
Lifting 3D Manhattan Lines from a Single Image

Srikumar Ramalingam and Matthew Brand

Mitsubishi Electric Research Labs (MERL), Cambridge, MA, USA

{ramalingam,brand}@merl.com

Abstract

We propose a novel and an efficient method for recon-

structing the 3D arrangement of lines extracted from a sin-

gle image, using vanishing points, orthogonal structure,

and an optimization procedure that considers all plausible

connectivity constraints between lines. Line detection iden-

tifies a large number of salient lines that intersect or nearly

intersect in an image, but relatively a few of these apparent

junctions correspond to real intersections in the 3D scene.

We use linear programming (LP) to identify a minimal set

of least-violated connectivity constraints that are sufficient

to unambiguously reconstruct the 3D lines. In contrast to

prior solutions that primarily focused on well-behaved syn-

thetic line drawings with severely restricting assumptions,

we develop an algorithm that can work on real images. The

algorithm produces line reconstruction by identifying 95%

correct connectivity constraints in York Urban database,

with a total computation time of 1 second per image.

1. Introduction

Consider Fig. 1(a) of an outdoor scene. Such man-made

structures predominantly consist of lines in three orthogo-

nal directions. It is easy to observe that several pairs of lines

intersect. However, this does not necessarily mean that the

corresponding 3D lines in the world also intersect. Lines

that share a common vanishing point are a trivial counterex-

ample; all appear to intersect at the vanishing point but none

intersect in world space, where they are parallel. Knowing

which apparent intersections correspond to real 3D inter-

sections would be highly informative about the scene’s 3D

geometry. In fact, by identifying a minimal set of such in-

tersections we can completely reconstruct the 3D lines up to

an unknown global scale. However, there are several chal-

lenges in employing this strategy to infer the 3D geome-

try of lines. The most notorious one is occluding edges in

the image producing several false intersections. Line de-

tection algorithms in real images often miss important lines

and produce spurious ones. Detected lines are often bro-

(a) (b)

(c) (d)

Figure 1. (a) A typical image of an outdoor scene. The detected

Manhattan lines and their intersections are shown on the image.

In all the figures shown in this paper, red, green and blue lines

denote the lines oriented along x, y and z directions respectively.

(b) Intersections from several pairs of lines are shown on the image

as squares. The pair of 3D lines corresponding to each one of

these also intersect in 3D space. We automatically detect such

intersections and use them as connectivity constraints to lift the

2D lines to 3D space as shown in two different perspective views

(c) and (d).

ken and cropped, obliterating evidence of intersections. In

this paper, we propose a method that addresses these prob-

lems by identifying a few real 3D intersections as shown in

Fig. 1(b) and use them as connectivity constraints to lift the

2D lines to 3D space. We show two perspective views of

the reconstructed 3D lines in Fig. 1(c) and Fig. 1(d).

1.1. Related Work

Single view 3D reconstruction is a well-studied but dis-

tinctly unsolved problem in computer vision. Most of the

techniques in this domain can be classified into purely ge-

2013 IEEE International Conference on Computer Vision

1550-5499/13 $31.00 © 2013 IEEE

DOI 10.1109/ICCV.2013.67

497

ometrical and semantically driven approaches. Geomet-

rical approaches have a lineage dating back a half cen-

tury [16, 20, 23, 27, 30]. The most popular approach is

based on labeling lines into convex, concave or occluding

lines. The line labeling problem is in general NP-hard and

several challenging line drawings were studied and novel

constraint satisfaction algorithms were developed to solve

the single view reconstruction problem. The algorithms

were primarily tested on synthetic line drawings and ulti-

mately proved too brittle for inputs derived from real im-

ages. Most of the other geometrical algorithms that show

promising results on real images rely on some kind of user

interaction [4, 26].

Recently, there has been a renewed interest in single

view reconstruction (SVR) problem as more holistic ap-

proaches are starting to emerge. Hoiem refers to this

as the geometric layout estimation where we classify the

image pixels into several classes like sky, buildings and

ground [12, 13]. This classification along with an es-

timation of surface orientations can produce 3D models

that are sufficient for several applications like synthesizing

walkthroughs, stereoscopic content generation for movies

and 3D context for object detection. Along with sev-

eral image features and weak assumptions on coplanarity

and collinearity, Saxena et al. [24] developed an algorithm

for depth estimation from a single image. Indoor scenes

are particularly challenging due to the presence of clutter.

