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Abstract In this paper, we introduce the first generic lifting techniques for deri-
ving strong globally valid cuts for nonlinear programs. The theory is geometric and
provides insights into lifting-based cut generation procedures, yielding short proofs
of earlier results in mixed-integer programming. Using convex extensions, we obtain
conditions that allow for sequence-independent lifting in nonlinear settings, paving a
way for efficient cut-generation procedures for nonlinear programs. This sequence-
independent lifting framework also subsumes the superadditive lifting theory that has
been used to generate many general-purpose, strong cuts for integer programs. We
specialize our lifting results to derive facet-defining inequalities for mixed-integer
bilinear knapsack sets. Finally, we demonstrate the strength of nonlinear lifting by
showing that these inequalities cannot be obtained using a single round of traditional
integer programming cut-generation techniques applied on a tight reformulation of
the problem.
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1 Introduction

The use of cutting planes in branch-and-cut algorithms has proven to be very effective
in solving linear integer programs quickly [7,8,19]. There are primarily two types of
approaches for generating cutting planes for unstructured programs. The first approach
is based on generating tight relaxations using disjunctive arguments [4,5,32,34] by
injecting the problem in a higher-dimensional space. The second approach is to gene-
rate cutting planes without the addition of variables. Lifting is a successful integer
programming technique that generates such cuts. It is the process of converting an
inequality valid for a subset of the feasible region, here referred to as the seed inequa-
lity, to be globally valid [27,42]. Typically, the seed inequality is derived under the
assumption that some of the variables are fixed at certain values. Then, the inequality
is made globally valid by sequentially relaxing these restrictions. The case where the
derived inequality is independent of the sequence in which restrictions are relaxed
[16,43] is of particular interest since it has been shown to yield many families of
effective and strong cuts for integer programs that are also computationally efficient
to generate. Certain cuts such as the Gomory mixed-integer cut can be obtained via
both disjunctive arguments [26] and via lifting arguments [25].

Although disjunctive programming techniques have found generalizations to nonli-
near programming [9,35–38] and inequalities for special-purpose global optimization
have been obtained recently via lifting techniques (see [13] for linear programs with
complementarity and [20,40] for nonconvex quadratic programs), a general approach
to lifting or sequence-independent lifting in nonlinear optimization has not been deri-
ved. One possible reason is that it can no longer be assumed that the seed inequality,
even if linear, will remain so after lifting. Another possible explanation is that lifting
techniques in mixed-integer programming have, for a significant time, been limited to
integer variables. Only recently has the process been generalized to fixing and then
relaxing continuous linear variables [23,30,31].

In this paper, we study lifting as the process that extends affine minorants of a
function restricted to an affine subspace to yield affine minorants of the unrestric-
ted function. This approach generalizes the traditional definition of lifting from inte-
ger programming to nonlinear programming through the use of the indicator func-
tion for the underlying set. In contrast to defining the lifting function in terms of
perturbations to the right-hand-sides of the constraints, our lifting function is defi-
ned in the space of the restricted variables. The new definition is necessary since
the traditional lifting function does not lend itself to a straightforward extension to
nonlinear programs. Furthermore, for integer programs, the two definitions are rela-
ted to each other via an affine transformation. One advantage of our derivation is
that it admits an appealing geometric interpretation, which reveals short proofs and
generalizations of earlier lifting results for continuous variables in the mixed-integer
knapsack sets studied in [30,31]. A second advantage is that it provides a general
definition for sequence-independence that is motivated by the geometry of the lifting
function, and yields as a special case the superadditive theory of lifting for integer
programs [43]. The main purpose of this paper is, however, to illustrate the applicabi-
lity of the proposed methods in nonlinear programming. Towards this end, we study
mixed-integer bilinear knapsack sets. For these sets, we derive facet-defining inequali-
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ties using sequence-dependent and sequence-independent lifting. The geometric inter-
pretation plays a significant role in this derivation. We then investigate the strength of
the resulting inequalities. First, we define an aggregation-tightening procedure which
subsumes typical integer programming cut generation procedures. Then, we intro-
duce a non-inclusion certificate, whose existence proves that an inequality cannot
be obtained using one round of the aggregation-tightening procedure. For the lifted
facet-defining inequalities mentioned earlier, we construct such a certificate and thus
show that our inequalities are not easy to derive using traditional integer programming
techniques on an equivalent linear formulation of the nonlinear set. We also prove that
the lifted inequalities are not rank-one split cuts. This serves to illustrate the value of
nonlinear lifting even when the underlying sets can be effectively linearized.

In Sect. 2 we describe how the lifting theory for integer programs can be extended
to nonlinear programming. In Sect. 3, we apply the lifting theory developed in Sect. 2
to mixed-integer nonlinear knapsack sets and, in particular, mixed-integer bilinear
knapsack sets. Our nonlinear knapsack results generalize superadditivity conditions
known for 0–1 knapsack and fixed-charge single-node flow models. For the mixed-
integer bilinear set, we use the proposed lifting theory to generate, in closed-form, a
large family of facet-defining lifted cover inequalities. In Sect. 4, we introduce a cut-
generation framework that subsumes many commonly used techniques for finding
valid inequalities for integer programs. Then, using this framework, we show that our
lifted cover inequalities are strictly inside the elementary closures of many integer
programming relaxation techniques. Finally, in Sect. 5, we give concluding remarks
and directions for future research.

2 A convex analysis perspective on lifting

Consider a function γ (x). We denote the convex envelope of γ (x) by conv (γ (x)), the
lower envelope of the closure of the epigraph of γ (x) by cl (γ (x)), the largest positively
homogeneous convex underestimator of γ (x) by γ̂ (x), the effective domain of γ by
dom(γ ) = {x | γ (x) �= ∞}, the subdifferential of γ (x) at x̄ by ∂γ (x̄), and the
projection of a set S(x, y) in the space of y by projy(S(x, y)). The conjugate of a
function γ (x) is defined as γ ∗(s) = supx {〈s, x〉 − γ (x)}; see Rockafellar [32]. For a
function f (x, y): Rn+m �→ R, the restricted function obtained when x is fixed at x̄ will
be denoted by f (x̄, ·). Consistent with the above notation, f (x̄, ·)∗ is the conjugate of
the restricted function and (cl conv f (x̄, ·))(y) is the convex envelope of the restricted
function evaluated at y. The indicator function of a set S is defined to be 0 over S and
∞ otherwise.

The function of interest in this discussion is f (x, y): Rp+n → R. We assume
throughout that f has an affine minorant and f �= ∞. The process of lifting will take an
inequality valid for f (x, y) when y = 0 and lift it over all y. Observe that fixing y to 0 is
without loss of generality. Assume the inequality we lift is f (x, 0) ≥ 〈ᾱ, x〉−δ, where
we choose δ as small as possible. Then, δ = supx {〈ᾱ, x〉 − f (x, 0)} = f (·, 0)∗(ᾱ).
Therefore, the inequality we lift is f (x, 0) ≥ 〈ᾱ, x〉 − f (·, 0)∗(ᾱ).
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Theorem 1 Assume that f (x, y): Rp+n → R has an affine minorant and that
dom( f ) �= ∅. Define g(α, y) = − supx {〈α, x〉 − f (x, y)}. Then,

cl conv f (x, y) = sup
α

{〈α, x〉 + cl conv (g(α, ·)) (y)}. (1)

Proof By definition,

f ∗(α, ν) = sup
x,y

{〈(α, ν), (x, y)〉 − f (x, y)}

= sup
y

{
〈ν, y〉 + sup

x
{〈α, x〉 − f (x, y)}

}

= sup
y

{〈ν, y〉 − g(α, y)}
= g(α, ·)∗(ν). (2)

Further,

f ∗∗(x, y) = sup
α,ν

{〈(α, ν), (x, y)〉 − f ∗(α, ν)
}

= sup
α

{
〈α, x〉 + sup

v

{〈ν, y〉 − f ∗(α, ν)
}}

= sup
α

{〈α, x〉 + g(α, ·)∗∗(y)
}
. (3)

Note that f ∗∗(x, y) = cl conv( f (x, y)) (whenever f has an affine minorant and
f �= ∞) (see Theorem 1.3.5 in [18]). Clearly, f (x, y) ≥ 〈α, x〉 + g(α, y) for all α.
Since

f ∗∗(x, y) = cl conv f (x, y) ≥ sup
α

{〈α, x〉 + cl conv (g(α, ·)) (y)}
≥ sup

α

{〈α, x〉 + g(α, ·)∗∗(y)
}
,

the equality holds throughout. 
�
In other words, to form the convex envelope of f (x, y), we choose linear functio-

nals in the x-space and form the conjugate considering the y variables to be fixed.
Then, we treat the conjugate as a function of the y variables and convexify it. Intuiti-
vely, Theorem 1 relates the process of lifting to the extension form of Hahn–Banach
Theorem; see Theorem 1 in Sect. 5.12 of [22].

Observe that f (x, y) ≥ 〈α, x〉 + g(α, y) ≥ 〈α, x〉 + 〈ν, y〉 as long as 〈ν, y〉 unde-
restimates g(α, y). Since 〈ν, y〉 is linear, it also underestimates cl conv (g(α, ·)) (y).
To simplify notation, we denote cl conv (g(α, ·)) (y) by ḡα(y) henceforth.

Proposition 2 Assume that ḡα(0) = 0 and ∂ ḡα(0) �= ∅. Then, the largest closed,
positively homogeneous, convex function that underestimates ḡα(y) is

hα(y) = sup {〈ν, y〉 | v ∈ ∂ ḡα(0)}.
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Proof By definition, ν̄ ∈ ∂ ḡα(0) if and only if ḡα(y) ≥ 〈ν̄, y〉. Clearly, hα(y), being a
support function, is a closed, positively homogeneous convex function. Now consider
any other such function kα(y) that also underestimates ḡα(y) and is the largest. Since
∂ ḡα(0) �= ∅, kα(0) ≥ 0. But kα(0) ≤ ḡα(0). Therefore, kα(0) = 0. In other words,
kα(y) is proper and can be expressed as a supremum of linear functions. Any linear
function 〈ν, y〉 that underestimates kα(y) also underestimates ḡα(y) and therefore
v ∈ ∂ ḡα(0). In other words, hα(y) ≥ 〈ν, y〉. Therefore, hα(y) ≥ kα(y). 
�

We are interested in lifting inequalities of the form

f (x, 0) ≥ 〈ᾱ, x〉 + g(ᾱ, 0), (4)

into inequalities of the form

f (x, y) ≥ 〈ᾱ, x〉 + ḡᾱ(0) + 〈ν, y〉, (5)

where ν ∈ ∂ ḡᾱ(0) (a convex set). Inequality (5) is valid since it follows from Theorem 1
that f (x, y) ≥ 〈ᾱ, x〉 + ḡᾱ(y) and because ν ∈ ∂ ḡᾱ(0) implies that ḡᾱ(y) ≥ ḡᾱ(0) +
〈ν, y〉. In fact, one can obtain the nonlinear inequality

f (x, y) ≥ 〈ᾱ, x〉 + ḡᾱ(0) + hᾱ(y), (6)

where hᾱ(y) is the largest closed positively homogeneous convex underestimator of
ḡᾱ(y) − ḡᾱ(0) obtained in Proposition 2. Since ḡᾱ(y) is the largest closed convex
underestimator, hᾱ(y) is also the largest closed positively homogeneous convex unde-
restimator of g(ᾱ, y) − ḡᾱ(0). Observe that in the above development, we assumed
that ∂ ḡᾱ(0) is not empty, otherwise even a linear lifted inequality cannot be obtained.
We are particularly interested in the cases when ḡα(0) equals g(α, 0) for all α. This
will happen, for example, if 0 is an extreme point of projy dom( f ), projx dom( f ) is
bounded, f is lower-semicontinuous (lsc) and has an affine minorant. In this case,
for each (α, y) ∈ R

p+n and δ ∈ R, there is a neighborhood of (α, y) such that
{(α, y, x) | 〈α, x〉 − f (x, y) ≤ −δ} is compact and therefore its projection on the
(α, y)-space is compact. In other words, g(α, y) is lsc. Since 0 is an extreme point of
projy dom( f ), we know that g(α, 0) = conv (g(α, ·)) (0). Since g(α, ·) is closed and
has an affine minorant (because f has such a minorant and projx dom( f ) is bounded),
it follows that ḡα(0) = g(α, 0).

Proposition 3 Let f (x, y): Rp+n → R, g(ᾱ, y) = − supx {〈ᾱ, x〉 − f (x, y)} and
ḡᾱ(y) = cl conv (g(ᾱ, ·)) (y). If f (x, y) ≥ 〈ᾱ, x〉 + 〈ν, y〉 − δ where δ is such that
f (x, 0) ≥ 〈ᾱ, x〉 − δ + ε is not valid for any ε > 0, then ν ∈ ∂ ḡᾱ(0) and ḡᾱ(0) =
g(ᾱ, 0).

Proof Clearly, g(ᾱ, y) = inf x { f (x, y) − 〈ᾱ, x〉} ≥ 〈ν, y〉 − δ = 〈ν, y〉 + g(ᾱ, 0),
where the last equality follows since δ = − infx { f (x, 0)−〈ᾱ, x〉} = −g(ᾱ, 0). Since,
〈ν, y〉+g(ᾱ, 0) is an affine function of y, ḡᾱ(y) ≥ 〈ν, y〉+g(ᾱ, 0). Setting y = 0, we
obtain ḡᾱ(0) ≥ g(ᾱ, 0). But ḡᾱ(·) underestimates g(ᾱ, ·). Therefore, ḡᾱ(0) = g(ᾱ, 0)

and ḡᾱ(y) ≥ 〈ν, y〉 + ḡᾱ(0), which proves that ν ∈ ∂ ḡᾱ(0). 
�
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Fig. 1 Illustrating Theorem 1 and Proposition 2 on Example 4

In the above discussion, we have shown that the process of lifting inequalities is
equivalent to finding a vector ν in the subdifferential of ḡᾱ(y). On the other hand, the
tightest underestimator is the one given in (6). This underestimator is constructed by
identifying a vector ᾱ such that ḡᾱ(0) equals g(ᾱ, 0) and then constructing the largest
positively homogeneous, closed convex function underestimating ḡᾱ(y) − g(ᾱ, 0).
Henceforth, we further restrict our attention to the case where projy dom( f ) ⊆ R

n+.
If 0 ∈ projy dom( f ), then 0 must be an extreme point of projy dom( f ).

Example 4 Let f (x, y) = y4 − 12y2 − 3y + 15x2, where x ∈ R, y ∈ R+. Let
ᾱ = 30, and assume that the inequality we are lifting is f (x, 0) ≥ 30x − 15. Then,
g(ᾱ, y) = y4 − 12y2 − 3y − 15,

ḡᾱ(y) =
{

−19y − 15 if y < 2

y4 − 12y2 − 3y − 15 otherwise,

and hᾱ(y) = −19y. Observe that hᾱ(y) is the largest positively homogeneous unde-
restimator of ḡᾱ(y) + 15. Here, as required in Proposition 2, we shift ḡα(y) by 15 so
that it passes through the origin. Inequality (6) reduces to f (x, y) ≥ 30x − 19y − 15,
which can also be inferred from Fig. 1. 
�

The notion of sequence-independence has been central to the successful develop-
ment of lifted inequalities for integer programs. We approach the notion of sequence-
independence from a geometric perspective that is more general than the one used in
the integer programming literature, but yields the more traditional definitions when
the perturbation function is superadditive.

