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Abstract. In the almost Friedmann-Lemâıtre model of the Universe, the density parameter, Ωm, and the cos-
mological constant, ΩΛ, measure curvature. Several linearly degenerate relations between these two parameters
have recently been measured. Here, large scale structure correlations at ∼ 100−150 h−1 Mpc are found in the
comoving three-dimensional separations of redshift z ≈ 2 quasars. These function as a comoving standard rod of
length LLSS ≈ 130 ± 10h−1 Mpc. A local maximum in the correlation function at ≈ LLSS/2 also appears to be
significant. By combining separate radial and tangential standard ruler analyses, the lifting of the Ωm−ΩΛ linear
degeneracy within a single data set is demonstrated for the first time.
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1. Introduction

In standard cosmology (Weinberg 1972), space is a
3-manifold (Schwarzschild 1900; Luminet & Roukema
1999) of nearly constant curvature, i.e. space is approx-
imately locally homogeneous. Geometric ways of measur-
ing average curvature include the use of phenomena of
intrinsically fixed brightness or length scale, i.e. of stan-
dard candles (Perlmutter et al. 1999; Riess et al. 1998)
and standard rulers [e.g. Mo et al. 1992; Broadhurst &
Jaffe 1999; Roukema & Mamon 2000; note also the mi-
crowave background angular statistical estimates (Lange
et al. 2000; Balbi et al. 2000) which can loosely speak-
ing be thought of as “theoretical” standard rulers], but
have previously been found to lead to degeneracy in the
Ωm−ΩΛ plane (e.g. Lineweaver 1998). However, inhomo-
geneities (perturbations) in density exist and can be statis-
tically represented by a Fourier power spectrum, and are
believed to gravitationally collapse and form objects such
as galaxies and clusters of galaxies. Use of a characteristic
feature of this spectrum at a scale�10h−1 Mpc, the size
of the largest bound structures, should provide a comov-
ing standard ruler for constraining the local geometrical
parameters (Ωm,ΩΛ).
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Many observations of both galaxies and superclus-
ters of galaxies indicate that the maximum in the power
spectrum is peaked at a wavenumber 2π/LLSS, where
LLSS±∆LLSS ≈ 130±10h−1 Mpc (Broadhurst et al. 1990;
Gaztañaga & Baugh 1998; Einasto et al. 1997b; Deng et al.
1996) (comoving length units). Since this standard ruler
should be valid independently of orientation, the different
Ωm − ΩΛ degeneracies implied in the radial and tangen-
tial applications of the ruler should enable lifting of the
degeneracy within a single data set, providing a poten-
tially more powerful ruler than previous standard rulers
or standard candles.

It should be noted that while the existence of a broad
maximum in the power spectrum is uncontroversial, not
all observational analyses agree on whether or not there
is a sharp feature in the power spectrum in this region in
addition to the broad maximum, and there is not yet any
clear agreement on the characteristic scale of the broad
maximum. For example, on one hand, Einasto et al.’s
(1997b) analysis of superclusters suggests a sharp peak
at k = 2π/L ∼ 0.05hMpc−1. But, on the other hand,
while in the low redshift IRAS PSCz (point source cata-
logue redshift) survey (Sutherland et al. 1999), there is,
at least, a broad maximum at around 0.02hMpc−1 <∼ k =
2π/L <∼ 0.04hMpc−1 (Fig. 1 of Sutherland et al. 1999),
i.e. 320h−1 Mpc >∼ L >∼ 160h−1 Mpc, there is no obvious
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Fig. 1. Projected comoving spatial distributions of the two
quasar subsamples at redshifts 1.8 ≤ z < 2.4, for (Ωm =
0.4, Ωλ = 0.6). a) The right ascension subsample, for α in-
creasing from left to right. b) The declination subsample for
δ increasing from left to right. The discrete redshifts pub-
lished (Iovino et al. 1996) are converted to continuous val-
ues by uniform random offsets. The latter are used below.
Differences in magnitude limits, hence different number den-
sities, are visible in the α subsample and are corrected for in
both subsamples (cf. Table 1). What appears to be a cluster
or a supercluster in b) at (+200, 3150) h−1 Mpc is located at
(α ≈ 1h00m, δ ≈ −38.5◦, z ≈ 2.24)