Hedau et al. [11] approximated the room geometry using

a cuboid and proposed an algorithm that samples different

hypotheses and selects the best one. Being a severely ill-

posed problem, SVR has led to several novel ideas such as

the computation of orientation maps [18], inferring geom-

etry from human activities [8] and even physics-driven sta-

bility and mechanical constraints [9]. Recently Schwing et

al. [25] showed improvement in the performance of the in-

door layout estimation algorithm using efficient inference

techniques.

Most man-made scenes, both indoor and outdoor, sat-

isfy Manhattan world assumption [3]. Delage et al. [5]

used this assumption in an MRF framework to reconstruct

indoor scenes. Constraints based on Manhattan grammar

has been used for modeling buildings from aerial pho-

tos [28]. Our work is related to the geometrical constraints

used in [19, 7]. In their work, corners are classified into

concave, convex and occluding to build Manhattan worlds

from single and multiple images. Structures like rectangles

were detected in [10, 21], and they can be ordered accord-

ing to their depth [32]. Example-based approaches have

been used to reconstruct 3D scenes from line drawings [2].

Jain et al. [15] used connectivity constraints for reconstruct-

ing lines from multiple images. Recently, it was shown that

junction features can be extracted from real images using

an efficient voting scheme [22]. We use junctions for de-

signing penalty terms in a linear programming (LP) formu-

lation. However, our main focus is detecting intersection

points that occur from only a pair of lines, and these inter-

section points need not be junctions.

1.2. Contributions

The main contributions of this paper are as follows:

• We build a graph that models connectivity constraints

between nearby lines in real images.

• We use LP to lift the line segments in 3D space using

Manhattan world assumption [3].

• Junction features are used to design the penalty terms

in the LP.

• Our approach is computationally efficient taking about

1 second per image.

• We show automatic single view line reconstruction for

challenging real images.

2. Lifting 2D lines to 3D

Early approaches to the interpretation of line drawing

centered on labeling lines and detecting junctions [27, 29,

30]. Based on the orientations of the projected line seg-

ments in the image, junctions can be classified into an “al-

phabet” {L,T,Y,W,X}. In Fig. 2(a), we show the line

drawing of a tetrahedron with one truncated vertex. The

points A, B and C correspond to W junctions and the

points D, E and F correspond toY junctions. It is straight-

forward to detect and classify junctions in synthetic line

drawings. Once the junctions are detected, the incident lines

are labeled using four labels (+,−,←,→). As shown in

Fig. 2(a), + denotes convex lines, − denotes concave lines,

and the arrows (←,→) denote occluding lines. The direc-

tion of the occluding label indicates that the plane to its right

is the occluding plane. Although every line can take four

possible labels, the adjacent junctions restrict certain label-

ing. Based on this restriction, Huffman [14] and Clowes [1]

produced catalogs that provide all possible labeling for lines

adjoining a given junction. Existing constraint satisfaction

algorithms for the line labeling problem are generally suc-

cessful on most synthetic line drawings, except a few patho-

logical cases. Given the labeling, Sugihara proposed a lift-

ing procedure to decide whether a line drawing represents

a physically realizable polyhedral object or not. The ba-

sic idea is very simple: Using camera calibration, we know

the projection rays for every pixel in the image. The line

labels and junctions provide many constraints. For exam-

ple, the quadruplet (A,B,E,D) lies on a single plane. The

line labeling forces the point D to be closer to the camera

than the point A. Such constraints can be written in the

form of linear inequalities and if the linear program has a

498

feasible solution, then the line drawing is physically real-

izable. This implies that the 3D points can be lifted along

the projection rays to form a physically realizable polyhe-

dron as shown in Fig. 2(b). By studying the rank of this

linear system, we can also understand if a line drawing can

have multiple 3D interpretations. Sugihara’s solution works

for trihedral line drawings, where only three planes can in-

tersect at a point. Whiteley extended Suhihara’s approach

to general line drawings using combinatorial structures like

matroids [31].

