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Abstract. Let / be a holomorphic mapping between compact complex man-

ifolds. We give a criterion for / to have unobstructed deformations, i.e. for

the local moduli space of / to be smooth: this says, roughly speaking, that the

group of infinitesimal deformations of f, when viewed as a functor, itself sat-

isfies a natural lifting property with respect to infinitesimal deformations. This

lifting property is satisfied e.g. whenever the group in question admits a 'topo-

logical' or Hodge-theoretic interpretation, and we give a number of examples,

mainly involving Calabi-Yau manifolds, where that is the case.

One of the most important objects associated to a compact complex manifold

X is its versal deformation or Kuranishi family

n:^^Def(X);

this is a holomorphic mapping onto a germ of an analytic space (De((X), 0)

(the Kuranishi space) with the universal property that ^_1(0) = X and that

any sufficiently small deformation of X is induced by pullback from n by a

map unique to 1st order. In general, Def(X) is singular and even nonreduced;

in case Def(Jf) is smooth, i.e. a germ of the origin in C^, we say that X is

unobstructed. In an analogous fashion, a holomorphic mapping

f:X^Y

also possesses a versal deformation, which in this case is a diagram

\ /
Def(/)

with a similar universal property. Again we say that / is unobstructed if Def(/)

is smooth.
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Now in [R3], we gave a criterion which deduces the unobstructedness of a

compact complex manifold X from a lifting property (in particular, deforma-

tion invariance) of certain cohomology groups associated to X ; this implies in

particular the unobstructedness of Calabi-Yau manifolds, i.e. Kahler manifolds

with trivial canonical bundle Kx (theorem of Bogomolov-Tian-Todorov [B,

Ti, To]), as well as that of certain manifolds with "big" anticanonical bundle

—Kx ■ In this note we announce an extension of our criterion to the case of

holomorphic maps of manifolds and discuss some applications, mainly to maps

whose source is a Calabi-Yau manifold.

1. Generalities

Given a holomorphic map

f:X-*Y
of complex manifolds, we defined in [R1 ] certain groups Tí-, / > 0, which

are related to deformations of /; in particular, T\ is the group of lst-order

deformations of /. For our present purposes, it will be necessary to consider

the corresponding relative groups Tl-    , which are associated to a diagram
//s

/:jr —    y

s

with 3? IS, y ¡S smooth (we call such a map / an S-map, or a deformation

of /). In the notation of [RI, R2], we have

7}/s = Ext'(cîi, èo)

where á0: f*@y —► &%■, ¿i : f*Q.y/s -* Q&'/s are the natural maps. As in
[Rl], we have an exact sequence

0 - Tjis - T%jS 0 T*/s - Homf(Qy/s, 0¡r)

-* Tf/S -* Tr/S 0 TyjS -» Exty(Q^75, &%■) -> • ■ •

where T^,^ = H'(T^/S), 7>/s being the relative tangent bundle and similarly

for TLjS, Hom^(-, •) = Hom^(/*-, •) and Ext^(-, •) are its derived functors.

Now put Sj = SpecC[e]/(ey). Our main general result, which is an analogue
for maps of a result given in [R3] for manifolds, is the following

Theorem-Construction 1.1. Suppose given Xj/Sj, Yj/Sj smooth and f¡: X¡ —>

Yj an Sj-map, for some j > 2, and let Xj-\/Sj-\, Yj-i/Sj-i, /}_i : Xj_\ -*
Yj-\ be their respective restrictions via the natural inclusion 5;_i <-* Sj . Then

(i) associated to f¡ is a canonical element ay_i 6 T\    ,s    ;

(ii) given any element a¡ e T\ ,s which maps to a7_i under the natural

restriction map Tl,s —> Ti ,s , there are canonically associated to a¡ defor-

mations Xj+\/Sj+x, Yj+i/Sj+i andan Sj+\-map fj+i: XJ+l -> Yj+l, extending
Xj/Sj, Yj/Sj and f¡ : X¡ -* Y¡ respectively.

The proof is analogous to that of Theorem 1 in [R3] and will be presented

elsewhere. In view of this theorem it makes sense to give the following
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Definition 1.2. A map f: X —* Y is said to satisfy the Tx-lifting property if for

any deformation fy. Xj/Sj —> Yj/Sj of / and its restriction ft_\\ Xj-\/Sj-\^>
Yj-i/Sj-i , the natural map

Tl t1
'fj/Sj -» Ifj-i/SJ.

is surjective.

Abusing terminology somewhat, we will say that T\ is deformation-invariant

if the groups T\,&   are always free Sj -modules and their formation commutes

with base-change. Note, trivially, that whenever T\ is deformation-invariant,

/ satisfies the Tl -lifting property. As an easy consequence of Theorem 1.1, we

have the following

Criterion 1.3. Suppose f: X —> Y is a map of compact complex manifolds sat-

isfying the Tl-lifting property (e.g. Tj is deformation-invariant); then f is

unobstructed.

Remark 1.4. Various variants of this criterion are possible, e.g. for deforma-

tions of maps /: X —► Y with fixed target Y. In the special case that / is

an embedding, with normal bundle N, we obtain that the Hubert scheme of

submanifolds of Y is smooth at the point corresponding to f(X) provided

H°(N) satisfies the lifting property (e.g. is deformation-invariant). Also, the

converse to Criterion 1.3 is trivially true, though we shall not need this.

