
LIFTING TRANSFORMS ON GRAPHS AND THEIR

APPLICATION TO VIDEO CODING

by

Eduardo Martinez Enriquez

December 2013

Thesis Title:

LIFTING TRANSFORMS ON GRAPHS AND THEIR APPLICATION TO VIDEO

CODING

Author:

EDUARDO MARTÍNEZ ENRÍQUEZ

Advisors:

DR. FERNANDO DÍAZ DE MARÍA

DR. ANTONIO ORTEGA DIEGO

Dissertation Committee:

DR. NARCISO GARCÍA SANTOS

DRA. CARMEN PELÁEZ MORENO

DR. PASCAL FROSSARD

A mi familia, Marı́a y Nico...

ABSTRACT

Compact representations of data are very useful in many applications such as cod-

ing, denoising or feature extraction. “Classical” transforms such as Discrete Cosine

Transforms (DCT) or Discrete Wavelets Transforms (DWT) provide sparse approxima-

tions of smooth signals, but lose efficiency when they are applied to signals with large

discontinuities. In such cases, directional transforms, which are able to adapt their ba-

sis functions to the underlying signal structure, improve the performance of “classical”

transforms.

In this PhD Thesis we describe a general class of lifting transforms on graphs that

can be seen as N-dimensional directional transforms. Graphs are constructed so that

every node corresponds to a specific sample point of a discrete N-dimensional signal and

links between nodes represent correlation between samples. Therefore, non-correlated

samples (e.g., samples across a large discontinuity in the signal) should not be linked.

We propose a lifting-based directional transform that can be applied to any undi-

rected graph. In this transform, filtering operations are performed following high-

correlation directions (indicated by the links between nodes), thus avoiding filtering

across large discontinuities that give rise to large high-pass coefficients in those loca-

tions. In this way, the transform efficiently exploits the correlation that exists between

data on the graph, leading to a more compact representation.

We mainly focus on the design and optimization of these lifting transforms on

graphs, studying and discussing the three main steps required to obtain an invertible

and critically sampled transform: (i) graph construction, (ii) design of “good” graph bi-

partitions, and (iii) filter design. We also explain how to extend the transform to J levels

of decomposition, obtaining a multiresolution analysis of the original N-dimensional

signal.

The proposed transform has many desirable properties, such as perfect reconstruc-

tion, critically-sampled, easy generalization to N-dimensional domains, non-separable

and one-dimensional filtering operations, localization in frequency and in the original

domain, and the ability to choose any filtering direction.

As an application, we develop a graph-based video encoder where the goal is to

obtain a compact representation of the original video sequence. To this end, we first

propose a graph-representation of the video sequence and then design a 3-dimensional

(spatio-temporal) non-separable directional transform. This can be viewed as an exten-

sion of wavelet transform-based video encoders that operate in the spatial and in the

temporal domains independently. Our transform yields better compaction ability (in

terms of non-linear approximation) than a state of the art motion-compensated tempo-

ral filtering transform (which can be interpreted as a temporal wavelet transform) and

a comparable hybrid Discrete Cosine Transform (DCT)-based video encoder (which is

the basis of the latest video coding standards).

In order to obtain a complete video encoder, the transform coefficients and the side

information (needed to obtain an invertible scheme) should be entropy coded and sent

to the decoder. Therefore, we also propose a coefficient-reordering method based on

the information of the graph which allows to improve the compression ability of the en-

tropy encoder. Furthermore, we design two different low-cost approaches which aim to

reduce the extensive computational complexity of the proposed system without causing

significant losses of compression performance. The proposed complete system leads

to an efficient encoder which significantly outperforms a comparable hybrid DCT-based

encoder in rate-distortion terms. Finally, we investigate how rate-distortion optimization

can be applied to the proposed coding scheme.

RESUMEN

La representación compacta de señales resulta útil en diversas aplicaciones, tales

como compresión, reducción de ruido, o extracción de caracterı́sticas. Transformadas

“clásicas” como la Transformada Discreta del Coseno (DCT) o la Transformada Wavelet

Discreta (DWT) logran aproximaciones compactas de señales suaves, pero pierden su

eficiencia al ser aplicadas sobre señales que contienen grandes discontinuidades. En

estos casos, las transformadas direccionales, capaces de adaptar sus funciones base a la

estructura de la señal a analizar, mejoran la eficiencia de las transformadas “clásicas”.

En esta tesis nos centramos en el diseño y optimización de transformadas “lifting”

sobre grafos, las cuales pueden ser interpretadas como transformadas direccionales

N-dimensionales.

Los grafos son construidos de manera que cada nodo se corresponde con una muestra

especı́fica de una señal discreta N-dimensional, y los enlaces entre los nodos represen-

tan correlación entre muestras. Ası́, muestras no correlacionadas (por ejemplo, muestras

que se encuentran a ambos lados de una discontinuidad) no deberı́an estar unidas. So-

bre el grafo formado aplicaremos transformadas basadas en el esquema “lifting”, en las

que las operaciones de filtrado se realizan siguiendo las direcciones indicadas por los

enlaces entre nodos (direcciones de alta correlación). De esta manera, evitaremos filtrar

cruzando a través de largas discontinuidades (lo que resultarı́a en coeficientes con alto

valor en dichas discontinuidades), dando lugar a una transformada direccional que ex-

plota la correlación que existe entre las muestras de la señal en el grafo, obteniendo una

representación compacta de dicha señal.

En esta tesis nos centramos, principalmente, en investigar los tres principales pasos

requeridos para obtener una transformada direccional basada en el esquema “lifting”

aplicado en grafos: (i) la construcción del grafo, (ii) el diseño de biparticiones del grafo,

y (iii) la definición de los filtros. El buen diseño de estos tres procesos determinará,

entre otras cosas, la capacidad para compactar la energı́a de la transformada. También

explicamos cómo extender este tipo de transformadas a J niveles de descomposición,

obteniendo un análisis multi-resolución de la señal N-dimensional original. La trans-

formada propuesta tiene muchas propiedades deseables, tales como reconstrucción per-

fecta, muestreo crı́tico, fácil generalización a dominios N-dimensionales, operaciones

de filtrado no separables y unidimensionales, localización en frecuencia y en el dominio

original, y capacidad de elegir cualquier dirección de filtrado.

Como aplicación, desarrollamos un codificador de vı́deo basado en grafos donde

el objetivo es obtener una versión compacta de la señal de vı́deo original. Para ello,

primero proponemos una representación en grafos de la secuencia de vı́deo y luego

diseñamos transformadas no separables direccionales 3-dimensionales (espacio-tiempo).

Nuestro codificador puede interpretarse como una extensión de los codificadores de

vı́deo basados en “wavelets”, los cuales operan independientemente (de forma sepa-

rable) en el dominio espacial y en el temporal. La transformada propuesta consigue

mejores resultados (en términos de aproximación no lineal) que un método del estado

del arte basado en “wavelets” temporales compensadas en movimiento, y un codificador

DCT comparable (base de los últimos estándares de codificación de vı́deo).

Para conseguir un codificador de vı́deo completo, los coeficientes resultantes de

la transformada y la información secundaria (necesaria para obtener un esquema in-

vertible) deben ser codificados entrópicamente y enviados al decodificador. Por ello,

también proponemos en esta tesis un método de reordenación de los coeficientes basado

en la información del grafo que permite mejorar la capacidad de compresión del cod-

ificador entrópico. El esquema de codificación propuesto mejora significativamente la

eficiencia de un codificador hı́brido basado en DCT en términos de tasa-distorsión. Sin

embargo, nuestro método tiene la desventaja de su gran complejidad computacional.

Para tratar de paliar este problema, diseñamos dos algoritmos que tratan de reducir dicha

complejidad sin que ello afecte en la capacidad de compresión. Finalmente, investig-

amos como realizar optimización tasa-distorsión sobre el codificador basado en grafos

propuesto.

Agradecimientos

Me gustarı́a escribir estos agradecimientos dejando la literatura a un lado, sin cuidar las

palabras demasiado, sin interponer obstáculos entre los pensamientos más primarios y

el papel.

En primer lugar querı́a dar las gracias a mis tutores, Fernando Dı́az y Antonio Or-

tega. A Fernando Dı́az, por su confianza en mı́, su optimismo y sus ánimos. Sus sabios

consejos, tanto técnicos como no técnicos, su generosidad, y la calma que me ha trans-

mitido en épocas tempestuosas, han sido imprescindibles para la realización de esta

tesis. A Antonio Ortega por todo lo que he aprendido de él, su genial punto de vista

cientı́fico/técnico, que ha ayudado a forjar el mı́o; su inestimable ayuda, y porque, a pe-

sar de nunca tener tiempo para él, siempre lo ha tenido para mı́... y finalmente, a ambos,

por su gran bondad.

También quiero agradecer especialmente a Jesús Cid por regalarme desinteresada-

mente su tiempo y sus conocimientos, y por estar siempre dispuesto a debatir sin prisas.

Sin su ayuda, parte de esta tesis no hubiera sido posible.

Sin duda, dar las gracias a mis compañeros del Departamento de Teorı́a de la Señal

de la Universidad Carlos III; muy especialmente, a la gente del Grupo de Procesado

Multimedia, GPM. Desde la más profunda sinceridad, creo que siempre ha estado for-

mado por personas maravillosas. Entre ellas, mis amigos: Iván González, Sergio Sanz,

Manuel de Frutos, Darı́o Garcı́a, Sara Pino, Luis Azpicueta, Amanda Garci, Elena

Jiménez, Irene Moreno, Óscar del Ama, Ana Belén Mejı́a, Tomás Martı́nez, Fernando

de la Calle y Fernando Fernández. Citar especialmente a Rubén Solera, por respon-

derme con paciencia infinita una pregunta cada dı́a, a Chelus González de Suso, por su

impagable trabajo psicológico en torno a mi persona, y con tremendo amor a mi her-

mana, Amaya Jiménez, que me lo ha dado todo. También me han ayudado en mi dı́a

a dı́a Rosa Ma Barrio, Rocı́o Arroyo, Carmen Peláez y Ascensión Gallardo, ası́ como

Fidela, Encarna, Paqui y Loli.

Fuera del ámbito del trabajo, querı́a mencionar a mis grandes amigos, los del barrio,

los de la escuela (en especial a Ángel Fuertes y Fernando Garcı́a), y los de mi eterna

banda (en especial a Jorge Rodrı́guez). A todos ellos por aguantarme y darme ánimos

en este bonito y duro proceso.

Agradecer también a Mari Ángeles Hernández y Gerardo Casado, por su ayuda en

momentos difı́ciles... sin dicha ayuda, realizar esta tesis hubiera sido una tarea inabar-

cable.

Agradecimientos especiales a mi familia, por apoyarme incondicionalmente y con-

fiar siempre en mı́. Y concretamente a mis padres, por darme tantas oportunidades y por

su forma de criarme, repleta siempre de felicidad. A ellos con infinito amor.

Finalmente, querı́a agradecer a Nico... que aún sin saber hablar, me inspira, y me

ayuda a situar las cosas en el lugar adecuado y a darle sentido a la ciencia,

y a Marı́a... por su incansable amor, apoyo y comprensión, y por la gran felicidad

que me aporta.

Muchas gracias a todos, de corazón.

Table of Contents

Abstract vii

Resumen ix

Table of Contents xv

List of Figures xvii

List of Tables xviii

Acronyms xix

1 Introduction 1

1.1 Motivation . 4

1.2 Directional Transforms . 5

1.3 Graph-Based Representation of Data 6

1.4 Lifting Transforms on Graphs . 6

1.5 Contributions . 7

1.6 Thesis Outline . 9

2 Overview of Lifting and Directional Transforms 10

2.1 Lifting Transforms . 11

2.2 Lifting Transforms on Graphs . 17

2.3 Directional Transforms . 21

2.3.1 Directional Transforms for Sparse Image Representation 21

2.3.2 Directional Transforms for Sparse Video Representation 24

3 Lifting Transforms on Graphs 27

3.1 Graph construction . 28

3.1.1 Graph-Based Representation of a Generic Signal 29

3.1.2 Graph Weighting . 33

xiii

3.1.3 Discussion . 37

3.2 Graph-Based U/P Assignment Methods 38

3.2.1 Some “Classical” Graph-Partition Problems 40

3.2.2 U /P Assignment Methods for Lifting Transforms on Graphs . . 42

3.2.3 Proposed Splitting Solution for a Coding Application 43

3.3 Signal Model-Based U/P Assignment Methods 44

3.3.1 Proposed U/P Assignment Problem Formulation 45

3.3.2 Noisy Model (NM) . 46

3.3.3 Moving Average Model (MA) 56

3.3.4 Spatio-Temporal Model (STM) 64

3.3.5 Discussion . 70

3.4 Filter Design . 71

3.4.1 Prediction Filter Design . 71

3.4.2 Update Filter Design . 73

3.4.3 Discussion . 74

3.5 Summary of the Properties of the Transform 74

3.6 Conclusions . 76

4 Video Coding Application 78

4.1 Graph-Based Transform for Video Coding 79

4.1.1 Graph Construction . 79

4.1.2 U/P Assignment and Filter Design 81

4.1.3 Extending the Transform to Multiple Levels of Decomposition . 82

4.1.4 Experimental Results . 83

4.1.5 Performance in Uncovered Areas 85

4.2 Towards a Complete Encoder . 87

4.2.1 Coefficient Reordering . 88

4.2.2 Optimal Weighting Vs. Fixed Weighting 90

4.2.3 Encoder and Decoder Data Flow 92

4.2.4 Low Complexity Approach . 93

4.2.5 Experimental Results . 98

4.3 Rate-Distortion Graph Optimization 101

4.3.1 RDO for Lifting Transforms on Graphs 102

4.3.2 Distortion Model . 103

4.3.3 Rate Model . 105

4.3.4 Lambda Calculation . 108

4.3.5 Optimization Process . 109

4.3.6 Discussion . 112

4.4 Conclusions . 114

xiv

5 Conclusions and Future Work 115

5.1 Conclusions . 115

5.2 Future Work . 116

A Greedy Algorithm for the SCU /SCP 118

B Additional Proofs 119

B.1 Proof of Proposition 3.2 . 119

B.2 Proof of Proposition 3.3 . 122

C Optimal Weighting for a Given Graph and U/P Assignment 128

C.1 Optimal Weighting for Video Given an U/P Assignment 128

C.2 Optimal Weighting for F Kinds of Links Given an U/P Assignment . . 131

Bibliography 133

xv

List of Figures

1.1 DCT and DWT coefficients of a smooth and a sharp signal. 3

2.1 Lifting scheme. Forward transform. 13

2.2 Example of the lifting scheme applied to a 1-dimensional signal. 14

2.3 Lifting scheme. Inverse transform. 15

2.4 Smooth and detail coefficients. 16

2.5 Example of the lifting scheme applied to a graph. 20

2.6 Wavelets and Contourlets support. 23

2.7 Update-Predict assignment in typical MCTF approaches. 26

3.1 Graph representation of video data. 30

3.2 Graph representation of video data removing some spatial links. 31

3.3 Long-term and inter-channel correlations in a stereo audio signal. . . . 32

3.4 Stereo audio graph construction example. 33

3.5 Two different transformations of the same original graph. 39

3.6 “Classical” graph-partition strategies. 42

3.7 MC and NM U /P assignment strategies. 49

3.8 Greedy algorithm for the NM. 52

3.9 Eav-meas for different sequences. NM. 54

3.10 µU and σU for the sequence Foreman. 55

3.11 MA data generation model. 57

3.12 E{(x̂i)
2} for different graph topologies. 59

3.13 Eav-meas for different sequences. MA Vs NM. 63

3.14 Eav-meas for different sequences. STM. 69

4.1 Spatio-temporal graph construction. 81

4.2 Graph construction for consecutive levels of decomposition. 83

4.3 PSNR versus percentage of retained coefficients. 85

4.4 Original and reconstruction with 20 % of the transform coefficients. . . 86

4.5 Uncovered areas in LIMAT. 87

4.6 Inter-subband reordering example. 89

4.7 Intra-subband reordering example. 90

4.8 Predict coefficients at decomposition level j=4. 90

xvi

4.9 Detail coefficient values. 91

4.10 w∗ evolution. 92

4.11 Encoder and decoder data flow. 92

4.12 Subgraph construction from 4 frames. 95

4.13 Distributed WMC. 97

4.14 PSNR versus bit rate. 100

4.15 PSNR estimation for different sequences. 105

4.16 Rate estimation for different sequences. 107

4.17 Relation between λ and the parameter m of the sequence. 109

4.18 RDO Vs WMC for different sequences. 111

4.19 Transform by blocks. 113

xvii

List of Tables

4.1 Comparison of LIMAT and the proposed transform in different areas. . 85

4.2 Performance comparison using inter and intra-subband reordering. . . . 89

4.3 Comparison between different weightings. 91

4.4 Subgraph approach performance. 96

4.5 Proportion of U nodes selected by the RDO. 111

xviii

Acronyms

AVC Advanced Video Coding

C Set-Cover

CDF Cohen-Deaubechies-Feauveau

DCT Discrete Cosine Transform

DWT Discrete Wavelet Transform

HEVC High Efficiency Video Coding

JPEG Joint Photographic Experts Group

LIMAT Lifting-based Invertible Motion Adaptive Transform

LPF Low-Pass Filter

MA Moving Average Model

MC Maximum Cut Problem

MCTF Motion-Compensated Temporal Filtering

ME Motion Estimation

MPEG Moving Picture Experts Group

MRA Multiresolution Analysis

mC Minimum-Cardinality Set-Cover

xix

MV Motion Vector

NM Noisy Model

RDO Rate-Distortion Optimization

PSNR Peak Signal to Noise Ratio

RLE Run-Length Encoding

SC Set Covering Problem

SPL Sound Pressure Level

STM Spatio-Temporal Model

W Weight of the Cut

WMC Weighted Maximum Cut Problem

WSN Wireless Sensor Networks

xx

Chapter 1

Introduction

There are many applications in which it is useful to achieve a sparse signal representa-

tion. Discrete Cosine Transforms (DCT) and “classical” Discrete Wavelets Transforms

(DWT) usually obtain an efficient representation of smooth functions, and have been

widely used in image and video coding standards (e.g., DCT has been used in JPEG,

H.261/H.263, MPEG1/2/4 and H.264/AVC, and DWT in JPEG2000). However, for

functions with large discontinuities, good DCT approximations require high energy co-

efficients in numerous cosine basis functions, and DWT expansions need large magni-

tude coefficients in the wavelet basis functions, leading to non-sparse representations of

the signal.

Figure 1.1 illustrates this behaviour in a one-dimensional signal. In particular, it

shows the absolute value of DCT and DWT coefficients of a smooth signal (left column)

and a signal with large discontinuities (right column). Note that coefficients are sorted

in decreasing order of their absolute value.

The same concept applies to N-dimensional signals such as images or video se-

quences, where large discontinuities (e.g., contours1 on images) produce many high

energy coefficients. In such cases, directional transforms are useful since they allow

us to obtain a more sparse representation of multidimensional signals with large dis-

continuities (note that directional information is a unique feature of multidimensional

signals).

In this thesis we describe and optimize a general class of lifting transforms on

graphs that can be interpreted as N-dimensional directional transforms.

This chapter is organized as follows. We first provide some motivation for the con-

struction of new N-dimensional directional transforms in Section 1.1. In Section 1.2

we give a brief overview of some selected state-of-the-art directional transforms which

1 To avoid confusion we call image “contours” edges that appear in the image, between sets of pixels

of different intensities, while we reserve the term “edge”, for the links between nodes in a graph.

1

Chapter 1. Introduction

can be considered the inspiration for this thesis. Given that the proposed transforms

are graph-based, we briefly describe graph-representations of N-dimensional signals in

Section 1.3 and introduce lifting transforms on general graphs in Section 1.4. This will

be useful to describe the starting point and summarize the contributions of this thesis in

Section 1.5. Finally, the contents of this thesis are outlined in Section 1.6.

2

Chapter 1. Introduction

0 20 40 60
−20

−15

−10

−5

0

5

Time

S
ig

n
a

l
V

a
lu

e

Smooth Signal

0 20 40 60
−5

0

5

10

15

20

Time

S
ig

n
a

l
V

a
lu

e

Sharp signal

0 10 20 30 40 50 60
0

10

20

30

40

Position

A
b

s
o

lu
te

 V
a

lu
e

o

f
th

e
 C

o
e

ff
ic

ie
n

ts

DCT Coefficients

0 10 20 30 40 50 60
0

10

20

30

40

50

Position

A
b

s
o

lu
te

 V
a

lu
e

o

f
th

e
 C

o
e

ff
ic

ie
n

ts

DWT Coefficients

0 10 20 30 40 50 60
0

5

10

15

Position

A
b

s
o

lu
te

 V
a

lu
e

o
f

th
e

 C
o

e
ff

ic
ie

n
ts

DCT Coefficients

0 10 20 30 40 50 60
0

5

10

15

20

25

Position

A
b

s
o

lu
te

 V
a

lu
e

o

f
th

e
 C

o
e

ff
ic

ie
n

ts

DWT Coefficients

Figure 1.1: DCT and DWT coefficients of a smooth signal (left column) and a signal

with large discontinuities (right column).

3

Chapter 1. Introduction

1.1 Motivation

In several applications such as coding, denoising, or feature extraction, it is useful to

achieve a sparse representation of the signal of interest, compacting most of the infor-

mation into a small number of coefficients (e.g., in an image or video coding applica-

tion, overall bit rates can be reduced if the selected transform compacts the signal into a

smaller number of large coefficients).

Standard separable DWT and DCT transforms have been widely used for compact

signal representation. Nevertheless, applying these transforms to signals with large dis-

continuities (e.g., contours in images) may give rise to many large high-frequency coef-

ficients to represent these discontinuities, thus reducing the sparsity of the representation

(e.g., this can be costly in terms of rate in a coding application).

This observation has motivated the interest in directional transforms, which are able

to adapt their basis functions in order to filter along high-correlation paths (e.g., direc-

tions of low variation in pixel intensity in an image or video sequence), avoiding filtering

across large discontinuities, and resulting in smaller high frequency coefficients in those

locations. In general, the construction of such directional transforms is mathematically

complex, and their generalization to N-dimensional domains is not easy. Furthermore,

most of these transforms are restricted to a given number of feasible directions, limiting

their adaptation to the specific signal structure.

When conventional transforms are applied to N-dimensional domains, they usually

work in a separable way, filtering independently in each direction (e.g., when conven-

tional wavelets are applied to image processing, they usually operate independently in

rows and columns; or when wavelets are applied to video coding, they firstly filter in

the temporal domain and then in the spatial one, or vice versa). Some of the direc-

tional transforms proposed in the literature are separable too. Separable wavelets (e.g.,

2-dimensional wavelets constructed as a separable extension of 1-dimensional bases)

have the disadvantage that they do not “see” the smoothness along contours, thus poorly

capturing directional information of multidimensional signals.

Finally, it is interesting to have a critically-sampled transform. This means that the

transform generates as many coefficients as samples in the original signal, avoiding

4

Chapter 1. Introduction

redundancy in the representation. Some of the directional transforms proposed in the

literature are not critically-sampled (e.g., Contourlets [1]).

The motivation of this thesis is to design and optimize non-separable and critically-

sampled graph-based Directional transforms constructed by means of the lifting

scheme [2]. Relying on the versatility and simplicity of the lifting scheme and on the

graph-based representation of data, we design directional transforms in N-dimensional

domains that are intuitive, can easy being interpreted, and that can adapt their filter-

ing operations to any possible direction. Finally, we test their performance in a video

coding application.

1.2 Directional Transforms

The main advantage of directional transforms with respect to conventional ones is their

ability to compact the fundamental information of a signal into a smaller number of

coefficients [3]. For image coding, directional transforms have been proposed in order

to filter following the directions of low variation in pixel intensity, avoiding filtering

crossing contours [4], [5]. For video coding, filtering along the motion trajectories, e.g.,

motion-compensated temporal filtering (MCTF), has been investigated [6], [7], [8]. Side

information (e.g., motion vectors or contour locations) is typically transmitted so that

the decoder can identify the selected directional transform.

Some of these works [6], [7], [8], [5] are based on the lifting scheme, which is an

intuitive and structurally invertible approach to construct multiresolution signal repre-

sentations [2]. In [6], lifting is applied in the temporal domain, using motion compen-

sated lifting steps to implement the transform. In [5], lifting wavelet transforms in trees

are applied to image coding. [9] extends the application of lifting transforms to graphs

in the Euclidean space and [10] to general undirected graphs.

These works can be considered as the starting point and the inspiration for this

thesis. To understand the main contributions of our work (outlined in Section 1.5), in

the next sections we provide a brief overview of graph representations of data and lifting

transforms on graphs.

5

Chapter 1. Introduction

1.3 Graph-Based Representation of Data

A graph-based representation of data allows us to generalize standard signal processing

operations, such as filtering or transforms, to a broad class of N-dimensional signals

[11], [12], [13], [14], [15].

In this way, there are many scenarios in which one can construct a graph which

represents N-dimensional signals and that reflects some relationships among data (e.g.,

correlation, geometric distance or connectivity). For example, in video data each node

on the graph can represent a pixel and links between nodes may capture similarity be-

tween luminance values; or in Wireless Sensor Networks (WSN), each node on the

graph can correspond to a point in Euclidean space containing data read by each sensor

and links between nodes can capture the connectivity between sensors. In this thesis,

we assume that every node on the graph represents a specific sample point of a discrete

signal, while links between nodes capture the correlation between samples.

1.4 Lifting Transforms on Graphs

The design of the proposed directional transforms is based on applying the lifting scheme

to general graph signal representations.

The lifting scheme makes it possible to easily construct wavelets and multiresolution

signal representations. Basically, lifting on graphs is specified by three main stages,

namely: (i) a split stage, which finds a bipartition of the graph so that the input data

at each specific level of decomposition j is split into prediction (Pj) and update (Uj)

disjoint sets; (ii) a prediction stage, where the data of the Pj set is predicted from the

data of the Uj set using the prediction pj filters, yielding the detail coefficients; (iii) and

an update stage, where the data of the Uj set is filtered with detail coefficients of the Pj

set using the update uj filters, giving rise to the smooth coefficients.

Transform invertibility is guaranteed for arbitrary Uj/Pj disjoint splittings, and pj

and uj filters definitions; thus the lifting scheme is a very versatile way to construct

perfect reconstruction transforms.

6

Chapter 1. Introduction

1.5 Contributions

In this thesis we describe and optimize lifting transforms on graphs, and, based on

these transforms, we present a new framework that allows to easily generalize the

construction of directional transforms to N-dimensional domains.

We first investigate the graph construction, which leads to a weighted graph in which

the filtering directions are defined by means of the links on the graph. Regarding the

transform optimization, we investigate new split designs to obtain optimal Uj/Pj graph

bipartitions (using optimization criteria to minimize the expected energy of the detail

coefficients) under two different approaches. Afterwards, we describe a way to design

optimal prediction filters pj given an arbitrary weighted graph and an Uj/Pj bipartition,

and considering F different kinds of links between nodes to construct the prediction

(e.g., in a video sparse representation, we consider two different kinds of links, related

to the spatial and the temporal domains). The update filters uj are designed to be orthog-

onal to the prediction filters of their prediction neighbors as explained in [16]. Once we

have constructed a graph, found a bipartition of the graph, and specified the update and

predict filters, we have completely defined an N-dimensional directional transform that

is invertible and critically-sampled. The optimized lifting transform can be performed

in J levels of decomposition to obtain a multiresolution representation of the original

signal which compacts the energy in the low-frequency subbands.

In terms of applications, we use these lifting transforms for video coding. First,

we construct a graph in which any pixel could be linked to an arbitrary number of spa-

tial and temporal correlated neighbors (i.e., avoiding linking pixels of very different

luminance values) thus defining the filtering directions. Next, we apply the proposed

transform to this graph.

Initially, our approach can filter following any 3-dimensional direction of the spatio-

temporal domain, giving rise to a directional non-separable transform that allows spatial

and temporal correlation to be jointly exploited, in contrast to existing techniques in

video coding that can be seen as separable transforms. This transform shows improve-

ments in terms of energy compaction ability when compared to the LIMAT method

[6] and to a motion compensated DCT-based video encoder. Moreover, our proposed

scheme can avoid problems due to occlusions and uncovered areas that appear in the

7

Chapter 1. Introduction

LIMAT method (and in general in MCTF approaches), leading to a simple critically-

sampled invertible transform.