In our work, we also produce a system of linear inequal-

ities to lift the 3D points along the projection rays. Our for-

mulation is quite different than Sugihara’s because the real

world images pose a completely different set of challenges

that are hard to be accurately modeled using only geomet-

rical and combinatorial structures. In real images, it is not

easy to know which 3D points lie on a plane and which

don’t. Due to missing and spurious lines, we can not detect

junctions with very high confidence. Therefore we cannot

use planarity constraints or hard inequalities from detected

junctions. Furthermore, real images have many false inter-

sections that will always lead to infeasible solutions. To

address these challenges, we do not derive any hard con-

straints from apparent junctions. Instead, evidence about

junctions is used to inform the penalty terms in an LP to

obtain a consistent 3D structure that “breaks” the smallest

number of infeasible apparent junctions.

Figure 2. Left: Line drawing of a physically realizable truncated

tetrahedron. Middle: The lifting procedure where the 3D points

are computed on the projection rays satisfying all the constraints

from projections and junctions. Right: This line drawing is physi-

cally not realizable because the edges joining the two triangles do

not concur at a point.

3. 3D Manhattan Line Reconstruction

3.1. Camera Alignment

Our goal is to recover the 3D orthogonal line structure of

a scene from an image. It is convenient to work in the world

coordinate system where every 3D line is aligned along one

of the three orthogonal axes. To achieve this, we compute

the camera orientation with respect to the world and per-

form the necessary rotation, as per [3, 17]. First, we com-

pute the three vanishing points vpx, vpy and vpz using the

detected lines. Using two of the three vanishing points, we

can compute the rotation R between the camera to the world

coordinate system. This rotation is used to orient the cam-

era rays such that the 3D line segments we reconstruct are

aligned with the world. Once we compute the 3×3 camera

matrix K, every pixel pi in the image corresponds to a 3D

projection ray in the world coordinate system that is given

by the unit vector: di = RK
−1

(

x y 1
)T

. Let dix,

diy and diz denote the x, y and z components of the 3×1

direction vector di.

3.2. Constraint Graph

We consider connectivity constraints between two line

segments, if the shortest distance between them is less than

a threshold. We consider two types of connectivity:

• Two orthogonal lines can (be extended to) intersect at

a point, which we refer to as the intersection.

• Two collinear lines can (be extended to) meet at a

point, which we refer to as incidence. As shown in

Fig. 3, we can choose any point collinear to the lines

as the incidence.

The intersections and incidences basically provide the nec-

essary coupling constraints to lift the 2D lines to 3D space.

In addition to merging broken line segments, the incidence

relationship can also connect two lines coming from two

different objects that are collinear in the world. Such re-

lationships are essential to build a large connected graph.

However, accidental collinearities are fairly common in real

images. This is not a problem because our LP formulation

is designed to handle constraints that may not be true, by

using penalty terms based on the junction features.

3.3. Linear Program

We encode the scene interpretation problem in an LP

as follows: Let n be the number of lines in an image and

li, i ≤ n denote the ith line. We can represent the intersec-

tion and incidence relationship using a graph G = (V, E)
where the vertices V = {1, 2, ..., n} represent the lines and

the edges (i, j) ∈ E represent possible intersections or in-

cidences between lines li and lj . For example, in Fig. 3(a),

we show four lines l1, l2, l3 and l4. These lines lead to

three intersections I12, I13 and I23. Note that the intersec-

tion can happen between any two lines that belong to two

different orientations. Accordingly, the lines l4 and l2 can

intersect if the shortest distance between them is less than

a threshold. Lines l1 and l4 are collinear and they lead to a

point of incidence I14. As shown in Fig. 3(b), the vertices

and edges of the graph are given by V = (1, 2, 3, 4) and

E = {(1, 2), (1, 3), (1, 4), (2, 3)} respectively.

The 3D point corresponding to every pixel pi lies on its

projection ray and it can be represented by λidi, where λi

499

(a) (b)

Figure 3. (a) We consider four lines in the image space denoted by

l1,l2,l3 and l4 that produce three intersection points I12, I13 and

I23. For a pair of nearby collinear lines, we use a point that is

collinear to both the lines as a point of incidence I14. (b) We build

a constraint graph where all the lines in the image are the vertices

and all the intersections and incidences are edges.