The lifted inequality (6) uses the largest closed positively homogeneous convex
underestimator of ḡᾱ(y)− ḡᾱ(0). Since y may have many components, we are interes-
ted in investigating when this underestimator can be obtained by considering subsets of
the y-variables independently. Towards this end, consider the partitioning y = (y1, y2)

of the y-variables and define γ (y1, y2) = g(ᾱ, y)− ḡᾱ(0). To introduce the definition
of sequence-independence, we assume that γ (y1, y2) has a linear minorant and that
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γ (0, 0) = 0. We define γr (y1, y2) as the restriction of γ to the subspaces (y1, 0) and
(0, y2), i.e.,

γr (y1, y2) =
{

γ (y1, y2) if y1 = 0 or y2 = 0

∞ otherwise.

Recall that γ̂ (y1, y2) denotes the largest positive homogeneous convex underestimator
of γ (y1, y2).

Definition 5 Lifting of γ (y1, y2) from (0, 0) is said to be sequence-independent of
y1 and y2 if γ̂ (y1, y2) = γ̂r (y1, y2).

The definition above is inspired by convex extensions as defined in Tawarmalani and
Sahinidis [38] where the convex envelope of a function is constructed by restricting
attention to a subset of the domain of the function.

Theorem 6 The lifting of γ (y1, y2) from (0, 0) is sequence-independent of y1 and y2
if and only if γ̂ (y1, y2) = γ̂ (y1, 0) + γ̂ (0, y2).

Proof Clearly, γ̂r (y1, 0) equals γ̂ (y1, 0) and is the largest positively homogeneous
convex underestimator of γ (y1, 0). This is because (y1, 0) can only be expressed as
convex combination of points of the same form. By symmetry, γ̂r (0, y2) is the largest
positively homogeneous convex underestimator of γ (0, y2). Then, by the definition
of γ̂r ,

γ̂r (y1, y2) = inf
λ

{
λγ̂r (ya, 0) + (1 − λ)γ̂r (0, yb) | y1 = λya, y2 = (1 − λ)yb

}
.

However, it follows from the positive homogeneity of γ̂r and γ̂r (0, 0) = 0 that
γ̂r (y1, y2) = γ̂r (y1, 0)+ γ̂r (0, y2). In other words, the lifting of γ (y1, y2) from (0, 0)

is sequence-independent of y1 and y2 if

γ̂ (y1, y2) = γ̂ (y1, 0) + γ̂ (0, y2). (7)

On the other hand, if (7) holds, then γ̂r (y1, y2) ≥ γ̂ (y1, y2) = γ̂ (y1, 0) + γ̂ (0, y2) =
γ̂r (y1, 0) + γ̂r (0, y2) = γ̂r (y1, y2), where the first inequality follows from the fact
that γr is a restriction of γ . Therefore, the equality holds throughout. 
�

Because the recession directions of the epigraph of cl γ̂r (y1, 0) are not in the oppo-
site direction of those of the epigraph of cl γ̂r (0, y2) (since γ̂r has a linear minorant),
it follows that cl γ̂r (y1, 0)+cl γ̂r (0, y2) is closed. Therefore, if the lifting of γ (y1, y2)

is sequence-independent, then

cl γ̂ (y1, y2) = cl γ̂ (y1, 0) + cl γ̂ (0, y2). (8)

It follows from Proposition 3 and the preceding discussion that the lifted inequality (6)
is formed by constructing the largest closed positively convex homogeneous underes-
timator of ḡᾱ(y)− ḡᾱ(0). Let y = (y1, y2) and recall that γ (y1, y2) = g(ᾱ, y)− ḡᾱ(0).
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If lifting of γ from (0, 0) is sequence-independent of y1 and y2, then, using (8), we
can rewrite (6) as

f (x, y) ≥ 〈ᾱ, x〉 + ḡᾱ(0) + cl γ̂ (y1, 0) + cl γ̂ (0, y2). (9)

The form of (9) justifies the sequence-independence terminology since each part of
the lifting can be obtained independently from the other.

The sequence-independence condition in Theorem 6 may be difficult to verify
directly. We now show that a relaxation of the notion of superadditivity already yields
sequence-independence. As is standard, a function γ (y1, y2) is superadditive if γ (y1+
y′

1, y2 + y′
2) ≥ γ (y1, y2) + γ (y′

1, y′
2).

Corollary 7 If γ (y1, y2) ≥ γ̂ (y1, 0) + γ̂ (0, y2), then the lifting of γ (y1, y2) from
(0, 0) is sequence-independent of y1 and y2. More generally, if γ (y1, . . . , ym) ≥∑m

i=1 γ̂ (0, . . . , 0, yi , 0, . . . , 0), then the lifting of γ (y1, . . . , ym) is sequence-inde-
pendent of y1, . . . , ym, i.e., γ̂ (y1, . . . , ym) =∑m

i=1 γ̂ (0, . . . , 0, yi , 0, . . . , 0).

Proof Clearly, any convex positively homogeneous underestimator h(y1, y2) of
γ (y1, y2) must satisfy h(y1, y2) ≤ h(y1, 0)+h(0, y2) ≤ γ̂ (y1, 0)+ γ̂ (0, y2), because
h is convex and γ̂ is the largest convex positively homogeneous underestimator. Since
γ̂ (y1, 0) + γ̂ (0, y2) is a convex positively homogeneous function that underestimates
γ (by assumption), it must be the largest such function. In other words, γ̂ (y1, y2) =
γ̂ (y1, 0)+ γ̂ (0, y2), which by Theorem 6, implies sequence-independence. The gene-
ral result follows via induction on m. 
�

If γ (y1, y2) ≥ γ (y1, 0) + γ (0, y2), the condition in the Corollary 7 is certainly
satisfied since γ̂ (y1, 0) (respectively, γ̂ (0, y2)) underestimates γ (y1, 0) (respecti-
vely, γ (0, y2)). Note that in Corollary 7, we do not require superadditivity of γ

component-wise. This is therefore different, and less restrictive than the way sequence-
independence is typically defined in integer programming via the superadditivity of
the perturbation function; see Wolsey [43].

Example 8 Consider γ (y1, y2) = y2
1 + 16

√
y1 + y2

2 + 31.25
√

y2 + y1 y2, where
(y1, y2) ∈ R

2+. It can be easily verified that γ (y1, y2) ≥ γ (y1, 0) + γ (0, y2) and
γ (0, 0) = 0. Then, γ (y1, y2) ≥ γ̂ (y1, y2) = 12y1 + 18.75y2 = γ̂ (y1, 0) + γ̂ (0, y2),
where γ̂ (y1, y2) is the highest positively homogeneous underestimator of γ (y1, y2)

as shown in Fig. 2, which depicts two views of γ (y1, y2) and γ̂ (y1, y2). 
�
It follows from Theorem 23.8 in [32] that the subdifferential of γ̂ (y1, . . . , ym)

is the sum of the subdifferentials of γ̂ (0, . . . , 0, yi , 0, . . . , 0). In other words, if
γ̂ (0, . . . , 0, yi , 0, . . . , 0) is expressible as a supremum of ti inequalities, then

∏m
i=1 ti

underestimating inequalities for f (x, y) are obtained. This phenomenon will be
demonstrated later in Theorem 30 where an exponential family of facets for the 0–1
mixed-integer bilinear knapsack set is derived from lifting. Next, we describe how the
lifting results presented here relate to lifting techniques in mixed-integer programming.

Example 9 Consider a pure integer programming problem whose feasible set is S =
{Ax + By ≤ d, x ∈ Z

p
+, y ∈ Z

n+}. Let αx ≤ δ be a valid and tight inequality
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Fig. 2 Illustration of Corollary 7 using Example 8

for {Ax ≤ d, x ∈ Z
p
+}. We define f (x, y) to be the indicator function of S. Let

P(w) = − max{αx − δ | Ax ≤ d − w, x ∈ Z
p
+} define the perturbation problem in

x-space. If yi s are re-introduced into the inequality, then by the definition of P(w),
αx − δ ≤ −P

(∑n
i=1 Bi yi

)
where Bi is the i th column of B. If P(·) is superadditive,

then αx − δ ≤ −∑n
i=1 P(Bi )yi . Comparing the definition of g(α, y) in Theorem 1

and that of P(w) above, it follows that g(α, y) = P(By)−δ. Further, since P(0) = 0,
g(α, 0) = −δ. Then, as follows, the superadditivity of P(·) implies the superadditivity
of γ (y) = g(α, y) − g(α, 0):

g(α, y1 + y2) + δ = P(B(y1 + y2)) = P(By1 + By2) ≥ P(By1) + P(By2)

= (g(α, y1) + δ) + (g(α, y2) + δ),

which in turn implies sequence-independence (see Corollary 7). 
�
Example 10 Consider a single constraint mixed-integer knapsack set S = {ax +by ≤
d, x ∈ Z

p
+, y ∈ R

n+}. Let αx ≤ δ be a valid and tight inequality for {ax ≤ d, x ∈ Z
p
+}.

Define the perturbation problem as P(w) = − max{αx−δ | ax ≤ d−w, x ∈ Z
p
+}. Let

p = infλ<0 λP
( 1

λ

)
. Clearly, pw underestimates P(w). Further, if bi < 0 and λk is a

sequence such that λk P
(

1
λk

)
→ p, then we can show that γ̂ (0, . . . , 0, yi , 0, . . . , 0) =

pbi yi by choosing yk
i = 1

bi λ
k . Sequence-independence of the lifting coefficients then

follows as:

γ (y) = P(by) = P

(
n∑

i=1

bi yi

)
≥ p

n∑
i=1

bi yi =
n∑

i=1

γ̂ (0, . . . , 0, yi , 0, . . . , 0).

We conclude that the lifting coefficients are pbi , a result obtained in a different manner
in [23]. 
�
Example 11 Here, we consider the mixed-integer knapsack from Example 10, with
the added condition that each yi is bounded from above. We study the interesting
case with b < 0. This was the set studied in Richard et al. [30,31]. Without loss of
generality, one may assume that yi ≤ 1 by scaling bi . We show that lifted inequalities
for the mixed-integer knapsack are in one-to-one correspondence with the inequa-
lities obtained from piecewise linear concave underestimators G(w) of P(w) over
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[∑n
i=1 bi , 0

)
that are such that G(0) = 0 and the breakpoints are limited to occur at∑ j

i=1 bi for j ∈ {1, . . . , n − 1} with appropriate reordering of variables. Let G(w) be
one such underestimator. We first show that a valid inequality for S can be constructed
using G(w). Here, γ (y) = − maxx

{
αx − δ | ax ≤ d − by, x ∈ Z

p
+
}
. Since γ (y) is

constant whenever by is constant, it follows that the convex envelope of γ (y) can be
constructed by limiting attention to points where all but one of the y variables are at
their bounds, i.e., 0 or 1 (see Corollary 5 in [38]). Let p j be the slope of G(w) between∑ j+1

i=1 bi and
∑ j

i=1 bi . It can be easily argued that
∑n

j=1 b j p j y j underestimates γ (y)

along each of the edges of the hypercube [0, 1]n . This is because any function G ′(w)

obtained by interchanging segments of G(w) only underestimates G(w), which in
turn underestimates P(w). Another way to see this by rewriting G(w) as the value
function of an LP as follows:

P(w) ≥ G(w) = max

{
n∑

i=1

bi pi yi

∣∣∣∣
n∑

i=1

bi yi = w, ∀i, 0 ≤ yi ≤ 1

}
≥

n∑
i=1

bi pi yi .

Now, we discuss the converse. Any inequality of the form αx + t y ≤ δ that is
valid for S must be such that t y ≤ γ (y) = P(by) (see Proposition 3). Then, define
G(w) = max{t y | by = w, 0 ≤ y ≤ 1}. Clearly, G(w) is piecewise-linear concave
because it is the value function of a linear program. Further, G(0) = 0 and G(w)

underestimates P(w). It remains to show that the breakpoints of G(w) correspond
to
∑ j

i=1 bπ(i) for some reordering π(i) of variables. We define π(i) as an order
for which the ratios ti/bi do not increase. Then, the breakpoints of G(w) can be
verified to occur at

∑ j
i=1 bπ(i). The computational effort in obtaining such inequali-

ties can be reduced by exploiting the following fact. Let w′ be the smallest minimi-
zer in argmin

{
P(w)/w

∣∣ w ∈ [∑n
i=1 bi , 0

)}
, assuming that the minimum is in fact

attained. Denote the corresponding optimal value by p. Then, since G(w) is lower-
semicontinuous and concave, G(0) = P(0) = 0, and G(w′) ≤ P(w′) = pw′, it
follows that the subgradient of G at w′ is no less than p. Therefore, to construct G(w)

it suffices to limit our attention to [w′, 0]. The above discussion provides a short proof
of Theorems 24 and 29 in [30] and generalizes Theorems 7 and 24 in [31]. 
�

The argument of Example 11 remains valid even when we consider nonlinear sets
of the form

{
(x, y) | φ(x, by) ≤ 0, y ∈ R

n+
}

by defining the perturbation function
as P(w) = − sup{αx − δ | φ(x, w) ≤ 0}. In this case, concave underestimators of
P(w) with breakpoints at

∑ j
i=1 b j are in one-to-one correspondence with the extended

underestimating inequalities of the form αx + t y ≤ δ.
Lifting in integer programming has an interesting property. If the seed inequality

is facet-defining for the restriction of the problem and if each time the restriction
on a variable is lifted in such a way that a point outside of the restriction satisfies
the lifted inequality at equality, then the resulting inequality is facet-defining. In the
context of nonlinear programs, we do not expect such a property to hold. In fact, no
facet-defining inequality may exist (we may not be able to start with a facet-defining
inequality for the restriction) and, even if it does, we may not be able to lift the
inequality in a manner that adds the additional point as specified above. However,
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Fig. 3 Maximal faces are not lifted to maximal faces

it seems intuitive at first that such a property could hold if we used maximal proper
faces instead of facets [32]. Let W ⊆ R

n × R
p
+. Let W ′ be the restriction of W ,

{(x, y) | (x, y) ∈ W, y = 0} and S′ = conv(W ′) = conv(W ) ∩ {y | y = 0}. Let
αx ≤ 1 correspond to a maximal face of W ′. We are interested in lifting this inequality
into an inequality αx+βy ≤ 1. Let T be a set of points in S\S′ satisfying αx+βy = 1.
Further, assume that T is maximal in the sense that there does not exist T ′ satisfying
T ⊂ T ′ ⊆ S\S′, dim(T ) < dim(T ′) and a valid inequality αx + β ′y ≤ 1 for S
that is tight at every point in T ′. Unfortunately, contrary to integer programming, we
illustrate in Example 12 that such a lifted inequality may not define a maximal face
of conv(W ).