Furthermore, we propose new coefficient reordering techniques, leading to an effi-

cient encoder which improves the performance of a comparable motion compensated

DCT video encoder in rate-distortion terms. Given that the graphs created to represent

the video information can be very large, we consider two different low-complexity ver-

sions of the proposed transform: (i) one that can operate on subgraphs and (ii) another

that operates in a distributed manner. Note that the two contributions proposed for video

coding, that is, the low complexity approach and the new reordering techniques, are

general contributions and can be used in other applications for similar purposes.

Finally, we investigate how to perform rate-distortion optimization in our graph-

based video encoder.

8

Chapter 1. Introduction

Summarizing, our contributions are:

1. Optimization of lifting transforms on graphs:

• Description of a general framework to construct N-dimensional directional

transforms based on lifting on graphs.

• Graph weighting.

• New U/P graph-partition techniques based on two different approaches.

• Novel prediction filter design for lifting transforms on arbitrary graphs.

2. Video coding application of the transform:

• Extension of lifting transforms on graphs to J levels of decomposition.

• New coefficient reordering technique.

• Low-complexity versions of the transform.

• Rate-distortion optimization of the proposed scheme.

1.6 Thesis Outline

This thesis is organized as follows. First, we provide an overview of lifting transforms

on graphs and directional transforms in Chapter 2. We then describe our contributions to

lifting transforms on graphs and propose a general framework to obtain N-dimensional

directional transforms in Chapter 3. In Chapter 4 we apply these transforms to video

coding and propose techniques to improve the coding performance and to reduce the

computational cost of the transform. Furthermore, we investigate rate-distortion opti-

mization of the encoder. Finally, some concluding remarks and directions for future

work are discussed in Chapter 5.

9

Chapter 2

Overview of Lifting and Directional

Transforms

In this chapter we present the necessary background to understand the main contribu-

tions of this thesis. These contributions can be summarized as: (i) optimization of lifting

transforms on graphs; (ii) proposal of a new framework to construct N-dimensional

directional transforms based on lifting on graphs; and (iii) application of this kind of

transforms to video coding, leading to 3-dimensional directional transforms. Therefore,

the overview is focused on lifting transforms on graphs and directional transforms.

In Section 2.1 we present the lifting scheme [2], which allows to easily obtain a

multiresolution analysis (MRA) of a given signal. In every step1 j of the transform,

lifting provides subsampled low-pass (smooth coefficients) and high-pass (detail coeffi-

cients) versions of the signal at the immediately lower level j − 1. If detail coefficients

are close to zero, the main information of the signal is kept in the smooth coefficients,

thus obtaining a more compact representation. Applying this process iteratively leads to

a MRA [17] of the original signal. The lifting scheme can be interpreted as a cascade of

filter banks, or as the projection of the signal at level j − 1 onto the approximation (Vj)

and detail (Wj) subspaces at level j. Section 2.2 is devoted to the construction of lifting

transforms on arbitrary graphs [10], where every sample can have a different number of

neighbors and, thus, the subsampling and filtering operations become complicated.

Finally, Section 2.3 gives an overview and describes the main properties of some

directional transforms presented in the literature. In this way, we will be able to un-

derstand the general features and the main advantages of the proposed directional trans-

forms as compared to the ones of the state of the art.

1 Step, level of decomposition, or resolution refer to the same concept.

10

Chapter 2. Overview of Lifting and Directional Transforms

2.1 Lifting Transforms

In this section we describe the lifting scheme from a practical and intuitive point of

view [18]. Details about the relation between lifting, second generation wavelets, and

MRA can be found in [2], [19] and [20].

Given a digital signal at a specific resolution, the lifting transform can lead to a

compact representation of this signal with some interesting properties.

Consider a signal sj−1 at resolution (i.e., level of decomposition) j − 1 which we

would like to transform into a coarser2 signal sj and a detail signal dj . This can be

easily achieved applying the lifting transform. It consists of three stages: split, predict

and update.

• Split3: This stage basically consists on splitting the signal into two disjoint sets of

samples that we will call Predict (Pj) and Update (Uj) sets throughout this thesis.

• Predict: The predict stage aims to remove the local correlation of the signal. To

do that, each sample of the Pj set is predicted from samples of the Uj set. If the

local correlation of the signal is high, it should be possible to obtain a reasonably

accurate prediction, giving rise to small residual information (small detail co-

efficients) and, therefore, compaction of the information. We will characterize

this stage with the predict filter p.

• Update: The Update stage can be designed with different objectives in mind. One

of these objectives could be to keep the average value of the coefficients across

multiple levels of decomposition, thus reducing the aliasing and obtaining a better

frequency localization [18]. Another goal would be to design the update stage

so that low-pass and high-pass equivalent filters4 are orthogonal, which would

2 In this thesis we follow the convention of using smaller j indices to represent finer approximations,

as in Mallat‘s book [21] and as opposite to other works as Mallat’s MRA original paper [17] or Sweldens’s

papers.

3 Note that the split stage of the transform will be referred to as U/P splitting, U/P assignment or

graph bipartition problem throughout this thesis.

4 We refer to the filtering that results from the predict and update stages as equivalent filters. It

can be seen that, generally, the equivalent filter of the predict stage is a high-pass filter (giving rise to

detail coefficients), and the equivalent filter of the update stage is a low-pass filter (giving rise to smooth

coefficients).

11

Chapter 2. Overview of Lifting and Directional Transforms

minimize the reconstruction distortion due to quantization of the transform coef-

ficients [22]. In the update stage, data at nodes u ∈ Uj are filtered using detail

coefficients of the Pj set, leading to the smooth coefficients. We will characterize

this stage with the update filter u.

Following these stages, the data sj−1 at level of decomposition j − 1 should be

split into prediction (Pj) and update (Uj) disjoint sets (split stage), and the predict

(pm,j(m ∈ Pj)) and update (un,j(n ∈ Uj)) filters should be specified. Then, the m-th

detail coefficient at level j, dm,j , can be computed from h ∈ Uj update neighbors using

the predict filter (predict stage), and the n-th smooth coefficient sn,j can be computed

from l ∈ Pj prediction neighbors using the update filter (update stage). Mathemati-

cally, we can write:

dm,j =sm,j−1 −
∑

h∈Uj

pm,j(h)sh,j−1,

sn,j =sn,j−1 +
∑

l∈Pj

un,j(l)dl,j. (2.1)

This way, the smooth coefficients at the (j − 1)-th decomposition level (sj−1) are

projected onto the approximation (Vj) and detail (Wj) subspaces, yielding, respectively,

the smooth (sn,j) and detail (dm,j) coefficients at the j-th decomposition level. Applying

this process iteratively gives rise to a multiresolution decomposition. In Figure 2.1 the

lifting structure for two levels of decomposition is illustrated, where data at level j = 0

is the original raw data, denoted as xk (i.e., xk = sn,j=0).

Therefore, given a signal at scale j0, a lifting transform representation of this signal

is composed of detail coefficients at scales j0 < j ≤ J , plus the smooth coefficients at

the largest scale J :

[

dj(j0<j≤J), sJ

]

. (2.2)

Generally, this transformation can be interpreted as a filter bank decomposition,

where the sj coefficients are the low-pass version (smooth projection) and the dj co-

efficients the high-pass version (detail projection) of coefficients sj−1 at (j−1)-th level.

12

Chapter 2. Overview of Lifting and Directional Transforms

Split

j
=1

p

m,
j
=1

u

n,
j
=1

x

U

j
=1

s

n
,
j
=1

d

m,
j
=1

P

j
=1
 -

+

...

Split

j
=2

p

m,
j
=2

u

n,
j
=2

-

+

d

m,
j
=2

s

n
,
j
=2

P

j
=2

U

j
=2

Figure 2.1: Lifting scheme. Two levels of decomposition of the forward transform.

Figure 2.2 shows an illustrative example of the application of the lifting transform to

a 1-dimensional signal. The left column shows the corresponding stages of the transform

at decomposition level j = 1, and right column at j = 2. Finally, the last row of the

figure shows the subband decomposition for each level. Note that in the example, the

splitting process is trivial: every odd (resp. even) sample belongs to the U (resp. P)

set at each level of decomposition. Then, every sample p ∈ P is predicted from its

two adjacent U neighbors, and every sample u ∈ U is updated from its two adjacent P
neighbors. The signal at level j = 2 is composed of the resulting U samples at j = 1,

and U1 = U2 ∪ P2. If one chooses the filters p so that, at each level j, every detail

coefficient m ∈ P is calculated as the difference between the value of node m and the

average of its h ∈ U adjacent neighbors (pm(h = m − 1) = pm(h = m + 1) = 1/2),

and u so that for every update coefficient n ∈ U , un(l = n−1) = un(l = n+1) = 1/4,

this scheme leads to the 5/3 biorthogonal wavelet transform of Cohen-Deaubechies-

Feauveau (CDF) [23], [18].

One of the main advantages of the lifting scheme is that the inverse transform is

immediately obtained by inverting the operations of the forward transform. Again, we

have three stages:

• Undo Update: Given dm,j and sn,j , we can recover the update sn,j−1 samples

simply subtracting the update information.

13

Chapter 2. Overview of Lifting and Directional Transforms

Figure 2.2: Example of the lifting scheme applied to a 1-dimensional signal.

• Undo Predict: Given dm,j and sn,j−1, we can recover the predict sm,j−1 samples

subtracting the predict information.

• Merge: Given the update and predict samples obtained before, we put them to-

gether in their corresponding location to recover the original signal.

Mathematically, we can write:

sn,j−1 =sn,j −
∑

l∈Pj

un,j(l)dl,j,

sm,j−1 =dm,j +
∑

h∈Uj

pm,j(h)sh,j−1. (2.3)

An inverse transform with two levels is illustrated in Figure 2.3.

14

Chapter 2. Overview of Lifting and Directional Transforms

u

m,
j
=2

p

n
,
j
=2

x

-

+

d

m,
j
=2

s

n
,
j
=2

Merge

j
=2

u

m,
j
=1

p

n
,
j
=1

-

+
d

m,
j
=1

s

n
,
j
=1

Merge

j
=1

Figure 2.3: Lifting scheme. Two levels of decomposition of the inverse transform.

Finally, Figure 2.4 shows the multiresolution approximations sj[n] (left column) and

details dj[m] (right column) of a specific discrete signal, computed with the 5/3 lifting

transform. Three levels of decomposition are shown.

Some remarks extracted from this example can be good for summarize the previ-

ously explained concepts:

• Smooth coefficients at a coarse level j, sj[n], can be obtained by low-pass filter-

ing and subsampling the smooth coefficients of a finer level j − 1, sj−1[n] (2.1).

Therefore, as illustrated in the left column of Figure 2.4, each level j is a low-pass

version of the approximation at level j − 1 and contains half of the samples. Fur-

thermore, the smooth coefficients at level of decomposition j (sj[n]) characterize

the projection of the original signal into the approximation subspaces Vj .

• Detail coefficients at a coarse level j, dj[m], can be obtained by high-pass filtering

and subsampling the smooth coefficients of a finer level j − 1, sj−1[n] (2.1) .

Detail coefficients at level j characterize the projection of the original signal into

the detail subspaces Wj . See right column of Figure 2.4.

• Given that filtering operations are local, coefficients are localized in time. Note for

example that the position of large magnitude detail (high-frequency) coefficients

dm,j=1 are in agreement with positions of large variation in the original signal.

Frequency localization is given by the cascade of low-pass and high-pass filters.

• Detail coefficients dj can be thought of as the difference between consecutive

approximations of the signal at resolutions j − 1 and j.

15

Chapter 2. Overview of Lifting and Directional Transforms

0 50 100 150 200 250 300 350
−10

0

10

20

Original Discrete Signal. j=0.

0 50 100 150 200 250 300 350
−10

0

10

20

Original Discrete Signal. j=0.

Smooth Coefficients, j=1 (s
n,j=1

).

Smooth Coefficients, j=2 (s
n,j=2

).

Smooth Coefficients, j=3 (s
n,j=3

).

Detail coefficients, j=1 (d
m,j=1

).

Detail coefficients, j=2 (d
m,j=2

).

Detail coefficients, j=3 (d
m,j=3

).

Figure 2.4: Smooth and detail coefficients.

• The lifting representation of the signal is
[

dj(j0<j≤J), sJ

]

, where J is the coarsest

considered level. Thus, in the example of Figure 2.4 in which three levels of de-

composition are shown, [dj=1, sj=1], [dj=1,2, sj=2], and [dj=1,2,3, sj=3] are perfect

reconstruction and critically sampled representations.

• Note that the sparse representation of the signal is obtained because coefficients

are nearly zero at fine scales (high-pass subbands). In fact, where the signal is

locally smooth, there will be high correlation between low-pass coefficients at

different levels of the transform (i.e., coefficients will be nearly zero at various

subbands). Therefore, in the example, it will usually be more efficient to transmit

[dj=1,2,3, sj=3], where three levels of the transform have been decorrelated, than

any other of the above representations (e.g., [dj=1,2, sj=2]).

16

Chapter 2. Overview of Lifting and Directional Transforms

• One can interpret the process shown in the example as the decomposition of the

original signal in a set of independent frequency channels or the projection of the

original signal on successive smooth and detail subspaces.

Thanks to these interesting features of the lifting scheme, it has been used in many

applications achieving a very good performance, e.g., image and video compression

[24], [25], [5], [26], [6], [27], data denoising [10], distributed data gathering [28], [29],

[30], feature extraction in brain-computer interface [31], [32], or audio coding [33].

2.2 Lifting Transforms on Graphs

Lifting transforms on arbitrary graphs were initially proposed by [9] and [10]. The

main concepts are those mentioned above, and the stages and equations of Section 2.1

hold. Nevertheless, some important peculiarities and open questions arise. This section

presents these peculiarities, which will be handled in this thesis.

Assume we are given an arbitrary undirected graph. At this point, we do not make

assumptions about the structure of the graph or the links between nodes, so that every

node can have a different number of neighbors.

If Pj and Uj are disjoint sets, the lifting transform on the graph is critically sampled

(i.e., the number of samples of the original signal x = sj=0 is equal to the number of co-

efficients of any decomposition
[

dj(j=0<j≤J), sJ

]

). Besides, [22] showed that if Pj and

Uj are disjoint sets, lifting transforms on graphs are invertible by construction. Thus,

arbitrary Pj/Uj disjoint splittings and p and u filter designs can be used without

compromising the perfect reconstruction and critically sampled properties of the

transform. This implies that lifting transforms on graphs are very flexible (in the sense

that they can operate with different splittings and filters), which is an important feature

to design the proposed N-dimensional directional transforms, but, at the same time, they

open some questions that need be solved in order to obtain an efficient transformation.

Some of them are:

• How should the graphs be constructed to capture the correlation of the sig-

nal?

17

Chapter 2. Overview of Lifting and Directional Transforms

One has total freedom to construct the graph representation of a signal deciding

which nodes should be linked to which ones. Therefore, a signal can give rise to

different graph representations, and as a function of the selected representation,

the correlation between samples can be better or worse captured.

The graph construction will influence the compaction ability of the transform as

well as the support of the filters (higher number of neighbors, higher support),

which affects the overlapping of the filtering operations. Besides, the graph con-

struction will influence the hop length of the filters (one node can be linked to

n-hops neighbors), and thus the localization of the transform in frequency and in

the original domain (i.e., spatial or temporal).

This question is discussed in Section 3.1.

• How should the U/P splitting be performed?

The U/P splitting process requires assigning a label (U or P) to each node of

the graph, which is usually trivial when one works with 1-dimensional signals

(as in the example of Figure 2.2) or when working with regular grids in which

the local topology of the graph is the same around each vertex (same number of

neighbors, same relative position for the neighbors), such as the quincunx grid

[21]. Nevertheless, it becomes a complex problem in arbitrary graphs, in which

every node can have a different number (and location) of neighbors. Besides, due

to the arbitrary structure of the graph, it may not be possible to assign a different

label to each pair of connected nodes in the graph5. Given that P nodes (resp. U
nodes) are predicted (resp. updated) from U neighbors (resp. P neighbors), links

between same-label neighbors are not useful to perform the transform, and are

discarded.

Some properties of the transformation, such as the energy compaction ability, de-

pend on this assignation. The prediction residuals and thus the detail coefficients

dm,j will be small if U and P are chosen so that they are correlated, thus obtaining

a compact representation of the underlying signal.

5 In graph theory literature, this is a graph coloring problem, and the sentence means that the graph

may not be 2-colorable.

18

Chapter 2. Overview of Lifting and Directional Transforms

The formulation of this problem and some proposed U/P splitting techniques are

described in Sections 3.2 and 3.3.

• How should the p and u filters be defined?

p and u filters should be designed for each node of the graph taking into account

that each P (resp. U) node could be predicted (resp. updated) from a different

number of U (resp. P) neighbors, in contrast to standard lifting approaches as the

5/3 CDF or the quincunx wavelets [21].

The compaction ability of the transform also depends on the design of p filters

because as the predictors are better, the average energy of detail coefficients dm,j

is smaller; u filters can be designed to be orthogonal to the arbitrary number of p

filters of P neighbors. Besides, given a graph, the support of the filters depends

on their definition (higher number of nodes used in the filters, higher support).

This problem is studied in Section 3.4.

• How should the graphs be constructed at decomposition levels j > 1?

Once we have the graph at level of decomposition j = 1, we should decide how

to construct the graph at subsequent levels of decomposition in order to retain the

correlation between linked samples at different levels and thus further decorrelate

the signal. Again, this operation is not difficult in standard lifting approaches as

5/3 or quincunx, but becomes harder in arbitrary graphs.

One approach to construct the graph at decomposition levels j > 1 is proposed in

Section 4.1.3.

Finally, note that as a function of the graph construction, the selection of the U/P split-

ting, and the design of p and u filters, the transform leads to different equivalent low-pass

and high-pass filters, which determine the subband representation obtained.

Figure 2.5 shows an example of the application of lifting transform on graphs. Left

column shows the corresponding stages of the transform at decomposition level j = 1,

and right column at j = 2. Note that in the example, the splitting process is not trivial,

because every node of the original graph at j = 1 and at j = 2 can have a different

number of neighbors. Therefore, every sample m ∈ P is predicted from an arbitrary

19

Chapter 2. Overview of Lifting and Directional Transforms

Figure 2.5: Example of the lifting scheme applied to a graph. Discarded links are indi-

cated with dashed lines in the split process.

number of U neighbors, and every sample j ∈ U is updated from its P neighbors. Note

that the signal at j = 2 level consists of the U samples at j = 1, and U1 = U2 ∪ P2.

Nevertheless, one should decide how to link nodes at j = 2 to construct the graph at this

level using the information of the graph at j = 1.

Finally, we summarize some important ideas explained so far:

• If Pj and Uj are disjoint sets, lifting transforms are invertible and critically-

sampled by construction. Thus, arbitrary Pj/Uj disjoint splittings and p and u

filter designs can be used, which implies that lifting transforms are highly versa-

tile.

20

Chapter 2. Overview of Lifting and Directional Transforms

• Lifting transforms decorrelate the data, obtaining a more compact representation

than the original one. This means than we can obtain an accurate approximation

of the original signal by only using a small fraction of coefficients.

• Lifting transforms can be designed to be localized in the original domain (i.e.,

time or space) by building filters with compact support (e.g., only allowing nodes

to use neighbor data in the filtering operations), what implies that the filtering

operations are local.

• Generally, lifting decomposition gives rise to a MRA and thus can be interpreted

as a filter bank decomposition, where the sj coefficients are the low-pass version

and the dj coefficients the high-pass version of the signal sj−1.

• The frequency localization comes from the interpretation of the transform as, on

the one hand, the low-pass filtered and downsampled version of the signal (smooth

coefficients) and, on the other hand, the band-pass filtered and downsampled ver-

sion of the signal (detail coefficients).

2.3 Directional Transforms

Directional transforms can filter along directional paths, in order to avoid crossing large

discontinuities, which leads to a sparser representation of the original signal than that

obtained with non-directional transforms. This would be useful in several applications

such as coding, denoising or feature extraction.

In general, directional transforms can be classified into adaptive (i.e., which use

knowledge of the intrinsic structure of the object and adapts the basis to that structure)

or non-adaptive (i.e., the representation is constructed without using the knowledge of

the underlying object). Note that, in some cases, adaptation requires side information

(overhead).

2.3.1 Directional Transforms for Sparse Image Representation

Candès and Donoho [3] quantified how well different transforms compact the energy

of a function f ∈ R
2, which has a discontinuity and which is otherwise smooth, into

21

Chapter 2. Overview of Lifting and Directional Transforms

a few coefficients (i.e., the performance of different expansions from an asymptotic

point of view). They show that wavelets outperform Fourier representations and that

directional approaches are better than wavelets. Furthermore, they conclude that non-

adaptive methods can achieve similar performance to that of adaptive methods, and

propose a non-adaptive transform called Curvelet. To be more precise and justify the

use of directional transforms, we present their results below.

Suppose that there is an object supported in [0, 1]2, which has a discontinuity across

a curve Γ, and which is otherwise smooth. If one approximates f with f̃ built from the

best m non zero coefficients using different transforms, one obtains:

• Fourier Representation:

∥
∥
∥f − f̃

∥
∥
∥

2

≈ m−1/2,m→∞

• Wavelet Representation:

∥
∥
∥f − f̃

∥
∥
∥

2

≈ m−1,m→∞

• Adaptive method:

∥
∥
∥f − f̃

∥
∥
∥

2

≈ m−2,m→∞

• Non-adaptive Curvelets:

∥
∥
∥f − f̃

∥
∥
∥

2

≤ Cm−2(log m)3,m→∞.

The quadratic error between the original function f and the reconstruction f̃ as a

function of the number of coefficients m decays faster as the α value in m−α is higher.

Therefore, directional methods (adaptive or non-adaptive) can reconstruct the original

signal with the same quality than wavelets and Fourier transforms using less coefficients.

In [1] Do and Vetterli proposed another non-adaptive transform, the Contourlet

transform. Unlike the Curvelet, Contourlet transforms work directly in the discrete

domain. Contourlets have elongated supports at various scales, directions and aspects

ratios, allowing to efficiently approximate a smooth contour at multiple resolutions (see

Figure 2.6). Contourlet is a non-separable (i.e., it performs non-separable filter opera-

tions) and non-critically sampled (it has a redundancy of about 33%) transform. Some

other directional wavelets proposed in the literature for image processing are adaptive

methods and thus are based on information of the underlying object (e.g., the contours).

Candès and Donoho non-adaptive Curvelets achieved a significant improvement

over wavelets for typical images with smooth contours and similar performance com-

pared to adaptive methods. Nevertheless, Le Pennec and Mallat observed [34] that the

22

Chapter 2. Overview of Lifting and Directional Transforms

Figure 2.6: Wavelets (left side) and Contourlets (right side) support at two different

resolutions.

curvelets approximation lose their near optimal properties if contours are along irregu-

lar curves of finite length. The authors presented the so-called Bandelets (mathematical

details appear in [35]) and applied them to image compression and noise reduction. The

Bandelets are adaptive wavelet basis that are warped along the geometric flow. For their

construction, the authors partition the image into small square regions so that each re-

gion includes at most one contour. Then, bandelets are constructed in those regions

by warping separable wavelet basis so that they follow the lines of the geometric flow,

taking advantage of the regularity along it.

Velisavljevic et al. proposed the Directonlets transforms in [4]. Directionlets are

critically sampled, perfect reconstruction and discrete transforms that retain the separa-

ble filtering, subsampling, computations and filter design from the standard 2-dimensional

wavelet transform. They are “separable” transforms based on independent operations on

one dimensional wavelets, but allowing directionality and anisotropy. Additionally, di-

rectional DCT basis for image coding have been proposed in [36].

The transforms that we propose in this thesis are perfect reconstruction and critically-

sampled, which are generally desirable properties. They operate in N-dimensional do-

mains by construction (i.e., without needing complex operations to be generalized), and

perform non-separable filtering operations following directions of high correlation. Be-

sides, our proposed transform provides a great freedom to choose these directions, which

23

Chapter 2. Overview of Lifting and Directional Transforms

are defined by means of the links between nodes on the graph. Finally, another important

property is that our proposal is useful for irregularly spaced sample grids.

As was explained in Section 2.1, the lifting approach allows us to construct wavelets

adapted to the domain in a simple way. Therefore, some directional transforms for

image processing based on lifting have been proposed in the literature. [37] and [38]

incorporated adaptivity via lifting by choosing the prediction filter p based on the local

properties of the image. Wavelets with large support generally work very well away

from the contours, exhibiting a fast decay of the coefficients value. Nevertheless, this

large support leads to a larger set of coefficients affected by the contours. Therefore, the

authors basically proposed to choose larger predictors (which correspond to smoother

basis functions) away from the contours and to reduce the order of the predictor (and

thus the support) near the contours, so that the neighborhood they used to predict never

overlaps the contour.

Similarly, [26] proposed adaptive non-separable lifting transforms for image com-

pression which use prediction filters that are sensitive to directional information, ex-

ploiting local orientation at contour boundaries. Another example of compact image

representation using lifting was proposed in [5]. The key novelty in this paper is that

the authors define critically sampled separable transforms that operate in arbitrary trees.

These trees can be constructed to follow the geometric flow of an image, capturing the

directional information and thus obtaining a directional transform.

The proposed transforms can be considered a generalization of these previous works.

By means of the graph construction and the filter design, our transforms allow to choose

any predictors length at any point of the N-dimensional domain. These predictors per-

form non-separable filtering operations.

2.3.2 Directional Transforms for Sparse Video Representation

Directional transforms for video representation are usually constructed via lifting, which

is applied in the temporal domain. The main multiresolution decomposition structures

in wavelet-based video coding are referred to as “t + 2D” and “2D + t”. In the former,

the video sequence is first filtered in the temporal direction along the motion trajecto-

ries (MCTF) and then a 2-dimensional wavelet transform is carried out in the spatial

24

Chapter 2. Overview of Lifting and Directional Transforms

domain [39]. In the latter, each frame is first wavelet transformed in the spatial do-

main, followed by MCTF. Focusing on the temporal domain, representative examples

of MCTF implementations are [6] and [7], which use motion-compensated lifting steps

to implement the temporal wavelet transform, filtering along a set of motion trajectories

described by a specific motion model. These approaches can be described as “separa-

ble” because spatial and temporal filtering are applied in separate steps. Side informa-

tion (e.g., motion vectors) is typically transmitted so that the decoder can identify the

directional transform that was selected. Therefore, we can consider these approaches as

adaptive methods.

In all of these works, in order to perform the prediction and update steps of the lift-

ing scheme, the input sequence is split into update (even frames) and prediction (odd

frames) subsequences (see Figure 2.7), and for each level of the transform, the predic-

tion subsequence is predicted from the update subsequence giving rise to the high-pass

subband sequence, and the update subsequence is updated by using a filtered version

of the prediction one, thus obtaining the low-pass subband sequence. In cases in which

the motion model cannot accurately capture the real motion of the scene, this kind of

splitting into even and odd frames will lead to the linking of update and prediction pix-

els with very different luminance values. In this way, prediction frames will be poorly

predicted from update frames, leading to significant energy in the high pass subband

sequence, and thus relatively low energy compaction. Moreover, when using MCTF,

problems arise due to occlusions and uncovered areas (pixels that are filtered several

times or are not filtered at all). Some authors handle this problem by identifying un-

connected and multiple connected pixels and adapting the predict and update operators

accordingly (e.g., [27]).

Finally, graph-based transforms are used to coding depth maps for view synthesis in

multi-view video coding in [40] and [41].

When we apply the proposed transforms to video coding, they generalize wavelets

approaches, which usually work in a separable way (first in the spatial and then in the

temporal domain or vice versa). Thanks to the versatility of the proposed scheme, U
and P nodes and filters can be arbitrarily chosen, solving some problems that arise in

the MCTF approaches, such as those described above, or the needed of several frames

25

Chapter 2. Overview of Lifting and Directional Transforms

Figure 2.7: Update-Predict assignment in typical MCTF approaches.

to obtain a MRA. Furthermore, this versatility allows the transform to adapt to the video

content, thus improving its performance.

26

Chapter 3

Lifting Transforms on Graphs

In order to perform lifting transforms on graphs one needs three essential elements: (i)

a given graph, (ii) an U/P splitting, and (iii) a definition of p and u filters. In this

chapter we discuss the design and optimization of these three elements.

We first focus on the graph construction, explaining how to obtain a graph rep-

resentation of N-dimensional signals including directional information in order to

adapt the filtering operations to the domain. Then, we discuss the U/P splitting and

the p and u filter construction considering a given arbitrary graph, obtaining general

results on the design and optimization of lifting transforms on arbitrary undirected

graphs that represent a generic signal. At that point, we will have all the necessary in-

gredients to obtain N-dimensional directional transforms based on lifting transforms

on graphs with some particular properties that will be discussed at the end of the chapter.