Figure 4. We show the intersection of two lines li and lj . The

projection rays for two image pixels pi and pj , lying on lines li
and lj respectively, are also shown. The 3D points corresponding

to these image pixels can slide anywhere on its projection rays

and the two unknown parameters (λi, λj) denote the distances of

these points from the camera center (O). The directions of these

two points are given by di and dj . We parametrize a 3D line using

one of the end points. As this point moves along the projection ray,

the corresponding 3D line slides while maintaining its Manhattan

orientation Di. The distance between the two 3D lines is given by

sij .

is an unknown depth parameter that is equal to the distance

of the 3D point from the camera center. In general, to lift an

image line, we require two parameters to reconstruct both

its end points in 3D space. However, reconstructing one

point is sufficient to recover the other one under Manhattan

world assumption. Let pi be the pixel corresponding to one

of the end points of the line li. We use a single depth pa-

rameter λi to denote the distance of this end point from the

camera center. Accordingly, the 3D point λidi encodes the

position of the 3D line corresponding to line li. In Fig. 4,

we show two lines li and lj that intersect. Let the Manhattan

direction of a line li be given by Di where Di ∈ {x, y, z}.
One can see that by varying the λi parameter we can slide

the 3D line along the projection ray using one of its end

points while maintaining the Manhattan direction Di. With

respect to the constraint graph G = (V, E), we have one

unknown λi parameter for every vertex i ∈ V . Every inter-

section or incidence relationship indicates that the two lines

should intersect or be collinear. Each edge in the graph rep-

resents a potential constraint between two lines. Our goal is

to find the unknown depth parameters, such that we satisfy

the maximum number of such constraints as shown in the

following optimization problem:

min
λi

∑

(i,j)∈E

(||sij ||0)

s.t |λidia − λjdja| ≤ sij , a ∈ {x, y, z} \ {Di,Dj}

λi ≥ 1, i ∈ V.
(1)

From a single image, the reconstruction is only possible

up to an unknown global scale. The constraints λi ≥ 1 en-

sures that the line segments are at least unit distance from

the camera and also in front of the camera. We have two

inequalities for every collinearity constraint because the set

{x, y, z} \ {Di,Dj} has two elements given Di = Dj . Ac-

cordingly, we have one inequality for the orthogonality con-

straint since Di �= Dj . We have one slack variable sij for

every constraint. As shown in Fig. 4, minimizing the L0
norm of the slack variable sij is equivalent to depth-shifting

and depth-bridging the smallest subset of 3D lines to make

the scene graph connected and consistent in 3D.

Since this L0 norm minimization is NP-hard, we relax

the problem to a sparsity-promoting L1 norm and solve

for a minimum-weight set of depth shifts and bridges that

makes the scene graph 3D-consistent:

min
λi

∑

(i,j)∈E

(||wijsij ||1)

s.t |λidia − λjdja| ≤ sij , a ∈ {x, y, z} \ {Di,Dj}

λi ≥ 1, i ∈ V.
(2)

The weight parameters wij in the objective function present

an opportunity to incorporate more evidence from the im-

age, which is obtained from junction features and will be

explained in Sec. 3.4. The LP provides a solution for all

slack variables sij . For every edge (i, j) the slack vari-

ables sij give us the minimum depth separation between

line i and line j needed to obtain the lowest-cost globally

consistent 3D interpretation of the scene. To then extract a

minimal-cost fully-connected 3D structure from the LP so-

lution, we use each slack value sij as the edge cost and com-

pute the minimal spanning tree (MST) as shown in Fig. 5(c).

The depth parameters λi can be computed directly from the

linear system that corresponds to the tree-structured graph.

The various stages of the algorithm are shown in Fig. 5.

3.4. Junction-breaking Costs

Under the Manhattan world assumption, an efficient vot-

ing scheme was introduced recently for computing the junc-

500

(a) (b) (c) (d) (e)

Figure 5. The various stages of our automatic single view line reconstruction algorithm. (a) Given an input image, we extract lines, compute

vanishing points and cluster the lines according to three principal orientations. In (b), we show the intersections of the Manhattan lines in

the constraint graph . We solve the LP and use the solution to select a subset of constraints using a minimal spanning tree (MST) algorithm.

The selected subset is shown in (c). Using the MST we compute the λi parameters using a linear system. These depth parameters are

sufficient to lift the 2D lines to 3D space in the world coordinate system. Two different perspective views of the reconstructed lines are

shown in (d) and (e).

tion features [22]. In our work, we use these junction fea-

tures for designing the penalty terms in the LP. The weight

parameters wij in Eqn. 2 corresponds to the penalty we

impose if the connectivity constraint corresponding to the

edge (i, j) is violated and relaxed to a depth-bridge. These

weights are modeled as a function of junction features.