Example 12 Consider the following set

W =
{

(x1, x2, y)

∣∣∣∣ x2 ≥ ζ(x1, y) = max
{
(1 − y)x2

1 + 2x1 + 1, (x1 − 1)2
}+ y

0 ≤ y ≤ 1

}

that is represented in Fig. 3. It can be easily verified that x2 ≥ 1 − 2x1 and x2 ≥
1 + 2x1 define the same maximal face of W 0 = W ∩ {y | y = 0}. We lift x2 ≥
1 − 2x1 by constructing the maximal inequality x2 ≥ 1 − 2x1 + β1 y such that

β1 ≤ min
{

x2+2x1−1
y

∣∣∣ (x1, x2, y) ∈ W\W 0

}
= 1. Similarly, we lift x2 ≥ 1 +

2x1 by constructing the maximal inequality x2 ≥ 1 + 2x1 + β2 y such that β2 ≤
min

{
x2−2x1−1

y

∣∣∣ (x1, x2, y) ∈ W\W 0

}
= 1. The inequality x2 ≥ ξ2(x1, y) = 1 −

2x1 + y is satisfied at equality when x1 = 0, and even though the coefficient of y is the
maximum possible, the resulting inequality does not correspond to a maximal face.
This is easily verified by considering the other inequality x2 ≥ ξ1(x1, y) = 1+2x1+ y
that we obtained above. This inequality is satisfied at equality when x1 = 0 or when
x1 ≥ 0 and y = 1. The face defined by the second inequality contains the face defined
by the first inequality. It can be verified that it also describes a maximal face. 
�

As in Examples 9–11, we are often interested in constrained optimization problems.
Indicator functions of the constraint set allow us to naturally translate the lifting tech-
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niques developed here for such cases. In the remainder of this section, we prove a
result that is practically useful in lifting inequalities for nonlinear programs, as will be
illustrated in Sect. 3. Let x, y1, . . . , ym be vectors of variables, where x ∈ R

n , yi ∈ R
ni+

for all i . Also, consider κ(y1, . . . , ym): R
∑m

i=1 ni �→ R
k and φ(x, w): Rn+k �→ R

q .
Define

S = {(x, y1, . . . , ym) | φ (x, κ(y1, . . . , ym)) ≤ 0}.

Further assume that we are interested in lifting an inequality with a fixed slope α in
the space of x variables. Then,

g(α, y1, . . . , ym) = − sup
x

{〈α, x〉 ∣∣ φ (x, κ(y1, . . . , ym)) ≤ 0
}

is the negative of the support function (conjugate of the indicator function) of S
when y1, . . . , ym are fixed. Let g(α, 0, . . . , 0) = −δ, or in other words, let αx ≤ δ

be the tightest inequality with slope α when y1, . . . , ym are each fixed at 0. Here,
γ (y1, . . . , ym) = g(α, y1, . . . , ym) + δ. The perturbation function P(w): Rk �→ R is
defined as

P(w) = δ − sup
x

{〈α, x〉 ∣∣ φ (x, κ(0, . . . , 0) + w) ≤ 0
}
.

Let r(y1, . . . , ym) = κ(y1, . . . , ym) − κ(0, . . . , 0). Then,

γ (y1, . . . , ym) = P (r(y1, . . . , ym)).

By definition, δ − 〈α, x〉 ≥ γ (y1, . . . , ym). If γ is superadditive, then δ − 〈α, x〉 ≥∑m
i=1 γ (0, . . . , 0, yi , 0 . . . , 0). Therefore, if νi yi ≤ γ (0, . . . , 0, yi , 0, . . . , 0) then it

follows that 〈α, x〉+∑m
i=1 νi yi ≤ δ is valid for S. We generalize the above observation

in the following result.

Theorem 13 If there exist h1: Rmk �→ R
k and h2: Rm �→ R such that

(A1) r(y1, . . . , ym) ≥ h1 (r(y1, 0, . . . , 0), . . . , r(0, . . . , 0, ym)),

(A2) P (h1 (r(y1, 0, . . . , 0), . . . , r(0, . . . , 0, ym)))

≥ h2 (P (r(y1, 0, . . . , 0)), . . . , P (r(0, . . . , ym))),

(A3) P(·) is nondecreasing,

where h2 is convex and isotone (i.e., h2(a) ≤ h2(b) whenever a ≤ b), and for all i ,
γ ′

i (yi ) is a convex underestimator for γ (0, . . . , 0, yi , 0, . . . , 0), then the set:

S = {(x, y1, . . . , ym) | δ − αx ≥ h2(γ
′
1(y1), . . . , γ

′
m(ym))

}

is convex and outer-approximates S.
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Proof

γ (y1, . . . , ym) = P (r(y1 . . . , ym))

≥ P (h1 (r(y1, 0, . . . , 0), . . . , r(0, . . . , 0, ym)))

≥ h2 (P (r(y1, 0, . . . , 0)), . . . , P (r(0, . . . , 0, ym)))

= h2 (γ (y1, 0, . . . , 0), . . . , γ (0, . . . , 0, ym))

where the first inequality follows because of Assumptions (A1) and (A3), and the
second inequality follows from Assumption (A2). Since h2 and γ ′

i are convex, the
following set

A =
{
(x, y1, . . . , ym, z1, . . . , zm)

∣∣∣∣ δ − αx ≥ h2(z1, . . . , zm)

zi ≥ γ ′
i (yi ), i = 1, . . . , m

}

is convex. Since γ ′
i (yi ) underestimates γ (0, . . . , 0, yi , 0, . . . , 0), proj(x,y)(A) is a

convex outer-approximation of S. If (x, y1, . . . , ym, z1, . . . , zm) is feasible to A, then
so is

(
x, y1, . . . , ym, γ ′

1(y1), . . . , γ
′
m(ym)

)
,

because h2 is isotone. It follows that proj(x,y)(A) = S. 
�
Theorem 13 provides a recipe for outer-approximation by developing convex underes-
timators for γ restricted to the coordinate axes. It encompasses sequence-dependent
as well as sequence-independent lifting procedures. For sequence-dependent lifting,
we set m equal to 1 and note that h1 and h2 can be taken to be identity operators.
For sequence-independent lifting, note that assumption (A3) is automatically satisfied
when φ(x, w) is nondecreasing in w and also note that if r and P are superadditive
over their relevant domains, then h1 and h2 can be chosen to be summation operators.
In fact, Theorem 13 generalizes superadditive lifting in integer programming because,
in this case, (A1) and (A3) follow easily from the fact that the defining constraints are
linear and integrality is preserved when projecting perpendicular to coordinate axes
and because (A2) is the familiar superadditivity of the perturbation function.

At the beginning of the section, we assumed that the restricted set is obtained
by fixing y at 0. As might be apparent, the constructions in this section are affinely
invariant. Therefore, it is straightforward to translate them to fixing y at ȳ. In that
case, instead of positively homogenous underestimators, we develop conic underes-
timators of gᾱ(y) with apex at (ȳ, gᾱ(ȳ)). Similarly, we define γ (y1, . . . , ym) =
κ(y1, . . . , ym) − κ(ȳ1, . . . , ȳm) and replace the zeros in Theorem 13 by the corres-
ponding ȳi s.

3 Application to nonlinear knapsack sets

In this section, we illustrate how the general lifting theory developed in Sect. 2 can be
applied to specific problems and in particular to bilinear mixed-integer knapsack sets.
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After presenting general lifting results in Sect. 3.1, we derive two families of strong
inequalities for bilinear mixed-integer knapsack sets in Sect. 3.2. We will use these
inequalities in Sect. 4 to illustrate the fact that, even when the set studied can be
linearized, nonlinear lifting yields inequalities that cannot be easily obtained from
traditional integer programming cutting plane techniques.

3.1 Sequence-dependent and sequence-independent lifting for nonlinear
knapsack sets

In this section, we describe lifting tools for bilinear mixed-integer knapsack sets and
derive conditions under which lifting is simple to perform. Because the tools we
describe are common to all nonlinear knapsack sets in which binary and continuous
variables are paired, we present the lifting results in this more general setting. In
particular, we consider nonlinear knapsack sets of the form

K =
⎧⎨
⎩(x, y) ∈ {0, 1}n × [0, 1]n

∣∣∣∣
n∑

j=1

ρ j (x j , y j ) ≤ d

⎫⎬
⎭

where n ∈ Z+, ρ j : {0, 1} × [0, 1] → R, and d ∈ R. The set K is interesting for
several reasons. First, it is an extension of various mixed-integer knapsack sets that
have been previously studied. For example, it generalizes the linear mixed-integer
knapsack set (choose ρ j (x j , y j ) = a j x j + b j y j ) and the single node fixed charge
flow model (choose ρ j (x j , y j ) = a j y j if y j ≤ x j , ρ j (x j , y j ) = ∞ otherwise).
The set K also generalizes many nonlinear knapsack sets. In particular, it generalizes
bilinear knapsack sets (choose ρ j (x j , y j ) = a j x j y j ) that will be studied in more
detail in Sect. 3.2.

Next we describe lifting tools to derive valid inequalities for PK = conv(K ). Given
T ⊆ N = {1, . . . , n}, we define

K (T ) = {(x, y) ∈ K | x j = y j = 0,∀ j ∈ T }

and define PK (T ) = conv (K (T )). The set K (T ) is the restriction of K obtained by
fixing all the pairs of variables (x j , y j ) for j ∈ T to 0. Note that since ρ j is arbitrary,
we can always transform ρ j in such a way that any extreme point of the unit-hypercube
is mapped to the origin. Therefore, fixing x j and y j to 0 is not a restrictive assumption.

Assume now that T = {t, . . . , n}, t ≥ 2 and, for i ∈ T , we define Ti = {i +
1, . . . , n}. We show in Proposition 14 how a valid inequality for PK can be derived
starting from the following seed inequality

t−1∑
j=1

α j x j +
t−1∑
j=1

β j y j ≤ δ (10)

which is assumed to be valid for K (T ). The lifting we perform is sequential in that
variable pairs (x j , y j ) are lifted one at a time. Therefore, assuming that variables
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(x j , y j ) have already been lifted for j = t, . . . , i − 1, we are interested in studying
the lifting of variables (xi , yi ) in the inequality

i−1∑
j=1

α j x j +
i−1∑
j=1

β j y j ≤ δ (11)

which may be assumed to be valid for PK (Ti−1) by induction.
Inequality (11) corresponds to ᾱx ≤ δ in Sect. 2 and f (x1, y1, . . . , xi , yi ) is the

indicator function of K (Ti ). As (11) is lifted from K (Ti−1) to be valid for K (Ti ),

g(ᾱ, xi , yi ) = − max

⎧⎨
⎩

i∑
j=1

α j x j +
i∑

j=1

β j y j

∣∣∣∣ (x, y) ∈ K (Ti )

⎫⎬
⎭.

By definition, ᾱx + g(ᾱ, xi , yi ) ≤ 0. Further, by validity of (11), −g(ᾱ, 0, 0) ≤ δ.
Therefore, if αi xi + βi yi ≤ g(ᾱ, xi , yi ) − g(ᾱ, 0, 0), then ᾱx + αi xi + βi yi ≤ δ is
a valid inequality. The linear underestimation of g(ᾱ, xi , yi ) − g(ᾱ, 0, 0) is a special
case of the cone underestimator of Proposition 2 from which the validity of the more
general (5) was derived. The validity also follows from the even more general convex
underestimation of g(ᾱ, xi , yi ) in Theorem 1 and the following discussion.

The main idea underlying the upcoming Proposition 14 is to translate the above
inequality in terms of a perturbation function, as is typical in integer programming.
Towards this end, we associate the following perturbation function with (11):

Pi (w) = δ − max

⎛
⎝ i∑

j=1

α j x j +
i∑

j=1

β j y j

⎞
⎠

s.t.
i∑

j=1

ρ j (x j , y j ) ≤ d −
n∑

j=i+1

ρ j (0, 0) − w (12)

x j ∈ {0, 1}, y j ∈ [0, 1] j = 1, . . . , i.

Observe that g(ᾱ, xi , yi )− g(ᾱ, 0, 0) = Pi−1(ρi (xi , yi )−ρi (0, 0))− δ. To provide a
self-contained treatment in this section, we also present direct proofs using techniques
prevalent in the integer programming literature. The reader is referred to Louveaux and
Wolsey [21] for a survey that gives a unified presentation of such lifting techniques,
and also considers superadditive lifting over sets of variables that are separable.

Proposition 14 Assume that (10) is valid for PK (T ). Also assume that, for i ∈ T ,
there exist αi and βi that satisfy

αiφ1 + βiφ2 ≤ Pi−1(ρi (φ1, φ2) − ρi (0, 0)) ∀φ1 ∈ {0, 1}, φ2 ∈ [0, 1]. (13)
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Then, for i ∈ T , the inequality

i∑
j=1

α j x j +
i∑

j=1

β j y j ≤ δ (14)

is valid for PK (Ti ).

Proof We prove the result by induction. The base case is assumed to be true. Assume
now that

∑i−1
j=1 α j x j +∑i−1

j=1 β j y j ≤ δ is valid for PK (Ti−1) and that there exist αi and

βi satisfying (13). From the definition of the perturbation function δ −∑i−1
j=1 α j x j −∑i−1

j=1 β j y j ≥ Pi−1(w), as long as (x, y) satisfy (12). Then, if xi = φ1 and yi = φ2
(13), proves the validity of (14). 
�

The lifting method that is underlying Proposition 14 is systematic and constructive.
If the seed inequality defines a facet of PK (T ) and the coefficients (αi , βi ) for i ∈ T are
chosen in such a way that (14) is satisfied at equality by two new affinely independent
points (φ1, φ2) ∈ {0, 1} × [0, 1] with (φ1, φ2) �= (0, 0), then the resulting inequality
is facet-defining for PK .

If performed exactly, lifting generates strong inequalities for the problem consi-
dered. However, it is limited in that (1) the computation of each single function
Pi (w) might be difficult and/or computationally prohibitive, and (2) all the func-
tions Pi (w) must be computed. These limitations can be alleviated if the pertur-
bation function Pt−1(w) is well-structured. The following proposition shows that
if Pt−1(w) is superadditive then the perturbation function does not change after
pairs of variables are lifted. This result follows directly from Corollary 7. It can
also be derived as a consequence of Theorem 13. In order to see this, define h1
and h2 as summation operators. Let κ(xt , yt , . . . , xn, yn) = ∑n

j=t ρ(x j , y j ). Then,
r(xt , yt , . . . , xn, yn) = ∑n

j=t

(
ρ j (x j , y j ) − ρ j (0, 0)

)
and P(w) of Sect. 2 corres-

ponds to Pt−1(w) defined above. Assumption (A1) is satisfied since h1 is a summation
operator and (A3) is satisfied because the perturbation relaxes the feasible region in
the definition of Pt−1(·). Superadditivity of Pt−1(w) is precisely Assumption (A2).
Therefore,

∑n
j=1

(
α j x j + β j y j

) ≤ δ is valid for PK as long as α j x j +β j y j underes-

timates Pt−1
(
ρ j (x j , y j ) − ρ j (0, 0)

)
. We also include below a direct algebraic proof

along the lines of similar proofs in the integer programming literature.