A correct graph construction is crucial to obtain an efficient transform. Intuitively, if

linked nodes are not correlated, the prediction of a node from its neighbors will usually

be inaccurate, leading to large detail coefficients and thus, low energy compaction. Be-

sides, it will be useful to weight the links of the graph in order to capture the different

correlations that exist between linked nodes. This is discussed in Section 3.1.

27

Chapter 3. Lifting Transforms on Graphs

Lifting transforms on graphs are invertible for any U/P disjoint splitting. Neverthe-

less, the appropriate choice of these sets on arbitrary graphs is not an easy problem, and

greatly influence the performance and properties of the transform (e.g., if the chosen U
and P sets are not correlated, the prediction of P from U will be inaccurate). Our goal

when performing the U/P assignment is to obtain a sparse representation of the original

signal, so that we search partitions that minimize the detail coefficient energy. With this

goal in mind, various U/P assignment procedures based on different philosophies are

discussed, namely: (i) techniques that only depend on the weighted graph previously

defined (Section 3.2), (ii) techniques that assume a signal model and a predictor and

minimize the expected value of the quadratic prediction error (Section 3.3).

The filter design is studied in Section 3.4. Given an arbitrary weighted graph and an

U/P splitting, the prediction p filters are designed as a function of the weights of the

graph. If these weights were “correctly” chosen in the weighting process, the prediction

filters will be close to minimize the detail coefficient energy. We also briefly described

the update u filters used in this thesis, which are designed to make the low-pass and

high-pass filters orthogonal [16].

3.1 Graph construction

This section discusses the graph construction, which includes the graph-based signal

representation (that defines the links between nodes -samples- of a generic signal), and

the graph weighting (which tries to characterize the correlation between different con-

nected nodes). Section 3.1.1 presents the definition of graph-based signal representa-

tion, and shows two illustrative examples of video and N-channel audio graph repre-

sentations. Note that there are no restrictions associated with the graph construction,

so that any node could be linked to an arbitrary set of nodes, and therefore the graph

representation of a signal is not unique. The graph weighting affects different processes

of the transform, and therefore, its performance. Section 3.1.2 proposes two different

approaches to weight the graph.

28

Chapter 3. Lifting Transforms on Graphs

Given that the filtering operations are performed using neighboring (linked) nodes,

the graph representation defines the filtering directions, and the weighting process al-

lows to give, more or less “importance”, to the different defined directions. The graph

construction at levels of the transform j > 1 will be discussed in Chapter 4.

3.1.1 Graph-Based Representation of a Generic Signal

Graph-based representation of data allows us to generalize standard signal processing

operations to a broad class of signals. In this thesis we focus on the lifting transform,

which can be defined on arbitrary graphs. As discussed in Chapter 2, some properties of

the transform depend on the suitable construction of the graph, in the sense of accurately

representing correlation between signal samples.

Definition 3.1. Graph-based signal representation of a signal

Let x = {xk}Mk=1 be an N-dimensional digital signal sampled in an N-dimensional

grid. Assume that data is organized in a graph G = (V , E), where V = {1, . . . ,M} is

a set of ordered nodes associated with the samples {xk}Mk=1, and E ⊂ V × V is a set

of edges between nodes that in some way represent the correlation between them (i.e.,

nodes a and b are linked if they are correlated). Note that node a ∈ V , associated to xa,

can be linked to any subset of nodes F ⊂ {V\ {a}} without restrictions (i.e., graph can

represent correlations between multiple nodes in the different domains). This leads to a

graph-based signal representation (or for short a graph representation) of x.

Observe that there exist several graph representations of the same x depending on the

way in which the correlation between nodes is defined. Therefore, the main challenge

when constructing the graph representation of a signal x is how to link the nodes of the

graph in order to accurately capture the correlation between samples. As a first approxi-

mation to construct the graph, one could link all the pixels together (all-connected graph)

and remove those links between nodes with very different signal values. Another ap-

proach could consist on making some assumptions about the correlation between nodes.

For example, it seems reasonable that closer data in a WSN, or in an image, are more

correlated, so that one could decide to link together closer nodes (i.e., one-hop or in

general n-hop neighbors) and not link the farther ones.

29

Chapter 3. Lifting Transforms on Graphs

Figure 3.1: Graph representation of video data.

In a coding application, the encoder should send some side information to allow the

decoder to correctly construct the same graph. Therefore, a trade-off exists between

accuracy in the graph description and side information to be sent. Next, two different

graph representation examples are described, namely, the graph representation of a video

signal, and of an N-channel audio signal.

3.1.1.1 Graph-Based Representation of a Video Signal

Some examples and experimental results throughout this chapter are based on real video

data. To make easier the explanation and understanding of subsequent sections, we

briefly introduce now the graph representation of video data. More details about video

representations are given in Chapter 4.

Let {xk}Mk=1 be a given video sequence where xa refers to the luminance value of the

pixel a belonging to a specific frame and spatial position. Let G = (V , E) be its graph

representation, so that pixel a can be linked to several correlated pixels F ⊂ {V\ {a}}
without restrictions. Consider that edges (links) between nodes (pixels) can be spatial

(S) or temporal (T) with differentiated statistical dependencies (correlations). Every

edge belongs to S or T so that S ∪ T = E .

An example of the graph representation of a video signal is shown in Figure 3.1,

where, in this case, every pixel is linked (i) to one temporal neighbor (i.e., a pixel of

frame in time instant t linked to a pixel in frame t + 1) following a motion estimation

(ME) process and (ii) to some one-hop spatial neighbors (i.e., pixels of the same frame),

assuming that spatial neighboring pixels will have similar luminance values. Therefore,

spatio-temporal pixel correlation is jointly considered.

30

Chapter 3. Lifting Transforms on Graphs

Figure 3.2: Graph representation of video data removing spatial links that cross the

contours of a frame.

Moreover, a reasonable approach to improve the spatial correlation could be to re-

move links between spatial neighboring pixels that cross contours of an image (frame)

assuming that they will have very different luminance value. This gives rise to the

graph representation shown in Figure 3.2, where red dashed lines represent contours of

a frame. Finally note that, in a video coding application, the accuracy-side information

trade-off holds (e.g., using lower block sizes in the ME, such as blocks of 4× 4 pixels,

leads to more accurate graphs, but higher side information to be sent).

3.1.1.2 Graph-Based Representation of an N-Channel Digital Audio Signal

Digital audio signals usually exhibit a high level of correlation among neighboring sam-

ples. These correlations are exploited by means of linear prediction in predictive coders.

Therefore, the encoder generates an estimate x̂k of the current sample xk from previous

samples. Then, the encoder subtracts the prediction from the input sample to generate a

residual signal, dk = xk − x̂k, which in general has smaller amplitude than xk. This is

called the short-term prediction.

Moreover, most audio signals have long-term correlations due to the harmonic nature

of speech or musical instruments. Some audio encoders such as the MPEG-4 ALS have

a dedicated long-term prediction scheme. This way, the residual d(k) is predicted from

long-term residuals as d̃(k) = d(k) −
(
∑s

j=−s γd(k − τ + j)
)

, where γ and τ are the

gain and lag parameters, respectively, and s indicates the number of long-term residuals

that are used to predict d(k).

Finally, for stereo or more generally multi-channel audio signals, there exist an in-

herent correlation between every pair of channels. Then, a residual channel d̃(k)c can

31

Chapter 3. Lifting Transforms on Graphs

be predicted from one reference residual channel d̃(k)r, and send the difference signal

ẽ(k)c = d̃(k)c − d̃(k)r. This is referred to as inter-channel prediction.

Figure 3.3 illustrate the long-term (red-solid line) and inter-channel (blue-dashed

line) correlations in a stereo audio signal.

Figure 3.3: Long-term (red-solid line) and inter-channel (blue-dashed line) correlations

in a stereo audio signal.

Now, we present a graph representation of multi-channel audio signals. Every spe-

cific sample a can be linked to a set of “short-term”, “long-term” and “inter-channel”

samples in order to exploit the inherent correlations that arise in multi-channel audio

signals. Therefore, every audio sample could be simultaneously linked to an arbitrary

number of “short-term”, “long-term” and “inter-channel” samples, depending on the

graph construction strategy followed.

Figure 3.4 shows an illustrative example in which every node is linked to its im-

mediately previous and subsequent samples (“short-term” correlation, grey solid lines),

to one “inter-channel” sample (blue dashed lines), and to one “long-term” sample (red

solid lines) following the displacement indicated by the lag parameter τ . Any other

32

Chapter 3. Lifting Transforms on Graphs

graph construction (e.g., considering N-“short-term” or “long-term” neighbors, consid-

ering a lag parameter in the “inter-channel” correlation, or breaking the “short-term”

links between samples of very different sound pressure level values of each channel)

can be made.

Figure 3.4: Stereo audio graph construction example.

Note that, as in the video coding example, there exists a trade-off between side

information to be sent to the decoder and accurate graph representation (and thus better

prediction). For example, lag parameters can be calculated every W samples (using

windows of size W). When W is lower, the correlation between nodes is more accurately

captured, but the side information is larger.

Given this graph representation of the N-channel audio signal, lifting transforms can

be applied on this graph, obtaining a directional transformation of the data in which the

different correlations are jointly exploited, and which is localized in frequency (which is

very important in audio coding to consider the perceptual models) and spatio-temporal

domains. This procedure can establish an interesting new framework for audio coding,

since nowadays state of the art systems are generally based on transforms that remove

the different redundancies separately. Therefore, it could be an interesting future re-

search line.

3.1.2 Graph Weighting

Statistical dependencies (correlations) between nodes depends on the nature of links

between them and on the specific graph representation used for the signal at hand. In

order to take these features into account, it is useful to assign a specific weight to every

link of the same nature (e.g., in a video representation, every spatial (resp. temporal)

33

Chapter 3. Lifting Transforms on Graphs

link is associated with a specific spatial (resp. temporal) weight). This weight selection

influences the U/P assignment, the p and u filters design, and the reordering of the

coefficients, to be discussed in Sections 3.2, 3.4, and Chapter 4 respectively.

In this section we propose two approaches to obtain the weights of the graph: (i)

assuming fixed weights (as a function of the a-priori knowledge of the signal and its

graph representation), and (ii) optimizing the weights in order to minimize the prediction

error when using one-hop prediction filters (as a function of the signal at hand). In the

second case, we first show how to calculate the optimal weights in a video representation

example, and then we extend this result to F different kinds of links. Previous work on

this topic was introduced by the authors in [42].

3.1.2.1 Fixed Weighting

As a starting point, weights (w) of the graph can be chosen fixed as a function of the

a-priori knowledge of the signal and its graph representation. For example, in the graph

representation of a video signal illustrated in Figure 3.1, temporal links are identified

using an explicit search that minimizes a distortion measure (i.e., the standard ME)

and spatial links are constructed by linking every node to its one-hop spatial neighbors.

Therefore, in general, temporal links in the graph are more reliable than spatial links,

that is, the expected correlation between temporal-linked pixels is higher than that be-

tween spatial-linked pixels. In this way, it is reasonable to assign higher weights to

temporal connections. On the other hand, one can construct a graph representation of a

video signal in which every pixel is linked to its spatial neighbors that do not cross con-

tours as in Figure 3.2, and to its co-located pixels in the temporal domain (i.e., without

using an explicit motion model to identify temporal correlated pixels). In this represen-

tation, temporal connections in the graph will be less correlated (and spatial connections

more correlated) than in the previous example.

Given a graph representation, if one does not have any knowledge about the signal on

the graph and how the representation was obtained, the weights can be fixed to w = 1,

leading to an unweighted graph (i.e., non-connected neighbors can be considered to have

w = 0).

34

Chapter 3. Lifting Transforms on Graphs

3.1.2.2 Optimal Weighting for a Video Representation Example

The local correlation between neighboring nodes on the graph depends on the underly-

ing signal. For example, in a video signal, the correlation between temporal and spatial

neighbors changes with the video content, and thus the value of graph weights would

change as well. Fixed weights are not suitable to handle these situations.

We now find the optimal graph weights that minimize the quadratic prediction error

(assuming one-hop prediction filters defined below) for a given graph representation

G = (V , E). The optimal weights can be computed for any subgraph H ⊂ G (i.e., their

value can change for every subgraph) and at any level of decomposition j. In a video

representation case, optimal weights can be computed, for example, in a frame-by-frame

or in a block-by-block basis, as we will see in Section 4.2.2.

First, we consider a graph video representation example and derive the optimal

weighting. In the next section, we extend the result to F general kinds of edges with

different correlations.

Let G = (V , E) be an undirected graph, where V = {1, . . . , N} is a set of nodes and

E ⊂ V × V a set of edges. Let S, T the set of spatial and temporal edges, respectively,

with S ∪ T = E . Let N S
i = {j : ij ∈ S} denote one-hop spatial neighborhood of i, for

all nodes i ∈ V .

Thus, the mean value of the spatial neighbors of node i is defined as

x̄s
i =

1

|Ni|S
∑

j∈NS
i

xj, (3.1)

where
∣
∣N S

i

∣
∣ is the number of spatial neighbors of i. The mean value of the temporal

neighbors is calculated similarly. Let us assume that every node i is linearly predicted

from its spatial and temporal neighbors as:

x̂i = wsx̄
s
i + wtx̄

t
i. (3.2)

Then, we seek the weights ws and wt that minimize the quadratic prediction error

over all the nodes i ∈ V:

35

Chapter 3. Lifting Transforms on Graphs

min
ws,wt

∑

i∈V

(
xi − wsx̄

s
i − wtx̄

t
i

)2
.

(3.3)

Differentiating with respect to ws and wt we obtain:

w∗ = [w∗
s , w∗

t] = R−1r, (3.4)

where

R =

[∑

i∈V x̄s
i x̄

s
i

∑

i∈V x̄s
i x̄

t
i

∑

i∈V x̄t
ix̄

s
i

∑

i∈V x̄t
ix̄

t
i

]

(3.5)

and

r =
∑

i∈V

xi

[

x̄s
i

x̄t
i

]

(3.6)

are the correlation matrices.

Usually, the graph topology is defined by means of its adjacency matrix. Next, we

express the optimal weights as a function of the adjacency matrix of the graph. Let

As =
[
asi,j

]
and At =

[
ati,j

]
be the adjacency matrices of the subgraphs containing

only the spatial and temporal edges, respectively, where each column is normalized

(i.e., asi,j
= 1/

∣
∣N S

j

∣
∣ if ij ∈ S; asi,j

= 0 if ij /∈ S). Vectorizing the sequence into a

1 × (L×H ×K) row vector x, where L × H is the frame size and K the number of

frames considered, we can write:

w∗ =

[

xAsA
T

s xT xAsA
T

t xT

xAtA
T

s xT xAtA
T

t xT

]−1

·
[

xAsx
T

xAtx
T

]

. (3.7)

Note that, in a coding application, the weights should be sent to the decoder as side

information. Therefore, a trade-off exists between accuracy in the weights selection

36

Chapter 3. Lifting Transforms on Graphs

(lower subgraph sizes in which the weights are computed) and side information to be

sent. Once w∗ has been calculated, we assign w∗
s (resp. w∗

t) to every spatial (resp. tem-

poral) link, leading to a weighted graph that accurately captures the correlation between

nodes.

3.1.2.3 Optimal Weighting for F Different Kinds of Links

We now generalize the result in previous section to the case of F different kinds of links

with different correlations.

Let us define the mean value of the class f neighbors of node i as:

x̄f
i =

1

|Ni|f
∑

j∈N f
i

xj, (3.8)

where N f
i = {j : ij ∈ f} is the number of one-hop neighbors of i that belong to the

class f . Assuming that every node in V is linearly predicted from its F types of neigh-

bors, we would like to find the weights w1, w2, . . . , wF that minimize the quadratic

prediction error over all the nodes ∈ V:

min
w1,w2,...,wF

∑

i∈V

(xi − x̂i)
2 = min

w1,w2,...,wF

∑

i∈V

(
xi − w1x̄

1
i − w2x̄

2
i − . . .− wF x̄F

i

)2
. (3.9)

Extending (3.7), is straightforward to obtain the optimal weight vector,

w∗ = [w1 , w2 . . . , wF], as:

w∗ =










xA1A
T

1 xT xA1A
T

2 xT · · · xA1A
T

FxT

xA2A
T

1 xT xA2A
T

2 xT · · · xA2A
T

FxT

...
...

. . .
...

xAFA
T

1 xT xAFA
T

2 xT · · · xAFA
T

FxT










−1

·










xA1x
T

xA2x
T

...

xAFxT










. (3.10)

3.1.3 Discussion

The explained graph construction (i.e., graph representation of a signal and graph weight-

ing) leads to a weighted graph that characterizes the correlation between samples of an

37

Chapter 3. Lifting Transforms on Graphs

N-dimensional signal. Therefore, it can be useful to perform different signal processing

operations.

The weighting process can be made over any given undirected graph. In this thesis

we focus on the lifting transform, which needs a bipartion of the graph to apply the

filtering. Therefore, given a graph and a bipartition (i.e., U/P assignment), one can find

the optimal weights of the graph that minimize the detail coefficient energy of the predict

stage when using one-hop prediction filters. To do that, the label of each node has to be

taken into account in the optimization process described in Sections 3.1.2.2 and 3.1.2.3.

We experimentally observed that the weight values do not significantly change if they

are calculated before (minimizing over all the nodes of the graph) or after the U/P
assignment (minimizing over the prediction nodes, using only the update neighbors to

obtain the prediction), so that our graph weighting will be near optimal in the sense of

minimizing the detail coefficient energy. The formulation to obtain the optimal weights

that minimize the detail coefficient energy using a given U/P assignment, which is quite

similar to the one presented below, is described in Appendix C.

Given the total freedom in the graph representation, one could link n-hop temporal

or spatial neighbors (i.e., temporal links between nodes that are n-frames away or spatial

links between nodes that are n-spatial hops away), and assign n different temporal and

spatial weights as a function of the distance between linked nodes.

3.2 Graph-Based U/P Assignment Methods

As discussed in Chapter 2, the first stage to compute lifting transforms on graphs con-

sists on splitting nodes into Update (U) and Prediction (P) disjoint sets. One has great

freedom to select which nodes will belong to the U set (and thus will be the low pass

coefficients) and which ones will belong to the P set (and thus will be the high pass co-

efficients). Besides, the number of U/P nodes for each level of the transform j can be

arbitrarily chosen without compromising the invertibility of the transform, in contrast to

the dyadic decomposition of classical wavelets (where one half of samples are low-pass

coefficients and the other half high-pass coefficients in each level of the transform j,

thus having subsamplings of 1
2j).

38

Chapter 3. Lifting Transforms on Graphs

Figure 3.5 shows an illustrative example of two different U/P disjoint assignments

for the same original graph. Note that each one gives rise to different number and loca-

tion of detail (high-pass) and smooth (low-pass) coefficients, implying different filtering

operations and thus different (invertible) transformations of the original data. Besides,

each assignment is a bipartition and leads to a different number of links being used in

the transform.

(a) Example 1. (b) Example 2.

Figure 3.5: Two different transformations of the same original graph.

In this section we study different graph-based U/P assignment techniques. Given

a weighted graph, these methods find bipartitions without making any assumption about

the graph signal1.

The graph-based U/P splitting is essentially a 2-color2 graph-partition problem in

which one color, chosen from the two available ones, is assigned to each node of the

graph following some design criterion that does not depend on the signal at hand. These

graph-partition problems have been widely studied in the graph-theory literature for

1 Note that, if the weights on the graph correctly capture correlation between nodes, some information

of the signal is implicitly considered in these weights.

2 Terms “color”(white/grey) , “label”(1/0), “set”(P/U) or “parity” will refer to the same concept.

39

Chapter 3. Lifting Transforms on Graphs

different design criteria, and will be referred to as “classical” graph-partition problems

throughout this thesis. Section 3.2.1 describes the “classical” maximum-cut and set-

covering problems.

In Section 3.2.2 we summarize various graph-based U/P assignment methods for

lifting transforms on graphs that have been proposed in the literature, and their con-

nection to “classical” graph-partition problems described in Section 3.2.1. In a coding

application, it is natural to search graph-partitions in which a high number of P nodes

can be well predicted from U neighbor nodes, obtaining many small detail coefficients.

Intuitively, a “good” U/P assignment to achieve this goal is the solution to the “clas-

sical” weighted maximum-cut problem, as the authors point out in [43] and [44]. This

U/P assignment method is discussed in Section 3.2.3.

3.2.1 Some “Classical” Graph-Partition Problems

In this section we describe two of the most well-known “classical” graph-partition prob-

lems: the maximum-cut and the set-covering problems. These two problems and the

different solutions proposed in the literature will be useful in the graph U/P splitting

process for lifting transforms.

Note that we use the convention of representing P and U nodes as white and grey

nodes, respectively, in the figures of this thesis.

3.2.1.1 Set-Covering Problem

A set-cover is a partition of the node (vertex) set of a graph into two disjoint subsets so

that every node of one of the subsets has, at least, one neighbor in the other subset (i.e.,

every node in one subset is linked to the other subset). The set-covering problem can be

defined as the problem of finding a set-cover in which one of the sets has the minimum

possible number of elements.

Let us formally define the set-covering (SC) problem3.

Let G = (V , E) be an undirected graph. Denote one-hop neighborhood of k, Nk =

{u ∈ V : ku ∈ E}, and closed neighborhood of k, N[k] = Nk ∪ k, for all nodes k ∈ V .

Given a collectionM of all sets N[k], a set-cover C ⊆ M is a subcollection of the sets

3 For simplicity, hereafter we refer to the solution of the SC problem as SC solution.

40

Chapter 3. Lifting Transforms on Graphs

whose union is V . The set-covering problem is, givenM, to find a minimum-cardinality

set-cover mC. Once we obtain a minimum-cardinality set-cover mC =
{
N[kh]

}

h∈1,2,...i
,

we can denote set {kh}h∈1,2,...i as U nodes and the remaining as P nodes (SCU) or vice-

versa (SCP).

3.2.1.2 Maximum-Cut Problem

The maximum-cut problem can be viewed as finding the partition of the node set of a

graph into two disjoint subsets which has maximum number of edges (or more generally,

if the edges are weighted, the maximum sum of the weights) between elements of both

subsets.

Let us formally define the maximum-cut (MC) and weighted maximum-cut (WMC)

problems.

Consider an undirected edge-weighted graph (G, w), where G = (V , E) is the graph

and w is the weight function. A cut is defined as a partition of the node set into two

disjoint subsets U and P := V\U . The weight of the cut (W) is given by the function

W (U ,P) =
∑

i∈P,j∈U

wij, (3.11)

where wij is the weight of the link (edge) between nodes i and j.

A weighted maximum-cut is a cut of maximum weight, and is defined as:

WMC(G, w) = max
∀U⊆V

W (U ,P). (3.12)

The maximum-cut problem is defined similarly for an unweighted graph G = (V , E),
that is, an edge-weighted graph defining the weight function as:

wij =

{

1, if ij ∈ E ,
0, if ij /∈ E .

(3.13)

Figure 3.6 shows different graph-partition solutions to the problems explained above

and the weight of the cut, W , obtained for each solution, for a given graph. Note that

41

Chapter 3. Lifting Transforms on Graphs

Figure 3.6: “Classical” graph-partition strategies.

in the example each color (white and black) has been associated with a specific set of

nodes (P and U sets respectively).

3.2.2 U /P Assignment Methods for Lifting Transforms on Graphs

In this section we summarize some graph-based U/P assignment techniques proposed

in the literature to perform the graph transformation and their link to the described “clas-

sical” graph-partition problems.

The U/P assignment proposed in [45] attempts to optimize the total energy con-

sumption in a wireless sensor network minimizing the number of nodes that have to

transmit raw (not decorrelated) data in the network (the updates nodes j ∈ U). In addi-

tion, in order to reduce the energy in prediction nodes i ∈ P , every i must have at least

one U neighbor to compute its detail coefficient. The authors show that this is equivalent

to the SCU problem defined in Section 3.2.1.

As explained in Chapter 2, for an arbitrary U/P assignment, nodes that are neigh-

bors in the graph are not guaranteed to have opposite parity. Connected nodes of the

same parity cannot use each other’s data to perform the transform, and edges connect-

ing nodes of the same parity are considered “discarded” edges. As a solution to this

problem, techniques that minimize the number of “discarded” edges (i.e., the percent-

age of direct neighbors in the graph that have the same parity) have been proposed [10].

A similar idea was presented in [46], where the authors proved that the U/P graph-

partition that minimizes the error between the transform in the original graph and in the

42

Chapter 3. Lifting Transforms on Graphs

simplified graph (i.e., after edges discard) correspond to the solution to the classical MC

problem of the graph G defined in Section 3.2.1.

3.2.3 Proposed Splitting Solution for a Coding Application

In a coding application it will be of interest to maximize energy compaction, which

means storing the maximum amount of energy in the smallest number of coefficients

(i.e., obtaining a large number of small detail coefficients).

One criterion to do that will be to maximize the reliability with which update nodes

can predict prediction neighbors. Intuitively, a good approach to achieve this goal is the

well known WMC, which we proposed in [43] and in [44] for a video coding application.

Next, we analyze this intuition more in depth.

Let us assume that the edges E between nodes are weighted with specific values

wE ∈ R, which in some way are a similarity measure (e.g., similar luminance or correla-

tion in an image) between nodes. Intuitively, a P node is better predicted (i.e., the detail

coefficient is smaller) if it has a higher number of similar (with a high w value) U neigh-

bor nodes. If we impose that every node must have at least one different-parity neighbor

in order to make it possible to perform the update and predict stages of the transform, the

solution to this problem is close to the solution of the SCP problem (which maximizes

the number of U neighbors that nodes P have). Nevertheless, the SCP gives rise to a

low number of P nodes, and we would like to obtain a high number of P nodes in which

the data is decorrelated. Alternatively, we could find the SCU solution, thus obtaining

a large number of P nodes (detail coefficients) but with a low number of U neighbors

(and thus not well estimated).

A good trade-off in this problem is thus to maximize the total weight (similarity)

of the edges between the P and the U sets, which will give rise to a large number of

P nodes with many reliable (correlated) U neighbors. Besides, this usually leads to

balanced P and U sets, similar to the dyadic decomposition in classical wavelets. This

problem is the WMC problem defined in Section 3.2.2.

Note that the WMC usually has a closed solution that gives rise to a specific location

and number of U (|UWMC |) and P (|PWMC |) nodes. Therefore, for a given |PWMC |
nodes, WMC maximizes the weight between U an P sets, leading to accurate predic-

tions, as we will show in experimental results of Section 3.3.4.

43

Chapter 3. Lifting Transforms on Graphs

To compute the WMC solution we use the greedy approach of [47], leaving for future

work the study of alternative methods. Note that, if the given graph is unweighted, the

algorithm provides the MC solution. The algorithm is described in Algorithm 1, where

Uj and Pj form a bipartition of the node set Uj−1, and we consider gain of a node to be

the sum of weights (i.e., the number of neighbors if the graph is unweighted) of all its

incident edges.

Algorithm 1 Weighted Maximum-Cut Algorithm

Require: Uj = {∅}, Pj = {Uj−1}
1: Calculate the Gain of the Uj−1 node set

2: Select the node a with largest Gain, a = max(Gain)
3: while Gain > 0 do

4: Let Uj ← Uj ∪ {a}
5: Let Pj ← Pj\ {a}
6: Change the sign of the incident edge weights

7: Update Gains of adjacent nodes

8: Select the node a with largest Gain, a = max(Gain)
9: end while

10: return Uj and Pj

Note that, even though the WMC has a closed solution, the algorithm could stop at

any iteration, given a near optimal solution to problem of finding the maximum number

of U neighbors for a given |P| nodes.

3.3 Signal Model-Based U/P Assignment Methods

In this section we propose U/P assignment criteria based on minimizing the expected

value of the quadratic prediction error assuming a signal model and a predictor. In

Section 3.3.1 we formally formulate our U/P assignment problem, which is focused

on minimize the detail coefficients energy. Sections 3.3.2, 3.3.3 and 3.3.4 present three

different approaches to design partition algorithms that rely on model-based approaches.

To do so, we assume a data generation model and a predictor, and find an expression

of the mean squared prediction error under the assumed model and predictor. Then, we

minimize it using different greedy algorithms, thus finding a near-optimal solution to

the problem defined in Section 3.3.1.

44

Chapter 3. Lifting Transforms on Graphs

The first model assumes that data in each node is a noisy version of some con-

stant. Despite of its simplicity, some interesting conclusions regarding the split crite-

ria can be extracted from its analysis. The second model assumes smooth variations

between neighbor nodes values and therefore implicitly considers some correlation be-

tween them. This second model is further extended to consider that different links be-

tween nodes can be more or less correlated as a function of the nature of the link.