sharp feature in this region. Nevertheless, there is a 2σ
significant sharp peak (see Fig. 1 and comment in Sect. 6
of Sutherland et al. 1999) which lies at 0.07hMpc−1 <∼
k <∼ 0.10hMpc−1, i.e. 90h−1 Mpc >∼ L >∼ 60h−1 Mpc in
the PSCz.

Possible reasons why the LLSS = 130h−1 Mpc feature
found by other authors, if real, might have been missed in
the Sutherland et al. (1999) analysis include

(i) use of a different population (lacking in early type
galaxies);

(ii) use of too large a bin size, i.e. too much smoothing;
(iii) redshift distortion (velocity dispersion at small scales,

smooth infall at larger scales), though this is dis-
cussed briefly in the paragraph preceding Sect. 3.1 of
Sutherland et al. (1999);

(iv) assumption of zero cosmological constant [e.g. if
(Ωm = 0.3, ΩΛ = 0.7), then the length scale to
cz = 45 000 km s−1 is underestimated by 7%];

(v) assumption of zero curvature by use of a power
spectrum analysis.

The method of Roukema & Mamon (2000) did not as-
sume the LLSS feature to be sharp, though a broad feature
would obviously have given a less significant (or maybe
an insignificant) signal. In the present analysis, a reason-
ably sharp (but low amplitude) feature consistent with
LLSS ∼ 130h−1 Mpc is found. A secondary feature con-
sistent with the k ∼ 0.08h−1 Mpc feature of Sutherland
et al. (1999) is also found, but is not studied in detail.

Physics which could potentially be investigated in or-
der to explain the feature at LLSS includes acoustic oscil-
lations in the baryon-photon fluid before last scattering,
in high baryon density models (Eisenstein 1998; Meiksin
et al. 1998; Peebles 1999), and features from Planck epoch
physics which transfer to oscillations in the post-inflation
power spectrum, for weakly coupled scalar field driven
inflationary models (Martin & Brandenberger 2000). At
high redshift, the LLSS = 130± 10h−1 Mpc feature [“dis-
tance” means comoving proper distance (Weinberg 1972)
throughout this Paper] has been detected among quasars
(Roukema & Mamon 2000; Deng et al. 1994) and Lyman-
break galaxies (Broadhurst & Jaffe 1999).

Most applications of standard candles or standard
rulers exploit either the radial redshift-distance relation
(Broadhurst & Jaffe 1999) or the tangential redshift-
distance-angle relation (Perlmutter et al. 1999; Riess et al.
1998; Roukema & Mamon 2000; Lange et al. 2000; Balbi
et al. 2000), but not both simultaneously.

Alcock & Paczyñski (1979) suggested the idea of using
both constraints simultaneously, and suggested applying
it at quasi-linear or non-linear scales, i.e. r <∼ 10h−1 Mpc,
but did not discuss how to lift the degeneracy in the
two curvature parameters (Ωm,ΩΛ) which remains af-
ter using the local isotropy constraint, though they did
suggest a theoretical method for separating out some of
the peculiar velocity effects which are important at these
small scales. Phillipps (1994), Matsubara & Suto (1996),
Ballinger et al. (1996) and Popowski et al. (1998) followed
up this idea, demonstrating specific formulae and calcu-
lations regarding quasar pairs and the two-point auto-
correlation functions of galaxies and quasars, including
separation of local isotropy (“sphericity”) and some of the
peculiar velocity effects.