Proposition 15 Assume that (10) is valid for PK (T ), Pt−1(w) is superadditive, i.e.,
Pt−1(w1) + Pt−1(w2) ≤ Pt−1(w1 + w2), ∀w1, w2 ∈ R, and that there exist αi and
βi for i ∈ T that satisfy

αiφ1 + βiφ2 ≤ Pt−1(ρi (φ1, φ2) − ρi (0, 0)) ∀φ1 ∈ {0, 1}, φ2 ∈ [0, 1]. (15)

Then, for i ∈ T , the inequality

i∑
j=1

α j x j +
i∑

j=1

β j y j ≤ δ

is valid for PK (Ti ).
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Proof We show by induction that Pi = Pt−1 for i = t − 1, . . . , n. The rest of the
result then follows from Proposition 14. The base case is straightforward. We assume
now by induction that Pi−1 = Pi−2 = . . . = Pt−1 and prove that Pi = Pt−1.
First note that Pi (w) ≤ Pi−1(w) ≤ Pt−1(w). Further, using dynamic programming
arguments, it can easily be seen that

Pi (w) = inf
φ1∈{0,1}φ2∈[0,1]

{
Pi−1 (w + ρi (φ1, φ2) − ρi (0, 0)) − αiφ1 − βiφ2

}
.

Using the fact that Pi−1 = Pt−1 and that Pt−1 is superadditive, we conclude that

Pi (w) = inf
φ1∈{0,1},φ2∈[0,1]

{
Pt−1 (w + ρi (φ1, φ2) − ρi (0, 0)) − αiφ1 − βiφ2

}

≥ Pt−1(w) + inf
φ1∈{0,1},φ2∈[0,1]

{
Pt−1 (ρi (φ1, φ2) − ρi (0, 0)) − αiφ1 − βiφ2

}
.

Finally, note that the conditions (15) governing the choice of αi and βi imply Pi (w) ≥
Pt−1(w). We therefore conclude that Pi (w) = Pt−1(w). 
�

Observe that the superadditivity of the perturbation function is not typically needed
over its complete domain. Indeed, the above argument holds even if the perturbation
function is only superadditive over all realizable values of

∑n
i=t (ρi (xi , yi ) − ρi (0, 0))

in the feasible region. Proposition 15 extends sequence-independent lifting to parti-
cular forms of nonlinear mixed-integer programs. It can be used even if the functions
ρ j have different forms for each j . Finally, provided that the lifting coefficients α j

and β j can be derived quickly from the expression of Pt−1, Proposition 15 provides
an efficient way to generate valid inequalities for MINLPs that contain PK as a sub-
structure.

Proposition 15 has applications to linear and nonlinear programs. As an example, in
the lifting of flow cover inequalities for the single node flow model, the lifting function
is traditionally chosen as a one-dimensional function even though the integer program
has n + 1 inequalities. Proposition 15 shows that a one-dimensional perturbation
function is natural in this context since the model can be reformulated as a nonlinear
knapsack when ρ1, . . . , ρn are appropriately defined. We expand on this observation
in the following example.

Example 16 We consider the single node flow model without inflows, which was
initially studied by Padberg et al. [28], and Van Roy and Wolsey [39]. We can model
this set as a nonlinear knapsack set of the form PK by setting d > 0 and by defining
ρ j (x j , y j ), for all j ∈ N , as follows:

ρ j (x j , y j ) =
{

m j y j if y j ≤ x j ,

∞ otherwise,

where we assume that m j > 0. A flow cover F is a subset of N that is such that∑
j∈F m j = d + λ for some λ > 0. We assume that m1 ≥ λ and without loss of
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generality that F = {1, . . . , p}. We define PK (S0, S1) = {(x, y) ∈ PK | x j = y j = 0
∀ j ∈ S0 and x j = y j = 1 ∀ j ∈ S1}. The defining inequality of PK (N\F, F\{1}) is
ρ1(x1, y1) ≤ m1 − λ. The convex hull of this two-dimensional set is polyhedral and
its only nontrivial facet-defining inequality is

m1 y1 − (m1 − λ)x1 ≤ 0. (16)

We will use (16) as the seed inequality for lifting. It can easily be verified that the
perturbation function associated with (16) is

P1(w) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−λ if − ∞ < w ≤ −λ

w if − λ < w ≤ 0

0 if 0 < w ≤ m1 − λ

∞ if m1 − λ < w

(17)

and that P1(w) is superadditive for w ≤ 0. We now lift the variables (xi , yi ) for i ∈
F\{1}. Note that because these variables were fixed at 1 rather than 0, Proposition 15,
suitably adapted, states that the lifting coefficients (αi , βi ) of (xi , yi ) satisfy

βi = sup
0≤φ2<1

−P1(ρi (1, φ2) − ρi (1, 1))

1 − φ2

αi = sup
0≤φ2≤1

(
−P1(ρi (0, φ2) − ρi (1, 1)) − βi (1 − φ2)

)

for i ∈ F\{1}. Using (17), it is easily seen that αi = −(mi − λ)+ and βi = mi for
i = 2, . . . , p. Therefore, we obtain that

∑
i∈F

−(mi − λ)+xi +
∑
i∈F

mi yi ≤
∑

i∈F\{1}
mi +

∑
i∈F\{1}

−(mi − λ)+ (18)

is valid for PK (N\F,∅). Note that because ρi (xi , yi ) ≥ ρi (0, 0) for i ∈ N\F , (18)
is also valid for PK . Inequality (18) is the well-known flow cover inequality, which
plays a central role in the study of single node flow models. We refer the reader to
Gu et al. [15], Atamtürk [1], Shebalov and Klabjan [33], and Louveaux and Wolsey
[21] among others for a discussion of other valid and facet-defining inequalities for
fixed-charge flow problems. 
�

3.2 Two families of strong lifted inequalities for bilinear knapsack sets

In this section, we study mixed-integer bilinear knapsack sets obtained by choosing
ρ j (x j , y j ) = a j x j y j in the definition of K . More precisely, we study
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Lifting inequalities: a framework for generating strong cuts for nonlinear programs

B =
⎧⎨
⎩(x, y) ∈ {0, 1}n × [0, 1]n

∣∣∣∣
n∑

j=1

a j x j y j ≤ d

⎫⎬
⎭

under the assumption that n ∈ Z+, a j > 0, ∀ j = 1, . . . , n, and d > 0. Although we
use the set B primarily to illustrate the strength of nonlinear lifting, we note that B
occurs as a relaxation of outsourcing problems where a quantity y j of a certain product
does not use the capacity of an available resource if it has been outsourced (x j = 0).
The set B also occurs in compact linearizations of 0–1 quadratic programs recently
proposed by Chaovalitwongse et al. [10]. In this paper, the authors reformulate xt Qx
as xt y with y = Qx where bounds for y are derived by bounding Qx . They then
linearize the term xt y using the fact that x is binary. We note that this transforma-
tion introduces only a linear number of additional variables and constraints. Further,
observe that this scheme transforms xt Qx ≤ 0 into the defining constraint of B
whenever Q is a non-negative matrix.

Next, we study the geometric structure of B in more detail. Although the set B is
defined using a nonlinear inequality, its convex hull, PB, is a polyhedron since B is
expressible as a union of a finite number of polytopes.

Proposition 17 PB is a full-dimensional polyhedron. 
�
Even though the set PB has a simple defining inequality, it has a very rich polyhedral

structure. We now illustrate the variety of facet-defining inequalities of PB on an
example. The description of the convex hull of feasible solutions to this problem was
obtained using PORTA; see Christof and Löbel [11]. Its complete linear description
is given in the Appendix.

Example 18 Consider the bilinear mixed-integer knapsack set PB defined by

19x1 y1 + 17x2 y2 + 15x3 y3 + 10x4 y4 ≤ 20.

The linear description of this polytope contains 64 inequalities. We list a subset of
nine inequalities below

7x2 + 7x4 + 17y2 + 10y4 ≤ 34 (19)

7x2 + 5x3 + 7x4 + 17y2 + 15y3 + 10y4 ≤ 49 (20)

63x1 + 63x2 + 63x4 + 133y1 + 153y2 + 90y4 ≤ 439 (21)

63x1 + 63x2 + 45x3 + 63x4 + 133y1 + 153y2 + 135y3 + 90y4 ≤ 574 (22)

63x1 + 63x2 + 63x3 + 63x4 + 133y1 + 153y2 + 189y3 + 126y4 ≤ 664 (23)

19x1 + 17x2 + 15x3 + 19y1 + 17y2 + 15y3 ≤ 71 (24)

19x1 + 17x2 + 15x3 + 10x4 + 19y1 + 17y2 + 15y3 + 10y4 ≤ 81 (25)

x1 ≤ 1 (26)

x1 ≥ 0. (27)


�
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Among the above inequalities, (24)–(27) are easy to derive. In particular, it is easily
proven that bound inequalities xi ≤ 1, xi ≥ 0 and yi ≥ 0 are always facet-defining
for PB and that yi ≤ 1 is facet-defining for PB whenever ai ≤ d. Also, given any set
F ⊆ N , we can use the underestimation xi yi ≥ xi + yi − 1 for i ∈ F and xi yi ≥ 0
for i ∈ N\F to obtain the valid inequality

∑
i∈F

ai xi +
∑
i∈F

ai yi ≤ d +
∑
i∈F

ai . (28)

Inequality (28) may be facet-defining for PB, as illustrated by (24)–(25).
Next, we obtain facet-defining inequalities for PB via lifting. The first family is

obtained using sequence-dependent lifting tools. It uses clique inequalities as seeds
and illustrates that the coefficients of the continuous variables in the facet-defining
inequalities of PB can be much more diverse than those encountered in mixed-integer
linear knapsack sets. The second family is obtained from covers using sequence-
independent tools. Because B reduces to a 0–1 knapsack set when the continuous
variables are fixed at one and because cover inequalities have been shown to be both
theoretically [6] and practically [12] important for 0–1 knapsack sets, we believe that
these inequalities are important in the description of PB. Further, these inequalities will
help us illustrate two important facts about nonlinear lifting. First, because we show
in Sect. 4 that lifted clique and lifted cover inequalities are difficult to obtain from a
reasonably tight integer programming reformulation of B, these inequalities illustrate
the potential of using lifting in nonlinear settings, even when linear reformulations
exist. Second, because lifted cliques form a subfamily of lifted cover inequalities,
these inequalities also illustrate the fact that, although sequential lifting is a more
general tool than sequence-independent lifting, aggressively searching for situations
where sequence-independence conditions hold, yields many inequalities whose overall
structure is not transparent when performing sequential lifting, and the geometric
intuitions of Sect. 2 help in conducting this search.

To simplify the description of the subsequent lifting procedures, we introduce the
following notation. For N0, N1 ⊆ N such that N0 ∩ N1 = ∅ and Ñ0, Ñ1 ⊆ N such
that Ñ0 ∩ Ñ1 = ∅, we define

PB(N0, N1, Ñ0, Ñ1) =
{
(x, y) ∈ B

∣∣∣ x j = 0 for j ∈ N0, x j = 1 for j ∈ N1

y j = 0 for j ∈ Ñ0, y j = 1 for j ∈ Ñ1

}
.

3.2.1 Lifted clique inequalities

The notion of a clique inequality was introduced for node packing problems in [27].
We restate the definition for PB as follows:

Definition 19 Let K ⊆ N . We say that K is a clique for B if ai + a j > d for all
i, j ∈ K such that i �= j . 
�
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For a clique K , it is easy to verify that the inequality

∑
j∈K

x j ≤ 1 (29)

is valid for PB(N\K ,∅, N\K , K ). Further, it is facet-defining if a j ≤ d for all
j ∈ K . We will now obtain a family of facet-defining inequalities for PB by lifting
the seed inequality (29) first with respect to the continuous variables y j fixed at 1
and then with respect to the pairs of variables (x j , y j ) fixed at (0, 0). We note that
the lifting coefficients of the variables y j can be obtained from a simple modification
to Proposition 14 while the lifting coefficients of pairs of variables, (x j , y j ), are
obtained directly from Proposition 14. We assume without loss of generality that
K = {1, . . . , k} and that a1 ≥ · · · ≥ ak .

Proposition 20 Let K be a clique for B and assume that ai ≤ d for i ∈ K . The
inequality

∑
j∈K

x j +
∑
j∈K

a j

a j − d + min{ai | i ∈ K , i �= j} (y j − 1) ≤ 1 (30)

is facet-defining for PB.

Proof We prove by induction on j that the lifting coefficient of y j , denoted by β j ,
equals

a j
a j −d+min{ai | i∈K ,i �= j} for j = 1, . . . , k−1. A simple variation of Proposition 14

that fixes y j at 1, instead of 0, shows that the lifting coefficient is:

β̂ j = max

∑
i∈K xi +∑ j−1

i=1 βi (yi − 1) − 1

1 − y j

s.t. (x, y) ∈ B j

y j < 1, (P)

where B j = {(x, y) ∈ {0, 1}k × [0, 1] j | ∑ j
i=1 ai xi yi +∑k

i= j+1 ai xi ≤ d}. Assume

that we have proven that β̂l = βl for l = 1, . . . , j − 1. We next prove that the result
holds for j . It can easily be seen that the convex hull of B j is a polytope and therefore
has a finite number of extreme points. Consider now the problem

β ′
j = max

∑
i∈K xi +∑ j−1

i=1 βi (yi − 1) − 1

1 − y j

s.t.(x, y) ∈ V (conv(B j ))

0 < y j < 1

x j = 1

yi = 1 ∀i = 1, . . . , j − 1 (R)

where V (conv(B j )) represents the set of extreme points of conv(B j ).

123



J.-P. P. Richard, M. Tawarmalani

We first show that β ′
j = β j and then we show that β̂ j = β ′

j . We claim that
β ′

j ≥ β j . Note that when the x variables are fixed, B j reduces to a traditional
continuous knapsack set. Therefore, if (x, y) ∈ V (conv(B j )), then each (xi , yi ) ∈
{(0, 0), (1, 0), (0, 1), (1, 1), (1, f )}, for i ∈ {1, . . . , j}, where 0 ≤ f ≤ 1. Fur-
ther at most one yi is fractional. Let l ′ = max{l|l �= j} and consider the solution
(xi , yi ) = (0, 1) for i = 1, . . . , min{ j − 1, l ′ − 1}, (x j , y j ) = (1, 1 − 1

β j
), xi = 0

for i = j + 1, . . . , k − 1 and xl ′ = 1. This solution, henceforth referred to as p j , is
feasible to (R) (as well as (P)) and has an objective value of β j . Therefore, β ′

j ≥ β j .
Now, we show that β ′

j ≤ β j . We first claim that
∑

i∈K xi ≤ 2 in the optimal solution
to (R). Because K is a clique and yi = 1 for i < j , xi must be 0 for all but one of the
variables xi for i ∈ K\{ j}. Therefore, the numerator in the objective of (R) cannot be
larger than 1. Further, since y j ≤ 1 − 1

β j
, the denominator cannot be smaller than 1

β j
.