Since junctions play an important role in our work, we show

Fig. 6 to illustrate the idea behind junctions and how to com-

pute them. For every pixel in the image, there are 6 possi-

ble oriented regions with respect to the vanishing points as

shown in Fig. 6. These orientations are denoted by the set

S = {−→x ,←−x ,−→y ,←−y ,−→z ,←−z }. Every subset A ⊆ S, |A| ≥ 2,
denotes a junction and one can compute a function F(A, p)
for every possible subset A and pixel p. The value of the

function gives a score to indicate the presence of a junc-

tion A at pixel p. For example, the Y junction at pixel p in

Fig. 6 corresponds to the set {−→x ,−→y ,−→z }. If the function

has a high value for a particular junction, then it is very un-

likely that it may have a high score for a different junction.

In Fig. 7, we show pixels where there is non-zero junction

scores for various types of junctions. The distribution of

junctions depends on the scene geometry. It is easy to ob-

serve the following behavior from junctions on Manhattan

scenes.

• L and X junctions occur on planar surfaces.

• T junctions occur on both planar surfaces and occlud-

ing boundaries.

• Y and W junctions are common on convex and con-

cave edges.

Let J (p) denote the type of junction at pixel p. Let p de-

note the intersection point that maps to edge (i, j) in the

constraint graph. In the LP, we set the weight for wij as

shown below:

Figure 6. The basic idea in computing junction features [22]. For

a pixel p, we consider 6 oriented regions ({−→x ,←−x ,−→y ,←−y ,−→z ,←−z })
with respect to the three vanishing points vpx, vpy and vpz . De-

pending on the presence of lines in each of these 6 regions, we can

detect different junctions. We show a Y junction at pixel p and a

T junction at pixel q.

wij=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

Ch if J (p)=Y or W

Cm if J (p)=X

0 if J (p)=T

1 otherwise.

Ch and Cm are constants that are scaled according to the

quality of visual evidence for each junction. We did not give

any preference to L junctions because T can sometimes be

detected as L due to missing lines.

4. Experiments

Dataset and Parameters: We tested our algorithm on

images from York Urban database [6]. The images are of

size 640×480 and the camera calibration is included in the

database. We considered intersection points between two

line segments if the minimum distance between the line seg-

ments is less than 40 pixels. The collinearity constraint is

considered for lines that are separated by as much as 1/4

of the image. After the line detection, we find candidate

connections between lines by finding intersections and in-

cidences. We then solve the LP and compute its MST to

find the largest connected component in the constraint graph

and reconstruct only the lines in this component. We could

501

Figure 7.We show the prominent junctions detected in two outdoor

images. First column displays L junctions. The second displays T

junctions. The third column displays X junctions, while the last

column displays both Y and W junctions.

also reconstruct other connected components up to different

scale factors. The results shown and evaluated in this paper

are based on the maximum connected component. Based on

the detected junctions we used Ch = 10 and Cm = 5. The
average statistics for the constraint graph is given in Table 1.

Quantitative Evaluation: We used two different meth-

ods for quantitative evaluation. In the first method, we man-

ually marked the correct and incorrect constraints in 93 im-

ages in York Urban database. We identify a minimum num-

ber of edges (constraints) to unambiguously lift the lines

to 3D space using a minimum spanning tree (MST) algo-

rithm. The quantitative evaluation is based on the number

of incorrect constraints with respect to the total number of

constraints in the MST as shown in Fig. 8. The mean error

is 4.81%.

Our second method measures how well our algorithm

obtains a globally consistent interpretation of the visual ev-

idence. Recall that our goal is to identify a maximal set of

pairwise constraints that spans the detected lines and sup-

ports a 3D reconstruction without error (ignoring small VP,

line, and calibration errors). This is NP-hard, so we con-

struct a convex relaxation using the L1 optimization of the

LP to bound the (intractable) L0 optimization of the number

of consistent constraints. The LP computes the λi parame-

ters and obtains line reconstruction. We also compute the λi

parameters using the linear system based on the constraints

identified by the MST algorithm. A geometric match be-

tween the (relaxed) LP-based reconstruction and the (exact)

MST-based reconstruction is a proof that the LP has found

a globally consistent interpretation of the evidence with a

fully connected set of completely satisfied geometric con-

straints. In 87 out of 102 images, the maximum disagree-

ment between results of the spanning tree reconstruction

and the results of the LP reconstruction was less than 5%

of the total induced depth of the scene.

