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Abstract Lifting is a procedure for deriving valid inequalities for mixed-integer sets
from valid inequalities for suitable restrictions of those sets. Lifting has been shown
to be very effective in developing strong valid inequalities for linear integer program-
ming and it has been successfully used to solve such problems with branch-and-cut
algorithms. Here we generalize the theory of lifting to conic integer programming,
i.e., integer programs with conic constraints. We show how to derive conic valid
inequalities for a conic integer program from conic inequalities valid for its lower-
dimensional restrictions. In order to simplify the computations, we also discuss sequ-
ence-independent lifting for conic integer programs. When the cones are restricted to
nonnegative orthants, conic lifting reduces to the lifting for linear integer programming
as one may expect.
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352 A. Atamtürk, V. Narayanan

1 Introduction

A conic mixed-integer program is an optimization problem of the form

min c′x : b − Ax ∈ C, x ∈ Z
n × R

q , (1)

where A ∈ R
m×n , b ∈ R

m , c ∈ R
n , and C ⊆ R

m is a closed, convex, pointed cone
with nonempty interior. For instance, if C equals the linear cone R

m+, then b − Ax ∈ C
reduces to the system of linear inequalities Ax ≤ b. Therefore, a conic integer pro-
gram is a natural generalization of a linear integer program obtained by replacing R

m+
with a more general cone. Throughout we assume that the feasible region of (1) is
bounded and explicit bounds on the variables, if any, are included in the constraints.

A particularly interesting (nonlinear) conic constraint is the conic quadratic (or
second-order conic) constraint

‖ Ax − b ‖2 ≤ d ′x − e,

which includes a convex quadratic constraint as a special case. Many engineering
and science problems, e.g., signal processing, portfolio optimization, support vec-
tor machines, are formulated with conic quadratic constraints [10]. We refer the
reader to Ben-Tal and Nemirovski [6] for in-depth lecture notes on continuous conic
optimization.

Due to the growing demand for solving conic quadratic integer programs, com-
mercial optimization packages, such as CPLEX and Mosek, already offer branch-
and-bound solvers for conic quadratic integer programs. However, these solvers are
currently far from being able to handle large-scale conic quadratic integer programs,
and much work is needed to make them nearly as effective as their counterparts for
linear integer programs.

Although there is a wealth of literature on linear and quadratic integer programming,
and more generally on global optimization, research on conic integer programming is
so far limited. Çezik and Iyengar [8] give Chvátal–Gomory and disjunctive cuts for
conic integer and conic 0–1 mixed programs. Atamtürk and Narayanan [4] describe
mixed-integer rounding inequalities for conic mixed-integer programming. Vielma
et al. [16] develop a branch-and-bound algorithm based on the polyhedral approxima-
tion of conic quadratic programs due to Ben-Tal and Nemirovski [7]. Aktürk et al. [1]
give strong conic quadratic reformulations for mixed 0–1 problems with a separable
convex objective.

Strong relaxations obtained by adding valid inequalities to formulations are cru-
cial for solving linear integer programs with branch-and-bound methods. Lifting is
an effective procedure for deriving such valid inequalities from simpler restrictions
of the feasible set of solutions. Since 1970s lifting has been studied extensively and
has become one of the most effective techniques for developing valid inequalities for
linear integer programs. We list references [2,3,9,11–14,17,18] as a small sample of
work on lifting for linear mixed-integer programming.
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Lifting for conic mixed-integer programming 353

Contributions The success of lifting as an effective method for generating valid
inequalities for linear integer programming is our motivation for generalizing it to
conic mixed-integer programming in an effort to derive conic valid inequalities for this
problem class. This generalization is achieved by working with generalized (conic)
inequalities [6] and extending lifting functions for the linear case to lifting sets for
conic lifting. When restricted to linear cones, conic lifting reduces to lifting for linear
mixed-integer programming as one may expect.

In a recent paper Richard and Tawarmalani [15] develop an interesting lifting pro-
cedure for nonlinear programming (NLP). They lift linear inequalities valid for a low-
dimensional restriction of an NLP to linear inequalities in the original space. Atamtürk
and Narayanan [5] use lifting to derive linear inequalities for a conic quadratic binary
knapsack set as the convex hull is a polytope in this case. Here we describe a lifting
approach for conic integer programming that lifts a valid conic constraint in a low-
dimensional restriction to a valid conic constraint for the original conic mixed-integer
set. Keeping the lifted constraint conic responds to a practical concern: if the contin-
uous relaxations are solved with a conic solver, e.g., an SOCP solver, we would like
to keep the valid inequalities added to the formulation conic. Moreover, maintaining
the conic structure as an inequality is lifted, makes it easy to characterize the lifting
sets and appropriate bounds for them.