Therefore, β ′
j ≤ β j . This completes our proof of β ′

j = β j .

Now, we claim that β ′
j = β̂ j . Clearly, β ′

j ≤ β̂ j since the feasible region of (R) is a

subset of that of (P). Assume now, so as to derive a contradiction, that β̂ j > β ′
j . Let

(x ′, y′) ∈ B j be a point that most violates the following inequality:

η(x, y) =
∑
i∈K

xi +
j−1∑
i=1

βi (yi − 1) + β ′
j (y j − 1) − 1 ≤ 0. (31)

Such a point exists since β̂ j > β ′
j , η(x, y) is continuous and B j is compact. By

linearity of η(x, y), we can pick (x ′, y′) from V (conv(B j )). We assume, without loss
of generality that y′

j > 0. Otherwise, define x ′′
i = x ′

i for i �= j and y′′
i = y′

i for
i < j and (x ′′

j , y′′
j ) = (0, 1). Then, (x ′′, y′′) ∈ B j . However, η(x ′′, y′′) ≥ η(x ′, y′)

since β ′
j ≥ β j ≥ 1, and, therefore, (x ′′, y′′) is a solution of the desired type. Now, we

show that y′
j < 1. This follows from the induction hypothesis, since η(x, y) ≤ 0 is

valid for B j when y j = 1. Since, for i < j , βi ≥ 1, we may assume that (x ′
i , y′

i ) ∈
{(0, 1), (1, 1)} for i = 1, . . . , j − 1. We have thus shown that (x ′, y′) is feasible to
(R), which is a contradiction to the assumption that β ′

j is the optimal value of (R).

Therefore, β ′
j = β̂ j . Combining the two steps, β̂ j = β ′

j = β j .
We now prove that the lifting coefficients for (x j , y j ), j ∈ N\K can be chosen

to be zero. Consider (x, y) feasible to B. Let (x ′, y′) be such that x ′
j = x j and

y′
j = y j for j ∈ K and (x ′

j , y′
j ) = 0 for j ∈ N\K . Then, (x ′, y′) is feasible to

PB(N\K ,∅, N\K ,∅), and therefore satisfies (30). Since (x, y) matches (x ′, y′) on
the support of (30), (x, y) satisfies it as well.

Now we show that (30) is facet-defining for PB. Let q j = (e j ,
∑k

i=1 ei ), for
j = 1, . . . , k, where ei is the i th unit vector in R

n . These points are tight for the seed
inequality. When the restriction y j = 1 for j ∈ K is relaxed, we showed earlier that
p j is tight for (30). When the restriction x j = 0 is relaxed for j ∈ N\K , the point

r j
1 = q1 + (e j , 0) is tight for (30). Similarly, when the restriction y j = 0 is relaxed

for j ∈ N\K , the point r j
2 = q1 + (0, e j ) is tight for (30). Therefore, the above 2n

affinely independent points show that (30) is facet-defining for PB. 
�
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We now illustrate the use of Proposition 20 on the bilinear knapsack set presented
in Example 18.

Example 21 Consider the set PB introduced in Example 18. Because K = {1, 2, 3, 4}
is a clique and ai ≤ d for i ∈ K , the inequality

x1 + x2 + x3 + x4 ≤ 1

is facet-defining for PB(∅,∅,∅, N ). This clique inequality can be lifted with respect
to the continuous variables into the following inequality:

x1 + x2 + x3 + x4 + 19

9
y1 + 17

7
y2 + 15

5
y3 + 10

5
y4 ≤ 1 + 19

9
+ 17

7
+ 15

5
+ 10

5

or equivalently

63x1 + 63x2 + 63x3 + 63x4 + 133y1 + 153y2 + 189y3 + 126y4 ≤ 664.

This inequality is facet-defining for PB and corresponds to (23) in Example 18. 
�
In Sect. 3.2.2, we generalize the lifted clique inequality by exploiting the sequence-

independent lifting theory.

3.2.2 Lifted cover inequalities

The notion of a cover inequality was introduced for the 0–1 knapsack polytope by
Wolsey [41], Balas [3] and Hammer et al. [17]. We apply their definition to PB as
follows:

Definition 22 A set C ⊆ N is said to be a cover for B if
∑

j∈C a j = d + µ where
µ > 0. Furthermore, µ is said to be the excess of the cover. 
�

Assume that a cover C is known for B. We assume without loss of generality that
C = {1, . . . , p} and that a1 ≥ a2 ≥ . . . ≥ ap. To obtain lifted cover inequalities, we
first fix the variables (x j , y j ) for j ∈ C\{1} to (1, 1) and the variables (x j , y j ) for
j ∈ N\C to (0, 1). The defining inequality of PB(N\C, C\{1},∅, N\{1}) is

a1x1 y1 ≤ a1 − µ. (32)

Assuming that a1 > µ, it is easy to verify that

µx1 + a1 y1 ≤ a1 (33)

is the only nontrivial facet-defining inequality of PB(N\C, C\{1},∅, N\{1}). To
obtain a strong inequality for PB, we lift the seed inequality (33) in two steps. First,
we lift it with respect to the variables (x j , y j ) for j ∈ C\{1}. Second, we lift it with
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respect to the variables (x j , y j ) for j ∈ N\C . In order to perform these liftings, we
first derive a closed-form expression for the perturbation function

P1(w) = a1 − max
x1∈{0,1},y1∈[0,1]

{
µx1 + a1 y1

∣∣∣ a1x1 y1 ≤ a1 − µ − w
}

(34)

associated with (33) and then verify that it is superadditive.

Proposition 23 The perturbation function of (33) is

P1(w) =

⎧⎪⎪⎨
⎪⎪⎩

−µ if w ≤ −µ

w if − µ < w ≤ 0
0 if 0 < w ≤ a1 − µ

∞ if a1 − µ < w.

Moreover, P1(w) is superadditive for w ≤ 0.

Proof When w > a1 −µ, it is easily seen that the feasible region of (34) is empty and
therefore P1(w) = ∞. When w ≤ a1 − µ, it can be verified that an optimal solution
to (34) is either obtained by setting x∗

1 = 0, y∗
1 = 1 or by setting x∗

1 = 1 and y∗
1 =

min{ a1−µ−w
a1

, 1}. Therefore, we obtain P1(w) = a1 − max{a1, µ+ min{a1 −µ−w,

a1}} = min {0, max{w,−µ}}. The proof that P1(w) is superadditive over (−∞, 0] is
straightforward. 
�

Because P1(w) is superadditive over (−∞, 0], the result of Proposition 15 can be
used to obtain the following family of facet-defining inequalities for PB(N\C,∅,∅,

N\C).
Relating the current setup to that of Sect. 2,

γ (1, 1, . . . , xi , yi , . . . , 1, 1) =
{

− min{ai , µ} if xi = 0

− min{ai − ai yi , µ} if xi = 1.

It can be easily verified that

min{ai , µ}(xi − 1) + ai (yi − 1) ≤ γ (1, 1, . . . , xi , yi , . . . , 1, 1).

Since the seed inequality may be written as min{a1, µ}(x1 −1)+a1(y1 −1) ≤ −µ, it
follows from Theorem 13 that (35) is valid for PB(N\C,∅,∅, N\C). A direct proof
is presented next.

Proposition 24 Let C ⊆ N be a cover for B satisfying a1 > µ. Then

∑
j∈C

min{a j , µ}x j +
∑
j∈C

a j y j ≤
∑
j∈C

min{a j , µ} +
∑
j∈C

a j − µ (35)

is a facet-defining inequality of PB(N\C,∅,∅, N\C).
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Proof Note first that, because the variables (x j , y j ) for j ∈ C\{1} were fixed at (1,1),
the results of Proposition 15 must be reformulated. It can be easily established that,
because P1(w) is superadditive over (−∞, 0], we can obtain valid lifting coefficients
for (x j , y j ) if we choose (α j , β j ) to satisfy the conditions

β j ≥ sup
0≤φ<1

−P1(a jφ − a j )

1 − φ
(36)

α j + inf
0≤φ≤1

β j (1 − φ) ≥ −P1(−a j ). (37)

First, we compute β j . Because a j > 0, there are only two cases. In the first case,
µ > a j ≥ 0. From Proposition 23, P1(a jφ − a j ) = a jφ − a j . Therefore, β j ≥
a j . In the second case, a j ≥ µ. From Proposition 23, P1(a jφ − a j ) = a jφ − a j

when a jφ − a j > −µ and P1(a jφ − a j ) = −µ otherwise. When a jφ − a j >

−µ, we conclude that sup0≤φ<1
−P1(a j φ−a j )

1−φ
≤ a j . When a jφ − a j ≤ −µ, we

conclude that sup0≤φ<1

{
µ

1−φ

∣∣∣∣ a jφ − a j ≤ −µ

}
≤ a j . Because the supremum is

achieved when a jφ − a j = −µ, we find that β j ≥ a j . We now compute α j . Because
β j > 0, we deduce from (37) that α j ≥ −P1(−a j ). Therefore, the best lifting
coefficients are α j = min{a j , µ} and β j = a j . By Proposition 23, (35) is valid for
PB(N\C,∅,∅, N\C). Finally observe that (36) and (37) are satisfied at equality for
our choice of α j and β j and that the supremum and infimum are achieved in (36) and
(37). We conclude that (35) is facet-defining for PB(N\C,∅,∅, N\C). 
�

We next illustrate the use of Proposition 24 on an example.

Example 25 Consider the bilinear mixed-integer knapsack set PB defined by

19x1 y1 + 17x2 y2 + 15x3 y3 + 10x4 y4 + 6x5 y5 + 2x6 y6 ≤ 62.

The set C = {1, 2, 3, 4, 5, 6} forms a cover whose excess µ = 7. Note that this cover
satisfies the assumptions of Proposition 24. It follows that

7x1 + 7x2 + 7x3 + 7x4 + 6x5 + 2x6

+ 19y1 + 17y2 + 15y3 + 10y4 + 6y5 + 2y6 ≤ 98 (38)

is facet-defining for PB. 
�
We observed in Example 18 that valid inequalities of the form (28) could easily be

obtained for any F ⊆ N using simple linearization arguments. Proposition 24 shows
that this linearization procedure can be improved in the presence of 0–1 variables. In
fact, (35) can be seen as a strengthening of (28) obtained by reducing the coefficients of
integer variables and the constraint right-hand-side by the same amount for all integer
variables with a reasonably large coefficient.
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We now lift the remaining pairs of fixed variables in (35), i.e., (x j , y j ) for j ∈
N\C . These variables are fixed at (0, 1). To perform this lifting, we first compute in
Proposition 26 a closed-form expression for the perturbation function associated with
(35). This function is defined as

P p(w) = min
∑
j∈C

min{a j , µ}(1 − x j ) +
∑
j∈C

a j (1 − y j ) − µ

s.t.
∑
j∈C

a j x j y j ≤
∑
j∈C

a j − µ − w (39)

x j ∈ {0, 1}∀ j ∈ C

y j ∈ [0, 1]∀ j ∈ C.

In Proposition 28, we show that P p(w) is superadditive over [0, d] and use this result
to derive the desired lifting coefficients in Theorem 30.

We next derive an analytical form for the perturbation function (39). Towards this
end, let q ∈ C be the index for which aq > µ ≥ aq+1. Further, let A0 = 0, Al =∑l

j=1 a j for l = 1, . . . , p. Note that Ap =∑ j∈C a j = d + µ.

Proposition 26 For w ≥ 0, the perturbation function associated with (35) is given
by

P p(w) =

⎧⎪⎪⎨
⎪⎪⎩

(i − 1)µ i f Ai−1 ≤ w ≤ Ai − µ

iµ + w − Ai i f Ai − µ ≤ w ≤ Ai

qµ + w − Aq i f Aq ≤ w ≤ Ap − µ

+∞ otherwise,

where i = 1, . . . , q.

Proof Let w ∈ R. We make the following four observations about optimal solutions
to (39). First, we observe that there is an optimal solution (x∗, y∗) in which no more
than one of the continuous variables y∗ is fractional and that if y∗

k is fractional then
x∗

k = 1. This observation holds because, once the 0–1 variables are fixed, the problem
reduces to a continuous knapsack problem. Second, we note that, because the objective
coefficient of x j is greater than or equal to that of y j in (39), a solution with (x∗

j , y∗
j ) =

(1, 0) for some j ∈ {1, . . . , p} is no better than the solution obtained by changing
(x∗

j , y∗
j ) to (0, 1). We conclude that there is an optimal solution in which the variables

(x∗
j , y∗

j ) take the values (0, 1), (1, 1), or (1, f ). Third, we observe that any solution
where (x∗

j , y∗
j ; x∗

k , y∗
k ) = (1, 1; 1, f ) for j < k is no better than the solution obtained

by changing (x∗
j , y∗

j ; x∗
k , y∗

k ) to (1, f ′; 1, 1) because a j ≥ ak . Fourth, we note that any
solution where (x∗

j , y∗
j ; x∗

k , y∗
k ) = (1, f ; 0, 1) for j < k is no better than the solution

obtained by changing (x∗
j , y∗

j ; x∗
k , y∗

k ) to (0, 1; 1, f ′) when either ak ≥ µ or a j f ≤ ak .
Finally, (x∗

j , y∗
j , x∗

k , y∗
k ) = (1, f ′; 1, 1) is as good as (x∗

j , y∗
j , x∗

k , y∗
k ) = (1, f ; 0, 1)

when ak < µ and a j f > ak . We conclude that, when w ∈ [0, d], the following is an
optimal solution for (39):
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Fig. 4 Perturbation function of (38)

(x∗
j , y∗

j ) =

⎧⎪⎪⎨
⎪⎪⎩

(0, 1) if j = 1, . . . , k − 1
(0, 1) if j = k and min{ak, µ} < ak − d(w)

(1,
d(w)

ak
) if j = k and min{ak, µ} ≥ ak − d(w)

(1, 1) if j = k + 1, . . . , p

where k = max
{

l | ∑p
j=l a j > d − w

}
and d(w) = d − w −∑p

j=k+1 a j . 
�

Note that, in the description of the function P p(w), the interval [Aq , Ap − µ] may
be empty if

∑p
i=q+1 ai ≤ µ. In Fig. 4, we illustrate the function P p(w) derived in

Proposition 26 for the cover inequality (38) presented in Example 25. In particular, we
observe that P p(w) is a piecewise linear, nondecreasing, and continuous function that
has only two slopes. We also observe that the heights of the plateaus of the function
are integer multiples of µ.

This observation combined with the fact that the intervals [0, A1], [A1, A2],
[A2, A3], . . . , [Aq−1, Aq ] are nondecreasing in length implies that the corresponding
function P p(w) is superadditive. We use the following result of Richard [29] to prove
the superadditivity of P p(w).

