link
multiple previous experimental and numerical observations in transitional and turbulent
jets of streamwise vortices (Liepmann 1991; Martin & Meiburg 1991; Paschereit et al.
1992; Liepmann & Gharib 1992; Arnette et al. 1993) and streaks (Citriniti & George
2000; Caraballo et al. 2003; Freund & Colonius 2009; Cavalieri et al. 2013) to the lift-up
mechanism.

An analysis of mode shapes, spatial energy content, and sensitivity maps allowed us to
characterize the portions of wavenumber-frequency space where the different mechanisms
are dominant. The behavior of the m = 0 response is unique, as axisymmetric streaks
cannot exist; rather the Orr response is dominant for low and high frequencies, with the
KH response dominating over an intermediate frequency regime centered on St = 0.6.
For non-axisymmetric modes, the lift-up mechanism, and resulting streak response, is
dominant at low frequencies, although with progressively higher wavenumber, these are
limited in spatial extent to nearer the nozzle exit. We find that the azimuthal wavenumber
of dominant streak is inversely proportional to shear layer widthand scales with ∼ 1/x.
For the lower azimuthal wavenumbers, the lift-up response is overall most energetic
structure in the global jet (over all frequencies).

The presence of the lift-up mechanism in turbulent jets suggests further investigation
of the resulting dynamics, and its potential impact for control of quantities such as jet
noise. Considering streaks are highly energetic structures it is likely that their behavior
(i.e. breakdown and regeneration) have significant impact on other structures and phe-
nomenon in turbulent jets, such as Orr and KH wavepackets and qualities associated
with these structures’ intermittency. In fact, noise reduction has been accomplished via
the introduction of streamwise vortices at the nozzle exit using tabs (Samimy et al.
1993; Zaman et al. 1994; Zaman 1999) and chevrons (Saiyed et al. 2003; Callender et al.
2005; Alkislar et al. 2007). Recently, Rigas et al. (2019) showed the presence of both
chevron induced streamwise vortices and their accompanying streaks in the baseflow
of a turbulent, chevron jet, while Marant & Cossu (2018) have reported the ability
of streaks to stabilize the KH instability for a planar laminar shear flow. Considering
past computational work, using PSE, by Sinha et al. (2016) demonstrated the ability of
chevrons to stabilize KH wavepackets, the dominant mechanism in jet noise Jordan &
Colonius (2013), it is now likely that lift-up and streaks are the mechanism behind such
jet noise reduction techniques.
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Figure 16: Modal energy from SPOD and resolvent analyses of a Mach 0.9 round jet.
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Appendix A. Transonic and supersonic jets

This section presents similar results supporting the presence of the lift-up mechanisms
and streaks for Mach 0.9 and Mach 1.5 turbulent round jets. We first show the azimuthal
wavenumber-frequency maps for each of the jets in figure 16 and figure 17. For both
figures, there is significant qualitative agreement between the SPOD energies and the
resolvent gains.

In the Mach 0.9 jet we see a small spike at St ∼ 0.4 for the resolvent analysis due to
trapped acoustic modes, that is slightly over predicted compared to SPOD. Another small
discrepancy between SPOD and resolvent is the additional influence of the m = 0 mode
in the resolvent analysis when compared to SPOD. However, both show large energies at
low frequencies and display behavior similar to the Mach 0.4 jet with energy peaking at
m = 2 as St → 0.

For the Mach 1.5 jet there is a similar over-prediction of the resolvent m = 0 case
when compared to SPOD. Despite this, the remainder of the resolvent map follows SPOD
characteristics quite well. For high frequencies, energy is rather equally distributed among
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Figure 17: Modal energy from SPOD and resolvent analyses of a Mach 1.5 round jet.

the azimuthal wavenumbers and at low frequencies both analyses display high energy
behavior similar to the Mach 0.4 jet with energy peaking at m = 2 as St → 0.

We show the 3D reconstructions of the SPOD modes for m = 1, 3 shown in figure 18
using 1024 snapshots and 75% overlap. All four plots show streaks of streamwise velocity
response along with the associated streamwise vorticity, with the clearest descriptions
shown for the m = 3 cases. The m = 3 wavenumber plots for both jets present streaky
structures paired with streamwise vorticity rolls placed perfectly between each streak.
The m = 1 plots are not quite as appealing, but both plots present streaks in streamwise
velocity and are also paired with streamwise vorticity placed between each streak.

Finally, we show the resolvent analysis at St = 0 for both jets and wavenumbers
m = 1, 3 in figure 19. Here we show the same behavior as previously described for the
Mach 0.4 jet. Forcing in the form of streamwise vorticity begins upstream near the nozzle,
creates responses of streamwise rolls, which lead to lift-up and large streamwise velocity
responses. Considering all of the above evidence in Mach 0.9 and 1.5 jets, we conclude
that the lift-up mechanism is present in all turbulent jets.

Appendix B. SPOD and resolvent semi-discrete energy maps for

Mach 0.4

Figure 20 gives the semi-discrete, continuous in frequency and discrete in azimuthal
wavenumber, representation of figure 3.
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m = 1 a) Mach 0.9 m = 3

m = 1 b) Mach 1.5 m = 3

Figure 18: Three dimensional reconstruction of the first SPOD mode (streamwise velocity,
u′

x, red-blue, streamwise vorticity, ω′

x, yellow-green) as St → 0 for m = 1 (left column)
and m = 3 (right column) using isosurfaces of ±50% of the maximum streamwise velocity
and isosurfaces of ±25% of the maximum streamwise vorticity, with the exception of the
Mach 1.5, m = 1, case where red-blue isosurfaces are instead ±30% of the maximum
streamwise velocity.

m = 1 a) Mach 0.9 m = 3

m = 1 b) Mach 1.5 m = 3

Figure 19: Global resolvent forcing and response for m = 1 (left) and m = 3, (right)
at St = 0. The streamwise forcing vorticity is shown in magenta-cyan with isosurfaces
±0.05||fωx

||∞ for m = 1 and ±0.2||fωx
||∞ for m = 3, streamwise response vorticity is

shown in yellow-green with isosurfaces ±0.5||qωx
||∞, and streamwise response velocity is

shown in red-blue with isosurfaces ±0.25||qux
||∞.
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Figure 20: Modal energy from SPOD and resolvent analyses of a Mach 0.4 round jet,
shown here in semi-discrete form.
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