Outline In Sect. 2 we develop the theory of conic lifting and describe how to derive
lifted conic valid inequalities for conic mixed-integer programming by sequentially
extending a low dimensional conic inequality. In Sect. 3 we discuss when lifting can
be done independent of a lifting sequence so as to simplify the computations. In Sect. 4
we describe an application of sequence-independent conic lifting to a conic quadratic
0–1 set for illustration. In Sect. 5 we discuss the connections to the special case of
linear mixed-integer programming. Finally, in Sect. 6 we conclude with a few final
remarks.

Throughout the paper for two sets A and B in R
m , A + B denotes their Minkowski

sum.

2 Conic lifting

Let us consider a conic mixed-integer set

Sn(b) :=
{

(x0, . . . , xn) ∈ X0 × · · · × Xn : b −
n∑

i=0

Ai xi ∈ C
}

,

where Ai ∈ R
m×ni , b ∈ R

m , and C ⊆ R
m is a proper cone, i.e., closed, convex,

pointed cone with nonempty interior, and each Xi is a mixed-integer set in R
ni . We

assume that Sn(b) is bounded.
We are interested in deriving conic valid inequalities for Sn(b), from conic inequali-

ties valid for restrictions of Sn(b). As indexing is arbitrary, consider a nonempty restric-
tion S0(b−∑n

i=1 Ai x̄ i ) by fixing xi = x̄ i ∈ Xi for all i = 1, . . . , n. In order to simplify
the notation, by replacing variables xi with xi − x̄ i and updating b as b −∑n

i=1 Ai x̄ i ,
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354 A. Atamtürk, V. Narayanan

we may assume without loss of generality that x̄ i = 0 for i = 1, . . . , n and hence the
restriction is S0(b).

Let K ⊆ R
p be again a proper cone and consider a valid inequality

h − F0x0 ∈ K (2)

for S0(b), where h and F0 are matrices of appropriate dimensions. Note that C and
K may be different cones. For instance, K may be the cone of positive semidefinite
matrices and C may be the linear cone, or K may be the linear cone and C may be the
conic quadratic cone.

Starting from valid inequality (2) for the restriction S0(b), our goal is to iteratively
compute (matrices) F1, . . . , Fi such that the lifted inequality

h −
i∑

j=0

F j x j ∈ K (3)

is valid for Si (b) for i = 1, . . . , n. Toward this end, for conic inequality (3) we define a
lifting set below. We use (F i , h) to denote the intermediate lifted conic inequality (3).

Definition 1 Forv ∈ R
m and i ∈ {0, . . . , n}, let the lifting set corresponding to inequal-

ity (3) be

�i (v) :=
⎧⎨
⎩d ∈ R

p : h −
i∑

j=0

F j x j − d ∈ K for all (x0, . . . , xi ) ∈ Si (b − v)

⎫⎬
⎭.

The lifting set �i (v) is a subset of R
p parametrized by v ∈ R

m . Observe that if
Si (b − v) = ∅, then �i (v) = R

p. The lifting set �i is used for computing Fi+1 as
shown in the sequel.

Proposition 1 For i = 0, . . . , n and v ∈ R
m, �i (v) is a nonempty, closed, convex

set with recession cone −K.

Proof We first show that �i (v) is nonempty. As Si (b) is bounded, so is Si (b − v).

Then for y ∈ R
p, z(y) := max

{∑i
j=0 y′F j x j : x ∈ Si (b − v)

}
< ∞. Let z∗ :=

sup{z(y) : y ∈ K∗, ||y|| = 1} and g ∈ K such that y′g ≥ z∗ for all y ∈ K∗ and
||y|| = 1, where K∗ is the dual cone of K. Then, by scaling y we have y′(g −∑i

j=0 F j x j ) ≥ 0 for all y ∈ K∗ and all (x0, . . . , xi ) ∈ Si (b − v), implying validity

of g −∑i
j=0 F j x j ∈ K for Si (b − v). Letting d = h − g, we see that d ∈ �i (v).