However, by using a standard ruler in the linear
regime, i.e. by using a feature at LLSS ≈ 130h−1 Mpc,
peculiar velocity effects become negligible, and the in-
ability of this scale to evolve in a Hubble time provides
an additional constraint in the (Ωm,ΩΛ) plane. For the
r <∼ 10h−1 Mpc auto-correlation function, the peculiar
velocity effects are certainly important, and evolution in
the length scale must be contended with, for example by
model-dependent assumptions.

2. Observational analysis and discussion

In a previous analysis (Roukema & Mamon 2000) of a
deep, dense, homogeneous quasar survey (Iovino et al.
1996), only the tangential relation was used, to ensure
that observational selection effects well known to cause
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Table 1. The two angular subsamples of the quasar candidate
catalogue (Iovino et al. 1996), defined by B1950 limits (α1 ≤
α ≤ α2, δ1 ≤ δ ≤ δ2) and redshift limits 1.8 ≤ z < 2.4. In
Sect. 2.1, these are further divided into redshift subsamples
1.8 ≤ z < 2.1 and 2.1 ≤ z < 2.4, yielding the four independent
subsamples whose analyses are shown in Figs. 2, 3 and 4. In
Sect. 2.2 (Fig. 5), 1.8 ≤ z < 2.4 is used, i.e. yielding just two
subsamples. When generating Poisson simulations for a given
subsample, further subdivisions, at α′ for the right ascension
subsamples, and at δ′, δ′′ for the declination subsamples, are
defined in order to allow for variation in magnitude zero points
or magnitude cutoffs between the different plates. That is, for
a given subsample with several subdivisions i defined by α′

or δ′, δ′′, there are ni quasars in each subdivision i. For each
subdivision i, ni uniform random α or δ values are generated in
the appropriate α or δ range for that subdivision. This mimicks
the magnitude limits. The subdivisions α′, δ′ and δ′′ are then
ignored when calculating ξ. Numbers of objects N are indicated

α1 α2 δ1 δ2 α′ δ′ δ′′ N

“Right ascension (α) subsample”
1h00m 1h59m −42.0 −37.5 1h07m 500
“Declination (δ) subsample”
0h42m 1h00m −42.0 −28.0 −37.5 −32.5 453

non-cosmological periodicities in redshifts (Scott 1991)
could not bias the result. In the present analysis of the
high grade quasar candidate catalogue (Table 1, Fig. 1),
the technique of “redshift scrambling” (see Fig. 2 caption)
is used to enable use of three-dimensional information in
a way that avoids redshift selection effects. Since the red-
shifts used in the random and observational catalogues
consist of exactly the same set of numbers, any redshift
selection effects, which are independent of angle, should
statistically cancel out (Osmer 1981) in calculation of the
correlation function ξ(r) (Groth & Peebles 1977). Since
some real signal could also cancel out, in principle, this
implies a conservative estimate of ξ(r), i.e. a lower limit
to |ξ(r)|.

2.1. Local maxima in the 3-dimensional correlation
function

Figures 2 and 3 show that, for reasonable values of
(Ωm,ΩΛ), a local maximum in the correlation function
consistent with LLSS = 130 ± 10h−1 Mpc is clearly
present. By contrast, an (Ωm = 1,ΩΛ = 0) universe would
require this local maximum to occur at L ≈ 100h−1 Mpc,
in contradiction with the low redshift estimates of LLSS. A
correlation function consistent with the standard (Groth
& Peebles 1977) galaxy-galaxy correlation function ξ(r) ≈
(r/5h−1 Mpc)−1.8 is also present for r <∼ 40h−1 Mpc.