Proposition 27 Let C0, . . . , Cr be integers. Assume that C0 = 0 and that Ci ≥
Ci−1 + λ for some positive integer λ. Then the function

P(x) =
⎧⎨
⎩

i if Ci ≤ x ≤ Ci+1 − λ for i = 0, . . . , r − 1
i + x−Ci

λ
if Ci − λ ≤ x ≤ Ci for i = 1, . . . , r

r + x−Cr
λ

if Cr ≤ x

is superadditive if and only if Ci + C j ≥ Ci+ j for 0 ≤ i ≤ j ≤ r with i + j ≤ r . 
�
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Fig. 5 Deriving lifting coefficients for (38)

Using the result of Proposition 27, we next prove that the perturbation function of
the lifted cover inequality (35) is superadditive.

Proposition 28 The perturbation function P p(w) associated with (35) is superaddi-
tive over [0, Ap − µ].

Proof Note that, if we choose r = p and Ci = Ai for i = 1, . . . , p, P(w) = P p(w)
µ

for w ≤ Ap − µ. To prove that P p(w) is superadditive, it is therefore sufficient to
prove that Ai + A j ≥ Ai+ j for 0 ≤ i ≤ j ≤ r . These conditions are trivially satisfied
because Ai is the sum of the largest i coefficients of the cover. 
�

We now use the result of Propositions 15, 26, and 28 to obtain facet-defining inequa-
lities for PB. A graphical representation of the lifting problem is given in Fig. 5. In
Fig. 5a, we plot the amount of slack in constraint (35) for every feasible value of
(x j , y j ). When x j = 0, the amount of slack is 0 since P p(a j x j y j ) = P p(0) = 0.
When x j = 1, the amount of slack is given by P p(a j x j y j ) = P p(a j y j ). Because
adding α j x j + β j y j ≤ β j to the seed inequality must produce a valid inequality, the
coefficients α j and β j must be selected in such a way that the plane they define lower-
approximates the function in Fig. 5a. Further, if we want the inequality generated to
be facet-defining, the underestimating plane must touch the function of Fig. 5a in at
least two new affinely independent points.

123



Lifting inequalities: a framework for generating strong cuts for nonlinear programs

We observe from Fig. 5b that various lifting coefficients, satisfying the above pro-
perties, can be derived from the initial cover inequality (35). Further, these coefficients
can be obtained easily from a piecewise linear convex underestimator p(w) of the
function P p(w). Because p(w) plays an important role in the derivation of lifting
coefficients, we first express it in closed-form in the following lemma.

Lemma 29 Let a j ∈ [0, d] and define l j to be the only integer such that Al j − µ ≤
a j < Al j +1 − µ. Let W j

i = Ai − µ for i = 1, . . . , l j and W j
l j +1 = a j . Define

p0 j (w) = 0 and pi j (w) = P p(W j
i ) + P p(W j

i+1)−P p(W j
i )

ai+1
(w − W j

i ), for i = 1, . . . , l j .
Then, the function

p(w) := max
{

pi j (w) | i ∈ {0, . . . , l j }
}

(40)

is a convex underestimator of the perturbation function P p(w) associated with (35)
over [0, a j ].
Proof The fact that p(w) is convex is easily established since p(w) is defined as the
maximum of a finite number of linear functions. It is also obvious that 0 underestimates
P p(w). Note that the slope of pi j (w) is no more than that of pi ′ j (w) whenever
i < i ′. Therefore, it can be easily verified that the maximum in (40) is attained
for i = k when w ∈ [W j

k , W j
k+1]. Also, by definition, pkj (W j

k ) = P p(W j
k ) and

pkj (W j
k+1) = P p(W j

k+1). Then, pkj (w) ≤ P p(w) because P p(w) is concave when

w ∈ [W j
k , W j

k+1]. 
�
Next, we derive the lifting coefficients for the variables (x j , y j ) for j ∈ N\C , which

are indexed from p +1 to n. We now relate the current setup to the notation of Sect. 2.
Then, ᾱ = (min{a1, µ}, a1, . . . , min{ap, µ}, ap

)
, δ =∑ j∈C

(
min{a j , µ} + a j

)−µ,
r(x p+1, yp+1, . . . , xn, yn) =∑n

j=p+1 a j x j y j , and

γ (x p+1, yp+1, . . . , xn, yn) = P p (r(x p+1, yp+1, . . . , xn, yn
)
.

Let h1 and h2 (see Theorem 13) be summation operators. Assumption (A1) and (A3)
are trivially satisfied as in the discussion before Proposition 15. Proposition 28 proves
Assumption (A2), i.e.,

γ (x p+1, yp+1, . . . , xn, yn) ≥
n∑

j=p+1

γ (0, 0, . . . , x j , y j , . . . , 0, 0).

Moreover, Proposition 29 derives a convex underestimator (actually the convex enve-
lope; see Fig. 5) for γ (0, 0, . . . , x j , y j , . . . , 0, 0). This proves the validity of expo-
nentially many inequalities for B (the content of Theorem 30), a direct proof of which
is provided next.
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Theorem 30 Let C be a cover for B such that a1 ≥ µ. Then,

∑
j∈C

min{a j , µ}x j +
∑
j∈C

a j y j +
∑

j∈N\C

α j x j +
∑

j∈N\C

β j y j

≤
∑
j∈C

min{a j , µ} +
∑
j∈C

a j +
∑

j∈N\C

β j − µ

is a facet-defining inequality for PB if

(α j , β j ) ∈ (0, 0) ∪
l j⋃

i=1

(
P p(W j

i+1) − P p(W j
i )

ai+1
(a j − W j

i ) + P p(W j
i ), a j

P p(W j
i+1) − P p(W j

i )

ai+1

)
.

for j ∈ N\C, where W j
i and l j are as defined in Lemma 29.

Proof By superadditivity of P p(w) for w ≥ 0, and Proposition 15 adapted suitably
for y j , j ∈ N\C , fixed at 1 instead of 0, it follows that a lifted inequality is valid if
the lifting coefficients (α j , β j ) are chosen such that

β j ≥ −P p(0)

1 − φ
for all 0 ≤ φ < 1 (41)

α j + β j (φ − 1) ≤ P p(a jφ) for all 0 ≤ φ ≤ 1. (42)

We next derive pairs of lifting coefficients (α j , β j ) for the variables (x j , y j ) that
satisfy (41) and (42). Furthermore, we prove that each of the above lifting coefficients
preserves the facet-defining character of the seed inequality during lifting by providing
two points φ̂ and φ̃ for which inequalities (41) and/or (42) are satisfied at equality.

First consider the coefficients (α j , β j ) = (0, 0). It is easy to verify that they satisfy
(41) and (42) since P p(w) is nonnegative and P p(0) = 0. Also it can easily be verified

that equality holds in (42) for φ̂ = 0 and φ̃ = min
{

A1−µ
a j

, 1
}

.

Second, let

α j = P p(W j
i+1) − P p(W j

i )

ai+1
(a j − W j

i ) + P p(W j
i ),

β j = a j
P p(W j

i+1) − P p(W j
i )

ai+1
.

Because β j > 0, (α j , β j ) satisfies (41). We must now show that (α j , β j ) satisfies
(42). It follows from Lemma 29 that

P p(a jφ) ≥ P p(W j
i ) + P p(W j

i+1) − P p(W j
i )

ai+1
(a jφ − W j

i )
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= P p(W j
i ) + P p(W j

i+1) − P p(W j
i )

ai+1
(a j − W j

i )

+a j
P p(W j

i+1) − P p(W j
i )

ai+1
(φ − 1)

= α j + β j (φ − 1).

Further, it can easily be verified that equality holds throughout for the points φ̂ = W j
i

a j

and φ̃ = W j
i+1
a j

. 
�

Note that, in Theorem 30, the perturbation function remains unchanged over [0, d]
after each pair of variable (x j , y j ) is lifted for j ∈ N\C . Note also that since we identi-
fied different choices of lifting coefficients (α j , β j ) for each pair of variables (x j , y j ),
a single cover inequality yields an exponential number of lifted cover inequalities.
Further, all of these inequalities are facet-defining for PB since the choice of (α j , β j )

was made in such a way that two new tight affinely independent points were added to
the inequality during the lifting of each pair of variables. It can also be observed from
Fig. 5b that, had we fixed the variables (x j , y j ) for j ∈ N\C to (0, 0) instead of (0, 1),
we would have obtained only (0, 0) as the lifting coefficients. It was therefore crucial
to fix (x j , y j ) to (0, 1) for j ∈ N\C in our lifting procedure to generate an exponen-
tial number of inequalities. Incidentally, Theorem 30 provides a concrete example of
the observation we made after Example 8 that it may be possible to derive an expo-
nential number of lifted inequalities from sequence-independent lifting by choosing
subgradients over subsets of variables independently.

Using the result of Theorem 30, we can explain many inequalities of the linear
description of the mixed-integer bilinear knapsack set presented in Example 18. We
derive some of them next.

Example 31 For the bilinear knapsack set described in Example 18, it can easily be
verified that C = {2, 4} is a cover whose excess is 7. We conclude from Proposition 24
that the cover inequality

7x2 + 7x4 + 17y2 + 10y4 ≤ 34 (43)

is facet-defining for PB(T,∅,∅, T ) where T = {1, 3}. We now determine the lifting
coefficients of the pairs of variables (x1, y1) and (x3, y3) using the result of Theo-
rem 30. Note first that the perturbation function P2(w) is given by

P2(w) =
⎧⎨
⎩

0 if w ≤ 10
w − 10 if 10 < w ≤ 17
7 if 17 < w ≤ 20.

Applying Theorem 30, we obtain the following four inequalities
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7x2+7x4+17y2+10y4+

⎧⎪⎪⎨
⎪⎪⎩

≤ 34
7x1 + 133

9 y1 ≤ 439
9

5x3 + 15y3 ≤ 49
7x1 + 5x3 + 133

9 y1 + 15y3 ≤ 574
9

(44)

which are all facet-defining for PB. In fact, they are described as (19)–(22) in the
linear description of PB. 
�

The exponential family of inequalities we presented for PB can be generated effi-
ciently because the perturbation function P p(w) is naturally superadditive. In other
applications, however, the perturbation function of an inequality of interest may not be
superadditive. In such a case, it is still possible to derive valid inequalities efficiently if
a superadditive lower approximation of the perturbation can be found. The inequalities
obtained with this procedure will typically not be the strongest possible. However, for
IPs, the idea of replacing perturbation functions with superadditive lower approxima-
tions has proven to be a very successful approach to generating strong inequalities. We
refer to Gu et al. [16], Atamtürk [2], and Shebalov and Klabjan [33] among others for
examples. We leave the investigation of approximate superadditive lifting in nonlinear
settings for future research.

The lifted cover inequalities described in Theorem 30 and illustrated in Example 31
support the claim that the coefficients of continuous variables in the facets of the single
constraint bilinear mixed-integer knapsack set can be extremely different from those
of the defining knapsack constraint. This is in sharp contrast with the linear case where
coefficients of the continuous variables typically have the ratio property discussed in
Richard et al. [30], i.e., the ratio of the coefficients of continuous variables in a facet-
defining inequality over their coefficients in the defining knapsack constraint is either
0 or a constant θ . This is reminiscent of the conclusion we drew after deriving lifted
cliques inequalities. In fact, this is not surprising, since it can be shown that the family
of lifted covers subsumes the family of lifted cliques.

Corollary 32 Lifted clique inequalities of Proposition 20 are lifted covers with C =
{k − 1, k}. 
�

Corollary 32 illustrates an interesting point about lifting. Although sequential lifting
is a more general tool than sequence-independent lifting, sequence-independent lifting
often reveals many inequalities whose structure is difficult to detect when variables
are lifted sequentially.

Finally, we mention that although the set B we considered is nonlinear, we mana-
ged to describe a large family of facet-defining inequalities for its convex hull using
nonlinear lifting. An interesting question is whether these inequalities can be obtained
easily from a linearization of the set B. We will show in the following section that the
lifted cover inequalities and lifted cliques inequalities are difficult to obtain from the
natural linearization of the set B.
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4 Nonlinear lifting and strength of inequalities

In the previous section, we derived strong inequalities for PB using nonlinear lifting.
In this section, we show that these inequalities are difficult to obtain from the standard
linearization of B. Towards this end, we first introduce an aggregation-tightening pro-
cedure that generalizes many cut-generation techniques for integer programs including
lifting covers and mixed-integer rounding. We derive necessary and sufficient condi-
tions that characterize when an inequality can be obtained using the aggregation-
tightening procedure. We envision that this construction will also be useful in other
contexts for proving strength of inequalities. Second, we specialize the construction
to show that lifted clique and cover inequalities of Sect. 3.2 cannot be obtained using a
single round of the aggregation-tightening procedure on a mixed-integer linear refor-
mulation of the bilinear knapsack set.

A variety of techniques for generating cuts in integer programming proceed by
first aggregating the constraints to generate a single valid inequality which is then
strengthened using integrality restrictions on the variables. Examples of such a pro-
cedure include Chvátal–Gomory cuts and lifted cover inequalities. More abstractly,
the above procedure derives a cut by tightening a valid inequality for a relaxation (in
the above, the linear programming relaxation) using another relaxation (the integer
lattice). We formalize this abstract notion of generating inequalities in the following
procedure. Let S be a possibly nonconvex set. Let A1 and A2 be two sets that contain S.
We define aggregation-tightening as the following two-step procedure that generates
valid inequalities for S. First, we determine a hyperplane H such that A1 belongs to
one of the closed halfspaces of H , say H+. Second, we find an inequality valid for
A2 ∩ H+. We denote the set of inequalities that can be obtained in this manner as
I (A1, A2).

We say an inequality αx ≤ δ in I (A1, A2) strongly separates a set A from S if there
exists an ε > 0 such that αx ≥ δ + ε for all x ∈ A. We say two sets A and B can be
separated strongly if there exists an α such that inf{αx | x ∈ A} > sup{αx | x ∈ B}.

Theorem 33 Let A be a compact/polyhedral subset of A2\S. Then, A can be strongly
separated from S by an inequality in I (A1, A2) if and only if A can be strongly
separated from A1 by a hyperplane. Further, if at least one of A or A1 is compact,
then A and A1 can be strongly separated if and only if cl conv(A) ∩ cl conv(A1) = ∅.