Closedness and convexity of �i (v) follows from closedness and convexity of K.
Finally, for any t ∈ −K, α ∈ R+ and d ∈ �i (v), it is clear that d + αt ∈ �i (v).
Conversely, let t be a ray of the recession cone. Then, for any d ∈ �i (v) and α ∈ R+,
d +αt ∈ �i (v), i.e., h −∑i

j=0 F j x j − (d +αt) ∈ K for all (x0, . . . , xi ) ∈ Si (b−v).

Taking inner product with y ∈ K∗, we see that αt ′y ≤ (h −∑i
j=0 F j x j − d)′y for

all α ∈ R+, which implies that t ′y ≤ 0. Hence, t ∈ −K. ��
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Proposition 2 0 ∈ �i (0) for all i = 0, . . . , n.

Proof Immediate from the validity of (3) for Si (b). ��
Proposition 3 �i+1(v) ⊆ �i (v) for all v ∈ R

m and i = 0, . . . , n − 1.

Proof Follows from 0 ∈ Xi and Si (b) ⊆ Si+1(b) for all i = 0, . . . , n − 1. ��
The next proposition describes the set of valid lifting matrices Fi+1 based on the

lifting set �i corresponding to the intermediate lifted inequality (F i , h).

Proposition 4 Inequality (F i+1, h) is valid for Si+1(b) if and only if Fi+1t ∈ �i

(Ai+1t) for all t ∈ Xi+1 and i = 0, . . . , n − 1.

Proof Suppose that the condition is satisfied. Then, it immediately follows from the
definition of �i that (F i+1, h) is valid for Si+1(b). Conversely, suppose that there
exists some x̄ i+1 ∈ Xi+1 such that Fi+1 x̄ i+1 ∈ �i (Ai+1 x̄ i+1). Then, there exists
an (x̄0, . . . , x̄ i ) ∈ Si (b − Ai+1 x̄ i+1) such that h − ∑i

j=0 F j x̄ j − Fi+1 x̄ i+1 ∈ K.

However, (x̄1, . . . , x̄ i+1) ∈ Si+1(b), which implies that (F i+1, h) is not valid for
Si+1(b). ��

A recursive relationship between lifting sets, which is used in the next section,
follows from Definition 1.

Proposition 5 Given �i and Fi+1 for i = 0, . . . , n − 1, �i+1 can be computed
recursively as

�i+1(v) =
⋂

t∈Xi+1

(
�i (v + Ai+1t) − Fi+1t

)
, v ∈ R

m .

Proof From the definition of �, we have

�i+1(v) =
⎧⎨
⎩d : h −

i+1∑
j=0

F j x j − d ∈ K,∀x ∈ Si+1(b − v)

⎫⎬
⎭

=
⋂

t∈Xi+1

⎧⎨
⎩d :h−

i∑
j=1

F j x j −(Fi+1t+d) ∈ K,∀x ∈ Si
(

b−v− Ai+1t
)⎫⎬
⎭

=
⋂

t∈Xi+1

(
�i (v + Ai+1t) − Fi+1t

)
.

��

3 Sequence-independent lifting

Lifting, in general, is sequence-dependent; that is, the order in which variables xi ,
i = 1, . . . , n are introduced to the lifted inequality, can change �i and, consequently,
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the lifted inequality. In the previous section, we have seen that �i+1(v) ⊆ �i (v) holds
in general. If the converse is also true for all i = 0, . . . , n −1, then �i (v) = �0(v) for
all v and i = 1, . . . , n, and thus the order of lifting does not matter. If this condition
is satisfied, then lifting is said to be sequence-independent.

Recognizing sequence independence of lifting is computationally desirable, as in
this case, it is sufficient to compute only the first lifting set �0. Here we give a suf-
ficient condition for sequence-independent lifting and show how to lift an inequality
efficiently by a superadditive subset (see Definition 2 below) of the lifting set �0.
Sequence-independence of lifting by superadditive functions have been shown for lin-
ear 0–1 and mixed 0–1 programs by Wolsey [18] and Gu et al. [9]. The results below
generalize of the ones in Atamtürk [3] for the linear mixed-integer programming case.