3.3.1 Proposed Signal Model-Based U/P Assignment Problem For-

mulation for Lifting Transforms on Graphs

As discussed before, to obtain a sparse representation of the original signal, it is inter-

esting to have small detail coefficients so that the signal energy is compacted on the

smooth coefficients. Therefore, our goal is to find the U/P assignment that minimizes

the expected value of the detail coefficient energy (i.e., the expected value of the squared

prediction error) for a given number of P nodes4.

Assuming a signal model and a predictor, the problem can be stated as follows:

Problem 3.1. U/P Assignment Problem Formulation.

Let G = (V , E) be a given undirected graph, where V = {1, . . . , N} is a set of

nodes and E ⊂ V × V a set of edges. Let X be a set of N random variables, such

that xi represents the data value associated with node i in the graph. For each node

i ∈ P , consider the predictor x̂i. Define the total prediction error (Etot) as the sum of

the expected value of the squared error over the P nodes.

Find the U/P assignment that minimizes Etot for a given number of P nodes, |P|:

min
U/P

Etot = min
U/P

∑

i∈P

E{(xi − x̂i)
2}. (3.14)

Fixing |P| in the problem formulation is important because Etot is minimized by

minimizing the size of P . Thus, solving (3.14) is practical only if some constraint on

the size of P is introduced.

4 Note that given that |U| = N − |P| (where N is the number of nodes on the graph), fixing the

number of P nodes is equivalent to fixing the number of U nodes.

45

Chapter 3. Lifting Transforms on Graphs

Note that the brute-force solution would be unfeasible because one should try every

possible U/P assignment and calculate the squared error over all the P nodes for each

of these assignments.

3.3.2 Noisy Model (NM)

In this section we assume a simplistic signal model in which the value of each node of

the graph is a noisy version of some constant. Under the assumed model and predictor,

we obtain and analyze an expression of the expected value of the quadratic prediction

error. Then, we minimize it for a given |P| using a greedy algorithm, thus solving

Problem 3.1.

This model is generally not realistic (e.g., if the graph represents a video signal, it

would be a noisy version of a sequence of constant frames). Nevertheless, it can be

taken as locally true (e.g., if the graph only represents subregions of the video sequence

with similar pixels, the NM can be a more reasonable approximation of the real signal).

Definition 3.2. Noisy Model

Let G = (V , E) be an undirected unweighted graph. Let X be a set of N random

variables, such that xi ∈ X represents the data value associated with node i in the

graph.

Let us assume that xi is a noisy version of some constant c, in such a way that

xi = c + ηi, (3.15)

where ηi are independent noise variables with zero mean and variance vi.

Definition 3.3. Unweighted Predictor

Let Ni = {j ∈ V : ij ∈ E} be the set of neighbors of node i. For each node i ∈ P ,

consider the predictor

x̂i =
1

mi

∑

j∈Ni∩U

xj, (3.16)

where mi = |Ni ∩ U|.

Proposition 3.1. Noisy Model Prediction Error

46

Chapter 3. Lifting Transforms on Graphs

Let xi and x̂i satisfy Definition 3.2 and Definition 3.3 respectively. Consider that

vj = v for any j. The total prediction error over all nodes i ∈ P is given by

EtotNM =
∑

i∈P

E{(xi − x̂i)
2} = v

(

|P|+
∑

i∈P

1

mi

)

. (3.17)

Proof. x̂i is an unbiased estimate of c, i.e.,

E{x̂i} = c = E{xi}, (3.18)

with variance

var(x̂i) =
1

m2
i

∑

j∈Ni∩U

vj. (3.19)

Our aim is to use x̂i as a prediction for xi. The mean square prediction error is

E{(xi−x̂i)
2} = E{(xi − c + c− x̂i)

2}
=E{(xi − c)2}+ E{(c− x̂i)

2}+ 2E{(xi − c)(c− x̂i)}
=vi + var(x̂i) + 2E{(xi − c)(c− x̂i)}

=vi +
1

m2
i

∑

j∈Ni∩U

vj, (3.20)

where we have used (3.15), (3.16) and the independence of the noise variables.

The total prediction error is

EtotNM =
∑

i∈P

E{(xi − x̂i)
2}

=
∑

i∈P

vi +
∑

i∈P

(

1

m2
i

∑

j∈Ni∩U

vj

)

. (3.21)

If vj = v for all j,

EtotNM = v

(

|P|+
∑

i∈P

1

mi

)

. (3.22)

47

Chapter 3. Lifting Transforms on Graphs

For a fixed |P|, some interesting conclusions can be extracted from (3.17):

1. EtotNM increases with the variance of the nodes v (e.g., in a video coding applica-

tion, EtotNM will be higher in sequences with complex textures or motions).

2. The first term of the right side of (3.17), v|P|, represents the intrinsic variance of

nodes i ∈ P . The second term, v
∑

i∈P
1

mi
, refers to the variance of the prediction,

which decreases with the number of U neighbors of each node i ∈ P , mi.

3. For a fixed |P| and weight of the cut W =
∑

i∈P mi = Wc (note that given that the

graph is unweighted, W is the number of links between U and P), the best graph-

partition that one can construct in order to minimize EtotNM (under the assumed

NM and predictor) is to equally distribute these links amongst all the i ∈ P nodes.

This is formally stated in Corollary 3.1.

Corollary 3.1. Optimal Criteria for Fixed |P| and W = Wc

For a fixed |P| and W = Wc, the optimal criteria to minimize EtotNM over these P
nodes is that all of them have the same number of U neighbor nodes.

Proof. We want to seek the mi ∀i ∈ P that minimizes EtotNM for a fixed |P| and W =

Wc:

min
mi

{

v

(

|P|+
∑

i∈P

1

mi

)}

s. t. W =
∑

i∈P

mi = Wc, (3.23)

which, for a fixed |P|, is equivalent to minimizing

min
mi

∑

i∈P

1

mi

s. t. W =
∑

i∈P

mi = Wc. (3.24)

48

Chapter 3. Lifting Transforms on Graphs

Figure 3.7: MC and NM U /P assignment strategies.

Defining the Lagrangian:

L =
∑

i∈P

1

mi

+ λ

(
∑

i∈P

mi −Wc

)

(3.25)

and minimizing with respect to each mi:

∂L
∂mi

= − 1

m2
i

+ λ = 0 =⇒ mi =
1√
λ

= K. (3.26)

Furthermore,

∑

i∈P

mi = K|P| = Wc =⇒ K =
Wc

|P| . (3.27)

So, given a weight for the cut Wc and |P|, we obtain the minimum of L when every

node i ∈ P has the same number of U neighbors K = Wc

|P|
.

Figure 3.7 shows an example of two U/P graph-partitions with the same W and

the same number of U (dark) and P (white) nodes. Note that in the upper partition the

number of U neighbors of P nodes is more balanced, giving rise to a smaller prediction

error.

Hereafter we refer to the U/P assignment strategy that aims to minimize (3.17) for

a given |P| as NM solution.

49

Chapter 3. Lifting Transforms on Graphs

3.3.2.1 Proposed NM Greedy Solution

To obtain the NM solution and thus solve Problem 3.1, we design a greedy algorithm

that locally minimizes (3.17) in each iteration. First, the algorithm finds the SCU solu-

tion (SC solution with minimum number of U nodes) in order to guarantee that every

node ∈ P has at least one neighbor ∈ U and can be predicted. Then, in each itera-

tion t, the algorithm changes to U the node c ∈ P that, when is changed, minimizes

EtotNM (3.17) (this c is referred to as c∗). Note that each iteration t corresponds with a

specific |P|t, so that the process should end when the given |P| defined in Problem 3.1

is reached.

It would be very computationally expensive to calculate EtotNM for every of the

possible c ∈ P candidates to be changed to U , in each iteration t. Actually, we are inter-

ested in finding c∗ and not in the total cost EtotNM at each iteration t of the algorithm.

Therefore, we focus on finding the c ∈ P that, when is changed to U , maximizes the

EtotNM difference between iterations t− 1 and t.

Let E
{t,c}
totNM be the EtotNM obtained if node c ∈ P is changed to U at iteration t. We

want to minimize E
{t,c}
totNM over all possible candidates c ∈ P:

min
c∈P

E
{t,c}
totNM . (3.28)

Note that E
{t,c}
totNM can be written as a function of the cost at the past iteration t − 1

(E
{t−1}
totNM):

E
{t,c}
totNM = E

{t−1}
totNM + Θ{t,c}, (3.29)

where Θ{t,c} represents the changes in EtotNM that occur, from iteration t − 1 to t,

if we move node c from P to U . Note that, as EtotNM decreases when we incorporate

more U nodes, we have that E
{t−1}
totNM > E

{t,c}
totNM , and so Θ{t,c} < 0.

Given that E
{t−1}
totNM does not depend on the node that will be moving at iteration t,

thus (3.28) can be written, using (3.29), as:

50

Chapter 3. Lifting Transforms on Graphs

min
c∈P

E
{t,c}
totNM = min

c∈P
Θ{t,c}. (3.30)

The advantage of minimizing Θ{t,c} instead of E
{t,c}
totNM is that now we can find c∗

just by observing how EtotNM changes in the neighborhood of every candidate node c

(specifically, looking at two-hop neighbors), and thus without having to evaluate EtotNM

summing over all nodes i ∈ P for every c.

The intrinsic variance v (|P|) in EtotNM (3.17) does not depend on the node that is

changed, so that, using (3.17), (3.30) can be written:

min
c∈P

Θ{t,c} = min
c∈P

∑

k∈Nc∩P

(
1

(mk + 1)
− 1

mk

)

− 1

mc

, (3.31)

where mc and mk are the number of U neighbors of candidate node c, and of its

k ∈ P neighbors, respectively. The terms in the sum in (3.31) indicates that, if c is

moved to U , its k ∈ P neighbors will have one more U neighbor to be predicted.

Last term in (3.31) reflects that EtotNM is also reduced because node c becomes U , and

therefore it should not be taken into account in the calculation of EtotNM . Note that now,

in order to find c∗, we just have to sum over its neighbors.

Figure 3.8 illustrates an example. The left side shows the U/P of the graph at

iteration t − 1, and right side at iteration t, assuming that candidate node 3 is changed

to U . Note that changing node 3 implies that nodes 2, 4, and 6, go from having one U
neighbors to two. So that, Θ{t,c=3} = (1/2− 1 + 1/2− 1 + 1/2− 1)− 1.

Finally, note that Θ{t,c} can be calculated for every c with a few simple matrix op-

erations5, obtaining the vector Θ{t,c} = [Θ{t,c=1}Θ{t,c=2} . . . Θ{t,c=|P|t}]. The complete

NM greedy approach is summarized in Algorithm 2.

5 Source code related to this thesis will be available online at www.tsc.uc3m.es / ∼ emenriquez/.

51

Chapter 3. Lifting Transforms on Graphs

Figure 3.8: Greedy algorithm for the NM.

Algorithm 2 NM Greedy Algorithm

Require: Graph G = (V , E), |P| nodes

1: Calculate the SCU solution

2: while |P|t > |P| do

3: Calculate Θ{t,c}

4: Select the node c∗ with minimum Θ{t,c}, c∗ = minΘ{t,c}

5: Let U ← U ∪ {c∗}
6: Let P ← P\{c∗}
7: end while

8: return U/P assignment

3.3.2.2 Experimental Results

In this subsection we present some experimental results in terms of the quadratic pre-

diction error (i.e., the energy of the detail coefficients) in the first level of the transform

(j = 1) when applying different U /P assignment “classical” strategies studied in Sec-

tion 3.2.1 and the proposed one in Section 3.3.2 (NM).

The experiments have been carried out in the context of video representation, using

subgraphs of real data obtained from different standard test sequences (i.e., the sub-

graphs contain data from a specific area and number of frames of each video). The

graph representation of the video follows the philosophy of Figure 3.1, in which any

node represents the luminance value of a pixel and can have some spatial and temporal

neighbors simultaneously. In this case, every node is connected to its 8-one hop spa-

tial neighbors and to an arbitrary number of temporal neighbors following a ME model.

52

Chapter 3. Lifting Transforms on Graphs

Note that the NM does not distinguish between spatial or temporal neighbors, so that

the links between different nodes are not weighted and the nature of each link is not

taken into account. Therefore, we have an unweighted graph (3.13) in which every U
neighbor of a P node has the same importance in the prediction (3.16).

To evaluate the performance of each approach, we measure the average prediction

error over all nodes in P as:

Eav-meas =
1

|P|

|P|
∑

i∈P

(xi − x̂i)
2 =

1

|P|

|P|
∑

i∈P

(di)
2,

(3.32)

where xi is the luminance value of the pixels, and x̂i the prediction, defined as in (3.16).

To obtain the NM U/P assignment solution and thus solve Problem 3.1 we use Algo-

rithm 2.

Figure 3.9 shows experimental results where Eav-meas in the first level of the transform

(j = 1) is plotted as a function of the relation |U|/N selected by the different U/P
strategies (MC, SCU , SCP and the proposed NM solution)6.

Note that the number of U/P nodes is fixed for the MC, SCU and SCP solutions,

and can vary in the NM approach (by letting the given |P| in Problem 3.1 vary). The

reason is that the MC, SCU and SCP have closed solutions that give rise to a specific

U/P bipartition (and thus a specific number and location of U and P nodes), while the

NM aims to minimize (3.17) for any given number of U and P nodes.

Some conclusions can be extracted from the experimental results shown in Figure

3.9:

• If we compare the proposed NM optimization method and the MC in the |U|/N
that is solution to the MC, in general, NM achieves lower Eav-meas than the MC

method. The reason is that, in spite of the fact that MC gives rise to a higher

average number of U neighbors (because for that |U|/N , MC maximizes the cut

and thus the number of U neighbors that P nodes have), NM generates a similar

number of U neighbors for all the P nodes. This is illustrated in Figure 3.10,

6 The greedy algorithm used to find the SCU (or SCP) solution is given in Appendix A.

53

Chapter 3. Lifting Transforms on Graphs

0 0.2 0.4 0.6 0.8 1
200

300

400

500

600

700

800

900

|U|/N

E
a
v
−

m
e
a
s

NM
MC
SCP

SCU

(a) Foreman

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

|U|/N

E
a
v
−
m
e
a
s

NM
MC
SCP

SCU

(b) Akiyo

0 0.2 0.4 0.6 0.8 1
400

600

800

1000

1200

1400

|U |/N

E
a
v
−

m
e
a
s

NM

MC

SCP

SCU

(c) Mobile

0 0.2 0.4 0.6 0.8 1
300

400

500

600

700

800

900

1000

1100

|U |/N

E
a
v
−

m
e
a
s

NM
MC
SCP

SCU

(d) Container

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
400

500

600

700

800

900

1000

1100

1200

|U |/N

E
a
v
−

m
e
a
s

NM
MC
SCU

SCP

(e) Paris

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
140

160

180

200

220

240

260

280

|U |/N

E
a
v
−

m
e
a
s

NM

MC

SCU

SCP

(f) Garden

Figure 3.9: Eav-meas for different sequences. A comparison of NM with several “classic”

solutions to the U/P assignment problem.

which shows, for the NM and the MC, the mean number (µU) and the standard

deviation (σU) of U neighbors that P nodes have as a function of |U|/N , in the

sequence Foreman.

54

Chapter 3. Lifting Transforms on Graphs

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

|U|/N

|U
|n

ei
g
h
b
o
rs

o
f
P

n
o
d
es

µU NM

σU NM

µU MC

σU MC

Figure 3.10: µU and σU for the sequence Foreman.

• Note that, as expected, Eav-meas generally decreases as the proposed algorithm

chooses a higher number of U nodes, because the obtained predictions are better.

• The SCU solution involves obtaining the minimum number of U nodes (and there-

fore low pass coefficients) that guarantees that every P node has at least one U
neighbor and thus can be predicted. This implies that we will have a large number

of nodes P in which the data is decorrelated (giving rise to the detail coefficients).

Nevertheless, minimizing the number of U nodes implies that P nodes would

have, in general, a low number of U neighbors to calculate the detail coefficient

and thus the prediction of this detail coefficients will not usually be so accurate.

Therefore, the mean energy of detail coefficients Eav-meas will be large as is shown

in Figure 3.9.

• On the other hand, the SCP solution implies that we will have accurate predictions

(e.g., the Eav-meas will be low, as shown in Figure 3.9) but a low number of detail

coefficients in which data is predicted.

• In sequences with low pixel variance (v), such as the fragment of Akiyo, which is

quite homogeneous and stationary , the P nodes do not need many U neighbors

to be correctly predicted. Thus, once the algorithm reaches a reasonable value

of |U|/N , increases in this value do not improve the prediction, and the Eav-meas

remains almost constant.

55

Chapter 3. Lifting Transforms on Graphs

Note that, as it was discussed before, in a coding application there exists a trade-

off between obtaining a low number of low pass coefficients (i.e., low number

of U nodes) and having small detail coefficients (i.e., high number of U neigh-

bor nodes). Furthermore, this trade-off depends on the video content (i.e., in se-

quences such as Akiyo, one does not need too many U nodes to obtain “good” pre-

dictions and thus low detail coefficients; while in sequences such as Coastguard

every new U node makes the prediction better, decreasing Eav-meas). Therefore, it

would be of interest to have an encoder procedure that tells the decoder the opti-

mal number of U and P nodes depending on the video content and the available

resources (i.e., a target quality or bit rate).

We have drawn some interesting conclusions regarding the U/P assignment problem

based on the analysis of NM. In the next section we introduce the Moving Average

Model, which considers smooth noise variations between neighbor nodes.

3.3.3 Moving Average Model (MA)

Generally, data across nearby sample points present some correlation (e.g., nearby pixels

in an image or video usually have similar luminance values; adjacent sample points in

audio data generally present similar sound pressure level (SPL) values; or neighboring

data in a WSN tend to be correlated). In this section we propose a data generation model

that considers smooth noise variations between neighbors on the graph. Specifically,

we consider that data in node i is generated as is defined below.

Definition 3.4. Moving Average Model

Let G = (V , E) be an undirected graph. Let us assume that xi is generated as the

mean noise ǫj value of the closed neighborhood of node i plus an independent noise ηi

as:

xi =
1

|N[i]|
∑

j∈N[i]

ǫj + αηi, (3.33)

where ǫj and ηi are zero-mean independent random variables, with variances vǫj
and

vηi
, respectively; N[i] is the closed neighborhood set of node i (N[i] = Ni ∪ i), and α is

an arbitrary nonnegative real constant.

56

Chapter 3. Lifting Transforms on Graphs

Thus, this model can be viewed as a low-pass filtered noisy (every node with noise

ǫi) random graph signal plus an additive independent random noise (every node with

noise ηi). Figure 3.11 illustrates the data generation following this model, which will be

referred to as Moving Average (MA) model.

Figure 3.11: MA data generation model.

Despite its simplicity, similar models have been employed in the literature for image

texture representation [48], and for image [49] [50], audio and speech modeling. Define

the clustering degree of nodes m and n on graph G as

c(m,n) =
|N[m] ∩N[n]|
|N[m]||N[n]|

. (3.34)

Next, we calculate the expected value of the prediction error assuming the MA data

generation model (3.33) and using the unweighted predictor defined in Definition 3.3.

Proposition 3.2. Moving Average Model Prediction Error

Let xi and x̂i satisfy Definition 3.4 and Definition 3.3 respectively. Consider that

vηi
= vη and that vǫi

= vǫ for any i ∈ V . The prediction error of a node i ∈ P is given

by

EMAi
= E{(xi − x̂i)

2} = E{(xi)
2}+ E{(x̂i)

2} − 2E{xix̂i} (3.35)

= α2vη +
vǫ

|N[i]|
︸ ︷︷ ︸

A

+
α2vη

mi

+
vǫ

m2
i

∑

j∈|Ni∩U|

∑

k∈|Ni∩U|

c(j, k)

︸ ︷︷ ︸

B

− 2
vǫ

mi

∑

k∈|Ni∩U|

c(i, k)

︸ ︷︷ ︸

C

.

The proof is in Appendix B.1.

57

Chapter 3. Lifting Transforms on Graphs

Let us now analyze (3.35). The terms inside A represent the variance of the ob-

servation, E{(xi)
2} (given that E{(xi)} = 0, var(xi) = E{(xi)

2}). Note that the first

term inside A is due to the independent noise ηi of each node, and does not depend on

the node at hand (because of our assumption of vηi
= vη). The second factor is due

to the smooth variation of the noise ǫj (the low-pass filtered noisy graph signal). Note

that as the number of neighbors of node i (|N[i]|) increases, this second factor (and thus

the variance of the observation) is lower, which is reasonable because xi is obtained by

averaging with a higher number of samples. In this way, from an U/P strategy point of

view, will be of interest to choose as P nodes (nodes to be predicted) those nodes that

have more neighbors and thus can be more easily predicted (e.g., assuming that we are

given a graph representation of an image which links neighbor nodes that do not cross

contours of the image, it will be better to choose as P those nodes that are far away

from the contours and thus have more neighbors because their value will be smoother

and thus more easily predicted).

The terms inside B represent the variance of the predictor, E{(x̂i)
2}. It is com-

posed of two factors, which decrease as the number of U neighbors of node i (mi)

increases. Therefore, as expected, the variance of the predictor is lower as we have

more data to perform the prediction. Furthermore, the variance decreases as the factor

c(j, k) (i.e., the clustering degree between U neighbors of node i) decreases. Note that

c(j, k) indicates the proportion of shared neighbors between nodes j and k. Thus, it is

of interest to have uncorrelated U neighbors of i (i.e., U neighbors of i that do not share

many neighbors/information) to perform its prediction.

To give some insight into the behaviour of the E{(x̂i)
2} term, Figure 3.12 shows

the values that it takes for different situations and graph topologies. In this example we

consider vη = vǫ = v and α = 1.

58

Chapter 3. Lifting Transforms on Graphs

Figure 3.12: E{(x̂i)
2} for different graph topologies.

Note that, in each row of the figure, the node i to be predicted (the most left white

node in every example) has the same number of U (dark) neighbors, mi. First column

shows that, considering the same topology, variance E{(x̂i)
2} is lower as mi is higher

(E{(x̂A)2} > E{(x̂B)2} > E{(x̂C)2}, and in general, E{(x̂i)
2} = 5

4
v

mi
+ v

4
. In the

second row of the figure, the node i to be predicted has mi = 2 in all the examples.

Nevertheless, E{(x̂i)
2} decreases as the U neighbors of node i have more neighbors that

they do not share with each other (i.e., as the c(j, k) factor is lower).

Finally, the term inside C represents the cross-correlation between the estimate

and the observation, E{xix̂i}. Note that this term increases as mi is lower and as

the clustering degree between node i and its U neighbors, c(i, k), is higher (i.e., the

observation xi and the predictor x̂i will be more correlated as they share more neigh-

bors/information).

59

Chapter 3. Lifting Transforms on Graphs

Once we have explained (3.35), we calculate the total prediction error just by sum-

ming over all nodes i ∈ P . After reordering the equation we get the following expres-

sion:

EtotMA =
∑

i∈P

E{(xi − x̂i)
2} (3.36)

= α2vη

∑

i∈P

(

1 +
1

mi

)

︸ ︷︷ ︸

A

+ vǫ

∑

i∈P




1

|N[i]|
+

1

m2
i

∑

j∈|Ni∩U|

∑

k∈|Ni∩U|

c(j, k) − 2

mi

∑

k∈|Ni∩U|

c(i, k)





︸ ︷︷ ︸

B

.

Note that the terms in A are related to the independent noise of each node, and thus

are equivalent to the total prediction error of the NM (3.17). The terms in B are due to

the smooth variations of the low-pass filtered noisy graph signal.

Some interesting remarks have been extracted from the analysis of (3.35) and (3.36).

Nevertheless, as in the NM, the total prediction error (3.36) is minimized by minimizing

the size of P , and thus some constraint on the size of P is needed.

In next section we propose a Greedy algorithm that minimizes (3.36) for a given |P|
and thus solves Problem 3.1.

3.3.3.1 Proposed MA Greedy Solution

To obtain the MA solution, we design a greedy algorithm that, as in the NM approach,

first finds the SCU solution and then, in each iteration, moves to U the node in P that

minimizes EtotMA.

The philosophy of the algorithm is the same to that of the NM, explained in Section

3.3.2.1. Therefore, the algorithm finds the candidate c ∈ P that minimizes EtotMA by

minimizing the changes in EtotMA from iteration t− 1 to t (i.e., minimizing Θ{t,c}).

In the MA, the problem of minimizing Θ{t,c} is defined as follows:

min
c∈P

Θ{t,c} = min
c∈P

(
A{t,c} −B{t,c} − C{t,c}

)
, (3.37)

60

Chapter 3. Lifting Transforms on Graphs

where A{t,c} indicates the EtotMA in the neighborhood of candidate c ∈ P if it is

changed to U , B{t,c} the EtotMA before changing c, and C{t,c} the EtotMA reduction due

to node c becomes U and thus is not taken into account in the EtotMA calculation.

Using (3.35), and considering that vη = vǫ = v and α = 1, A{t,c}, B{t,c} and C{t,c}

can be written in the minimization problem (3.37) as:

A{t,c} =
∑

k∈Nc∩P




1

(mk + 1)
+

1

N[k]
+

1

(mk + 1)2

∑

j∈|Nk∩U|

∑

h∈|Nk∩U|

c(j, h) (3.38)

− 2

mk + 1

∑

h∈|Nk∩U|

c(k, h)



 ,

B{t,c} =
∑

k∈Nc∩P




1

(mk)
+

1

N[k]
+

1

(mk)2

∑

j∈|Nk∩U|

∑

h∈|Nk∩U|

c(j, h)− 2

mk

∑

h∈|Nk∩U|

c(k, h)



 ,

(3.39)

C{t,c} =
1

(mc)
+

1

N[c]
+

1

(mc)2

∑

j∈|Nc∩U|

∑

h∈|Nc∩U|

c(j, h)− 2

mc

∑

h∈|Nc∩U|

c(c, h). (3.40)

Note that the number of U neighbors of every k ∈ Nc ∩ P increases from B{t,c}

to A{t,c}, because c becomes a new U neighbor for its P neighbors. Nevertheless, N[k]

does not change, because it just depends on the graph topology and not on the U/P
assignment. The same applies for c(j, k), so that it can be calculated just once for every

combination of nodes (j, k), obtaining the clustering degree matrix C = [cj,k]. As in

the NM, Θ{t,c} can be computed for every c with some matrix operations without using

loops, obtaining the vector Θ{t,c} = [Θ{t,c=1}Θ{t,c=2} . . . Θ{t,c=|P|t}].

Details about the proposed MA greedy approach are in Algorithm 3.

61

Chapter 3. Lifting Transforms on Graphs

Algorithm 3 MA Greedy Algorithm

Require: Graph G = (V , E), |P| nodes

1: Calculate the clustering degree matrix C = [cj,k]
2: Calculate the SCU solution

3: while |P|t > |P| do

4: Calculate Θ{t,c}

5: Select the node c∗ with minimum Θ{t,c}, c∗ = minΘ{t,c}

6: Let U ← U ∪ {c∗}
7: Let P ← P\{c∗}
8: end while

9: return U/P assignment

3.3.3.2 Experimental Results

Next we present some experimental results in terms the quadratic prediction error in the

first level of the transform (j = 1) when applying different U /P assignment strategies,

comparing MC, NM and MA.

The experiments have been carried out using the same video segments of Section

3.3.2. Nevertheless, in this case links of the graph between neighboring nodes with very

different luminance values (i.e., links between neighbor nodes that cross contours) are

removed, as illustrated in Figure 3.2. In this manner, assuming that the contours are well

defined, we have smooth luminance variations, which is the main hypothesis of the

MA model.

Summarizing, we have an unweighted graph as defined in (3.13) in which every

node i could have very different number of neighbors (|Ni|).
To evaluate the performance of each approach, we measure Eav-meas as in (3.32),

and to obtain the MA U/P assignment solution we employ the algorithm described in

previous section.

Figure 3.13 shows achieved Eav-meas values as a function of the proportion of U nodes

on the graph (|U|/N) selected by each method. In the experiments, vη = vǫ and α = 1.