Qualitative Evaluation: We show the line reconstruc-

Mean Value

Detected lines 235

Lines in max. connected component 152

Intersections 659

Incidences 27

Table 1. The average statistics for York Urban Database.

tion results in Fig. 9. For qualitative evaluation, we also

tested images from Flickr. The camera parameters for Flickr

images were obtained using vanishing points. Most of the

reconstructions looked correct when viewed with a VRML

viewer. The VRML models are included in the Supple-

mentary Materials. A few challenging cases are shown in

Fig. 10.

Figure 8. Quantitative Evaluation: Using the minimum spanning

tree (MST) algorithm, we identify a minimum number of con-

straints to unambiguously lift the lines to 3D space. In this graph,

we show the percentage of incorrectly identified edges with respect

to the total number of edges in the MST.

Computation time: All the algorithmic components are

implemented in C++ and we use CVX for the LP. Overall,

the algorithm takes about 1 second per image.

5. Discussion

The success of recent methods can be attributed to the

use of important features [13, 18] and priors on the scene

geometry [11]. The classical approaches considered more

general and challenging polyhedral scenes [16, 20, 23, 27,

30]. Despite several decades of research, the generality of

such techniques posed severe challenges to their applica-

tion on real images. We rely on Manhattan assumption.

Otherwise, our problem formulation is also general and ap-

plies to any connected set of lines and these could come

from non-planar regions like lampposts or even cables run-

ning between buildings. However in practice, as shown in

Fig. 10, the performance degrades in the case of too much

clutter, which leads to missing and spurious lines. Con-

straints from classical algorithms [27] or features like geo-

metric context [13] can provide additional penalty terms in

our LP to decrease the number of incorrect edges.

Lee et al.[18] computes orientation map for every pixel

502

Figure 9. Line Reconstruction Results. The first column displays

the original images with the Manhattan lines marked. The second

and third columns show perspective views of the 3D lines. During

the visualization of the 3D lines, we used the same color as they

appear on the image.

using the nearby lines. We take a more global approach

Figure 10. Failure cases in the line reconstruction. In the first row,

missing lines along the z direction led to the collapse of the two

parallel planes to a single plane. In the second row, spurious lines

from the reflections on the shiny floor are mistaken for vertical

structure in the scene. In the third row, missing horizontal lines

on the background building deprives the LP of evidence that it is

a separate structure. In the last row, incorrect focal length esti-

mation using the vanishing points led to smaller estimates for the

depth parameters.

by considering all plausible connectivity constraints be-

tween lines and try to find a consistent interpretation of the

scene. Such an approach can improve the existing tech-

niques for orientation maps by giving evidence about oc-

cluding boundaries. In the case of scenes containing non-

Manhattan lines, the algorithm either ignores or approxi-

mates them using Manhattan ones as shown in Fig. 11. One

of the main advantages of our algorithm can be seen in the

reconstruction shown in Fig. 12. On a careful observation,

we can also see a second door on a parallel wall behind the

right wall. The line reconstruction can recover such par-

tially hidden structures. Due to planarity, smoothness, and

the opaqueness assumptions typically employed in many

approaches, existing techniques will find it difficult to un-

derstand such structures.

Acknowledgments: We thank J. Thornton, S. Miwa, J.
Yedidia, P. Torr, K. Alahari, A. Jain, J. Pillai, Y. Taguchi,
P. Varley, ACs and anonymous reviewers for useful discus-

503

Figure 11. Typical behavior of the line reconstruction algorithm

in non-Manhattan scenes. In the first row, MIT Stata center is

approximated with Manhattan 3D lines. In the second row, the

curved surface of the Colosseum is approximated by a single

plane.

Figure 12. Left: We show an image of an indoor scene with two

orthogonal walls. In the middle and right, we show two different

perspectives of the line reconstruction. Note that the line recon-

struction recovers the second door behind the right wall. Under-

standing such structures would be challenging for many existing

techniques. [Best viewed by zooming]

sions and constructive feedback.

References

[1] M. B. Clowes. On seeing things. AI, 1971.

[2] F. Cole, P. Isola, W. T. Freeman, F. Durand, and E. H. Adel-

son. Shapecollage: Occlusion-aware, example-based shape

interpretation. In ECCV, 2012.