Proof (⇐) Suppose A can be separated strongly from A1. In particular, there is (α, δ)

and ε > 0 such that αx ≥ δ+ε for all x ∈ A and αx ≤ δ for all x ∈ A1. Then, αx ≤ δ is
clearly valid for x ∈ A2∩{x | αx ≤ δ}. Therefore, αx ≤ δ is in I (A1, A2) and strongly
separates S and A. (⇒) Let P be the hyperplane corresponding to the inequality in
I (A1, A2) that strongly separates A and S. Assume by contradiction that there does
not exist an inequality strongly separating A1 and A. Let αx ≤ δ be the inequality
valid for A1 used in the derivation of P . Now, inf{αx | x ∈ A} ≤ δ, otherwise A and
A1 can be strongly separated. If A is compact or polyhedral, then {x | x ∈ A, αx ≤ δ}
is non-empty and contains a point, say x ′. Then, x ′ ∈ A2 ∩{x | αx ≤ δ}. Now, x ′ must
satisfy the inequality corresponding to P and, therefore, A is not strongly separated
from S by this inequality.
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We now argue that cl conv(A)∩ cl conv(A1) = ∅ is equivalent to strong separation
of A and A1. A hyperplane strongly separates A and A1 if and only if it strongly
separates conv(A) and conv(A1), since half-spaces are convex. Then, from Theorem
11.4 in [32], it follows that A and A1 can be strongly separated if and only if 0 �∈
cl(cl conv(A) − cl conv(A1)). But by Corollary 9.1.1 in [32] and compactness of
A or A1, it follows that cl(cl conv(A) − cl conv(A1)) = cl conv(A) − cl conv(A1).
Or, in other words A and A1 can be strongly separated if and only if cl conv(A) ∩
cl conv(A1) = ∅. 
�
Definition 34 Consider an inequality αx ≤ δ that is valid for all x ∈ S. We say that a
subset A of A2\S provides a non-inclusion certificate of αx ≤ δ in I (A1, A2) if there
exists an ε > 0 such that αx ≥ δ + ε for all x ∈ A, A cannot be strongly separated
from A1 by a hyperplane, and at least one of A or A1 is compact.

The goal of this section is to establish that lifted covers and cliques are not obtai-
ned easily for PB using integer programming cut-generation techniques. Towards this
end, we first linearize B using standard techniques. Second, we show that the resulting
linearization is the best possible if one does not use the integrality of the x variables.
Finally, we show that aggregation-tightening procedure applied to the linearized pro-
blem does not generate the lifted cover and lifted clique inequalities by constructing
a non-inclusion certificate for an appropriately defined relaxation of the set.

Consider the bilinear mixed-integer knapsack set B defined in Sect. 3.2. In Pro-
position 17, we argued that PB = conv(B) is a polyhedron. In fact, one can easily
reformulate B into the following mixed-integer linear set via standard linearization
techniques [14]:

LB =
⎧⎨
⎩(x, y) ∈ {0, 1}n × [0, 1]n

∣∣∣∣
∑
j∈J

a j (x j + y j − 1) ≤ d, ∀J ⊆ N

⎫⎬
⎭.

The correctness of the reformulation follows easily by verifying the equivalence of
the bilinear constraint with the linear constraint corresponding to the index set J =
{ j | x j = 1}. Now, consider the following relaxation of B

RB =
⎧⎨
⎩(x, y) ∈ [0, 1]n × [0, 1]n

∣∣∣∣
n∑

j=1

a j x j y j ≤ d

⎫⎬
⎭,

obtained by ignoring the integrality requirements on the x variables. The defining
inequalities of LB are valid for RB as well. This follows since (x − 1)(y − 1) ≥
0 ⇒ xy ≥ x + y − 1; see McCormick [24]. Therefore, it is natural to first investigate
whether additional constraints can be derived without enforcing integrality on the x
variables. Let

RLB =
⎧⎨
⎩(x, y) ∈ [0, 1]n × [0, 1]n

∣∣∣∣
∑
j∈J

a j (x j + y j − 1) ≤ d, ∀J ⊆ N

⎫⎬
⎭,
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be the relaxation of LB obtained when the integrality restrictions on the x variables are
ignored. RLB will serve the purpose of A1 in our aggregation-tightening procedure.
We prove next that RLB is the best possible linearization of RB. Observe that this result
does not directly follow from the well-known fact that maxJ⊆N

∑
j∈J a j (x j + y j −1)

is the convex envelope of
∑n

j=1 a j x j y j over the unit hypercube since in general
conv{x | f (x) ≤ d} �= {x | conv f (x) ≤ d}.
Proposition 35 RLB = conv(RB).

Proof Because RLB is a convex relaxation of RB, we conclude that RLB ⊇ conv(RB).
To prove the opposite inclusion, i.e. RLB ⊆ conv(RB), we show that every vertex of
RLB belongs to RB. Consider any vertex (x∗, y∗) of RLB. There exist coefficients bi

and ci for i ∈ N such that (x∗, y∗) is the only optimal solution of the problem

z∗ = max

{∑
i∈N

(bi xi + ci yi )

∣∣∣∣ (x, y) ∈ RLB

}
.

First, note that we may assume that bi ≥ ci . Otherwise, we interchange yi and xi .
Second, define N++ = {i ∈ N | ci ≥ 0}, N−− = {i ∈ N | bi ≤ 0} and N+− =
N\(N++ ∪ N−−). We assume that N++ = {1, . . . , p}, N+− = {p + 1, . . . , q} and
N−− = {q + 1, . . . , n}. Within each one of these sets, we assume without loss of
generality that the subscripts are ordered in such a way that ci

ai
forms a nonincreasing

sequence. Finally, we define j = max
{
r ∈ N++ | ∑r

i=1 ai ≤ d
}
.

It is easily verified that the point (x∗, y∗, w∗) where w∗
i = max{x∗

i + y∗
i − 1, 0}

for i ∈ N is an optimal solution to

z̃ = max
∑
i∈N

(bi xi + ci yi )

s.t.
∑
i∈N

aiwi ≤ d (π0) (45)

xi + yi − 1 ≤ wi ∀i ∈ N (πi )

xi ≤ 1 ∀i ∈ N (ρi )

yi ≤ 1 ∀i ∈ N (σi )

xi , yi , wi ≥ 0 ∀i ∈ N

and that z∗ = z̃. In the above linear program, the dual variables for each of the
constraints are listed in parenthesis. We now derive an upper bound on z∗ by conside-
ring the following dual feasible solution

πi =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

c j
a j

if i = 0
c j
a j

ai if i ∈ {1, . . . , j}
ci if i ∈ { j + 1, . . . , q}
0 otherwise,
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ρi =
⎧⎨
⎩

bi − c j
a j

ai if i ∈ {1, . . . , j}
bi − ci if i ∈ { j + 1, . . . , q}
0 otherwise,

σi =
{

ci − c j
a j

ai if i ∈ {1, . . . , j}
0 otherwise.

Clearly, the ordering of ci
ai

helps here since we know that for i = 1, . . . , j ,
c j
a j

ai ≤
ci ≤ bi . Therefore, the coefficients in the objective are underestimated. We will use
x ≤ 1 and y ≤ 1 for the remaining part. Further, for i = j + 1, . . . , n we know that
ci ≤ c j

a j
ai . Therefore, the coefficients of wi in (45) are underestimated. We use w ≥ 0

for the remaining part. Adding the constraints and appropriately using w ≥ 0, x ≤ 1
and y ≤ 1, we obtain the following upper bound

zUB =
j−1∑
i=1

(bi + ci ) +
q∑

i= j

bi + c j

(
d −∑ j−1

i=1 ai

)
a j

.

Now consider the following problem

max

{
n∑

i=1

(bi xi + ci yi )
∣∣ (x, y) ∈ RB

}
. (46)

The following solution

(xi , yi ) = (1, 1) for i = 1, . . . , j − 1

(x j , y j ) =
(

1,
(

d −∑ j−1
i=1 ai

)
/a j

)
(xi , yi ) = (1, 0) for i = j + 1, . . . , q
(xi , yi ) = (0, 0) for i = q + 1, . . . , n.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(47)

is feasible for (46). Note, incidentally, that this solution is optimal for (46). This is
because, assuming bi ≥ ci , it can be argued that xi ≥ yi for an optimal solution.
Further, (xi + ε)(yi − ε) = xi yi − ε(xi − yi )− ε2 < xi yi yields that (xi + ε, yi − ε) is
feasible with an improved objective function value. We can iteratively apply the above
argument until either xi is 1 or yi is 0. But, if yi is 0, then xi can be made 1. Now,
since xi ’s are binary, we are left with a continuous knapsack problem in y variables.
Therefore, only one component of y is fractional. The remaining follows from the
non-increasing order of ci

ai
in N++.

The objective value associated with (47) matches zUB, which is larger or equal to
z∗. However, since (x∗, y∗) is feasible for RB, it is feasible for RLB and because its
value is larger or equal to z∗ then it is optimal for RLB, i.e., the vertex (x∗, y∗) of RLB
belongs to RB. This completes the proof. 
�

The above argument can be generalized in a straightforward manner to find the
convex hull of sets defined via a multilinear inequality as long as each variable appears
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in only one term. Although the defining inequality of RB is nonlinear, Proposition 35
shows that conv(RB) is a polytope. In fact, RLB is a tractable reformulation for RB
since it can be expressed as a projection of polynomially many linear inequalities by
introducing z j for x j y j and then linearizing as in the proof of Proposition 35. The-
refore, it is reasonable to say that the difficulty of optimizing linear functions over
B arises primarily from the integrality of the x variables and that LB is a reasonable
reformulation for deriving inequalities for B using integer programming techniques.
Following this scheme, a valid inequality for LB (or equivalently B) is obtained by tigh-
tening a valid inequality for RLB using integrality of the x variables and the bounds
on the x and y variables. One may then conjecture that the lifted inequalities of
Sect. 3.2 can be found via this reformulation using lifting or other cutting plane tech-
niques in mixed-integer programming. In the remaining part of this section, we show
that such a procedure will not yield the desired outcome. This result demonstrates
that lifting techniques become even more powerful when generalized to nonlinear
programs not only by offering new capabilities for nonlinear problems, but also by
exposing new inequalities for integer programming problems with alternate nonlinear
formulations. From here onwards, A2 will refer to {0, 1}n × [0, 1]n and is intended to
capture the effects of tightening inequalities valid for RLB.

Proposition 36 Not all lifted covers and lifted clique inequalities are included in the
inequalities I (RLB, A2), where A2 = {0, 1}n × [0, 1]n.

Proof Consider

B =
⎧⎨
⎩(x, y) ∈ {0, 1}3 × [0, 1]3

∣∣∣∣
3∑

j=1

a j x j y j ≤ a2 + a3 − µ

⎫⎬
⎭

where (i) a1 > a2 ≥ a3 > µ > 0, (ii) a1 < a2 + a3 −µ. The set C = {2, 3} is a cover
and therefore, from Theorem 30, the lifted cover inequality

η(x, y)= x1 + x2 + x3 + a1

µ + a1 − a2
(y1−1) + a2

µ
(y2−1) + a3

µ
(y3−1) − 1≤0

(48)

is facet-defining for PB. The above inequality is also a lifted clique inequality since
our assumptions imply that {1, 2, 3} is a clique. Now, consider the following points:

1. p = (x1 = 1, x2 = 0, x3 = 1, y1 = a2−µ
a1

+ ε, y2 = 1, y3 = 1)

2. q = (x1 = 0, x2 = 1, x3 = 1, y1 = a2−µ
a1

+ ε, y2 = 1, y3 = 1)

First note that η(p) = η(q) = εa1
µ+a1−a2

> 0 as long as ε > 0. Define eI (x, y) =∑
i∈I ai (xi + yi − 1) − a2 − a3 + µ where I ⊆ {1, 2, 3}. Then

RLB = {(x, y) | eI (x, y) ≤ 0, I ⊆ N , 0 ≤ xi ≤ 1, 0 ≤ yi ≤ 1}.
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Now, define h(x, y) to be the vector of violations of constraints eI (x, y) ≤ 0 for
I ⊆ {1, 2, 3}, i.e.,

h(x, y) = [e{1}(x, y), e{2}(x, y), e{3}(x, y), e{1,2}(x, y),

e{1,3}(x, y), e{2,3}(x, y), e{1,2,3}(x, y)].

Then, by direct calculation, we obtain that

h(p) = [a1ε − a3, µ − a2 − a3, µ − a2, a1ε − a3, a1ε, µ − a2, εa1]

h(q) = [a1(ε − 1) − a3, µ − a3, µ − a2,

a1(ε − 1) + (a2 − a3), a1(ε − 1), µ, a2 + a1(ε − 1)] .

Consider r = λp + (1 − λ)q and set ε = (1 − λ) a1−a2
a1

. Then,

h(r) = [−a2(1 − λ) − a3,−λa2 − (a3 − µ),µ − a2,−a3,

−a2(1 − λ),−λa2 + µ, 0] .

Note that 0 ≤ r ≤ 1 whenever 0 ≤ λ ≤ 1. Therefore, as long as 1 > λ ≥ µ
a2

, r
is feasible to A2 and ε is greater than zero (i.e., r is infeasible to the lifted cover).
Since p and q are feasible to RLB, by Theorem 33, p ∪ q provides a certificate of the
non-inclusion of the lifted clique and lifted cover inequality (48) in I (RLB, A2). 
�

The aggregation-tightening procedure includes as special cases many inequalities
for integer programming. Clearly I (RLB, A2) subsumes lifted cover inequalities gene-
rated from a single row relaxation of LB and rank-one fractional Gomory cuts for LB.
Theorem 30 and our discussion in the last paragraph give evidence that the lifted cover
inequalities, which were obtained in closed form using superadditive lifting for the
nonlinear formulation of the bilinear knapsack set, are extremely hard to obtain using
standard integer programming cut-generation procedures. This is a clear motivation
to further develop cutting plane procedures for nonlinear programming problems. As
a side note, the proofs of Proposition 36 and Theorem 39 provide an example of a
six-dimensional mixed-integer polytope for which the intersection of the convex hull
of all knapsack constraints (even those obtained via aggregation of inequalities) is not
sufficient to obtain the convex hull of the integer program. Next, we use the construc-
tion of Proposition 36 to show that the lifted cover inequality (48) cannot even be
obtained as a rank-one split cut of LB.

Proposition 37 Not all lifted covers and lifted clique inequalities are rank-one split
cuts for LB.

Proof Consider the set B in the proof of Proposition 36 and the corresponding lifted
cover inequality (48). Define the set

V =
{

(x, y) ∈ [0, 1]3 × [0, 1]3
∣∣∣∣ 1 <

3∑
i=1

xi ≤ d

a1
, yi = 1 ∀i

}
.
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Observe that V ⊆ RB ⊆ RLB (see Proposition 35). Further, all the points in V violate
(48) and since d > a1, V �= ∅. We assume for a proof by contradiction that the lifted
cover inequality is a rank-one split cut. The corresponding split disjunction is induced
by (π, π0) ∈ Z

4, and the split cut is derived as a valid inequality for RLB1 ∪ RLB2
where RLB1 = RLB ∩{(x, y) | πx ≤ π0} and RLB2 = RLB ∩{(x, y) | πx ≥ π0 +1}.
Since the points in V do not satisfy (48),

(RLB1 ∪ RLB2) ∩ V = ∅, (49)

otherwise, we find a contradiction to our assumption.
Consider the points e1, e2 and e3 in the space of the x variables. We assume without

loss of generality, and by invoking the pigeon-hole principle, that two of these points,
say ei and e j , i �= j , satisfy πx ≤ π0. Assume further that πek ≥ π0 + 1, where
k �= i and k �= j . If π(ei + e j ) ≤ π0, then for λ ∈ [0, 1],

(1 − λ)πei + λπ(ei + e j ) = πei + λπe j = π(ei + λe j ) ≤ π0.