62

Chapter 3. Lifting Transforms on Graphs

0.35 0.4 0.45 0.5 0.55 0.6
30

40

50

60

70

80

90

100

110

|U |/N

E
a
v
−

m
e
a
s

MA

NM

MC

(a) Foreman

0.2 0.3 0.4 0.5 0.6 0.7
30

40

50

60

70

80

90

100

110

120

|U |/N

E
a
v
−

m
e
a
s

MA

NM

MC

(b) Coastguard

0.3 0.4 0.5 0.6
300

350

400

450

500

550

600

|U |/N

E
a
v
−

m
e
a
s

MA

NM

MC

(c) Mobile

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
200

300

400

500

600

700

800

|U|/N

E
a
v
−

m
e
a
s

MA

NM

MC

(d) Container

0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6
50

100

150

200

|U|/N

E
a
v
−

m
e
a
s

MA

MC

NM

(e) Paris

0.2 0.3 0.4 0.5 0.6 0.7
70

80

90

100

110

120

130

140

150

160

|U |/N

E
a
v
−

m
e
a
s

MA

MC

NM

(f) Garden

Figure 3.13: Eav-meas for different sequences. MA Vs NM.

Some conclusions can be derived from the results shown in Figure 3.13:

• Considering smooth noise variations between neighboring pixels leads to a more

realistic model and thus the Eav-meas for the MA model is usually lower than for

the NM and the MC solutions.

63

Chapter 3. Lifting Transforms on Graphs

• MA considerably outperforms NM in regions where the luminance value of neigh-

boring pixels changes smoothly (in both the spatial and the temporal domains)

because the model is accurate (e.g., Paris or Container, after removing the high

frequencies). On the other hand, in noisy areas, the results are similar to the ones

achieved with NM (e.g., Garden).

• Eav-meas for the NM approach is consistently lower in Figure 3.13 than in Figure

3.9 for the same video sequences and test conditions. This is due to the fact that, in

the former, spatial links between neighbors that cross contours are broken (graph

representation of Figure 3.2) while in the latter do not (graph representation of

Figure 3.1). In other words, including the directional information helps to improve

the prediction and thus to decrease the detail coefficient energy.

• As expected, Eav-meas usually decreases as the number of U nodes on the graph

increases.

As discussed before, in a video representation, temporal correlation will usually be

stronger than spatial correlation, and thus pixels linked by means of “temporal links”

will usually be more correlated than pixels linked by means of “spatial links”. NM and

MA models do not consider this fact.

3.3.4 Spatio-Temporal Model (STM)

The MA model can be extended to take into account that spatial and temporal neighbor

pixels may have differentiated correlations. Next, we focus on a video representation,

obtaining the expected value of the prediction error assuming that data is generated

from temporal and spatial neighbors. This model will be referred to as Spatio-Temporal

model (STM). The result could be generalized to the case where F different kinds of

links, with different correlation values, are considered.

Definition 3.5. Spatio-Temporal Model

64

Chapter 3. Lifting Transforms on Graphs

Let G = (V , E) be an undirected graph. Let xi be a random variable that represents

the data value associated to node i in the graph. Let us assume that

xi =




ws

|N s
[i]|
∑

j∈N s
[i]

ǫj +
wt

|N t
[i]|
∑

j∈N t
[i]

ǫj



+ αηi, (3.41)

where N s
[i] and N t

[i] are the closed sets of spatial and temporal neighbors, respectively,

of node i; ws is an arbitrary constant in [0, 1], with wt = 1 − ws; ǫj and ηi are zero-

mean independent random variables with variances vǫj
, and vηi

, respectively; and α is

an arbitrary nonnegative real constant.

Definition 3.6. Weighted Predictor

Consider the predictions given by

x̂i =
ws

ms
i

∑

j∈N s
i ∩U

xj +
wt

mt
i

∑

j∈N t
i ∩U

xj, (3.42)

where ms
i = |N s

i ∩ U| and mt
i = |N t

i ∩ U|.

Let the clustering degree c(m,n) be defined as in (3.34).

Define

Dcd
ab(i) =

∑

j∈Na
i ∩U

∑

k∈N b
i ∩U

|N c
[j] ∩N d

[k]|
|N c

[j]||N d
[k]|

(3.43)

and

Dcd
a (i) =

∑

j∈Na
i ∩U

|N c
[j] ∩N d

[i]|
|N c

[j]||N d
[i]|

(3.44)

for a, b, c, d equal to “s′′ or “t′′.

Proposition 3.3. Spatio-Temporal Model Prediction Error

Let xi and x̂i satisfy Definition 3.5 and Definition 3.6 respectively. Consider that

vηi
= vη and that vǫi

= vǫ for any i ∈ V . The prediction error of a node i ∈ P is given

by

65

Chapter 3. Lifting Transforms on Graphs

ESTi
= E{(xi − x̂i)

2} = E{(xi)
2}+ E{(x̂i)

2} − 2E{xix̂i} (3.45)

= α2vη + vǫ

(

w2
s

|N s
[i]|

+
w2

t

|N t
[i]|

+
2wswt

|N s
[i]||N t

[i]|

)

︸ ︷︷ ︸

A

+ α2vη

(
w2

s

ms
i

+
w2

t

mt
i

)

+ vǫ

(
w2

s

(ms
i)

2G +
w2

t

(mt
i)

2H +
2wswt

mt
im

s
i

I

)

︸ ︷︷ ︸

B

− 2 vǫ

(
ws

ms
i

J +
wt

mt
i

K

)

︸ ︷︷ ︸

C

,

where

G = w2
sD

ss
ss + w2

t D
tt
ss + 2wswtD

st
ss, (3.46)

H = w2
sD

ss
tt + w2

t D
tt
tt + 2wswtD

st
tt ,

I = w2
sD

ss
st + w2

t D
tt
st + wswt(D

st
st + Dts

st),

J = w2
sD

ss
s + w2

t D
tt
s + wswt(D

st
s + Dts

s),

K = w2
sD

ss
t + w2

t D
tt
t + wswt(D

st
t + Dts

t).

The proof is in Appendix B.2.

The terms in A consider the variance of the model; the terms in B represent the

variance of the predictor; and the terms in C represent the correlation between model

and predictor.

Expression (3.45) is quite similar to that of the MA model (3.35). The main differ-

ence is that in STM all the factors are weighted by spatio-temporal terms, thus taking

into account the different statistical dependencies of temporal and spatial links. There-

fore, for example, 1
mi

in (3.35) becomes
w2

s

ms
i

+
w2

t

mt
i

in (3.45), or 1
N[i]

in (3.35) becomes

w2
s

|N s
[i]
|
+

w2
t

|N t
[i]
|
+ 2wswt

|N s
[i]
||N t

[i]
|

in (3.45).

Finally, summing ESTi
(3.45) over all nodes i ∈ P , the total prediction error is:

66

Chapter 3. Lifting Transforms on Graphs

EtotST =

|P|
∑

i∈P

E{(xi − x̂i)
2} =

|P|
∑

i∈P

ESTi
. (3.47)

Some other important remarks about expressions (3.45) and (3.47) are outlined be-

low:

• Note that now ESTi
strongly depends on the nature of the links between nodes.

This way, for example, if wt >> ws it will be useful to partition the graph so that

mt
i and |N t

[i]| are large, in order to reduce the variance of the predictor and the

observation, respectively.

• Likewise, observe that if one of the weights is much higher than the other, STM

tends to be similar to the MA model. Therefore, if for example wt → 1 (and thus

ws → 0), ESTi
(3.45)→ EMAi

(3.35), ignoring the spatial links.

• Optimizing EtotST ignoring the terms G, H , I , J and K, gives rise to a similar

result to Corollary 3.1 for the NM case, but now taking into account the different

weights of spatial and temporal neighbors. That is, in order to minimize the de-

tail coefficient energy, every node should have the same proportion of temporal

and spatial update neighbors, and the right proportion depends on wt and ws (the

higher wt, the higher proportion of temporal update neighbors).

3.3.4.1 Proposed STM Greedy Solution

Next, we present a greedy algorithm that finds the STM solution. To that end, the

algorithm moves to U the node in P that minimizes EtotST (3.47) in each iteration. For

simplicity, we assume that the terms G, H , J , and K in (3.45) are insignificant7.

Therefore, setting vη = vǫ = v and α = 1, the function to be minimized becomes:

7 Note that, in our video representation examples, this is a reasonable assumption because some of the

intersection between sets in the numerator of terms Dcd

ab
and Dcd

ab
are empty or small, and thus the terms

are zero or close to zero.

67

Chapter 3. Lifting Transforms on Graphs

|P|
∑

i∈P

(

w2
s

|N s
[i]|

+
w2

t

|N t
[i]|

+
2wswt

|N s
[i]||N t

[i]|
+

w2
s

ms
i

+
w2

t

mt
i

)

. (3.48)

As in the NM and MA greedy solutions, the algorithm finds the candidate c ∈ P that

minimizes Θ{t,c} (instead of (3.48)), defined as in (3.37), where A{t,c}, B{t,c} and C{t,c}

are conceptually the same as in the MA algorithm. Nevertheless, now, if c is moved to

U , its P neighbors have one more U neighbor to be used in the prediction, but it can

be spatial or temporal (i.e., ms
i and mt

i do not increase their value in one from B{t,c} to

A{t,c}). As in the MA, Θ{t,c} can be computed for every c with some matrix operations

without using loops.

Details about the proposed STM greedy approach are in Algorithm 4.

Algorithm 4 STM Greedy Algorithm

Require: Graph G = (V , E), |P| nodes, ws, wt

1: Calculate the SCU solution

2: while |P|t > |P| do

3: Calculate Θ{t,c}

4: Select the node c∗ with minimum Θ{t,c}, c∗ = minΘ{t,c}

5: Let U ← U ∪ {c∗}
6: Let P ← P\{c∗}
7: end while

8: return U/P assignment

3.3.4.2 Experimental Results

In this section we compare Eav-meas achieved when applying different U/P assignment

techniques to the same fragments of video sequences used in previous sections. Graph-

based representations of these sequences are defined after disconnecting links between

nodes across contours (Figure 3.2) as in Section 3.3.3.

In this case, we have an edge-weighted graph (with weights ws and wt for the spa-

tial and temporal neighbors respectively) in which every node i may have a different

number of spatial and temporal neighbors. The predictions are thus obtained following

(3.42) (i.e., given different importance to temporal and spatial linked neighbors). The

ws and wt weights used in the experiments were chosen using the method described in

68

Chapter 3. Lifting Transforms on Graphs

Section 3.1.2.2. We compare the proposed WMC and STM solutions. To obtain the

STM solution we employ the algorithm explained in Section 3.3.4.1.

Figure 3.14 shows some results of Eav-meas as a function of the proportion of U nodes

on the graph (|U|/N) selected by WMC and STM solutions.

0.35 0.4 0.45 0.5 0.55 0.6
0

20

40

60

80

100

120

140

|U |/N

E
a
v
−

m
e
a
s

STM

WMC

(a) Foreman

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

20

40

60

80

100

120

|U |/N

E
a
v
−

m
e
a
s

STM

WMC

(b) Coastguard

0.3 0.4 0.5 0.6
300

400

500

600

700

800

|U|/N

E
a
v
−

m
e
a
s

(c) Mobile

0.2 0.3 0.4 0.5 0.6 0.7 0.8
100

200

300

400

500

600

700

800

|U |/N

E
a
v
−

m
e
a
s

STM

WMC

(d) Container

0.3 0.4 0.5 0.6 0.7
0

50

100

150

|U |/N

E
a
v
−

m
e
a
s

STM

WMC

(e) Paris

0.2 0.3 0.4 0.5 0.6 0.7 0.8
20

40

60

80

100

120

140

160

|U |/N

E
a
v
−

m
e
a
s

STM

WMC

(f) Garden

Figure 3.14: Eav-meas for different sequences. STM.

69

Chapter 3. Lifting Transforms on Graphs

Next, some conclusions extracted from Figure 3.14 are outlined:

• For the same number of U selected nodes, STM gives generally rise to lower

Eav-meas than WMC. This can be viewed as indicating that STM leads to U and P
sets with better prediction ability (i.e., P set is better predicted from the U set)

than WMC.

• WMC tries to maximize the cut between U and P sets. This generally leads to a

certain number ofP nodes having a large number of U correlated neighbors, while

other nodes may not have any correlated neighbor, giving rise to good and bad

predictions respectively. STM tries to obtain a solution in which every node has

a balanced number of correlated neighbors, thus improving the mean prediction

error when considering all nodes in P .

• WMC obtains reasonably good results (except for Container), that are close to the

STM solution. Thus, it can be considered a good heuristic.

• Eav-meas obtained with STM (Figure 3.14) is greatly lower than the one obtained

with the MA model (Figure 3.13), so it can be concluded that it is very important

to take into account that temporal and spatial linked neighbors usually have dif-

ferent correlations. Specifically, this will influence the U/P assignment and the

predictors (filters) used to calculate the detail coefficients.

3.3.5 Discussion

In the NM, xi is modeled as a noisy version of some constant c (3.15), which represents

the mean luminance value. MA (3.33) and STM (3.41) do not consider any constant in

their models for simplicity. Nevertheless, it can be proven that this fact does not affect

the E{(xi− x̂i)
2} calculation (i.e., the MSE expression obtained in Propositions 3.2 and

3.3 would be exactly the same if constant c is considered in the models).

Note that, for simplicity, we are assuming the same arbitrary constants (i.e., ws and

wt) in the STM model generation (3.41) and in the predictors (3.42). A practical way to

choose these constants is to use the optimal weight values of the graph as explained in

Section 3.1.2.2.

70

Chapter 3. Lifting Transforms on Graphs

When considering more than one decomposition level in the transform, the U/P
assignment solution at level j = 1 will influence the U/P assignment at levels j > 1

and thus the global performance of the transform. Therefore, it would be useful to find

optimal U/P assignment designs by considering jointly several levels of the transform.

This is an interesting research question, which is left for future work.

3.4 Filter Design

As discussed before, in the predict stage of the transform the data is decorrelated. To do

that, each P node is linearly predicted from its U neighbors as x̂i =
∑

h∈Uj
pi(h)xh, and

the detail coefficient is obtained as di = xi − x̂i. To obtain an efficient representation

of the original data, it would be desirable that xi ≈ x̂i and thus di ≈ 0. Therefore,

given a graph G = (V , E) and two disjoint sets of U and P nodes, choosing a good

prediction filter p is crucial to obtain accurate predictions ofP nodes and thus a compact

representation of the original data.

Finally, it is also necessary to define the update u filters to perform the update stage

of the transform. In Section 3.4.2 we briefly describe the update filter design, which is

based on the method proposed by [16].

Note that through all this section we assume a given weighted graph for which a

bipartition of the graph (i.e., U /P assignment), has been chosen.

3.4.1 Prediction Filter Design

In this section we outline some prediction filter designs for lifting transforms proposed

in the literature and the peculiarities that arise in the context of graph lifting transforms.

Then, we propose the design of prediction filters based on the given weighted graph.

3.4.1.1 Filter Design for Lifting Transforms on Graphs

The problem of optimizing prediction filters in lifting transforms has been considered

by several authors, typically based on optimization criteria that seek to minimize the

expected energy of the detail coefficients. In this way, [51] obtained the optimal predic-

tors of an arbitrary lifting scheme and applied them to lossless image compression. [52]

71

Chapter 3. Lifting Transforms on Graphs

minimized the energy of the detail coefficients through an additional predict stage, im-

proving the compression performance of the transform. [25] designed a predict stage

that minimized the expected energy of the detail signal in a generalized lifting scheme,

and [53] proposed to jointly find the forward and backward motion vectors that min-

imized the energy of detail coefficients in a motion compensated 5/3 transform. [54]

proposed to use adaptive filters to estimate the optimal prediction filters. This approach

has the advantage that no side information is required to be sent to the decoder in a

coding application. Nevertheless, in order for the decoder to reproduce the same pre-

diction filters used at the encoder, both must have the same prediction errors and initial

prediction filters. Note that, if quantization is used (e.g. in a lossy coding application),

encoder and decoder must use the same quantized prediction errors to update the filters.

We focus on the design of prediction filters in the context of graph lifting trans-

forms, in which every node can have an arbitrary number of neighbors of different

classes (e.g., spatial or temporal neighbors in video representation). Therefore, calcu-

lating a different weight for each relative location as in 5/3 or quincunx wavelets (e.g.,

w1 for the left-side neighbor of every i, w2 for the upper-side neighbor of every i, and so

on) is not possible since every node i has an arbitrary number and location of its neigh-

bors. Furthermore, is important to note that the proper choice of p depends on how data

is correlated across nodes. With these observations in mind, we design filters that are

based on the graph weights, which, in our case, represent an estimate of the correlation

between nodes.

3.4.1.2 Graph-Based Filter Design

In Section 3.1.2, links on the graph were optimized in order to minimize the one-hop

prediction error. Thus, prediction filters constructed from the graph weights should

lead to accurate predictions. To obtain the prediction of pixel i ∈ P , we define filters

that weight its U neighboring pixels taking into account the weights of their respective

connections to i.

Let us define the prediction filter for node i ∈ P as:

pi =
[p1 , p2 , . . . , pk , . . . , pmi

]
∑mi

k=1 pk

, (3.49)

72

Chapter 3. Lifting Transforms on Graphs

where pk is the prediction value associated to node k ∈ Ni∩U and mi is the number of U
neighbors of i (i.e., |Ni ∩ U|). The normalization factor

∑mi

k=1 pk is important to obtain

a normalized predictor when fixed weights are used in the graph or to define prediction

filters in higher levels of the transform8.

In a video representation example, every link can be spatial (S) or temporal (T),

with weights ws and wt, respectively. Let us define mS
i (resp. mT

i) as the number of

U spatial (resp. temporal) neighbors of i. Normalizing the weights by mS
i and mT

i ,

respectively, pk is obtained as:

pk =

{

ws/m
S
i , if ik ∈ S,

wt/m
T
i , if ik ∈ T .

(3.50)

Note that this design leads to the prediction filters used in the STM (3.42). Also note

that, if the nature of the links is not taken into account in the graph weighting, we have

an unweighted graph and thus, pk = 1/mi, leading to predictors used in NM and MA

(3.16). Chapter 4 shows experiments about the energy compaction achieved comparing

filters constructed from fixed and optimal weights.

Considering F different kinds of links, pk is defined analogously to the video repre-

sentation example, so that, for the f -th kind of link, pk = wf/m
f
i if ik ∈ f .

3.4.2 Update Filter Design

So far we have completely defined different U/P assignments on the graph and the

prediction filter design. In this section we focus on the design of the update filters,

completely determining the graph transform. Our update filters are designed based on

the method proposed by [16]. We briefly outline the u filter that we employ for the sake

of completeness.

For each update node we design an update filter that is orthogonal to the predic-

tion filters of its neighboring prediction neighbors. While the resulting update filters

are not orthogonal to all the prediction filters, this solution reduces the impact of the

“worst-case” coherence, because the prediction filters centered in prediction nodes that

8 In higher levels of the transform j > 1, pk at j will be calculated as the product of the weights in the

path between connected nodes at j − 1, as explained in Section 4.1.3.

73

Chapter 3. Lifting Transforms on Graphs

are not neighbors have little or no common support with the given update filter. Other

approaches for update filter design can be found in the literature [55], [56].

3.4.3 Discussion

Note that the predictors defined in (3.50) are very similar to that used for optimizing the

weights of the graph in Section 3.1.2.2, and, therefore, provide a near optimal solution

in the sense of minimizing the detail coefficient energy. The difference between both

cases is that in (3.50) we use the U/P bipartition information. Actually, the graph

weights could be recalculated after the U/P assignment as is discussed in Section 3.1.3,

leading to optimal filters. Nevertheless, it is not worthy because weight values do not

significantly change.

3.5 Summary of the Properties of the Transform

We now focus on analyzing the main features of the proposed N-dimensional directional

transform. Some of these features, such as invertibility (perfect reconstruction) are de-

rived by the lifting-based construction of the transform (i.e., these features are inherent

to the lifting scheme). Other characteristics, such as energy compaction and frequency

and spatio-temporal (original domain) localization, depend on the U/P assignment, the

u and p filters design, and the graph construction.

Next, we outline some properties of the proposed transform:

• Perfect Reconstruction Transform.

Since the transform is based on the lifting scheme, it is guaranteed to be invertible

if the U and P sets are disjoint sets, as it was explained in Chapter 2. Note that

all the U/P assignment methods discussed in this thesis give rise to U/P disjoint

sets.

• Easy generalization to N-dimensional domains.

The transform can be applied to any arbitrary graph. Besides, one can easily re-

flect correlations of N-dimensional signals using the graph representation of data

74

Chapter 3. Lifting Transforms on Graphs

explained in 3.1.1. Therefore, obtaining an N-dimensional transform is straight-

forward, just constructing the graph representation of the N-dimensional signal

and applying the lifting transform on this graph. Furthermore, it gives rise to a

simple process in which the formulation and the conceptual idea do not become

complicated as the dimensionality of the input signal is higher.

• Useful for irregularly spaced sample grids.

The graph representation of data is versatile enough to cope with data sampled in

an irregular grid, which is common to many applications such as WSNs. Then,

given the graph, the transform operates on it in the usual way.

75

Chapter 3. Lifting Transforms on Graphs

• Any feasible filtering direction.

Thanks to the total freedom in the graph construction (i.e., one can link any node

(sample point) to any other node (or set of nodes)), the proposed transform allows

filtering operations in any direction with no restrictions.

• Non-separable filtering operations.

In the graph representation of a signal, one node can have an arbitrary number

of different kinds of neighbors (e.g., spatial and temporal neighbors in a video

representation). Then, the filtering operations are performed using the available

neighbors of every node, giving rise to non-separable filtering operations in which

all types of neighbors are jointly considered (e.g., in a video representation, this

gives rise to spatio-temporal filtering), in contrast to the “separable” way, in which

filtering operations are performed separately in each direction.

• One-dimensional filtering operations.

Independently of the dimensionality of the original signal, once we obtain its

graph representation, the resulting predict and update filtering operations to per-

form the transform are one-dimensional operations (2.1).

• Critically-sampled transform.

Given two U/P disjoint sets, the proposed transform is critically sampled (in-

dependently of the number of levels of decomposition of the transform J) in the

sense that it generates the same number of coefficients than samples of the original

signal, avoiding redundancy in the representation.

3.6 Conclusions

In this chapter we have discussed different strategies for the optimization of lifting trans-

forms on graphs.

First, we have explained the graph construction, which involves the graph represen-

tation of an N-dimensional signal and the graph weighting. The directionality of the

transform is determined by the graph representation as long as the filtering operations

76

Chapter 3. Lifting Transforms on Graphs

are performed through linked nodes. Regarding the graph weighting, we have proposed

two methods: (i) assuming fixed weights; and (ii) optimizing the weights in order to

minimize the quadratic prediction error when using one-hop predictors and considering

F kinds of links with differentiated statistical properties.

In this chapter we have also investigated the U/P assignment process, discussing

two different approaches to find a suitable bipartition of the graph in order to minimize

the detail coefficient energy: (i) based on the given weighted graph and (ii) based on

signal models.

Graph-based U/P assignment methods find bipartitions without making any as-

sumption about the graph signal. In this way, we have proposed a solution which relies

on the next intuition: if weights of the graph represent similarity between nodes (i.e.,

similar luminance value), the WMC maximizes the similarity between U and P node

sets. Signal model-based U/P assignment methods are optimal in the sense that, given

an arbitrary graph and a data generation model, the average detail coefficient energy is

minimized. Three data generation models have been proposed, namely: (i) the NM,

which assumes that the value of each node on the graph is a noisy version of a con-

stant; (ii) the MA model, which considers smooth variations between neighbor nodes;

and (iii), the STM model, that considers different statistical properties for spatial and

temporal neighbors. We have experimentally shown that the WMC is a good method for

coding applications, since it reaches near optimal solutions with less complexity than

signal-model based approaches.

We have also described the update and prediction filter design, which is based on

the weights of the graph. Finally, the main properties of the proposed N-dimensional

transform have been summarized.

77

Chapter 4

Video Coding Application

In this chapter we describe the application of our proposed graph-based lifting trans-

forms to video coding. As discussed in Chapter 1, the key novelty in our approach is

describing the video sequence as a weighted graph of connected pixels and applying the

lifting transform on this graph.

The connections in the graph are constructed in such a way that pixels expected to

have similar luminance tend to be connected. These connections can be temporal or

spatial, and the number of neighbors that one pixel can have in the graph can vary lo-

cally. Therefore, we can have flexibility in designing the corresponding spatio-temporal

filtering operations, which can be selected to follow spatio-temporal directions of high

correlation. To achieve a more accurate prediction, the connection between any pair of

pixels is weighted as a function of estimates of correlation between the pixels.

Our work could be considered as a generalization of wavelet-based video coding. In

particular, our proposal gives rise to a more versatile solution where spatial and temporal

operations are no longer separable. The transform requires that some side information

be sent to the decoder, so that the same graph can be constructed at both encoder and

decoder. Specifically, temporal information (motion vectors) and spatial information

(contours) have to be sent. Most of the work described in this chapter was published

in [43], [44] and [42].

This chapter is organized as follows. In Section 4.1 we present our proposed graph-

based transform for video coding and evaluate its energy compaction ability in compar-

ison with other schemes. Furthermore, we show how the proposed transform can over-

come classical problems that arise in MTCF approaches (e.g., LIMAT), such as their

poor performance in uncovered areas. Once we experimentally prove the efficiency of

our scheme in terms of energy compaction, we move towards a complete encoder in

Section 4.2, describing a new reordering approach to sort the coefficients before they

are entropy coded, and discussing low-complexity versions of the transform. Finally, in

Section 4.3, we present how to apply rate-distortion optimization to our coding scheme.

78

Chapter 4. Video Coding Application

4.1 Graph-Based Transform for Video Coding

The processes needed to perform lifting transform on graphs (graph construction, U/P
assignment, and filter design) were studied in Chapter 3. In this section we give some

details about these processes applied to video coding. Graph construction is defined in

Section 4.1.1, while U/P assignment and filter design are described in Section 4.1.2.

In Section 4.1.3, we discuss how to obtain a MRA of the original signal extending the

transform to J decomposition levels. In Section 4.1.4, we evaluate its performance

in non-linear approximation terms (which allows to estimate the energy compaction

performance of the transform, and does not depend on other typical encoders processes

such as quantization or entropy coding) and compare it with the LIMAT approach [6]

and with a simple DCT based video encoder (which is the basis of the latest video coding

standards). Finally, we compare the performance in uncovered areas of the proposed

scheme and the LIMAT in Section 4.1.5.

4.1.1 Graph Construction

The goal in the construction of the graph at the j-th level of decomposition is to link

pixels with similar luminance values, so that detail coefficients dm,j in (2.1) are very

close to zero. In this manner, the energy of the high pass subband at this level j will be

low, achieving an efficient representation of the data. First, we explain how to form the

graph at the j = 1 level of decomposition from the original video sequence. Then, in

successive levels j > 1, we construct the graph at level j from the graph at level j − 1

as explained in Section 4.1.3.

Consider a video sequence of V frames of size L × H and a subsequence of K

frames (K ≤ V). We will employ a new graph representation for every subset of

K frames, until all the V frames in the sequence are coded. Let {xk}L×H×K
k=1 be the

luminance value of pixels k ∈ O = {1, 2, ..., L×H ×K}, whose graph representation

is G = (O, E) so that any pixel k ∈ O can be linked to any subset of pixels H ⊂
{O\{k}}, following criteria to be described next. Since we exploit the spatial and

temporal correlation jointly, a pixel g can be linked to spatial and temporal neighbors at

the same time.

79

Chapter 4. Video Coding Application

With respect to the spatial correlation, the criterion for graph construction is very

similar to that employed in [5] for image compression. Pixels that are close to each

other and, in general, pixels that belong to the same object, will tend to have correlated

luminance values. In contrast, when filtering across contours, there can be a significant

amount of energy in the high pass subbands, because the value of neighboring pixels

can be very different. Thus, if we avoid filtering across the contours, we are more likely

to obtain a more compact representation of the data. Following this reasoning, we link

those pixels that are one-hop neighbors in any direction and do not cross any contour.

To do that, we need to estimate the contours and send this information to the decoder.

To reduce the resulting overhead, we note that if there are no occlusions and the motion

model captures object motion accurately, it is possible to estimate the contours of the

current frame using contour data obtained from the reference frame along with motion

information. Thus, in practice we only need to explicitly send contour information to

the decoder once every K frames.

Regarding the temporal correlation, we link those pixels that are related by means

of a motion model. In our case, block matching is used, and every pixel belonging to a

block is linked to the corresponding pixel belonging to the best block match in the ref-

erence frame. Motion vectors (MV) need to be sent to the decoder in order to describe

the motion. Finally, note that motion mappings are estimated using the original video

frames, that is, the reference frame is not a reconstruction from a previously encoded

frame as in the latest video coding standards such as H.264/AVC and H.265/HEVC

(High Efficiency Video Coding). An example of graph construction and contour infor-

mation transmission is shown in Figure 4.1 for two frames, where it can be seen that

links between pixels follow the motion direction and avoid crossing contours within a

frame.