Definition 2 The parametrized set �(v) is called superadditive on D ⊆ R
m if for all

u, v, u + v ∈ D, we have �(u) + �(v) ⊆ �(u + v), i.e., α + β ∈ �(u + v) for all
α ∈ �(u), β ∈ �(v).

Lemma 1 The parametrized set

�(v) :=
⋂

w∈Rm

⋂
π∈�0(w)

(�0(v + w) − π), (4)

is superadditive on R
m.

Proof If either �(u) = ∅ or �(v) = ∅, then �(u) + �(v) ⊆ �(u + v) holds trivi-
ally. Otherwise, suppose for contradiction that α ∈ �(u) and β ∈ �(v), but α + β ∈
�(u +v). Then, there exist a w and π ∈ �0(w) such that α+β +π ∈ �0(u +v+w).
However, because β ∈ �(v), we must have β + π ∈ �0(v + w), which, together
with α ∈ �0(u + v + w) − (β + π), implies that α ∈ �(u). A contradiction with the
choice of α. ��

The next theorem implies that � is contained in any lifting set, independent of the
lifting order.

Theorem 1 The parametrized set � is a subset of the last lifting set; that is, �(v) ⊆
�n(v) for all v∈ R

m.

Proof It follows from Proposition 5 that

�n(v) =
⋂

x∈X1×···×Xn

{
�0

(
v +

n∑
i=1

Ai xi

)
−

n∑
i=1

Fi xi

}
⊇ �(v),

where the inclusion follows from
∑n

i=1 Fi xi ∈ �0
(∑n

i=1 Ai xi
)

by validity of the
lifted inequality (Fn, h) and from the definition of � by taking w = ∑n

i=1 Ai xi and
π = ∑n

i=1 Fi xi . ��
Corollary 1 The parametrized set � is a subset of all lifting sets; that is, �(v) ⊆
�n(v) ⊆ · · · ⊆ �0(v) for all v ∈ R

m.
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Lifting for conic mixed-integer programming 357

Proof Follows from Proposition 3 and Theorem 1. ��
Theorem 2 � = �0 if and only if �0 is superadditive on R

m.

Proof If � = �0, from Theorem 1 �0 is superadditive. Conversely, if �0 is
superadditive, then �0(v) ⊆ �0(v + w) − π for all π ∈ �0(w). Hence, �0(v) ⊆
∩π∈�0(w)(�0(v + w) − π). Since this is true for all w, we can take intersection over
all w to see that �0(v) ⊆ �(v). But from Corollary 1 �0(v) ⊇ �(v) holds as well.

��
Corollary 2 If �0 is superadditive, then � = �0 = �1 = · · · = �n, i.e., lifting is
sequence-independent.

The next proposition states that even if �0 is not superadditive, in general any super-
additive subset of �0 may be employed for sequence-independent lifting of (F0, h).

Theorem 3 If �(v) ⊆ �0(v) for all v ∈ R
m and � is superadditive on R

m, then
(Fn, h) is a lifted valid inequality for Sn(b) whenever Fi t ∈ �(Ai t) for all t ∈ Xi

and i = 1, . . . , n.

Proof From the assumptions of the proposition, for any x ∈ Sn(b), we have

n∑
i=1

�(Ai xi ) ⊆ �

(
n∑

i=1

Ai xi

)
⊆ �0

(
n∑

i=1

Ai xi

)
.

Then
∑n

i=1 Fi xi ∈ �0
(∑n

i=1 Ai xi
)

and thus h −∑n
i=0 Fi xi ∈ K. ��

Corollary 3 If �0 is superadditive on R
m, then (Fn, h) is a lifted valid inequality for

Sn(b) whenever Fi t ∈ �0(Ai t) for all t ∈ Xi and i = 1, . . . , n.

The next two propositions show that we can assume, without loss of generality,
that �(v) is convex and 0 ∈ �(0) for a superadditive parametrized set � satisfying
�(v) ⊆ �0(v) for all v.

Proposition 6 Suppose that �(v) ⊆ �0(v) for all v and � is superadditive. Then,
there exists a superadditive parametrized set �′ such that �′(v) is convex and �(v) ⊆
�′(v) ⊆ �0(v) for all v.