For λ sufficiently small, (ei + λe j , 1) ∈ V , yielding a contradiction to (49). If π(ei +
e j ) ≥ π0 + 1, then for λ ∈ [0, 1],

(1 − λ)πek + λπ(ei + e j ) = π
(
(1 − λ)ek + λei + λe j

) ≥ π0 + 1.

For λ sufficiently small, ((1−λ)ek +λei +λe j , 1) ∈ V , again yielding a contradiction
to (49). Therefore, we may assume that πek ≤ π0. We claim that πek = πei =
πe j = π0. Otherwise, if πet < π0 for t ∈ {i, j, k}, then π(et + λer ) < π0 for
r �= t and a sufficiently small λ > 0, which is a contradiction to (49). It follows that
π = π01, where 1 is a vector of all ones. However, for λ > 0 and sufficiently small,
e1 + λe2 does not satisfy πx ≤ π0. Therefore, π0(1 + λ) > π0, or, in other words,
π0 > 0. Consider the points p, q, and r defined in proof of Proposition 36. Because
πp = πq = 2π0 ≥ π0 + 1, r belongs to RLB2 and violates (48). 
�
Remark 38 We reinterpret the proof of Proposition 37 to allow for more general

two-term disjunctions. Define L = [0, 1]3 ∩
{

x |∑3
i=1 xi ≤ 1

}
, R(k) = [0, 1]3 ∩{

x |∑3
i=1 xi ≥ k

}
, T1 = [0, 1]3 ∩ {x | πx ≤ π0}, and T2 = [0, 1]3 ∩ {x | πx ≥

π0 + 1
}
. More generally, T1 and T2 are any convex subsets of [0, 1]3 such that

T1 ∪ T2 ⊇ {0, 1}3. Since L and R
(

d
a1

)
are separated by a non-zero distance, if

T1 ∩ L �= ∅ and T1 ∩ R
(

d
a1

)
�= ∅, then either T1 is not connected or RLB1 contains a

point in V , contradicting respectively the convexity of T1 or (49). Therefore, without

loss of generality, we assume that T1 ⊆ L and, similarly, T2 ⊆ R
(

d
a1

)
. However,

T1 ⊇ L since T1 contains e1, e2, e3, and 0. Similarly, T2 must contain the remaining
corner points of [0, 1]3 and, therefore, R(2) ⊆ T2. Consider the points p, q and r
defined in proof of Proposition 36. Since p and q satisfy

∑3
i=1 xi ≥ 2, it follows that

r ∈ RLB ∩ {(x, y) | x ∈ R(2)} ⊆ RLB ∩ {(x, y) | x ∈ T2} = RLB2. Moreover, r
violates (48), yielding the desired contradiction. 
�

123



J.-P. P. Richard, M. Tawarmalani

Even though Proposition 36 shows that a single inequality in I (RLB, A2) is not
capable of dominating the lifted cover inequality of Theorem 30, it does not immedia-
tely show that the lifted cover inequality cannot be obtained by aggregating inequalities
in I (RLB, A2). Next, we show strong separation of the lifted cover inequality from
the inequalities obtained by aggregation of inequalities in I (RLB, A2).

Theorem 39 Lifted cover and lifted clique inequalities are not implied by the inter-
section of all the inequalities in I (RLB, A2), where A2 = {0, 1}n × [0, 1]n.

Proof Let B, p and q be as in the proof of Proposition 36. Let I1 be the set of facet-
defining inequalities for conv(B)∪ p and I2 be the set of facet-defining inequalities for
conv(B) ∪ q. Clearly, inequalities in I (A1, A2) can be obtained from conic combina-
tions of inequalities in I1 ∪ I2. Further, we rescale the inequalities of the type αx ≤ δ

in I1 ∪ I2 to satisfy ‖(α, δ)‖ = 1. By Theorem 30 and Proposition 20, we know that
the lifted cover/lifted clique inequality is facet-defining. Then, let {u1, . . . , un+1} be a
set of n + 1 affinely independent points feasible to B that satisfy the lifted cover/lifted
clique inequality at equality. Define:

z = max
(α,δ)

{
v(α, δ)

∣∣ ‖(α, δ)‖ = 1, (α, δ) ∈ I1 ∪ I2
}
,

where v(α, δ) = ∑n+1
i=1 (αui − δ). First, observe that v(α, δ) ≤ 0, since αx ≤ δ is

satisfied for all ui . In fact, v(α, δ) < 0, otherwise αui − δ = 0 for all ui . Then, (α, δ)

is uniquely determined (up to scaling) and must, therefore, correspond to the lifted
cover inequality. This yields the desired contradiction since the lifted cover cuts off
p and q. Now, since conv(B) is a full-dimensional polytope by Proposition 17 and
I1 ∪ I2 is finite, it follows that z < 0. Let (α1, δ1), . . . , (αt , δt ) be the inequalities in
I1 ∪ I2. Define

V =
⎛
⎜⎝

α1 δ1

...
...

αt δt

⎞
⎟⎠ , w = (w1, . . . , wt ), e = (1, . . . , 1)T , and Y =

(
u1 . . . un+1
−1 . . . −1

)
.

where
∑t

i=1 wi = 1. By our previous argument VY e ≤ ze. Therefore, wVY e ≤
zwe = z < 0. On the other hand, for the lifted cover inequality γ x ≤ ς , [γ ς ]Y e = 0.
Therefore, Y e separates wV (the set of inequalities obtained by aggregating inequali-
ties in I (RLB, A2)) from [γ, ς ]. 
�

5 Conclusion

In this paper, we have extended mixed-integer programming lifting techniques to non-
linear mixed-integer programming. In particular, we have interpreted lifting geome-
trically and have generalized the concept of sequence-independent lifting to nonlinear
programs. For mixed-integer bilinear knapsack sets, we have used these techniques to
obtain an exponential family of inequalities that are not easily obtained from linear
integer programming reformulations. In the process, we have developed a unified
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approach for demonstrating strength of inequalities with respect to typical elementary
closures studied in integer programming. Although originally designed for the gene-
ration of linear cuts, the theory we have developed can be used to generate nonlinear
cuts and convex hulls in the space of original variables. Future research will concen-
trate on the computational aspects of generating lifted cuts on a larger selection of
nonlinear problems. The lifting theory has the potential of yielding new inequalities
for various models that have been previously studied, such as complementarity and
quadratic problems.

Appendix

19x1 y1 + 17x2 y2 + 15x3 y3 + 10x4 y4 ≤ 20

The linear description of the convex hull of the above set is as follows:

−1x1 + 0x2 + 0x3 + 0x4 + 0y1 + 0y2 + 0y3 + 0y4 ≤ 0
0x1 − 1x2 + 0x3 + 0x4 + 0y1 + 0y2 + 0y3 + 0y4 ≤ 0
0x1 + 0x2 − 1x3 + 0x4 + 0y1 + 0y2 + 0y3 + 0y4 ≤ 0
0x1 + 0x2 + 0x3 − 1x4 + 0y1 + 0y2 + 0y3 + 0y4 ≤ 0
0x1 + 0x2 + 0x3 + 0x4 − 1y1 + 0y2 + 0y3 + 0y4 ≤ 0
0x1 + 0x2 + 0x3 + 0x4 + 0y1 − 1y2 + 0y3 + 0y4 ≤ 0
0x1 + 0x2 + 0x3 + 0x4 + 0y1 + 0y2 − 1y3 + 0y4 ≤ 0
0x1 + 0x2 + 0x3 + 0x4 + 0y1 + 0y2 + 0y3 − 1y4 ≤ 0
0x1 + 0x2 + 0x3 + 0x4 + 0y1 + 0y2 + 0y3 + 1y4 ≤ 1
0x1 + 0x2 + 0x3 + 0x4 + 0y1 + 0y2 + 1y3 + 0y4 ≤ 1
0x1 + 0x2 + 0x3 + 0x4 + 0y1 + 1y2 + 0y3 + 0y4 ≤ 1
0x1 + 0x2 + 0x3 + 0x4 + 1y1 + 0y2 + 0y3 + 0y4 ≤ 1
0x1 + 0x2 + 0x3 + 1x4 + 0y1 + 0y2 + 0y3 + 0y4 ≤ 1
0x1 + 0x2 + 1x3 + 0x4 + 0y1 + 0y2 + 0y3 + 0y4 ≤ 1
0x1 + 0x2 + 1x3 + 1x4 + 0y1 + 0y2 + 3y3 + 2y4 ≤ 6
0x1 + 1x2 + 0x3 + 0x4 + 0y1 + 0y2 + 0y3 + 0y4 ≤ 1
0x1 + 7x2 + 0x3 + 7x4 + 0y1 + 17y2 + 0y3 + 10y4 ≤ 34
0x1 + 7x2 + 5x3 + 7x4 + 0y1 + 17y2 + 15y3 + 10y4 ≤ 49
0x1 + 7x2 + 7x3 + 7x4 + 0y1 + 17y2 + 21y3 + 14y4 ≤ 59
0x1 + 12x2 + 12x3 + 0x4 + 0y1 + 17y2 + 15y3 + 0y4 ≤ 44
0x1 + 12x2 + 12x3 + 5x4 + 0y1 + 17y2 + 15y3 + 10y4 ≤ 54
0x1 + 12x2 + 12x3 + 7x4 + 0y1 + 17y2 + 21y3 + 14y4 ≤ 64
0x1 + 14x2 + 12x3 + 7x4 + 0y1 + 17y2 + 15y3 + 10y4 ≤ 56
0x1 + 17x2 + 15x3 + 10x4 + 0y1 + 17y2 + 15y3 + 10y4 ≤ 62
1x1 + 0x2 + 0x3 + 0x4 + 0y1 + 0y2 + 0y3 + 0y4 ≤ 1
9x1 + 0x2 + 0x3 + 9x4 + 19y1 + 0y2 + 0y3 + 10y4 ≤ 38
9x1 + 0x2 + 5x3 + 9x4 + 19y1 + 0y2 + 15y3 + 10y4 ≤ 53
9x1 + 0x2 + 9x3 + 9x4 + 19y1 + 0y2 + 27y3 + 18y4 ≤ 73
9x1 + 7x2 + 0x3 + 9x4 + 19y1 + 17y2 + 0y3 + 10y4 ≤ 55
9x1 + 7x2 + 5x3 + 9x4 + 19y1 + 17y2 + 15y3 + 10y4 ≤ 70
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14x1 + 0x2 + 14x3 + 0x4 + 19y1 + 0y2 + 15y3 + 0y4 ≤ 48
14x1 + 0x2 + 14x3 + 5x4 + 19y1 + 0y2 + 15y3 + 10y4 ≤ 58
14x1 + 0x2 + 14x3 + 9x4 + 19y1 + 0y2 + 27y3 + 18y4 ≤ 78
14x1 + 12x2 + 14x3 + 0x4 + 19y1 + 17y2 + 15y3 + 0y4 ≤ 65
14x1 + 12x2 + 14x3 + 5x4 + 19y1 + 17y2 + 15y3 + 10y4 ≤ 75
14x1 + 12x2 + 14x3 + 9x4 + 19y1 + 17y2 + 27y3 + 18y4 ≤ 95
16x1 + 16x2 + 0x3 + 0x4 + 19y1 + 17y2 + 0y3 + 0y4 ≤ 52
16x1 + 16x2 + 0x3 + 7x4 + 19y1 + 17y2 + 0y3 + 10y4 ≤ 62
16x1 + 16x2 + 12x3 + 0x4 + 19y1 + 17y2 + 15y3 + 0y4 ≤ 67
16x1 + 16x2 + 12x3 + 7x4 + 19y1 + 17y2 + 15y3 + 10y4 ≤ 77
18x1 + 0x2 + 14x3 + 9x4 + 19y1 + 0y2 + 15y3 + 10y4 ≤ 62
18x1 + 16x2 + 0x3 + 9x4 + 19y1 + 17y2 + 0y3 + 10y4 ≤ 64
18x1 + 16x2 + 14x3 + 0x4 + 19y1 + 17y2 + 15y3 + 0y4 ≤ 69
18x1 + 16x2 + 14x3 + 9x4 + 19y1 + 17y2 + 15y3 + 10y4 ≤ 79
19x1 + 0x2 + 15x3 + 10x4 + 19y1 + 0y2 + 15y3 + 10y4 ≤ 64
19x1 + 17x2 + 0x3 + 10x4 + 19y1 + 17y2 + 0y3 + 10y4 ≤ 66
19x1 + 17x2 + 15x3 + 0x4 + 19y1 + 17y2 + 15y3 + 0y4 ≤ 71
19x1 + 17x2 + 15x3 + 10x4 + 19y1 + 17y2 + 15y3 + 10y4 ≤ 81
63x1 + 63x2 + 0x3 + 63x4 + 133y1 + 153y2 + 0y3 + 90y4 ≤ 439
63x1 + 63x2 + 45x3 + 63x4 + 133y1 + 153y2 + 135y3 + 90y4 ≤ 574
63x1 + 63x2 + 63x3 + 63x4 + 133y1 + 153y2 + 189y3 + 126y4 ≤ 664
84x1 + 84x2 + 84x3 + 0x4 + 114y1 + 119y2 + 105y3 + 0y4 ≤ 422
84x1 + 84x2 + 84x3 + 35x4 + 114y1 + 119y2 + 105y3 + 70y4 ≤ 492
84x1 + 84x2 + 84x3 + 49x4 + 114y1 + 119y2 + 147y3 + 98y4 ≤ 562
96x1 + 96x2 + 84x3 + 0x4 + 114y1 + 119y2 + 105y3 + 0y4 ≤ 434
96x1 + 96x2 + 84x3 + 42x4 + 114y1 + 119y2 + 105y3 + 60y4 ≤ 494
96x1 + 96x2 + 84x3 + 47x4 + 114y1 + 119y2 + 105y3 + 70y4 ≤ 504
96x1 + 96x2 + 84x3 + 49x4 + 114y1 + 119y2 + 111y3 + 74y4 ≤ 514
98x1 + 98x2 + 98x3 + 63x4 + 133y1 + 153y2 + 189y3 + 126y4 ≤ 699
112x1 + 112x2 + 0x3 + 63x4 + 133y1 + 153y2 + 0y3 + 90y4 ≤ 488
112x1 + 112x2 + 84x3 + 63x4 + 133y1 + 153y2 + 105y3 + 90y4 ≤ 593
112x1 + 112x2 + 94x3 + 63x4 + 133y1 + 153y2 + 135y3 + 90y4 ≤ 623
112x1 + 112x2 + 96x3 + 56x4 + 133y1 + 136y2 + 120y3 + 80y4 ≤ 581
112x1 + 112x2 + 98x3 + 63x4 + 133y1 + 153y2 + 147y3 + 98y4 ≤ 643
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