What is the significance of the LLSS peak? This de-
pends on where the zero level of correlation lies. In cor-
relation function estimates where both sample and cor-
relation are small, the problem of only having a finite
volume often requires a correction known as the integral
constraint (Groth & Peebles 1977), which most often in-
creases the precorrected values of ξ. Making an integral

Fig. 2. Spatial two-point auto-correlation function ξ(r), for
separations r in comoving units and (Ωm = 0.4,ΩΛ = 0.6).
The four angular/redshift subsamples are shown as dashed
(δ, 1.8 ≤ z < 2.1), dashed-dotted (δ, 2.1 ≤ z < 2.4), dotted
(α, 1.8 ≤ z < 2.1) and dashed-triple-dotted (α, 2.1 ≤ z < 2.4)
curves. The mean 〈ξ〉 and the standard error in the mean
σ〈ξ〉 are shown by the thick and thin solid lines respectively.
The correlation functions are calculated in three-dimensional
curved space via ξ(r) = (DD − 2DR/n + RR/n2)/(RR/n2)
where DD, DR and RR indicate numbers of data-data,
data-random and random-random quasar pairs respectively
(Landy & Szalay 1993), and n = 20 times more random
points than data points are used. The random catalogues use
(i) uniform probability distributions in the two angular di-
rections (Table 1), and (ii) random permutations (“z scram-
bles”, IIIb in Osmer 1981) of the observational set of redshifts,
to avoid biases from redshift selection effects (Scott 1991).
Bin size is 5h−1 Mpc and ξ is smoothed by a Gaussian with
σ = 10 h−1 Mpc. The low values of ξ at r <∼ 20h−1 Mpc are
related to redshift roundoff error

constraint correction usually requires assumptions on the
intrinsic shape of ξ. To avoid these assumptions, it is more
prudent just to quantify the peak as a local maximum
(Deng et al. 1994; Roukema & Mamon 2000). For a max-
imum at rmax consistent with a peak at fLLSS, where
f = 1, define ξr, ξ− and ξ+ as the maximum value
and the first minima below and above rmax respectively,
and take the maximum value of σ〈ξ〉(r) for r ∈ [rmax −
f∆LLSS, rmax + f∆LLSS], where ∆LLSS = 10h−1 Mpc.
Then,

(S/N)f ≡
ξr − (ξ− + ξ+)/2

max{σ〈ξ〉(r)}
· (1)

yields (S/N)1 = 3.2 for (Ωm,ΩΛ) = (0.4, 0.6).
Figure 4 shows that an automatic search for this peak,

using a simple and robust method, i.e. using the value
of r for which ξ(r) is maximum over a very large interval
in r, yields an approximately linear confidence band in the
(Ωm,ΩΛ) plane. Since this band is consistent with kine-
matical (Carlberg et al. 1997; Mamon 1993) and baryonic
fraction (White et al. 1993; Henriksen & Mamon 1994)
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Fig. 3. Correlation function ξ(r), as for Fig. 2, but for a hy-
perbolic universe (Ωm = 0.3,ΩΛ = 0.0) above, and a zero
cosmological constant, flat universe (Ωm = 1.0,ΩΛ = 0.0)
below

Table 2. Probability (Eq. 2) of finding one, two or three peaks
among 200 random simulations at fLLSS where f = 0.5, 1
and/or 2, for (Ωm,ΩΛ) = (0.4, 0.6)

P sim
0.5 P sim

1 P sim
2 P sim

0.5,1 P sim
1,2 P sim

0.5,2 P sim
0.5,1,2

0.025 0.01 0.335 < 0.005 0.005 0.005 < 0.005

constraints for clusters and groups of galaxies, though to
slightly higher Ωm values than were found in the purely
tangential analysis of the present survey (Roukema &
Mamon 2000), the coincidence would be surprising if it
were due to noise or systematic effects.