4.1.1.1 Graph Weighting

As discussed in Section 3.1.2, the weights of the graph are used in the design of the

U/P assignment process and the p and u filters, and in the construction of the graph

in successive levels of decomposition, thus helping improve prediction at all levels.

Furthermore, this weighting will be useful to reorder the coefficients before they are

arithmetically coded.

80

Chapter 4. Video Coding Application

1

2

t

s

Reference frame
 Current frame

MxN
+1
 MxN
+2

Figure 4.1: Spatio-temporal graph construction. The grey level represents the luminance

value of each pixel; the red-thick dashed lines are the object contours; the green-fine

dashed lines represent temporal connections, and the blue solid lines spatial connections.

Finally, the black dashed lines represent the block size.

As a starting point, fixed weights are used as described in Section 3.1.2.1. Given

that temporal links are identified using ME, the expected correlation between temporal-

linked pixels is higher than that between spatial-linked pixels. In particular, we experi-

mentally set wt = 10 for temporal connections and ws = 2 for spatial connections.

4.1.2 U/P Assignment and Filter Design

We have proposed in Section 3.3 some U/P assignment strategies that minimize detail

coefficient energy under certain data generation models, and we have compared them

to graph-based U/P assignment strategies described in Section 3.2. As we concluded,

using model-based solutions lead to lower detail coefficient energy for a given number

of |P| nodes. Nevertheless, these solutions are more computationally expensive than

MC and WMC because they need more complex greedy algorithms. Another relevant

conclusion extracted from analysis in Section 3.3.4 is that it is very important to include

spatial and temporal information to perform the U/P assignment. Furthermore, we

81

Chapter 4. Video Coding Application

concluded that the WMC solution is a good approximation to the optimal solution under

the assumed spatio-temporal data generation model.

Summarizing, given the lower computational cost and the near-optimal performance

of the WMC, we use it as criterion to assign a label to each pixel in every level of the

transform j, obtaining the Pj and the Uj disjoint sets. To compute the WMC solution we

use the greedy approach described in Algorithm 1. An example of the U/P assignment

for two levels of decomposition is shown in Figure 4.2. Note that the U nodes are usually

connected by means of reliable links to P nodes, so we can obtain an accurate prediction

of these P nodes from the U nodes. Discarded links (same label connected pixels) are

indicated as broken links.

Finally, to obtain the detail coefficient in a prediction pixel i ∈ P , we define the fil-

ters as in Section 3.4.1, thus obtaining robust prediction filters that weight the U neigh-

bor pixels taking into account the reliability of each of their connections to i. The update

u filters are designed as was explained in Section 3.4.2.

4.1.3 Extending the Transform to Multiple Levels of Decomposition

In order to carry out a multiresolution analysis, the low pass coefficients are successively

projected in different transformation levels onto smooth and detail subspaces. To obtain

the graph at transformation level j from the graph at level j − 1, we connect those U
nodes that are directly connected or at two-hop of distance in the graph at level j − 1,

so that the simplified graph continues to capture the correlation between pixels. If the

link exists at level j − 1 then the corresponding link at level j inherits the same weight.

Alternatively, if two nodes are linked that were two hops away at level j − 1 then the

corresponding link weight is the product of the weights in the path between connected

nodes at level j − 1. Once we have constructed the graph at level j, we should split

the nodes again into prediction (Pj) and update (Uj) disjoint sets in order to perform the

transform. Figure 4.2 shows an example of graph construction at level j from a graph at

level j − 1, and the U/P assignment at both transformation levels.

82

Chapter 4. Video Coding Application

Figure 4.2: Graph construction for consecutive levels of decomposition. a = 10, b = 5
and c = 3 are the different weight values. Grey nodes are U nodes, and white ones are

P nodes.

4.1.4 Experimental Results

To evaluate the performance of the proposed transform, we employ the k term non-linear

approximation (outlined in [4]), which consists of keeping the k largest coefficients of

the transform and setting the rest to zero. This is a good indicator of energy compaction

ability of the transform (and thus of the potential coding performance). We compute

the average PSNR of each sequence consisting of V = 100 frames as a function of the

percentage of retained coefficients.

In our experiments, five levels of decomposition of the transform are performed on

the constructed graphs. Our method is compared to the Haar version of the MCTF ap-

proach described in [6] (the LIMAT method), and to a motion-compensated discrete

cosine transform (DCT)-based video coder. In the DCT-based coder, the residual im-

age, obtained after block motion estimation (ME) and compensation processes, is trans-

formed by a 8 × 8 DCT. This scheme is the basis of the latest video coding standards

such as H.264/AVC or H.265/HEVC.

Given that our purpose is to evaluate the compaction ability of the different trans-

forms keeping its k largest coefficients and measuring the quality of the reconstructed

signals, side information is not taken into account in these first results. Nevertheless,

83

Chapter 4. Video Coding Application

note that in the proposed method we will have an overhead associated with the tempo-

ral and spatial information needed to construct the graph at the decoder. Regarding the

temporal overhead, the same motion model is employed in all compared methods, i.e.,

a standard motion vector on 8 × 8 pixel blocks is assumed (only one reference frame),

and thus this overhead does not need to be considered in the comparison. Regarding the

spatial information overhead, we choose K = 20 and assume that a binary contours map

(obtained using Roberts’ gradient operators) is sent to the decoder once every K frames,

so that the spatial side information will be very low, as we will see in the rate-distortion

experimental results provided in Section 4.2.5.

Note that, as discussed in Section 3.1, there exists a trade-off between how accurately

the graph captures correlation information and the side information needed to construct

the graph. A higher rate to describe the spatial and temporal information (e.g., very

small block sizes for motion) means that the correlation between linked pixels is also

better captured by the graph, leading to potential compression gains. The weights used

in these experiments are wt = 10 and ws = 2.

Figure 4.3 shows PSNR as a function of percentage of retained coefficients of three

different QCIF sequences, Mobile, Carphone and Foreman. The proposed method out-

performs the DCT and the LIMAT transforms. In the Mobile sequence, when 40 percent

of coefficients are retained, our method is 7 dB and 4 dB better than the DCT and the

LIMAT, respectively. However, the LIMAT is better than the proposed one when a very

small percentage of coefficients are retained for the Mobile sequence. One possible rea-

son could be that we may have to chosen spatio-temporal filtering directions worse than

the temporal-only ones chosen by the LIMAT.

For subjective evaluation, Figure 4.4 shows the original version of the frame number

12 of the sequence Mobile (upper-left part) and the reconstruction obtained from the

DCT transform applied on the residual (upper-right part), LIMAT (lower-left part), and

the proposed method (lower-right part). The reconstruction is carried out from the 20

% of retained coefficients. It can be seen that our transform achieves significantly better

perceptual quality than the DCT, and slight improvements over LIMAT (see for example

the three animals of the upper-left part of the frames).

84

Chapter 4. Video Coding Application

10 20 30 40
25

30

35

40

45

50

55
N−Term Approximation

Percentage of Coefficients Retained

P
S

N
R

10 20 30 40
36

38

40

42

44

46

48

50

52
N−Term Approximation

Percentage of Coefficients Retained

P
S

N
R

proposed

DCT

LIMAT

Proposed

DCT

LIMAT

Carphone

Mobile

Foreman

Figure 4.3: PSNR versus percentage of retained coefficients.

Table 4.1: Comparison of LIMAT and the proposed transform coding different areas.

PSNR(dB) in Area 1 PSNR(dB) in Area 2

Proposed 43.1 36
LIMAT 42.4 33.3

∆ 0.7 2.7

4.1.5 Performance in Uncovered Areas

To further explain the advantages of the proposed scheme we now consider in more de-

tail situations involving uncovered areas. Figure 4.5 shows the motion mappings used

by the Haar version of the LIMAT approach with two levels of decomposition. Predic-

tion frames (P) will be filtered following the directions indicated by the MV, and update

frames (U) will be updated using inverse mappings MV−1. Grey pixels represent non-

updated pixels in the j − 1 level of decomposition, that is, pixels that have not been

low-pass filtered and thus contain high frequency energy. This high frequency content

will not be removed using the smooth coefficients at j level, giving rise to inefficiency.

The black pixel represents a pixel that has not been decorrelated at any level, so that the

coefficient after both levels of decomposition will be the “raw” original pixel, instead

85

Chapter 4. Video Coding Application

Figure 4.4: Original (upper-left) and reconstruction with 20 % of the transform coeffi-

cients from the DCT applied on the residual image (upper-right), LIMAT (lower-left)

and the proposed method (lower-right).

of a transform coefficient. The proposed method can solve this problem by represent-

ing video information as a graph (Figure 4.1) leading to a versatile U/P assignment,

in which P and U nodes can belong to the same frame. To illustrate this statement,

we have encoded two different 32 × 32 pixel areas of the sequence Foreman. Area 1

starts at pixel (1,1), so that could be considered a fairly static area. Area 2 starts at

pixel (80,80), corresponding to a very dynamic area (the face of the man). The results

in terms of PSNR when the 20 % of the coefficients are preserved are given in Table

4.1. The proposed method obtains slightly better results than LIMAT in Area 1, while

it significantly outperforms LIMAT in Area 2, where there is a lot of motion and the

uncovered background problem manifests itself.

86

Chapter 4. Video Coding Application

Figure 4.5: Uncovered areas in LIMAT.

4.2 Towards a Complete Encoder

So far we have evaluated the performance of the proposed graph-based transform for

video coding, obtaining promising results in non-linear approximation terms. Never-

theless, in practical encoders, coefficients of the transform are reordered, quantized and

entropy coded (together with the side information) thus obtaining a bitstream of specific

rate R.

In this section a complete graph-based transform video encoder is proposed. To this

end, in Section 4.2.1 we present a new reordering technique to be applied in our graph

transform in order to sort the coefficients and thus increase the coding efficiency. Then,

in Section 4.2.2, we obtain the optimal weights as a function of the video content as was

discussed in Section 3.1.2.2, and compare the coding performance when using these

optimal weights and the fixed weights of previous section. Furthermore, in order to

reduce the high complexity of our encoder (especially of the U/P assignment process),

we design two low-complexity versions of this process that work (i) with sub-graphs

formed from the original graph and (ii) in a distributed manner. This is presented in

Section 4.2.4. Finally, rate-distortion results are provided to evaluate the performance

of our coding scheme and compare it with a DCT-based encoder in Section 4.2.5.

87

Chapter 4. Video Coding Application

4.2.1 Coefficient Reordering

In typical practical encoders, quantized transform coefficients are scanned in certain or-

der before applying entropy coding. For example, in DCT-based encoders, the reorder-

ing is usually performed following a zigzag scanning order within each block, while

in wavelet-based approaches, bitplane by bitplane scanning of transform coefficients

has been a popular approach [57], [58]. We next propose two different approaches to

re-order the coefficients generated by our graph-based transform: (i) inter-subband re-

ordering, which implies sorting the coefficients as a function of the subband to which

they belong; and (ii) intra-subband reordering, which sorts the coefficients of a subband

as a function of the reliability with which they were predicted.

4.2.1.1 Inter-subband reordering

Because our transform achieves significant energy compaction, the energy in the middle-

high frequency subbands tends to be very low, so that these sub-bands likely have

a large number of zero coefficients after quantization. Based on this, we group co-

efficients that belong to the same subband, increasing the probability of having long

strings of zero coefficients. Specifically, the coefficients are sorted as coeffsinter =
[
sj=J ,dj=J ,dj=J−1, . . . ,dj=1

]
, where sj=J are the smooth coefficients at level of de-

composition j = J (the lower frequency subband), and dj are the detail coefficients at

a generic level of decomposition j. Refer to Figure 4.6 for an example of the effect of

ordering on quantized coefficients from 20 frames of the sequence Carphone.

4.2.1.2 Intra-subband reordering

The graph is known at both encoder and decoder. Its edge weights provide an esti-

mate of the reliability with which one P node is predicted from U neighbors. We

make the assumption that the magnitude of detail coefficients in P nodes tend to be

smaller if they have been predicted from more “reliable” U neighbors (i.e., predic-

tion is better). Thus, we propose to reorder the coefficients in each subband according

to the reliability of their links, grouping together the more reliably predicted nodes,

which likely lead to smaller magnitude detail coefficients. An example of this re-

ordering is shown in Figure 4.7. In the example, the detail coefficients (white nodes)

of a generic subband j, dj = [1, 2, 3, 5, 6, 7], have the following reliability values,

88

Chapter 4. Video Coding Application

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
5

−50

0

50

Coefficient number

C
o
e
ff
ic

ie
n
t
v
a
lu

e

Coefficients evolution

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
5

−50

0

50

Coefficient number

C
o
e
ff
ic

ie
n
t
v
a
lu

e

Coefficients evoution with inter−band reordering

Figure 4.6: Inter-subband reordering example. Top: original coefficients. Bottom: re-

ordered coefficients.

Table 4.2: Performance comparison using inter-subband and intra-subband reordering.

Without Inter Inter and Intra

reordering reordering reordering

Foreman 503 Kbps 404 Kbps 350 Kbps

Carphone 502 Kbps 425 Kbps 371 Kbps

rj = [a, 2a, a, 3a/2, (a + b)/2, 3b/3], respectively, calculated as the average of the

weights of all graph edges used to compute that coefficient. Assuming that a > b, this

gives rise to the following intra-subband reordered coefficients: d
j
intra = [7, 6, 1, 3, 5, 2].

Figure 4.8 shows a real example of the detail coefficients at decomposition level j = 4

in the sequence Carphone. The upper part of the figure shows the quantized coeffi-

cients vector without reordering, and the lower part shows the coefficients after the

intra-subband reordering.

Table 4.2 shows bit rates (Kbps) after coding 20 frames of the sequences Foreman

and Carphone at different qualities (32.9 dB and 36 dB, respectively) without reordering

the coefficients, employing inter-reordering, and inter and intra reordering. The rate is

obtained with an arithmetic coder as is explained in Section 4.2.5.

89

Chapter 4. Video Coding Application

Figure 4.7: Intra-subband reordering example.

0 0.5 1 1.5 2 2.5

x 10
4

−10

−5

0

5

10

15

Coefficient number

c
o

e
ff

ic
ie

n
t

v
a

lu
e

Coefficient evolution (Predict coefficients at level J=4)

0 0.5 1 1.5 2 2.5

x 10
4

−10

−5

0

5

10

15

Coefficient number

C
o

e
ff

ic
ie

n
t

v
a

lu
e

Coefficient evolution after Intra−bannd reordering

Figure 4.8: Intra-subband reordering. Predict coefficients at decomposition level j=4.

4.2.2 Optimal Weighting Vs. Fixed Weighting

In the first approximation to the application of the transform to video coding (Section

4.1) the weights on the graph were experimentally fixed, with values wt = 10 and

ws = 2 for temporal and spatial links, respectively. In this section we compare the

detail coefficient energy obtained using these fixed weights and the optimal weights

(calculated as discussed in Section 3.1.2.2). To perform the prediction stage of the

transform, we use the prediction filters defined in Section 3.4.1.

90

Chapter 4. Video Coding Application

Table 4.3: Comparison between different weightings. Detail coefficient energy per co-

efficient in j = 1: Edj=1
.

Carphone Mobile Airshow Football

(scene cut) (fast motion)

Eav-meas,j=1 w = (ws, wt) = [2, 10] 14 44 34 408
Eav-meas,j=1 w∗ 12 37 17 240

Table 4.3 shows examples of detail coefficient energy normalized by the number of

P nodes in the first level of the transform j = 1
(

Eav-meas, j=1 = 1
|Pj=1|

∑|Pj=1|
m∈Pj=1

d2
m,j=1

)

obtained coding 20 frames using the optimal weights (calculated in a frame-by-frame

basis) and using the fixed weights. Note that Eav-meas, j=1 is lower when the optimal

weights are used for all the considered cases.

Figure 4.9 shows the detail coefficient values obtained using the optimal weights

(right part of each subfigure) and the fixed weights (left part of each subfigure). The

example corresponds to a region of a specific frame of Airshow (scene cut) and Football

(fast motion). It can be seen that the absolute value of the detail coefficients is lower

when using the optimal weights. Specifically, in the scene cut of Airshow, we have

(w∗
s , w

∗
t) = (0.7, 0.3) , and thus the filtering mainly follows the spatial directions, giv-

ing rise to better predictions and lower detail coefficients energy. The evolution of the

(w∗
s , w

∗
t) values is shown in Figure 4.10. Observe that, in Airshow, w∗

t is close to one

(actually Airshow is a very static sequence) except in the scene cuts (frames number 6

and 16), where w∗
s becomes larger. Also note that pixels in the first frame do not have

any temporal forward neighbors, and therefore w∗
s = 1 and w∗

t = 0.

(a) Airshow (b) Football

Figure 4.9: Detail coefficient values. Darker colors indicate higher negative coefficient

values, while brighter colors mean higher positive coefficient values. Grey indicates

coefficients close to zero.

91

Chapter 4. Video Coding Application

1 3 5 7 9 11 13 15 17 19 21

0

0.2

0.4

0.6

0.8

1

Frame number

w
∗

va
lu

e

w∗
s

w∗
t

(a) Airshow

1 3 5 7 9 11 13 15 17 19
0

0.2

0.4

0.6

0.8

1

Frame number
w

∗
va

lu
e

w∗
s

w∗
t

(b) Football

Figure 4.10: w∗ evolution.

Figure 4.11: Encoder and decoder data flow.

4.2.3 Encoder and Decoder Data Flow

Figure 4.11 shows the encoder and the decoder data flow, assuming that the optimal

weighting is selected to weight the graph.

First, ME and contour detection processes are performed, obtaining the MVs and

contour map that are needed to construct the graph at level of decomposition j = 1

(Section 4.1.1). Once we have the graph, the encoder calculates the link weights, w∗. At

this point, the encoder performs the Uj=1/Pj=1 assignment process solving the WMC

problem. Next, the weighted graphs at levels j > 1 are obtained as is explained in

92

Chapter 4. Video Coding Application

Section 4.1.3, and the Uj>1/Pj>1 assignments are made. Once we have the graphs and

U/P assignments for all levels of decomposition, the encoder performs the transform,

quantizes the coefficients, and reorders them (Section 4.2.1). Finally, an entropy coder

is used to generate the definitive bitstream.

Note that, as it can be seen in Figure 4.11, the weight values are needed to perform

the U/P assignment, the filtering operations of the transform, and the reordering of the

coefficients. Also note that, since the motion vectors, the contour map, and the weights

are sent to the decoder, the process performed at the encoder is known at the decoder so

that the system is invertible.

4.2.4 Low Complexity Approach

Low complexity is an important feature of practical encoders, especially for real-time

applications. Therefore, there are many works that propose low-complexity approaches

for video coders which aims to reduce the operations to be performed in the encoder

without deteriorate the coding performance. Some examples in the context of the stan-

dard H.264/AVC have been proposed by the author in [59], [60], [61], [62], [63] or [64].

Next, we explain two different approaches to reduce the computational cost of the

proposed transform. Specifically, we focus on the U/P assignment process, which is

the most time demanding subsystem of the encoder.

4.2.4.1 Low complexity Transform Using Subgraphs

The complexity of the graph-partition process (U/P assignment) increases rapidly with

the number of nodes N . In particular, the worse-case time complexity for the greedy

WMC assignment algorithm used in our encoder is O (N3 · logN) [47]. Therefore, it

becomes the most complex process of the proposed encoder. Besides, another problem

with operating in the whole graph is memory and delay. We now present a transform

that operates on subgraphs of the original graph in order to reduce overall complexity

with negligible loss of performance.

The goal is to divide the original graph node set V of size L×H×K (where L×H

is the frame size and K the number of frames considered in the graph construction)

in I subsets Ai, so that in any of the subgraphs formed with the nodes of each subset

93

Chapter 4. Video Coding Application

Si (Ai, Ei) we can obtain a transform that is invertible and critically sampled, which

takes into account the interactions between the nodes of different subgraphs. Critical

sampling in this context means that the number of transform coefficients generated over

all sub-graphs is the same as the original number of pixels. A necessary condition to

achieve these objectives will be that the Ai node subsets have to be disjoint.

The proposed solution creates subgraphs based on disjoint subsets that contain linked

pixels in K temporal hops , thus keeping the more reliable links of the subgraph in any

level of the transform (under the assumption that temporal links are more reliable than

spatial ones).

To do that, we divide each frame into blocks of size P × Q. Then, we perform the

motion estimation for each of these blocks in the K frames. With this information, a

tree is generated in which the children of a given block a are the blocks of the reference

frame that are linked to a by means of the motion model. Finally, each subgraph is

composed of the pixels that belong to the blocks that are linked along the K frames.

This is achieved using Algorithm 5, which given an initial set of n groups Gi, each

composed by a block a and its children, constructs the subgraphs by joining groups that

have common elements, and deleting those groups that have already been aggregated

into a subgraph. An example of the subgraph construction is shown in Figure 4.12.

Algorithm 5 Subgraph Formation

Require: n Groups Gi

1: while Flag 6= 0 do

2: Set Flag = 0
3: for i = 1 to n do

4: if Gi 6= deleted then

5: for j = i + 1 to n do

6: if (Gj 6= deleted) and (Gi ∩Gj 6= φ) then

7: Set Flag = 1
8: Set Gi = Gi ∪Gj

9: Delete Gj

10: end if

11: end for

12: end if

13: end for

14: end while

15: return Gi and Index Vector of Non-deleted Groups

94

Chapter 4. Video Coding Application

Figure 4.12: Subgraph construction from 4 frames. Top: motion dependency tree. Bot-

tom: two subgraphs are formed corresponding to dark and light grey block pixels, re-

spectively.

Table 4.4 provides experimental results for 20 frames of three QCIF sequences (Mo-

bile, Foreman and Carphone). The table shows the number of subgraphs formed and

the corresponding complexity reduction (CR), calculated as the ratio of encoding times

when using the subgraphs and the original graph. It can be seen that the complexity

reduction can be significant. Nevertheless, one drawback of this approach is that the

final complexity depends on the motion content of the video sequence (faster motion se-

quences tend to lead to larger subgraphs). There are several approaches to mitigate this

problem. For example, motion vectors could be constrained (e.g., motion vectors would

have to point to co-located slices in previous frame). Alternatively, links between nodes

in the bigger subgraphs could be removed leading to new smaller disjoint subgraphs un-

til a required complexity restriction is achieved, or the maximum number of blocks that

a subgraph can have in Algorithm 5 could be limited. Any of these approaches would

lead to a simpler transform but would have an impact on performance.

95

Chapter 4. Video Coding Application

Table 4.4: Subgraph approach performance.

Number of Subgraphs CR

Mobile 82 48
Foreman 14 4
Carphone 1 1

4.2.4.2 Distributed U/P assignment

We now propose an approach for performing the U/P assignment that works in a dis-

tributed manner, leading to a computational complexity almost independent of the video

content. This method reduces the complexity of the WMC greedy algorithm used, from

the O (N3 · log N) worse-case complexity of [47], to O
(

N
B

B3 · log B
)
, where B is the

block size used in the algorithm. Note that for a fixed B, the complexity increases

linearly with N in the distributed approach.

The idea consists in calculating the WMC solution in blocks of size B, making

local U/P decisions, and transferring this information to neighboring blocks. This is

achieved by operating with overlapping blocks. Note that there exists a complexity-

precision trade-off in the selection of B. The larger the block size B, the more complex

and accurate the solution.

The proposed greedy solution is described in Algorithm 6, where Uj and Pj form

a bipartition of the node set Uj−1, Fi and Gi form a bipartition of Bi, and we consider

Gain of a node to be the sum of weights of all its incident edges. The algorithm requires

NB blocks of size B so that
⋃Bi
i∈NB

= V , covering all the nodes of the graph. Every block

must “see” the decisions taken in neighboring blocks, which in the algorithm means

that Bi ∩ Bj 6= ∅, where i is the block to be processed and j is each one of the already

processed neighboring blocks. The intersection is the information that they share, and

must include the nodes in Bj that have edges that go from block j to block i. Figure

4.13 illustrates two iterations of the algorithm. In the first iteration (left part of the

figure), a local WMC solution is found in block B1. Then, in the second iteration, block

B2 includes the nodes of B1 that have edges that go from B1 to B2 (boundary nodes).

Therefore, the local WMC in B2 is influenced by the already known colors (labels) of

these boundary nodes, which means that the solution for block B1 affects the solution

96

Chapter 4. Video Coding Application

for block B2. With this simple approach we get the speed-up benefits of operating with

blocks, while guaranteeing a consistent solution across blocks.

Algorithm 6 Distributed Weighted Maximum-Cut Algorithm

Require: Uj = {∅}, Pj = {Uj−1}, NB blocks of size B
1: for i = 1 to NB do

2: Fi = {∅} and Gi = Bi

3: Fi ← Bi ∩ Uj and Gi ← Gi\Fi

4: Change the sign of the incident edge weights to every node f ⊂ Fi

5: Calculate the Gain of the nodes ⊂ Bi

6: Select the node a with largest Gain, a = max(Gain)
7: while Gain > 0 do

8: Let Fi ← Fi ∪ {a}
9: Let Gi ← Gi\ {a}

10: Change the sign of the incident edge weights to node a
11: Update Gains of adjacent nodes

12: Select the node a with largest Gain, a = max(Gain)
13: end while

14: Uj ← Uj ∪ Fi

15: Pj ← Pj\Fi

16: end for

17: return Uj and Pj

Figure 4.13: Distributed WMC.

The experimental results for the complexity reduction (CR), calculated as the ratio

of encoding times when coding 20 frames using the centralized and the distributed ap-

proaches (CR = timecent

timedist
), show the efficiency of the proposed method. Using a block

size of B = 512, we experimentally obtain CR = 228 in Carphone, CR = 203 in

Mobile and CR = 197 in Container, keeping the cut of the graph and the number of U

97

Chapter 4. Video Coding Application

and P nodes selected very similar to those chosen in the centralized approach, and thus

causing a negligible loss in performance.

4.2.5 Experimental Results

To evaluate the coding performance of the proposed encoder, we compare it with a

motion-compensated DCT video encoder in terms of rate-distortion for different test

sequences. The coefficients are quantized using a uniform dead-zone quantizer in the

DCT, and a subband dependent quantization in our encoder (i.e., the quantization step

is lower in low frequency subbands and vice versa). These quantized coefficients are

scanned as explained in Section 4.2.1 in our proposed method, and in the traditional

zigzag scanning order in the DCT-based encoder. Note that this process is performed

in scanning units of size S. Then, run-length encoding (RLE) is performed in both

encoders, obtaining the symbols to be entropy coded. An end-of-block special symbol

is used to indicate that all remaining coefficients in the scanning unit are quantized to

zero. Finally, the bitstream is obtained coding the symbols using an adaptive arithmetic

coder.

Regarding the side information, motion vectors are differentially encoded with re-

spect to a predicted motion vector obtained from adjacent blocks. Then, a variable

length code (VLC) is used to code the difference motion vector. Note that the motion

vectors to transmit will be different in the proposed and in the DCT based encoders,

since the matching is carried out in original frames in the former and in reconstructed

reference frames in the latter. Nevertheless, the rate turns out to be similar in both cases.

The proposed encoder has an extra overhead because it should send the contour infor-

mation to the decoder once every K frames and the optimal weight values every frame,

since they are calculated as in Section 4.2.2. Contour maps are encoded using JBIG,

obtaining negligible rates of around 10 Kbps, and weights are coded using 9 bits per

weight, giving rise to insignificant rates.

In the experiments, K = 20, S = 256, and five levels of decomposition of the

proposed transform are performed. Block sizes of 16× 16 and one reference frame are

assumed in the motion estimation process. In the DCT encoder, we use 8 × 8 DCT.

Finally, the block size used in the low cost approach is set to B = 512.

98

Chapter 4. Video Coding Application

Figure 4.14 shows the rate-distortion curves for four different QCIF sequences, Mo-

bile, Carphone, Flower and Container. In general, the proposed method outperforms

the DCT-based approach. In Mobile sequence, our method is 4 dB better than the DCT

in medium to high qualities. The gain is also significant in the rest of sequences (around

1-1.5 dB in Carphone, an 2 dB in Container and Flower). However, the efficiency of

the encoder at low qualities gets worse, losing against the DCT based encoder in Car-

phone for qualities lower than 32 dB. The results are in agreement with the non-linear

approximation results presented in Section 4.1.4.