Proof Let �′(v) = conv(�(v)). Then, �′ is superadditive as conv(A) + conv(B) =
conv(A + B) for any A, B ⊆ R

m and �′(v) ⊆ �0(v) by convexity of �0(v) for
all v. ��
Proposition 7 Suppose that �(v) is convex and �(v) ⊆ �0(v) for all v and � is
superadditive. Then, there exists a superadditive parametrized set �′ such that

(1) �′(v) is convex for all v,
(2) �(v) ⊆ �′(v) ⊆ �0(v) for all v, and
(3) 0 ∈ �′(0).
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Proof As � is superadditive, �(v)+�(0) ⊆ �(v) for all v. Hence, for all π ∈ �(v)

and all d ∈ �(0), we have π + d ∈ �(v). Repeating the argument k times (k ∈ Z+),
we see that π + kd ∈ �(v) for all k ∈ Z+. Thus, �(0) is contained in the recession
cone of �(v) for all v.

Now, let �′ be defined as

�′(v) :=
{

�(v) if v = 0,

K′ if v = 0,

where K′ is the cone generated by �(0)∪{0}. It is easily seen that K′ is also contained
in the recession cone of �(v) for all v. By construction, 0 ∈ �′(0) and �(v) ⊆
�′(v) ⊆ �0(v) for all v. We now show that �′ is superadditive.

It is clear that if u, v = 0 or if u = v = 0, �′(u) + �′(v) ⊆ �′(u + v). Now
suppose that u = 0, v = 0. Then, �′(u) + �′(v) = K′ + �(v) = �(v) = �′(u + v).
Hence, the result. ��

Since in both propositions �′(v) contains �(v), any valid inequality generated
using � can also be generated using �′.

4 An illustrative application

In this section we illustrate sequence-independent conic lifting for a conic quadratic
mixed 0–1 set. Recall that an m + 1-dimensional second-order cone is defined as

Qm+1 := {
(t, to) ∈ R

m × R : ||t ||2 ≤ to
}
.

Consider the conic quadratic mixed 0–1 set

S =
⎧⎨
⎩(x, y, t) ∈ {0, 1}n+1 × R

2 :
√√√√( n∑

i=0

ai xi − β

)2

+ y2 ≤ t

⎫⎬
⎭.

We should point out that given a high dimensional second order conic constraint

||Ax − b|| ≤ t,

where A ∈ R
m×n and b ∈ R

m , we can construct a relaxation with Q2+1 of the form S,
by aggregating m − 1 terms in the square root into the nonnegative term y2 in S.
Inequalities obtained from simpler relaxations of integer programs are common in
linear integer programming. For conic 0–1 programming the set S plays a similar role
to that of single row 0–1 knapsack relaxations in linear 0–1 programming.

If necessary, by complementing the binary variables, we assume that a > 0. Fixing
xi = 0, i = 1, . . . , n, we arrive at the restriction

S0 =
{
(x0, y, t) ∈ {0, 1} × R

2 :
√

(x0 − β)2 + y2 ≤ t

}
,
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where we assume without loss of generality that a0 = 1. The continuous relaxation of
S0 has the unique extreme point (β, 0, 0), which is fractional for x0 when 0 < β < 1.
This fractional extreme point is cut off by the conic inequality

√
((2β − 1)x0 − β)2 + y2 ≤ t. (5)

Indeed, Atamtürk and Narayanan [4] show that adding inequality (5) to the continuous
relaxation of S0 is sufficient to describe conv(S0).

Our goal in this section is to lift the conic quadratic inequality (5) for S0 to a conic
quadratic inequality of the form

√√√√((2β − 1)x0 +
n∑

i=1

αi xi − β

)2

+ y2 ≤ t, (6)

that is valid for S.
Now, letting b = (β, 0, 0)′, let us write S in matrix form

Sn(b) =
⎧⎨
⎩(x, y, t) ∈ {0, 1}n+1 × R

2 :
⎡
⎣β

0
0

⎤
⎦−

⎡
⎣x0

y
t

⎤
⎦−

n∑
i=1

⎡
⎣ai

0
0

⎤
⎦ xi ∈ Q3

⎫⎬
⎭

as in Sect. 2. Similarly inequality (6) is also written as

⎡
⎣β

0
0

⎤
⎦−

⎡
⎣(2β − 1)x0

y
t

⎤
⎦−

n∑
i=1

⎡
⎣αi

0
0

⎤
⎦ xi ∈ Q3.