2. Applications

Unless otherwise specified, all spaces X, Y considered here are assumed

smooth.

Theorem 2.1. Let X be a Calabi-Yau manifold and f:Y^>X the inclusion of
a smooth divisor. Then f is unobstructed and moreover the image and fibre of

the natural map Y)cf(f) —► Y)tf(X) are smooth.

Proof. In this case we may identify Tj- with Hl(T') where T' is defined by

the exact sequence

(2.1) 0^T'^Tx^NY/x^0,

and it will suffice to prove deformation invariance of Hl(T'). Now identifying

Tx = ß^--1 , NY/x — £2y-1 , n = dimX , we may write the cohomology sequence
of (2.1) as

0^H"-l>°(Y) -> Hl(T')^Hn-l'l(X)CH"-l'l(Y)--- .

As Hn~l'°(Y) and ker(/*) are both deformation-invariant, so is Hl(T'),

hence / is unobstructed, and since moreover the former groups are the re-

spective tangent spaces to the fibre and image of Def(/) —» Def(.Y), the latter

are smooth.    Q.E.D.

A similar argument can be used to reprove a recent theorem of C. Voisin [V]

(see op. cit. for examples and further results):
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Theorem 2.2 (Voisin). Let X be a Kahler symplectic manifold, with (everywhere

nondegenerate) symplectic form co e H°(Çix), and f:Y—yX a Lagrangian

embedding, i.e. f*w — Q and dim Y = j dim X. Then f is unobstructed and

the image and fibre of the natural map Y)ei(f) —» Def(^T) are smooth.

Proof. In this case we may identify Tx = &x , Ny/x — ßy > and we may argue
as in the proof of Theorem 2.1 (note that this property of being Lagrangian is

open).

Next we consider deformations of fibre spaces f:Xn—> Ym with X Calabi-

Yau (i.e. / is a flat map whose fibres are reduced and connected). Note that for

a fibre space /, its general fibre is clearly a Calabi-Yau manifold. Also, it follows

easily from the sequence (1.1) that Def(/) «-♦ Def(X). When Rx f*t?x = 0,
the morphism Def(/) —► Y)zi(X) is an isomorphism by a theorem of Horikawa

[H], hence in that case unobstructedness of / follows from that of X. We will

consider here two extreme cases: namely m = n — 1 and m = 1.

Theorem 2.3. Let f:X—*Y be an elliptic fibre space (i.e. general fibre elliptic
curve) with X Calabi-Yau. Then f is unobstructed.

Proof. Using the usual exact sequence (1.1) and Criterion 1.3, it suffices to

prove the deformation invariance of

ker(Hl(Tx) - H°(Y, R> f.ffix ® 7»).

Now by relative duality we have

Rlf.(fXÇÉQ)-}Y*COY,

hence we may identify a with the push-forward map (or "integration over the

fibre")
H"-i'l(X)^H"-2'°(Y),

and in particular kera is deformation-invariant. (Note that we have Def(/)

= Def(X) whenever a = 0, e.g. H"~2'°(Y) = 0, which holds whenever

H"-2-°(X) = 0.)

Theorem 2.4. Let f: X —► C be a fibre space from a Calabi-Yau manifold to a
smooth curve. Then f is unobstructed.

Proof. Note that for any fibre Y of / we have

h°(c?Y(Y)) = h°(cfY) = 1,

and it follows that the scheme Div°(X) parametrizing reduced connected ef-

fective divisors of X is smooth and 1-dimensional locally at the point corre-

sponding to Y . Consequently if we denote by

p:Z ^Div°(X)

the universal family and q : Z —y X the natural map, then we have in fact a 1-1

correspondence between morphisms /: X —► C as above and smooth compact

connected 1-dimensional components CcDiv°(X) suchthat q\p~l(C) is an

isomorphism. Now it follows from Theorem 2.1 and its proof that for any

smooth fibre Y of /, the locus D' c Def(X) of deformations over which Y

extends is smooth and independent of Y. It follows that almost all, hence all,

of C as component of Div°(X) in fact extends over D', hence so does /, so

that D' — Def(/), proving the theorem.
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In the intermediate cases, we have only much weaker results:

Theorem 2.5. Let f:X—>Y be a smooth morphism and assume either

(i) Kx is trivial; or

(ii) KX/Y is trivial.

Then Def(f) -» Def(Y) has smooth fibres.

Proof. We will prove (ii), as (i) is similar. It suffices to prove the deformation

invariance of Hl(TX/Y), where TX/Y is the relative (vertical) tangent bundle.
Now we have

Tx/Y & OP-]. ® K~¡Y 2 Çinx-Y       n = dim(Z/ Y).

By relative Hodge theory, Hx(Çlnx~,Y) is a direct summand of Hn(f~lcfY), and

it will suffice to prove the deformation invariance of the latter. We have a Leray
spectral sequence

(2.2) H"(Y, R«f.f-lc7Y) =* Hn(f~lcfY).

However W'(Y', i?«/./->c?Y) = Hp>°(Y, RqfXx) is a direct summand of

HP(Y, Rqfi.Cx), hence the degeneration of the Leray spectral sequence of C*

implies that of (2.2), hence the deformation invariance of H"(f~lcfY).
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Added in proof

The above ideas are pursued further in the author's preprints, Hodge theory

and the Hubert scheme (September 1990) and Hodge theory and deformations

of maps (January 1991).
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