99

Chapter 4. Video Coding Application

100 200 300 400 500 600
28

30

32

34

36

38

40

42

Bit rate (Kbps)

P
S

N
R

 (
d
B

)

DCT based

Proposed

Container

Carphone

(a) Container (QCIF) and Carphone (QCIF)

200 400 600 800 1000 1200 1400
22

24

26

28

30

32

34

36

38

Bit rate (Kbps)

P
S

N
R

 (
d

B
)

DCT based

Proposed

Flower

Mobile

(b) Flower (QCIF) and Mobile (QCIF)

Figure 4.14: PSNR versus bit rate.

100

Chapter 4. Video Coding Application

4.3 Rate-Distortion Graph Optimization

In Chapter 3 we discussed some optimal U/P assignment strategies which minimize

the detail coefficient energy under specific data generation models, and for a given

number of P nodes (|P|). Therefore, these models do not provide the optimal |P|,
which actually depends on the application.

In a typical coding application, the encoder performs rate-distortion optimization

(RDO) to find the coding parameters that minimize the distortion under a rate con-

straint. Thus, for our proposed coding scheme, |P| (and some others parameters) should

be chosen by solving the RDO. As a first approximation, one can assume that, as |P|
increases, the distortion (D) increases (because worse predictions are obtained, as is

shown in the experimental results of Section 3.2) and the rate (R) decreases (because

detail coefficients need lower number of bits to be represented).

In this section we study how to apply RDO to our proposed graph-based video en-

coder. We first formulate the original RDO problem in Section 4.3.1, turning it to an

unconstrained problem as in [65]. Then, in Sections 4.3.2 and 4.3.3 we provide, respec-

tively, D and R models that depend on the U/P assignment (which implicitly deter-

mines |P|), and the quantization step ∆ of smooth coefficients for decomposition level

j = 1. Although some simplifying assumptions are needed to construct the models,

they give useful intuition into how to apply RDO to predict node selection. In Section

4.3.4 we use the proposed R and D models to obtain analytically the λ parameter that

balances the weight of the R and D terms in the unconstrained RDO problem. We pro-

vide a formula that relates λ and ∆, remaining only one parameter in the optimization

process, which is described in Section 4.3.5.

It should be noted that the goal of this section is just to give some intuitions and

illustrate how the RDO process could be done, so that we make some assumptions and

simplifications explained in Section 4.3.1. Finally, in Section 4.3.6, we discuss how

these simplifications affect the RDO, and the way it could be extended in order to obtain

a more realistic process.

101

Chapter 4. Video Coding Application

4.3.1 Rate-Distortion Optimization Problem for Lifting Transforms

on Graphs

In this section we formulate the RDO problem in general sense for the lifting transform

on graphs. Usually, a video encoder performs the RDO aiming to find the coding option

that minimizes a D measure subject to a given R restriction.

Let θ be a combination of the different coding options:

θ = {∆s,MV s, contour map,Uj/Pj,wj} , (4.1)

where ∆s is the quantization step vector used to quantize each subband of the lifting

representation given in (2.2)(i.e., ∆s =
[
∆dj=1

. . . ∆dJ
∆sJ

]
), Uj/Pj is the Uj/Pj as-

signment for each level of the transform j, and wj represents the weights of the links on

the graph for each level j.

Thus, the problem can be formulated as:

Problem 4.1. RDO Problem Formulation.

min
θ

{D(θ)} subject to R(θ) ≤ Rc, (4.2)

where D(θ) represents the D between the original and the reconstructed coding

unit; R(θ) is the R needed to encode it (the number of bits needed to encode headers,

side information -MVs, contour map, weight and ∆ values, ...- and transform coeffi-

cients); and Rc the maximum R allowed (the R constraint).

Using a Lagrange formulation, this constrained optimization problem can be con-

verted into an unconstrained problem [65], [66], [67]:

min
θ

{J(θ)}
with J(θ) = D(θ) + λR(θ), (4.3)

where λ is the Lagrange multiplier that weights the relative importance between D(θ)

and R(θ). A given value of λ yields a solution θ
∗(λ) that is also an optimal solution to

102

Chapter 4. Video Coding Application

the original RDO problem (4.2) for a particular value of Rc = R(θ∗). Therefore, given

a Rc, one should find the λ multiplier so that R(θ∗(λ)) = Rc.

To solve Problem 4.1, we make some assumptions and simplifications, namely: (i)

we only optimize the first level of the transform, j = 1; (ii) we employ two quantizers

related by ∆dj=1
= 2∆sj=1

; (iii) we do not take into account the side information in

the optimization process; and (iv) we obtain the optimal weights wj=1 as explained in

Section 3.1.2.2.

Given that we just optimize the first level of the transform, hereafter, for simplicity,

we omit the subindex j = 1, so that ∆ refers to ∆sj=1
(and ∆dj=1

= 2∆), and U/P
refers to Uj=1/Pj=1.

Under these assumptions and simplifications, Problem 4.1 can be written, using the

Lagrange formulation, as:

Problem 4.2. RDO Problem Formulation with Simplifications.

min
U/P,∆

J(U/P , ∆) = min
U/P,∆

{D(U/P , ∆) + λR(U/P , ∆)} . (4.4)

Note that optimizing the U/P assignment we are optimizing the |P|. Other param-

eters could be easily considered in the problem formulation, as the side information of

the MVs and the contour map.

Next, we present D(U/P , ∆) and R(U/P , ∆) models and we derive the λ multiplier

as a function of ∆, so that both parameters are tied together. This way, given a ∆ value

and a sequence, one can solve Problem (4.2) by finding the U/P that minimizes J .

4.3.2 Distortion Model

In this section we propose a D model for lifting transforms on graphs, under the as-

sumptions given in previous section. The distortion of the lifting transform on the graph

can be expressed as:

D (U/P , ∆) =
∑

u∈U

(xu − x̃u)
2 +

∑

p∈P

(xp − x̃p)
2 , (4.5)

103

Chapter 4. Video Coding Application

where x̃k represents the k-th reconstructed pixel after quantization and inverse transfor-

mation. Assuming that the transform does not perform the update stage and that the dp

coefficients are orthogonal to its su neighbors, D can be written as:

D (U/P , ∆) ≈
∑

u∈U

(su − s̃u)
2 +

∑

p∈P




∑

u∈Np∩U

p (su − s̃u)





2

+
∑

p∈P

(

dp − d̃p

)2

, (4.6)

where Np is the set of one-hop neighbors of node p ∈ P , mp is the number of one-hop

U neighbors of node p, and p is the prediction filter used.

Now, considering that (su − s̃u) is the same value for every u ∈ Np∩U , and assum-

ing high-resolution quantization [68] of the su coefficients and the dp non-zero quantized

coefficients, we get

D (U/P , ∆) ≈ ∆2

12
N +

∑

pnz∈P

(

dp − d̃p

)2

+
∑

pz∈P

(dp)
2

≈ ∆2

12
N +

(2∆)2

12
|Pnz|+ D0, (4.7)

where pz (resp. pnz) are the p ∈ P nodes in which the corresponding dp coefficients are

quantized to zero (resp. are not quantized to zero), |Pz| (resp. |Pnz|) is the number of de-

tail coefficients quantized to zero (resp. not quantized to zero), and D0 =
∑|Pz |

pz∈P
(dp)

2
.

Note that D depends on the U/P assignment through |Pnz| and D0. From (4.7) we can

conclude that, in general, increasing the number of U nodes would imply decreasing

|Pnz| and D0, and thus D.

Figure 4.15 shows some examples of actual PSNR values and PSNR estimated using

(4.7) for the SC solution with minimum |U| (SC|U|) and with minimum |P| (SC|P|). In

the experimental results, we use three fragments of specific areas of the video sequences

Carphone, Mobile and Container, and the video encoder described in Section 4.2, but

working just in the first level of the transform.

Some observations can be made from the analysis of Figure 4.15:

104

Chapter 4. Video Coding Application

10 20 30 40
26

28

30

32

34

36

38

40

∆

P
S
N

R

PSNRSCU

PSNRSCU
estimated

PSNRSCP

PSNRSCP
estimated

(a) Carphone

10 20 30 40
25

30

35

40

∆

P
S
N

R

PSNRSCU

PSNRSCU
estimated

PSNRSCP

PSNRSCP
estimated

(b) Mobile

10 20 30 40
26

28

30

32

34

36

38

40

∆

P
S
N

R

PSNRSCU

PSNRSCU
estimated

PSNRSCP

PSNRSCP
estimated

(c) Container

Figure 4.15: PSNR estimation for different sequences.

• As it was to be expected, the SC|P| achieves higher PSNR values than the SC|U|

in all the examples.

• The PSNR estimation is reasonably good for Carphone and Container (around

-0.4 dB on average), and slightly worse for Mobile (-0.7 dB).

• Carphone and Container are examples of sequences with homogeneous and sta-

tionary areas, where a P node does not need too many U neighbors to be accu-

rately predicted. Therefore, the PSNR obtained for the SC|U| and SC|P| solutions

is similar. On the contrary, in Mobile, a video fragment with complex texture,

SC|P| significantly outperforms the SC|U| solution.

4.3.3 Rate Model

Next, we propose a rate model for lifting transforms on graphs for video coding, under

the assumptions given in Section 4.3.1. This model estimates R obtained when em-

ploying the RLE and arithmetic coders used in Section 4.2.5. We consider a parametric

logarithmic model:

R (U/P , ∆) = m ln(∆) + G(M), (4.8)

105

Chapter 4. Video Coding Application

where m is a sequence-dependent negative constant that indicates the decay velocity of

R with ∆ (the higher |m|, the faster the decay); M is the number of non-zero quantized

coefficients; and G(M) is an unknown function1 that increases with M .

It is important to highlight that we will employ the R model to derive λ as a function

of ∆. Therefore, we focus on the dependence of R with ∆, and not in obtaining an

accurate expression for G(M).

Firstly, G(M) depends on ∆ through M , because as ∆ decreases, M should in-

crease. Nevertheless, one can prove that, given that ∆dj=1
= 2∆sj=1

, in general, |Pnz| is
low2 and thus M ≈ |U| for any ∆. This implies that R increases with the number of

U nodes, and depends on ∆ just through m ln(∆). Let us analyze this observation.

To obtain R, we employ a RLE over the quantized coefficients, and then the resulting

symbols are arithmetically coded. Therefore, R depends on the number of symbols to

be encoded and their entropy. For a given U/P assignment (i.e., |U|), the RLE leads

to a similar number of symbols for every ∆. Nevertheless, R decreases as ∆ increases

because the variance (and thus the entropy) of the symbols decreases as ∆ increases,

and therefore they are arithmetically coded more efficiently. Now, we fix the ∆ value.

In this case, R increases with |U| because as |U| increases, the number of long strings of

zeros decreases, and the RLE gives rise to a higher number of symbols to be encoded.

Figure 4.16 shows R(∆) obtained with three different U/P assignments (namely:

WMC, SCU , and SCP) and our estimated R for the WMC case (i.e., for the WMC,

we consider the model R = m ln(∆) + K, and estimate the parameters m and K by

regression using the Least Squares method). The experiments have been made using

three fragments extracted from QCIF sequences Carphone, Mobile and Container, and

employing the entropy coding of Section 4.2.

Some conclusions can be extracted from Figure 4.16:

• The model accurately fits the WMC solution.

1 G(M) could be modeled as G(M) = Mc + d, with c and d constants that depend on the sequence.

In this way, R would increase linearly with M [69].

2 This assumption is analyzed in Section 4.3.6.

106

Chapter 4. Video Coding Application

10 20 30 40
1

2

3

4

5

6
x 10

4

R

∆

WMC

Estimated

SCU

SCP

(a) Carphone

10 15 20 25 30 35 40
1.5

2

2.5

3

3.5

4

4.5

5

5.5

6
x 10

4

∆

R

WMC

Estimated

SCU

SCP

(b) Mobile

10 15 20 25 30 35 40
1.5

2

2.5

3

3.5

4

4.5

5
x 10

4

∆

R

WMC

Estimated

SCU

SCP

(c) Container

Figure 4.16: Rate estimation for different sequences.

• As expected, R increases with |U|. Therefore, the lowest R values in all the

sequences are obtained for the SCU solution, which minimizes the number of U
nodes.

• For a given video, all curves are almost parallel, and thus R depends on ∆ mostly

through m ln(∆) and with only a small dependence in terms of G(U). Therefore,

the factor G(U) just displaces the curve as a function of |U|. This is especially

true for the WMC and SCU solutions.

• To estimate the rate at any |U|, one should displace the estimation of WMC a

factor indicated by G(U) (e.g., an estimation for the R of the SCU could be made

by subtracting a constant value to the estimation of the WMC).

• In Carphone, the R of the SCU is considerably lower than the R of the SCP ,

contrary to what occurs in Mobile. This is because the SCU and the SCP solu-

tions are distant in Carphone (i.e., they lead to ratios of |USCU
|/N = 0.26 and

|USCP
|/N = 0.73, respectively), and closer in Mobile (|USCU

|/N = 0.36 and

|USCP
|/N = 0.64). These differences are due to the different graph topologies.

Finally, note that in a practical implementation of this rate model, its parameters

should be estimated on the fly.

107

Chapter 4. Video Coding Application

4.3.4 Lambda Calculation

In this section we derive the λ parameter that balances the weight of the R and D terms

in the minimization Problem 4.2 as a function of the ∆ used in the coding process.

Minimizing J as a function of ∆, we get:

min
∆

J =⇒ ∂J

∂∆
=

∂(D + λR)

∂∆
= 0. (4.9)

From (4.9), the λ parameter can be calculated as:

∂D

∂∆
= −λ

∂R

∂∆
. (4.10)

Given that ∆dj=1
= 2∆sj=1

, |Pnz| is generally small and thus |Pnz| << N , M ≈ |U|,
and |Pz| ≈ |P| for any ∆. Therefore, for a fixed |P|, we can assume that D0 does not

depend on ∆. Differentiating in (4.10) we obtain:

λ = −(2∆N)/12

m/∆
=
−N

6m
∆2. (4.11)

This relation gives the Lagrange multiplier λ as a function of ∆ and the negative param-

eter m, which depends on the sequence. Specifically, λ decreases when |m| increases.

Let us analyze this behaviour.

Lower |m| values imply lower decay of R with ∆, and thus faster decay of D with

R. λ can be interpreted as the slope of the line tangent to the operational D(R) convex

hull at the point R(λ) = Rc [66]. Therefore, to reach an specific R-D trade-off, the

optimal λ should be higher as |m| is lower, as indicated in (4.11). Figure 4.17 shows an

example to graphically illustrate this fact. Note that λ (Slope 1) is higher in Container,

which has a low |m|, than in Mobile (Slope 2), in which |m| is large, for the same ∆

value. Finally, note that λ is proportional to ∆2, which is a reasonable result as is shown

in [70].

108

Chapter 4. Video Coding Application

2 2.5 3 3.5 4 4.5 5 5.5

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5
x 10

6

R

D

Container

Mobile

Slope 2

Slope 1

R(λ1) R(λ2)

Figure 4.17: Relation between λ and the parameter m of the sequence.

4.3.5 Optimization Process

In this section we explain how the RDO can be performed using the results and as-

sumptions discussed previously. Furthermore, we provide a greedy algorithm to solve

the simplified RDO Problem 4.2 and give an experimental evaluation that shows the

benefits of RDO.

In the simplified problem, the parameters to be optimized are θ = (U/P , ∆). Note

that letting λ vary we are guaranteed to minimize D for a fixed Rc = R(θ∗(λ)). Equa-

tion (4.11) relates analytically λ and the optimal ∆. Therefore, we assume a given ∆

value (which fixes λ), and search the U/P assignment on the graph that minimizes J

in Problem 4.2, obtaining the optimal parameters θ
∗ = ((U/P)∗, ∆∗) which solve the

problem for Rc = R(θ∗(λ)).

Using the models of (4.8), (4.7), and (4.11) in Problem 4.2 we can write:

min
U/P

J ≈ min
U/P

{

∆2

12
N +

(2∆)2

12
|Pnz|+ D0

− N

6m
∆2 (m ln(∆) + G(M)) } . (4.12)

109

Chapter 4. Video Coding Application

Minimizing (4.12) is equivalent to finding the U/P assignment that minimizes D

for a given number of M nonzero quantized coefficients. Assuming that |Pnz| is low

(i.e., M ≈ |U|), the minimization of (4.12) given |U| is achieved by finding the U/P
assignment that minimizes D0 (because the rest of the terms do not depend on the U/P
assignment), that is, finding small dp amplitude coefficients. Note that, considering one

of the pixel generation models of Section 3.2, this is equivalent to solving Problem 3.3.1,

which can be done using one of the greedy algorithms proposed in that section.

To solve Problem 4.2 given a ∆ value and a sequence, one could start by searching

the SCU solution and calculating the cost J = D + λR using real D and R data for

that U/P assignment. Then, in each iteration, a P node should be “converted” to U
following criteria given in algorithms of Section 3.2, thus minimizing the D0 for that

specific |U|. Finally, the optimal U/P assignment would be the one that minimizes J .

The greedy approach of Algorithm 7 performs this process.

Algorithm 7 RDO process.

Require: ∆
1: Find the set-covering solution with minimum |U|, SCU

2: Estimate parameter m
3: Calculate λ
4: Calculate the cost J((U/P)SCU

) = D((U/P)SCU
) + λR((U/P)SCU

)
5: Jopt = J
6: (U/P)∗ = (U/P)SCU

7: for ∀i ∈ I do

8: Convert in U the node P that solves Problem 3.3.1

9: Calculate the cost J((U/P)i) = D((U/P)i) + λR((U/P)i)
10: if J < Jopt then

11: Jopt = J
12: (U/P)∗ = (U/P)i

13: end if

14: end for

15: return (U/P)∗

Note that the algorithm should calculate the “real” D and R values for each U/P
assignment, so that it is not practical for a real implementation. In Section 4.3.6 we

discuss how to perform the RDO process in a block-by-block basis, which considerably

would reduce the complexity.

110

Chapter 4. Video Coding Application

Table 4.5: Proportion of U nodes selected by the RDO.

WMC ∆ = 10 ∆ = 20 ∆ = 30 ∆ = 40
Carphone 0.44 0.30 0.43 0.43 0.44

Mobile 0.42 0.35 0.41 0.42 0.42
Container 0.46 0.46 0.24 0.36 0.36

Figure 4.18 shows some R-D experimental results obtained for three specific areas

and fragments of QCIF sequences, Carphone, Mobile and Container, using the encoder

described in Section 4.2 under the assumptions given in Section 4.3.1. The figure gives

the R-D curves obtained using the RDO of Algorithm 7 and the WMC solution. Be-

sides, Table 4.5 indicates the proportion of U nodes (|U|/N) chosen by the RDO process

for each ∆ value, and the proportion for the WMC (which does not depend on ∆).

30 40 50 60
26

28

30

32

34

36

38

Bit rate (Kbps)

P
S

N
R

 (
d

B
)

WMC

RDO

(a) Carphone

100 150 200 250 300
26

28

30

32

34

36

38

Bit rate (Kbps)

P
S

N
R

 (
d
B

)

WMC

RDO

(b) Mobile

15 20 25 30
26

28

30

32

34

36

38

40

Bit rate (Kbps)

P
S

N
R

 (
d

B
)

WMC

RDO

(c) Container

Figure 4.18: RDO Vs WMC for different sequences.

The RDO solution improves the WMC in all the examples, as expected. Specifi-

cally, in the fragment of Container, which is homogeneous and stationary, RDO clearly

outperforms WMC. Note that, in this case, RDO selects a lower proportion of U nodes,

because increasing this proportion does not significantly improve the D term, but, on

the other hand, it increases the R. Therefore, the optimal trade-off is found by choosing

a low |U|. Unlike Container, the Mobile fragment has complex textures. This way, it is

worth to select a high proportion of U nodes on the graph so that predictions are better

and D is lower, despite of the R is increased. Therefore, the optimal |U| is close to the

WMC solution.

111

Chapter 4. Video Coding Application

4.3.6 Discussion

The RDO process explained above is derived under some assumptions and simplifica-

tions. Next, we give some ideas of how the RDO process could be extended to obtain a

more realistic and practical process.

Working in a block by block basis is an important property of video encoders. Be-

sides, in the case of the lifting transforms on graphs, performing the transform on graphs

of size N = M × H × F , with F the number of frames and M × H the size of each

frame, is computationally unapproachable.

Assume that we have B blocks and that we would like to optimize some parameters

in order to minimize the total D (in the B blocks) subject to a global R constraint

(
∑B

b=1 Rb ≤ Rc). If we consider that the R-D curves are independent for each block b,

and that R =
∑B

b=1 Rb and D =
∑B

b=1 Db, we can write [67]:

min

(
B∑

b=1

Db + λRb

)

=
B∑

b=1

min (Db + λRb) , (4.13)

so that the minimum can be computed independently for each block b. To that end, the

same λ should be used for every block, leading to a so called constant slope optimiza-

tion.

To do that, we could use Algorithm 7, performing the U/P assignment locally in

each block b, and transferring the taken decisions to its neighboring blocks as in Section

4.2.4.2. The R-D values to be used in the algorithm for each block could be obtained by

performing the transform with the information of two-hop distance neighbors (Figure

4.19). In this way, the algorithm would return the optimal U/P assignment for each

block b, minimizing the total D for the Rc constraint.

Finally, note that the encoder should send to the decoder the optimal number of U
nodes for each block, but not the label of each node (the decoder knows the criteria to

perform the U/P assignment).

Other extensions of our proposed RDO could be to optimize all the levels of the

transform. Given that the filtering operations are not orthogonal, but biorthogonal, they

are not energy conserving, so that one should weight the D of each subband as a function

of the closeness of the biorthogonal filters to the class of orthogonal filters to compute

112

Chapter 4. Video Coding Application

Figure 4.19: Transform by blocks.

the global D (i.e., the global D should be computed as a weighted sum of the D in each

subband) ([71]). Once the weights are computed, they can be used to solve allocation

problems using standard algorithms [72], [73].

In our experiments, the ∆ value (and thus λ) is swept, obtaining, by means of the

RDO, parameters that are optimum if the resulting R(λ) = Rc. Nevertheless, in a real

application, one should find the desired optimal λ, which is not known a priori, in order

to obtain the desired target budget Rc. This can be done using fast algorithms [66] or

modeling the resulting R as a function of λ or ∆.

Assumption ∆dj=1
= 2∆sj=1

allows us to relate two of the parameters to be opti-

mized, thus making easier the RDO process. Nevertheless, this relation could not be

optimal. Specifically, one should optimize ∆ for each subband (∆s), as is posted in

Problem 4.1.

Finally, note that the hypothesis of the low |Pnz| (i.e., M ≈ |U|) used to derive

λ is quite accurate in our framework. Specifically, for Carphone, the worse case (the

case in which |Pnz| is higher) is |Pnz|/N = 0.03, while in Mobile the worse case is

|Pnz|/N = 0.08, both for ∆ = 10. Different results between the two sequences can be

explained by the fact that in Carphone predictions are more accurate.

113

Chapter 4. Video Coding Application

4.4 Conclusions

In this chapter we have proposed a complete video encoder based on lifting transforms

on graphs presented in Chapter 3. The proposed system gives rise to a non-separable

3-dimensional directional transform which is critically-sampled, versatile and of easy

interpretation. Our transform outperforms a MCTF and DCT based transforms in energy

compaction ability. Furthermore, it solves some typical problems inherent in temporal

wavelet transforms (i.e., MCTF approaches).

Besides, we have described a new coefficient reordering method which is based on

the graph information that improves the compression ability of the entropy encoder,

leading to a system that outperforms a DCT based video encoder in R-D terms. Given

that one drawback of our system is the computational complexity, we have investigated

two low complexity approaches that reduce the computational cost of the U/P assign-

ment process.

Finally, we have described how the RDO process can be performed in our coding

scheme under some simplifying assumptions.

114

Chapter 5

Conclusions and Future Work

5.1 Conclusions

A general class of graph-based transforms for N-dimensional signals and their opti-

mization have been proposed. These kind of transforms can be seen as N-dimensional

directional transforms that avoid filtering across large discontinuities. They may be

employed for compact representation of N-dimensional signals in many scenarios and

for different applications such as coding, denoising or feature extraction.

To perform the proposed lifting transform, the first step consists in constructing a

suitable graph. In Chapter 3 we discussed how to obtain a graph representation of a

generic N-dimensional signal, giving examples of multichannel audio and video rep-

resentations. To maximize energy compaction, graphs should be constructed so that

they accurately capture correlation between samples. Given that filtering operations are

performed using linked nodes, directional information is implicit in the graph repre-

sentation. Graph weighting greatly influences the performance of the transform, be-

cause some processes are based on the graph weights. We discussed two approaches

for weighting the graph in Chapter 3. At that point, we have a weighted graph that cap-

tures the correlation between samples, and which is useful to perform different signal

processing operations.

Given an undirected graph, the lifting transform is guaranteed to be invertible and

critically sampled by finding a graph bipartition (U/P assignment) and defining the

update u and prediction p filters. Therefore, we mainly focused on the optimization

of these two processes in order to minimize the detail coefficient energy. Regarding

the U/P assignment, we proposed graph-based and signal model-based approaches.

Graph-based designs use the information of the weighted graph in order to obtain the

splitting, while signal model-based approaches assume different data generation models

115

Chapter 5. Conclusions and Future Work

and predictors, and assign a label to each node on the graph aiming to minimize the

expected value of the squared prediction error.

Prediction p filters that provide “good” predictors for a given arbitrary weighted

graph were also proposed in Chapter 3. Finally, the main properties of the proposed

transform, some of them inherent to the lifting scheme and others related to the U/P
assignment, the u and p filters design, and the graph construction, were summarized.

In Chapter 4 we designed graph-based transform for use in video coding. These

transforms follow 3-dimensional spatio-temporal high-correlation filtering paths, and

can be considered a generalization of classical s+t or t+s MTCF wavelet encoders.

Specifically, we used the WMC splitting method and the filter design explained in

Chapter 3, and provided a way to perform the transform at multiple levels obtaining a

MRA of the original sequence. This led to more efficient representations than a MCTF

and a DCT-based transforms for video coding. Also, we explained how the proposed

transform is able to handle different problems that arise in MCTF approaches.

As a final contribution, we presented a complete video encoder in Section 4.2. In

particular, we proposed an efficient way to reorder the coefficients before they are en-

tropy coded, improving the compression performance of the proposed encoder. This

led to very efficient video representations that outperform a comparable hybrid DCT

based video encoder, which is the basis of the latest video coding standards. Besides,

we proposed two low complexity approaches which allows to reduce the computational

complexity of the proposed scheme incurring a negligible loss of performance. Finally,

we investigated how to apply rate-distortion optimization to our proposed scheme.

5.2 Future Work

There are some interesting directions for future work.

The signal model-based U/P assignment methods proposed in Chapter 3 provide an

idea of how to assign a label to each node in order to minimize the detail coefficients

energy in the first level of the transform. Nevertheless, this may be extended in order to

jointly consider the optimization of the transform at all levels. This way, for example,

one could perform the U/P assignment at any arbitrary level taking into account how

this assignment will influence the expected value of the coefficient energy of the final

116

Chapter 5. Conclusions and Future Work

transformed graph signal. Three signal model-based U/P assignment designs were dis-

cussed in Section 3.3. It would be interesting to use more accurate models as Gaussian

Markov random fields [74] and try to find optimal U/P assignment methods under these

models.

RDO process presented in Section 4.3 assumed some simplifications, discussed in

that section. Given that experimental results obtained using RDO are promising, an

interesting direction for future work could be to design a practical RDO process.

The flexibility of the transform and the good results obtained in a video coding

application provides confidence that it may be successfully applied in a broad kind of

signals and applications. For example, as discussed in Section 4.1.1, it may be used for

multichannel-audio coding, trying to jointly exploit the different correlations that arise

in audio signals, obtaining a frequency and time localized compact representation of

the multiple channels, which is an important property in order to consider subjective

models. Other applications could be image and video denoising, or biomedical signals

compact representation, where one usually has multiple signals that present correlation

in different domains (e.g., data extracted from the temporal evolution of different brain

sensors present spatial and temporal correlation).

117

Appendix A

Greedy Algorithm for the SCU /SCP
This appendix contains the greedy algorithm used to obtain the SCU solution. Note that

the SCP solution is equivalent, and thus can be found with the same algorithm, just by

exchanging P and U sets.

V is the set of nodes of the graph,M is a collection of all setsN[k], with k ∈ V , and

Gain of a node is the number of neighbors that a node has.

Algorithm 8 SCU Algorithm

Require: M = {Nk}k∈V ,R = V , U = {∅}, P = {∅}
1: Calculate the Gain of theR node set

2: Select the node a with largest Gain, a = max(Gain)
3: whileR 6= {∅} do

4: Let U ← U ∪ {a}
5: Let P ← P ∪Na

6: Remove the incident edges to {a ∪Na}
7: Update Gain
8: Select the node a with largest Gain, a = max(Gain)
9: R ← R\{a ∪Na}

10: end while

11: return U and P

118

Appendix B

Additional Proofs

This appendix contains additional proofs for Chapter 3.