We will compute the lifting set �0(v) corresponding to (5), where v ∈ R
3 and

v1 ≥ 0 as a > 0. Given v, this amounts to computing the set of all d ∈ R
3 such that

⎛
⎝β − (2β − 1)x0

−y
−t

⎞
⎠− d ∈ Q3 (7)

for all (x0, y, t) ∈ S0(b − v). That is,

�0(v) =
{

d ∈ R
3 : (7) holds for all (x0, y, t) ∈ S0(b − v)

}
.

In order to derive the coefficients αi , i = 1, . . . , n, of (6), we will construct
a superadditive subset � of the lifting set �0 per Theorem 3 and Propositions 6
and 7. Recall that lifting coefficients Fi must satisfy Fi t ∈ �(Ai t) for t ∈ {0, 1}.
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Because in this case,

Fi =
⎡
⎣αi

0
0

⎤
⎦ and Ai =

⎡
⎣ai

0
0

⎤
⎦ for i = 1, . . . , n, (8)

it is sufficient to concentrate on the first component of the lifting set. Hence, the lifting
set is then �0(v1, 0, 0) = λ(v1) − Q3, where

λ(v1)=
⎧⎨
⎩
⎛
⎝d1

0
0

⎞
⎠ :

√
(β − d1 − (2β − 1)x0)

2 + y2 ≤ t,∀(x0, y, t) ∈ S0

⎛
⎝β − v1

0
0

⎞
⎠
⎫⎬
⎭.

For computing λ(v1), we consider the cases x0 = 0 and x0 = 1 below.

Case x0 = 0 : (d1, 0, 0) ∈ λ(v1) if and only if

√
(β−d1)

2 + y2 ≤ t for all (y, t) s.t.
√

(β − v1)
2 + y2 ≤ t.

This condition holds if and only if |β−d1| ≤ |β − v1|.
Case x0 = 1 : (d1, 0, 0) ∈ λ(v1) if and only if

√
(1 − β−d1)

2 + y2 ≤ t for all (y, t) s.t.
√

(β − v1 − 1)2 + y2 ≤ t,

which holds if and only if |1 − β−d1| ≤ |1 + v1 − β|.
It follows from these conditions that λ(v1) is a polyhedral set. We now consider the

following cases:

1. v1 ≥ β: In this case, the conditions reduce to |β−d1| ≤ v1 −β and |1 − β + d1| ≤
1 + v1 − β; and they are satisfied if and only if 2β − v1 ≤ d1 ≤ v1.

2. 0 ≤ v1 < β: In this case, the conditions become |β−d1| ≤ β − v1 and
|1 − β + d1| ≤ 1+v1 −β; and they hold if and only if v1 ≤ d1 ≤ min {2β − v1, }
2(1 − β) + v1.

Therefore, we have

λ(v1)=
⎧⎨
⎩
⎛
⎝d1

0
0

⎞
⎠ : v1 ≤ d1 ≤ min {2β − v1, 2(1 − β) + v1} if 0 ≤ v1 < β

2β − v1 ≤ d1 ≤ v1 if v1 ≥ β.

Clearly, λ is superadditive if and only if the upper bound on d1 is superadditive and
the lower bound on d1 is subadditive. Hence, λ is superadditive for v1 ≥ β; however, it
is not so over the entire v1 ≥ 0 as the upper bound for 0 ≤ v1 ≤ β is not superadditive.
Therefore, in order to construct a valid lifting set, by only picking the lower bound for
0 ≤ v1 ≤ β, we define

λ′(v) =
{

(v1, 0, 0)′ if 0 ≤ v1 < β,

λ(v1) if v1 ≥ β.
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Consider now the parametrized set �(v) := λ′(v) − Q3. Because λ′(v) ⊆ λ(v),
we have �(v) ⊆ �0(v). On the other hand, superadditivity of � follows from
superadditivity of λ′, which follows from fact that ϕ1(v1) = v1 is both subaddi-
tive and superadditive, and that ϕ2(v1) = 2β − v1 is subadditive as β > 0. Hence, we
have shown that �(v) is a superadditive lifting set for (5).