Moreover, what appear to be peaks at LLSS/2 ±
∆LLSS/2 and near 2LLSS±2∆LLSS are present, though to
lower significance, with (S/N)0.5 = 2.3 and (S/N)2 = 1.2
respectively, for (Ωm,ΩΛ) = (0.4, 0.6). Could any of the
three peaks be induced by noise which has common sta-
tistical properties among all the four subsets, either due
to shot noise or selection effects? Redshift selection effects

Fig. 4. Confidence intervals for rejecting the presence of a peak
at LLSS±∆LLSS for various hypotheses on (Ωm,ΩΛ). Rejection
levels are 1 − P > 0% (white), 1 − P > 68% (hatched),
1− P > 95% (light cross-hatched) and 1− P > 99.7% (heavy
cross-hatched). The 1 − P = 68% contour for testing a peak
at LLSS/2 ± ∆LLSS/2 test is shown in bold. For each pair
(Ωm,ΩΛ), the peak position is estimated as the value rmax

for which ξ(r) is maximum in 100 ≤ r ≤ 300 h−1 Mpc. (For
the LLSS/2 peak, 40 ≤ r ≤ 100 h−1 Mpc is searched). The
measurement uncertainty in the fLLSS peak is estimated as
∆rmax = f∆LLSS (for f = 0.5, 1). The probability of find-
ing rmax close to fLLSS assumes Gaussian errors, i.e. Pf ≡
erfc[|rmax−fLLSS|/(

√
2σ)], where σ2 = (∆rmax)2 +(f∆LLSS)2

have been removed by the use of z-scrambling. Angular se-
lection effects may be present at a small level (see Sect. 3.4
of Roukema & Mamon 2000), but are more likely to
decrease the amplitude of any signal rather than introduce
false correlations which mimic the signal found. Moreover,
the convergence of the separate tangential and radial anal-
yses below (Sect. 2.2) suggest that the effects of angular
selection are weak.

To test the properties of shot noise, random simula-
tions were performed as before but substituted for the
data. The probabilities that maxima can occur as close
to and of at least the same signal-to-noise ratio as the
observed values can be defined

P sim
f ≡ P

[
|rsim − fLLSS| ≤ |robs − fLLSS| and

(S/N)sim
f ≥ (S/N)obs

f

]
, (2)

where “sim” and “obs” indicate simulations and obser-
vations respectively, and the intervals in r are as above.
Since one might suspect a single noise feature to cause,
say, simultaneous features at two or three of the positions,
mimicking the observed signal, the probabilities of finding
the peaks might not be independent, e.g. P sim

f1,f2
≈ P sim

f1
≈

P sim
f2
� P sim

f1
P sim
f2

for f1, f2 ∈ {0.5, 1, 2} is in principle pos-
sible. The results (Table 2) show that the hypotheses of
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Fig. 5. Partial lifting of the Ωm − ΩΛ degeneracy. Confidence
intervals are as for Fig. 4 for a) the radial (1 − P rad

1 ),
b) tangential (1− P tan

1 ) and c) combined (1− P rad
1 P tan

1 ) con-
straints. d) A simple model, for which the 95% > 1−P > 68%
contours for radial (straight contours) and tangential (curved,
nearly vertical contours) constraints showing near linear de-
generacy are shaded as before (hatched regions); and the com-
bined 68% > 1− P > 0% contour is the half-ellipse-like shape
nested between these (heavy contour). a-c) The radial and
tangential tests are performed for the LLSS±∆LLSS peak as in
Fig. 4, except that only pairs oriented within 30◦ of the radial
and tangential directions (respectively) are included in calcu-
lation of ξ(r). Both angular subsamples over 1.8 ≤ z < 2.4
are used. The radial and tangential tests are assumed to be
statistically independent. d) For the model, the redshift inter-
val ∆z and the angle θ corresponding to LLSS, assuming that
(Ωm = 0.3,ΩΛ = 0.0) and that z = 2.1, are calculated. For
each pair (Ωm,ΩΛ), the radial and tangential distance inter-
vals implied by ∆z and θ are calculated, ignoring the initial
assumption about Ωm and ΩΛ. These are treated as two inde-
pendent “experiments”, and Gaussian probabilities P rad, P tan

of observing these values, given LLSS, ∆LLSS, Ωm and ΩΛ are
calculated as before. The combined rejection is 1 − P radP tan

either of the LLSS/2 or the LLSS peaks occurring by chance
are each rejected to 1 − P sim > 97%, and that of both
occurring simultaneously is rejected to 1− P sim > 99.5%.
The hypothesis of the the 2LLSS peak occurring by shot
noise cannot be significantly rejected. These values vary
throughout the (Ωm,ΩΛ) plane.