[3] J. Coughlan and A. Yuille. Manhattan world: Compass di-

rection from a single image by bayesian inference. In ICCV,

1999.

[4] A. Criminisi, I. Reid, and A. Zisserman. Single view metrol-

ogy. IJCV, 2000.

[5] E. Delage, H. Lee, and A. Ng. Automatic single-image 3d

reconstructions of indoor manhattan world scenes. In ISRR,

2005.

[6] P. Denis, J. Elder, and F. Estrada. Efficient edge-based meth-

ods for estimating manhattan frames in urban imagery. In

ECCV, 2008.

[7] A. Flint, D. Murray, and I. Reid. Manhatten scene under-

standing using monocular, stereo, and 3D features. In ICCV,

2011.

[8] D. Fouhey, V. Delaitre, A. Gupta, A. Efros, I. Laptev, and

J. Sivic. People watching: Human actions as a cue for single

view geometry. In ECCV, 2012.

[9] A. Gupta, A. A. Efros, and M. Hebert. Blocks world re-

visited: Image understanding using qualitative geometry and

mechanics. In ECCV, 2010.

[10] F. Han and S.-C. Zhu. Bottom-up/top-down image parsing

with attribute grammar. PAMI, 2009.

[11] V. Hedau, D. Hoiem, and D. Forsyth. Recovering the spatial

layout of cluttered rooms. In ICCV, 2009.

[12] D. Hoiem, A. A. Efros, and M. Hebert. Automatic photo

pop-up. ACM Trans. Graph., 2005.

[13] D. Hoiem, A. A. Efros, and M. Hebert. Recovering surface

layout from an image. IJCV, 2007.

[14] D. A. Huffman. Impossible objects as nonsense sentences.

Machine Intelligence, 1971.

[15] A. Jain, C. Kurz, T. Thormahlen, and H. Seidel. Exploiting

global connectivity constraints for reconstruction of 3d line

segment from images. In CVPR, 2010.

[16] T. Kanade. A theory of origami world. AI, 1980.

[17] J. Kosecha and W. Zhang. Video compass. In ECCV, 2002.

[18] D. Lee, A. Gupta, M. Hebert, and T. Kanade. Estimating

spatial layout of rooms using volumetric reasoning about ob-

jects and surfaces. In NIPS, 2010.

[19] D. Lee, M. Hebert, and T. Kanade. Geometric reasoning for

single image structure recovery. In CVPR, 2009.

[20] J. Malik. Interpreting line drawings of curved objects. IJCV,

1987.

[21] B. Micusik, H. Wildenauer, and J. Kosecka. Detection and

matching of rectilinear structures. In CVPR, 2008.

[22] S. Ramalingam, J. Pillai, A. Jain, and Y. Taguchi. Manhattan

junction catalogue for spatial reasoning of indoor scenes. In

CVPR, 2013.

[23] L. Roberts. Machine perception of three-dimensional solids.

PhD thesis, MIT, 1963.

[24] A. Saxena, S. H. Chung, and A. Y. Ng. 3-D depth recon-

struction from a single still image. IJCV, 2008.

[25] A. G. Schwing, T. Hazan, M. Pollefeys, and R. Urtasun. Ef-

ficient structured prediction for 3D indoor scene understand-

ing. In CVPR, 2012.

[26] P. Sturm and S. Maybank. A method for interactive 3d re-

construction of piecewise planar objects from single images.

In BMVC, 1999.

[27] K. Sugihara. Machine Interpretation of Line Drawings. MIT

Press, 1986.

[28] C. Vanegas, D. Aliaga, and D. Benes. Building reconstruc-

tion using manhattan-world grammars. In CVPR, 2010.

[29] P. Varley. Automatic Creation of Boundary-Representation

Models from Single Line Drawings. PhD thesis, Cardiff Uni-

versity, 2003.

[30] D. Waltz. Generating semantic descriptions from line draw-

ings of scenes with shadows. Technical Report, MIT, 1972.

[31] W. Whiteley. A matroid on hypergraphs, with applications

in scene analysis and geometry. Discrete and Computational

Geometry, 1989.

[32] S. Yu, H. Zhang, and J. Malik. Inferring spatial layout from a

single image via depth-ordered grouping. In Proc. Workshop

on Perceptual Organization in Computer Vision, 2008.

504