Now that we have a superadditive lifting set, we are ready to compute the lifting
“matrices” Fi , i = 1, . . . , n. Since 0 ∈ �(0), it suffices to find Fi ∈ �(Ai ) satisfying
Proposition 4 only for t = 1. Recalling (8), we find inequalities (6) based on �, by
picking extreme values of λ′(ai ):

αi ∈
{

{ai } if ai < β

{ai , 2β − ai } if ai ≥ β
for i = 1, . . . , n.

Observe that the superadditive conic lifting inequality (6) is not unique; for ai ≥ β,
αi may be chosen as either ai or 2β − ai . Therefore, the lifted inequalities form an
exponential class. Unlike the conic MIR inequalities in Atamtürk and Narayanan [4],
the lifted inequalities presented here make an explicit use of the binary variables.

Example 1 Let S be defined by a = 1 and β = 1/2; thus the conic constraint is

√√√√( n∑
i=0

xi − 1/2

)2

+ y2 ≤ t. (9)

Let us consider lifting the special case of inequality (5)

√
(−1/2)2 + y2 ≤ t,

which is valid for the restriction

S0 =
{

x0 ∈ {0, 1} , y ∈ R, t ∈ R :
√

(x0 − 1/2)2 + y2 ≤ t

}
.

Then, by choosing αi = 1 or 0 for i = 1, . . . , n, we obtain exponentially many
superadditive conic lifting inequalities

√√√√(∑
i∈T

xi − 1/2

)2

+ y2 ≤ t for T ⊆ {1, . . . , n} . (10)

Observe that for each set T inequality (10) supports conv(S) at points (x, y, t): (0, 0, 1
2 )

and (
∑

i∈Y ei , 0, |Y | − 1
2 ) for any ∅ = Y ⊆ T .

In contrast, the conic MIR inequality of Atamtürk and Narayanan [4] for this exam-
ple is just the special case of inequality (10) with T = ∅. This example illustrates the
power of the conic lifting for describing the coefficients of valid inequalities for conic
MIPs.
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5 Lifting for linear mixed-integer programming

Here we show that lifting linear valid inequalities for linear mixed-integer programs
is a direct consequence of conic lifting. Let the cone C = R

m+, so that

Sn(b) =
{

(x0, . . . , xn) ∈ X0 × · · · × Xn :
n∑

i=0

Ai xi ≤ b

}
.

With K = R+, we have the inequality F0x0 ≤ h valid for S0(b), where h ∈ R, F0 is
a 1 × n0 row vector. In this case, the lifting set is given by

�i (v) = {α ∈ R : α ≤ ϕi (v)} ,

where ϕi (v) is the lifting function

ϕi (v) = min

⎧⎨
⎩h −

i∑
j=0

F j x j : (x0, . . . , xi ) ∈ Si (b − v)

⎫⎬
⎭·

Note that β ∈ �i (v) if and only if β ≤ ϕi (v). Consequently, Proposition 2 states that
ϕi (0) ≥ 0 and Proposition 3 implies that ϕi (v) ≥ ϕi+1(v) for all i = 1, . . . , n − 1.
Suppose we have an intermediate lifted inequality (F i , h) for Si (b), then inequality
(F i+1, h) is valid for Si+1(b) if and only if Fi+1t ≤ ϕi (Ai+1t) for all t ∈ Xi+1, by
Proposition 4.

It is also seen that all results in Sect. 3 specialize to sequence-independent lifting in
the case of linear mixed-integer programs [3,9,18]. The lifting set �0 is superadditive
if and only if the lifting function ϕ0 is superadditive. Similarly, in the linear case,
superadditive subsets of �0 correspond to superadditive lower bounding functions of
ϕ0. Hence, we see that lifting in the linear case can be obtained by letting the cones C
and K be nonnegative orthants of appropriate dimension.

6 Final remarks

We have shown how to lift a conic inequality valid for lower-dimensional restrictions
of a conic mixed-integer set into valid conic inequalities for the original set. As in the
linear case, superadditive lifting sets lead to sequence-independent lifting. The conic
lifting approach is illustrated on a conic quadratic mixed 0–1 set. Because the coeffi-
cients are described by lifting sets rather than lifting functions, sequence independent
lifting of the inequalities may lead to an exponential class of lifted inequalities as
illustrated with an example. Based on the many successful applications of lifting in
the linear case, it is reasonable to expect conic lifting to become an effective method
for deriving conic inequalities for structured conic mixed-integer programs as well in
due time.
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