Figure 4 shows that the 68% > 1−P > 0% confidence
intervals for the LLSS/2 and LLSS peaks are consistent.

2.2. Tangential versus radial correlations

A standard ruler should not depend on orientation. Can
use of both radial and tangential information lift the
degeneracy of (Ωm,ΩΛ) constraints? To illustrate this, the
full redshift interval 1.8 ≤ z < 2.4 is used, but only pairs

of objects within 30◦ of either the radial or tangential
directions respectively are used. For the geometry of this
survey, about 10% of pairs are radial and 60% of pairs are
tangential according to this criterion.

Figure 5 clearly shows, both observationally and theo-
retically, the difference in the slopes of the radial and tan-
gential constraints at z ≈ 2. A hyperbolic (Ωm +ΩΛ−1 <
0) universe is suggested by the 68% confidence limit,
though a flat universe with ΩΛ = 1 − Ωm = 0.5 is only
rejected to 1− P ≈ 80% confidence, i.e. not significantly.
The partially lifted degeneracy can be represented (at 68%
confidence) as

Ωm = (0.30± 0.04)ΩΛ + (0.30± 0.11), ΩΛ < 0.5. (3)

This suggests a somewhat higher matter density and lower
cosmological constant than other recent results.

3. Conclusion

The confirmation of the LLSS peak and the partial lifting
of the Ωm − ΩΛ degeneracy show that ongoing and fu-
ture large quasar surveys [in particular the 2 Degree Field
Quasar Survey (Boyle et al. 2000) and the Sloan Digital
Sky Survey quasar sample (e.g. Fan et al. 2000)] will have a
much more powerful tool for local geometrical constraints
than was previously thought. While local isotropy of the
r <∼ 10h−1 Mpc scale correlation function can in princi-
ple be used as a local geometrical constraint, a standard
ruler at LLSS ≈ 130h−1 Mpc has the advantages (i) of
being little affected by peculiar velocities, and (ii) of oc-
curring well into the linear regime where evolution within
a Hubble time is unlikely.

Moreover, the detection of the LLSS/2 peak (cf. Fig. 6
of Tadros & Efstathiou 1996; Fig. 1 of Sutherland et al.
1999; Fig. 3 of Mo et al. 1992) implies that both peaks
might either be signs of high baryon density (Eisenstein
1998; Meiksin et al. 1998; Peebles 1999) or of pre-
inflationary physics (Martin & Brandenberger 2000), en-
abling constraints to be put on these. For increased confi-
dence in this method, more precise low redshift constraints
on large scale structure features near LLSS ≈ 130h−1 Mpc
will be highly desirable. Results from the 2 Degree Field
Galaxy Redshift Survey (e.g. Folkes et al. 1999), the Sloan
Digital Sky Survey galaxy sample (York et al. 2000), and
the 6 Degree Field galaxy survey (e.g. Mamon 1998) may
help for these low redshift calibrations.
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Gaztañaga, E., & Baugh, C. M. 1998, MNRAS, 294, 229
Groth, E. J., & Peebles, P. J. E. 1977, ApJ, 217, 385
Henriksen, M. J., & Mamon, G. A. 1994, ApJ, 421, L63
Iovino, A., Clowes, R., & Shaver, P. 1996, A&AS, 119, 265
Landy, S. D., & Szalay, A. S. 1993, ApJ, 412, 64
Lange, A. E., et al. 2000 [arXiv:astro-ph/0005004]
Lineweaver, C. H. 1998, ApJ, 505, L69
Luminet, J.-P., & Roukema, B. F. 1999, in Theoretical

and Observational Cosmology, ed. M. Lachièze-Rey
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