B.1 Proof of Proposition 3.2

Proof. Let G = (V , E) be an undirected graph, where V = {1, . . . , N} is a set of nodes

and E ⊂ V × V a set of edges. Let X be a set of N random variables, such that xi

represents the data value associated to node i in the graph.

Let us assume that xi is generated as the mean noise value ǫj of the closed neighbor-

hood of node i plus an independent noise ηi as:

xi =
1

|N[i]|
∑

j∈N[i]

ǫj + αηi, (B.1)

where ǫj and ηi are zero-mean independent random variables, with variances vǫ and vη,

respectively; N[i] is the closed neighborhood set of node i, and α is an arbitrary non-

negative real constant. Note that we are considering that vηi
= vη and that vǫi

= vǫ for

any i ∈ V .

For each node i ∈ P , consider the estimator given by

x̂i =
1

mi

∑

j∈Ni∩U

xj, (B.2)

where mi = |Ni ∩ U|.
x̂i is an unbiased estimate of xi,

E{x̂i} =
1

mi

∑

j∈Ni∩U

E{xj} =
1

mi

∑

j∈Ni∩U




1

|N[j]|
∑

k∈N[j]

E{ǫk}+ αE{ηj}



 = 0. (B.3)

119

Chapter B. Additional Proofs

The expected value of the squared error of node i can be written as:

E{(xi − x̂i)
2} = E{(xi)

2}+ E{(x̂i)
2} − 2E{xix̂i} = var(xi) + var(x̂i)− 2E{xix̂i},

(B.4)

where we have used that E{(xi)} = E{(x̂i)} = 0.

Let us first calculate the variance of the model, var(xi) :

E{(xi)
2} = var(xi) = E{(1

|N[i]|
∑

j∈N[i]

ǫj + αηi)
2} (B.5)

=
1

|N[i]|2
E{(

∑

j∈N[i]

ǫj)
2}+ α2

E{η2
i }+

2α

|N[i]|
E{
∑

j∈N[i]

ǫjηi}

=
1

|N[i]|2
∑

m∈N[i]

∑

n∈N[i]

E{ǫmǫn}+ α2vη

=
1

|N[i]|2
∑

m∈N[i]

∑

n∈N[i]

δm,n + α2vη

=
vǫ

|N[i]|
+ α2vη,

where we have used that ǫj and ηi are zero-mean independent random variables, and that
∑

m∈N[i]

∑

n∈N[i]
δm,n = |N[i]|.

Next we obtain the variance of the estimator, var(x̂i):

E{(x̂i)
2} = var(x̂i) = E{ 1

m2
i

(
∑

j∈Ni∩U

xj)
2} =

1

m2
i

∑

m∈Ni∩U

∑

n∈Ni∩U

E{xmxn}. (B.6)

120

Chapter B. Additional Proofs

Note that

E{xmxn} = E{(1

|N[m]|
∑

j∈N[m]

ǫj + αηm)(
1

|N[n]|
∑

k∈N[n]

ǫk + αηn)

=
1

|N[m]||N[n]|
∑

j∈N[m]

∑

k∈N[n]

E{ǫjǫk}+
α

|N[m]|
E{

∑

j∈N[m]

ǫjηn}

+
α

|N[n]|
E{
∑

k∈N[n]

ǫkηm}+ α2
E{ηmηn}

=
vǫ

|N[m]||N[n]|
∑

m∈N[j]

∑

n∈N[k]

δj,k + α2vηδm,n

= vǫ

|N[m] ∩N[n]|
|N[m]||N[n]|

+ α2vηδm,n. (B.7)

where we have used that ǫj and ηi are zero-mean independent random variables.

From (B.6) and (B.7) we get

var(x̂i) =
1

m2
i

∑

m∈N[i]∩U

∑

n∈N[i]∩U

{

vǫ

|N[m] ∩N[n]|
|N[m]||N[n]|

+ α2vηδm,n

}

(B.8)

=
vǫ

m2
i

∑

m∈N[i]∩U

∑

n∈N[i]∩U

|N[m] ∩N[n]|
|N[m]||N[n]|

+
α2vη

mi

,

where we have used that
∑

m∈N[i]∩U

∑

n∈N[i]∩U
δm,n = mi.

Now, we obtain the correlation between the model and the estimator E{xix̂i} :

E{xix̂i} = E{xi
1

mi

∑

j∈Ni∩U

xj} (B.9)

=
1

mi

∑

j∈Ni∩U

E{xixj}

=
1

mi

∑

j∈Ni∩U

{

vǫ

|N[i] ∩N[j]|
|N[i]||N[j]|

+ α2vηδi,j

}

=
vǫ

mi

∑

j∈N[i]∩U

|N[i] ∩N[j]|
|N[i]||N[j]|

,

where we have used that
∑

j∈N[i]∩U
vηδi,j = 0.

121

Chapter B. Additional Proofs

From (B.6), (B.8), and (B.9), we obtain the mean squared prediction error of a node

i ∈ P :

E{(xi − x̂i)
2} = E{(xi)

2}+ E{(x̂i)
2} − 2E{xix̂i} (B.10)

= α2vη +
vǫ

|N[i]|
+

α2vη

mi

+
vǫ

m2
i

∑

j∈N[i]∩U

∑

k∈N[i]∩U

|N[j] ∩N[k]|
|N[j]||N[k]|

− 2
vǫ

mi

∑

j∈N[i]∩U

|N[i] ∩N[j]|
|N[i]||N[j]|

.

Define the clustering degree of nodes j and k on graph G as

c(j, k) =
|N[j] ∩N[k]|
|N[j]||N[k]|

. (B.11)

From (B.10) and (B.11) we have:

E{(xi − x̂i)
2} = α2vη +

vǫ

|N[i]|
+

α2vη

mi

+
vǫ

m2
i

∑

j∈N[i]∩U

∑

k∈N[i]∩U

c(j, k) (B.12)

− 2
vǫ

mi

∑

k∈N[i]∩U

c(i, k).

B.2 Proof of Proposition 3.3

Proof. Let G = (V , E) be an undirected graph, where V = {1, . . . , N} is a set of nodes

and E ⊂ V × V a set of edges. Let X be a set of N random variables, such that xi

represents the data value associated to node i in the graph.

Let us assume that

xi =




rs

|N s
[i]|
∑

j∈N s
[i]

ǫj +
rt

|N t
[i]|
∑

k∈N t
[i]

ǫk



+ αηi, (B.13)

122

Chapter B. Additional Proofs

where N s
[i] and N t

[i] are the closed sets of spatial and temporal neighbors, respectively,

of node i; rs is an arbitrary constant in [0, 1], with rt = 1 − rs; ǫj and ηi are zero-

mean independent random variables with variances vǫj
, and vηi

, respectively; and α is

an arbitrary nonnegative real constant.

Consider the predictions given by

x̂i =
ws

ms
i

∑

j∈N s
i ∩U

xj +
wt

mt
i

∑

j∈N t
i ∩U

xj, (B.14)

where ms
i = |N s

i ∩ U| and mt
i = |N t

i ∩ U|.
Consider that vηi

= vη and that vǫi
= vǫ for any i ∈ V .

Estimate x̂i is an unbiased estimate of xi,

E{xi} =
rs

|N s
[i]|
∑

j∈N s
[i]

E{ǫj}+
rt

|N t
[i]|
∑

k∈N t
[i]

E{ǫk}+ αE{ηi} = 0 (B.15)

and

E{x̂i} =
ws

ms
i

∑

j∈N s
i ∩U

E{xj}+
wt

mt
i

∑

k∈N t
i ∩U

E{xk} = 0. (B.16)

The expected value of the squared error of node i can be written as:

E{(xi − x̂i)
2} = E{(xi)

2}+ E{(x̂i)
2} − 2E{xix̂i} = var(xi) + var(x̂i)− 2E{xix̂i}.

(B.17)

where we have used that E{xi} = E{x̂i} = 0.

Let us first calculate the variance of the model, var(xi) :

123

Chapter B. Additional Proofs

E{(xi)
2} = var(xi) = E{(rs

|N s
[i]|
∑

j∈N s
[i]

ǫj +
rt

|N t
[i]|
∑

k∈N t
[i]

ǫk + αηi)
2} (B.18)

= E{




rs

|N s
[i]|
∑

j∈N s
[i]

ǫj





2

+




rt

|N t
[i]|
∑

k∈N t
[i]

ǫk





2

+ 2
rs

|N s
[i]|

rt

|N t
[i]|
∑

j∈N s
[i]

∑

k∈N t
[i]

ǫjǫk + α2η2
i }

=

(

rs

|N s
[i]|

)2
∑

m∈N s
[i]

∑

n∈N s
[i]

E{ǫmǫn}+

(

rt

|N t
[i]|

)2
∑

m∈N t
[i]

∑

n∈N t
[i]

E{ǫmǫn}

+ 2
rs

|N s
[i]|

rt

|N t
[i]|

∑

m∈N s
[i]

∑

n∈N t
[i]

E{ǫmǫn}+ α2
E{η2

i }

=

(

rs

|N s
[i]|

)2

vǫ

∑

m∈N s
[i]

∑

n∈N s
[i]

δm,n +

(

rt

|N t
[i]|

)2

vǫ

∑

m∈N t
[i]

∑

n∈N t
[i]

δm,n

+ 2
rs

|N s
[i]|

rt

|N t
[i]|

vǫ

∑

m∈N s
[i]

∑

n∈N t
[i]

δm,n + α2
E{η2

i }

= α2vη + vǫ

(

r2
s

|N s
[i]|

+
r2
t

|N t
[i]|

+
2rsrt

|N s
[i]||N t

[i]|

)

,

where we have used that ǫj and ηi are zero-mean independent random variables, and that

vǫ

∑

m∈N s
[i]

∑

n∈N s
[i]

δm,n = vǫ|N s
[i]| (similarly for the temporal neighbors) and

vǫ

∑

m∈N s
[i]

∑

n∈N t
[i]

δm,n = vǫ.

124

Chapter B. Additional Proofs

Next we obtain the variance of the estimator, var(x̂i). Estimate x̂i is unbiased, with

variance:

var(x̂i) = E{(ws

ms
i

∑

j∈N s
i ∩U

xj +
wt

mt
i

∑

k∈N t
i ∩U

xk)
2}

=
w2

s

(ms
i)

2

∑

m∈N s
i ∩U

∑

n∈N s
i ∩U

E{xmxn}

+
w2

t

(mt
i)

2

∑

m∈N t
i ∩U

∑

n∈N t
i ∩U

E{xmxn}

+
2wswt

ms
im

t
i

∑

j∈N s
i ∩U

∑

k∈N t
i ∩U

E{xjxk}. (B.19)

Note that

E{xjxk} =
r2
s

|N s
[j]||N s

[k]|
∑

m∈N s
[j]

∑

r∈N s
[k]

E{ǫmǫr}+
r2
t

|N t
[j]||N t

[k]|
∑

n∈N t
[j]

∑

s∈N t
[k]

E{ǫnǫs}

+
rsrt

|N s
[j]||N t

[k]|
∑

m∈N s
[j]

∑

s∈N t
[k]

E{ǫmǫs}+
rtrs

|N t
[j]||N s

[k]|
∑

n∈N t
[j]

∑

r∈N s
[k]

E{ǫnǫr}

+ α2
E{ηjηk}

=
vǫr

2
s |N s

[j] ∩N s
[k]|

|N s
[j]||N s

[k]|
+

vǫr
2
t |N t

[j] ∩N t
[k]|

|N t
[j]||N t

[k]|
+

vǫrsrt|N s
[j] ∩N t

[k]|
|N s

[j]||N t
[k]|

+
rsrt|N t

[j] ∩N s
[k]|

|N t
[j]||N s

[k]|
+ α2vηδj,k, (B.20)

where we have used that ǫ and η are zero-mean independent random variables.

Define

Dcd
ab(i) =

∑

j∈Na
i ∩U

∑

k∈N b
i ∩U

|N c
[j] ∩N d

[k]|
|N c

[j]||N d
[k]|

(B.21)

for a, b, c, d equal to “s′′ or “t′′.

From (B.19), (B.20), and (B.21) we get:

125

Chapter B. Additional Proofs

var(x̂i) =
vǫw

2
s

(ms
i)

2
(r2

sD
ss
ss(i) + r2

t D
tt
ss(i) + 2rsrt(D

st
ss(i)) + α2vηm

s
i)

+
vǫw

2
t

(mt
i)

2
(r2

sD
ss
tt (i) + r2

t D
tt
tt(i) + 2rsrt(D

st
tt (i)) + α2vηm

t
i)

+
2vǫwswt

ms
im

t
i

(r2
sD

ss
st (i) + r2

t D
tt
st(i) + rsrt(D

st
st(i) + Dts

st(i))).

(B.22)

where we have used that Dst
ss(i) = Dts

ss(i) and Dst
tt (i) = Dts

tt (i).

Finally, we obtain the correlation between the model and the estimator E{xix̂i}.
Define

Dcd
a (i) =

∑

j∈Na
i ∩U

|N c
[j] ∩N d

[i]|
|N c

[j]||N d
[i]|

(B.23)

for a, c, d equal to “s′′ or “t′′.

We can write:

E{xix̂i} = E{xi(
ws

ms
i

∑

j∈N s
i ∩U

xj +
wt

mt
i

∑

k∈N t
i ∩U

xk)} (B.24)

=
ws

ms
i

∑

j∈Nis∩U

E{xjxi}+
wt

mt
i

∑

k∈Nit∩U

E{xkxi}.

Using definition (B.23) in (B.24), we get:

E{xix̂i} =
vǫws

ms
i

(r2
sD

ss
s (i) + r2

t D
tt
s (i) + rsrt(D

st
s (i) + Dts

s (i)))

+
vǫwt

mt
i

(r2
sD

ss
t (i) + r2

t D
tt
t (i) + rsrt(D

st
t (i) + Dts

t (i)).

(B.25)

Fixing rs = ws and rt = wt and using (B.17), (B.19), (B.22) and (B.25), the ex-

pected value of the squared error of node i can be written as:

126

Chapter B. Additional Proofs

E{(xi − x̂i)
2} = α2vη + vǫ

(

w2
s

|N s
[i]|

+
w2

t

|N t
[i]|

+
2wswt

|N s
[i]||N t

[i]|

)

(B.26)

+ α2vη

(
w2

s

ms
i

+
w2

t

mt
i

)

+ vǫ

(
w2

s

(ms
i)

2G +
w2

t

(mt
i)

2H +
2wswt

mt
im

s
i

I

)

− 2vǫ

(
ws

ms
i

J +
wt

mt
i

K

)

,

where

G = w2
sD

ss
ss + w2

t D
tt
ss + 2wswtD

st
ss, (B.27)

H = w2
sD

ss
tt + w2

t D
tt
tt + 2wswtD

st
tt ,

I = w2
sD

ss
st + w2

t D
tt
st + wswt(D

st
st + Dts

st),

J = w2
sD

ss
s + w2

t D
tt
s + wswt(D

st
s + Dts

s),

K = w2
sD

ss
t + w2

t D
tt
t + wswt(D

st
t + Dts

t).

127

Appendix C

Optimal Weighting for a Given Graph

and U/P Assignment

This appendix contains the formulation to obtain the optimal weights that minimize

the detail coefficient energy using a given graph and U/P assignment, and assuming

one-hop filters defined below. First, in Section C.1, we consider a video representation

example. Then, in section C.2, we extend this result to F kinds of edges with different

correlations.

C.1 Optimal Weighting for a Video Representation Given

an U/P Assignment

Let G = (V , E) be an undirected graph, where V = {1, . . . , N} is a set of nodes and

E ⊂ V×V a set of edges. Let S, T be the set of spatial and temporal edges, respectively,

with S ∪T = E . Denote one-hop spatial neighborhood of i asN S
i = {j ∈ V : ij ∈ S}.

Let mS
i = |N S

i ∩ U| be the number of one-hop spatial update neighbors of node i ∈ P .

Thus, the mean value of the update spatial neighbors of a node i ∈ P is defined as

x̄s
i =

1

mS
i

mS
i∑

j∈NS
i ∩U

xj, (C.1)

and is defined similarly for the temporal neighbors. Assuming that every node i ∈ P is

linearly predicted from its spatial and temporal update neighbors as:

x̂i = wsx̄
s
i + wtx̄

t
i, (C.2)

128

Chapter C. Optimal Weighting for a Given Graph and U/P Assignment

we want to find the weights ws and wt that minimize the quadratic prediction error

over all the nodes i ∈ P:

min
ws,wt

∑

i∈P

(xi − x̂i)
2 = min

ws,wt

∑

i∈P

(di)
2 = min

ws,wt

∑

i∈P

(
xi − wsx̄

s
i − wtx̄

t
i

)2
. (C.3)

Differentiating with respect to ws and wt we obtain the solution:

w∗ = (w∗
s , w

∗
t) = R−1r (C.4)

where

R =

[∑

i∈P x̄s
i x̄

s
i

∑

i∈P x̄s
i x̄

t
i

∑

i∈P x̄t
ix̄

s
i

∑

i∈P x̄t
ix̄

t
i

]

(C.5)

and

r =
∑

i∈P

xi

[

x̄s
i

x̄t
i

]

(C.6)

are the correlation matrices.

Next, we express the optimal weight vector w∗ as a function of matrices derived

from the spatial and temporal adjacency matrices of the graph.

Let As =
[
asi,j

]
and At =

[
ati,j

]
be the adjacency matrices of the subgraphs con-

taining only the spatial and temporal edges, respectively.

Let iU (resp. iP) be a N × 1 indicator vector in which {ih} = 1 if node h ∈ U
(resp. ∈ P), and zero otherwise. Let IU (resp. IP) be a diagonal matrix in which the

main diagonal is iU (resp. iP). Denote Bs = IUAsIP and Bt = IUAtIP , and let Bs =
[
bsi,j

]
and Bt =

[
bti,j

]
be the Bs and Bt matrices where each column is normalized

(i.e., defining |N j| as the number of non-zero elements of column j, bsi,j
= 1/ |N j| if

bsi,j
= 1 ; bsi,j

= 0 if bsi,j
= 0).

129

Chapter C. Optimal Weighting for a Given Graph and U/P Assignment

“Vectorize” the graph data into a 1 × N row vector x (e.g., if the data is a video

sequence, we obtain a 1× (L×H ×K) row vector, where L×H is the frame size and

K the number of frames considered).

The optimal weight vector w∗ can be written as:

w∗ =

[

xBsB
T

s xT xBsB
T

t xT

xBtB
T

s xT xBtB
T

t xT

]−1

·
[

xBsx
T

xBtx
T

]

. (C.7)

Proof. The matrix product IUAs is the spatial adjacency matrix, but setting p ∈ P rows

as zero vectors, and similarly, AsIP is the spatial adjacency matrix in which u ∈ U
columns are zero vectors. Therefore, Bs = IUAsIP can be interpreted as a matrix in

which the non-zero column i represents the node i ∈ P and the indices of its non-zero

elements are the u ∈ U spatial neighbors of i.

Normalizing by columns, Bs =
[
bsi,j

]
, where bsi,j

= 1/ |N j|. Note that bsi,j
6= 0 if

j ∈ P, i ∈ U , and ij ∈ S, and that |N j| is the number of u ∈ U spatial neighbors that the

node ∈ P of column j has. Multiplying the 1×N data vector x by Bs, a = [ak] = xBs,

we obtain a 1×N row vector:

[ak] =

{

x̄s
k, if k ∈ P,

0, if k ∈ U .
(C.8)

The above reasoning is equivalent for the temporal adjacency matrix At.

Therefore, aaT =
∑

i∈P x̄s
i x̄

s
i = xBs

(
xBs

)T
= xBsB

T

s xT.

Similarly,
∑

i∈P x̄s
i x̄

t
i = xBsB

T

t xT.

130

Chapter C. Optimal Weighting for a Given Graph and U/P Assignment

C.2 Optimal Weighting for F Different Kinds of Links

Given an U/P Assignment

We now generalize the result in (C.7) to the case of F different kinds of links with

different correlations.

For every node i ∈ P , let us define the mean value of its update neighbors linked by

means of links of class f as:

x̄f
i =

1

mf
i

mf
i∑

j∈N f
i ∩U

xj. (C.9)

Assuming that every node in P is linearly predicted from its F types of neighbors, we

would like to find the weights w1, w2, . . . , wF that minimize the quadratic prediction

error over all the nodes ∈ P:

min
w1,w2,...,wF

|P|
∑

i∈P

(xi − x̂i)
2 = min

w1,w2,...,wF

|P|
∑

i∈P

(
xi − w1x̄

1
i − w2x̄

2
i − . . .− wF x̄F

i

)2
.

(C.10)

131

Chapter C. Optimal Weighting for a Given Graph and U/P Assignment

The optimal weights can be obtained as:

w∗ =










xB1B
T

1 xT xB1B
T

2 xT · · · xB1B
T

FxT

xB2B
T

1 xT xB2B
T

2 xT · · · xB2B
T

FxT

...
...

. . .
...

xBFB
T

1 xT xBFB
T

2 xT · · · xBFB
T

FxT










−1

·










xB1x
T

xB2x
T

...

xBFxT










. (C.11)

132

Bibliography

[1] M. Do and M. Vetterli, “The contourlet transform: an efficient directional multires-

olution image representation,” Image Processing, IEEE Transactions on, vol. 14,

no. 12, pp. 2091 –2106, dec. 2005.

[2] W. Sweldens, “The lifting scheme: A construction of second generation wavelets,”

1995, tech. report 1995:6, Industrial Math. Initiative, Dept. of Math., University of

South Carolina, 1995.

[3] E. J. Candès and D. L. Donoho, “Curvelets – a surprisingly effective nonadaptive

representation for objects with edges,” 2000.

[4] V. Velisavljevic, B. Beferull-Lozano, M. Vetterli, and P. L. Dragotti, “Direction-

lets: anisotropic multidirectional representation with separable filtering,” Image

Processing, IEEE Transactions on, vol. 15, no. 7, pp. 1916 –1933, July 2006.

[5] G. Shen and A. Ortega, “Compact image representation using wavelet lifting along

arbitrary trees,” in Image Processing, 2008. ICIP 2008. 15th IEEE International

Conference on, October 2008, pp. 2808 –2811.

[6] A. Secker and D. Taubman, “Lifting-based invertible motion adaptive transform

(limat) framework for highly scalable video compression,” Image Processing,

IEEE Transactions on, vol. 12, no. 12, pp. 1530 – 1542, December 2003.

[7] G. Pau, C. Tillier, B. Pesquet-Popescu, and H. Heijmans, “Motion compensation

and scalability in lifting-based video coding,” Signal Processing: Image Commu-

nication, vol. 19, no. 7, pp. 577 – 600, 2004, special Issue on Subband/Wavelet

Interframe Video Coding.

[8] M. Flierl and B. Girod, “Video coding with motion-compensated lifted wavelet

transforms.” Sig. Proc.: Image Comm., vol. 19, no. 7, pp. 561–575, 2004.

[9] R. Wagner, H. Choi, and R. Baraniuk, “Distributed wavelet transform for irregular

sensor network grids,” in in IEEE Statistical Signal Processing (SSP) Workshop,

2005.

133

[10] S. K. Narang and A. Ortega, “Lifting based wavelet transforms on graphs,” in

APSIPA ASC 2009: Asia-Pacific Signal and Information Processing Association,

2009 Annual Summit and Conference, October 2009.

[11] D. K. Hammond, P. Vandergheynst, and R. Gribonval, “Wavelets on graphs via

spectral graph theory,” Applied and Computational Harmonic Analysis, vol. 30,

no. 2, pp. 129–150, Mar 2011.

[12] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst, “The

emerging field of signal processing on graphs: Extending high-dimensional data

analysis to networks and other irregular domains,” IEEE Signal Process. Mag.,

vol. 30, no. 3, pp. 83–98, 2013.

[13] S. K. Narang and A. Ortega, “Perfect reconstruction two-channel wavelet filter

banks for graph structured data,” IEEE Transactions on Signal Processing, vol. 60,

no. 6, pp. 2786–2799, 2012.

[14] A. Sandryhaila and J. M. F. Moura, “Discrete signal process-

ing on graphs,” CoRR, vol. abs/1210.4752, 2012. [Online]. Available:

http://dblp.uni-trier.de/db/journals/corr/corr1210.html#abs-1210-4752

[15] P. Milanfar, “A tour of modern image filtering: New insights

and methods, both practical and theoretical.” IEEE Signal Process.

Mag., vol. 30, no. 1, pp. 106–128, 2013. [Online]. Available:

http://dblp.uni-trier.de/db/journals/spm/spm30.html#Milanfar13

[16] G. Shen and A. Ortega, “Tree-based wavelets for image coding: Orthogonalization

and tree selection,” in Picture Coding Symposium, 2009. PCS 2009, May 2009, pp.

1 –4.

[17] S. Mallat, “A theory for multiresolution signal decomposition: the wavelet rep-

resentation,” Pattern Analysis and Machine Intelligence, IEEE Transactions on,

vol. 11, no. 7, pp. 674–693, 1989.

[18] W. Sweldens, “The lifting scheme: A new philosophy in biorthogonal wavelet con-

structions,” in in Wavelet Applications in Signal and Image Processing III, 1995,

pp. 68–79.

[19] W. Sweldens and P. Schröder, “Building your own wavelets at home,” 1995, tech.

report 1995:5, Industrial Math. Initiative, Dept. of Math., University of South Car-

olina, 1995.

[20] W. Sweldens, “The lifting scheme: A custom-design construction of biorthogonal

wavelets,” Applied and Computational Harmonic Analysis, vol. 3, no. 2, pp. 186 –

200, 1996.

134

http://dblp.uni-trier.de/db/journals/corr/corr1210.html#abs-1210-4752
http://dblp.uni-trier.de/db/journals/spm/spm30.html#Milanfar13

[21] S. Mallat, A Wavelet Tour of Signal Processing, Third Edition: The Sparse Way,

3rd ed. Academic Press, 2008.

[22] G. Shen, “Lifting transforms on graphs: theory and applications.” Ph.D. disserta-

tion, University of Southern California, 2010.

[23] A. Cohen, I. Daubechies, and J.-C. Feauveau, “Biorthogonal bases of

compactly supported wavelets,” Communications on Pure and Applied

Mathematics, vol. 45, no. 5, pp. 485–560, 1992. [Online]. Available:

http://dx.doi.org/10.1002/cpa.3160450502

[24] R. Fattal, “Edge-avoiding wavelets and their applications,” in SIGGRAPH ’09:

ACM SIGGRAPH 2009 papers. New York, NY, USA: ACM, 2009, pp. 1–10.

[25] J. Solé and P. Salembier, “Generalized lifting prediction optimization applied to

lossless image compression,” Signal Processing Letters, IEEE, vol. 14, no. 10, pp.

695 –698, oct. 2007.

[26] D. Taubman, “Adaptive, non-separable lifting transforms for image compression,”

in Image Processing, 1999. ICIP 99. Proceedings. 1999 International Conference

on, vol. 3, 1999, pp. 772–776 vol.3.

[27] B. Pesquet-Popescu and V. Bottreau, “Three-dimensional lifting schemes for mo-

tion compensated video compression,” in ICASSP ’01: Proceedings of the Acous-

tics, Speech, and Signal Processing, 2001. on IEEE International Conference,

Washington, DC, USA, 2001, pp. 1793–1796.

[28] G. Shen and A. Ortega, “Optimized distributed 2d transforms for irregularly sam-

pled sensor network grids using wavelet lifting,” in Acoustics, Speech and Signal

Processing, 2008. ICASSP 2008. IEEE International Conference on, March 2008,

pp. 2513 –2516.

[29] ——, “Transform-based distributed data gathering,” Signal Processing, IEEE

Transactions on, vol. 58, no. 7, pp. 3802–3815, 2010.

[30] R. S. Wagner, R. G. Baraniuk, S. Du, D. B. Johnson, and A. Cohen, “An

architecture for distributed wavelet analysis and processing in sensor networks,”

in Proceedings of the 5th international conference on Information processing in

sensor networks, ser. IPSN ’06. New York, NY, USA: ACM, 2006, pp. 243–250.

[Online]. Available: http://doi.acm.org/10.1145/1127777.1127816

[31] J. Asensio-Cubero, J. Gan, and R. Palaniappan, “Extracting common spatial pat-

terns based on wavelet lifting for brain computer interface design,” in Computer

Science and Electronic Engineering Conference (CEEC), 2012 4th, 2012, pp. 160–

163.

135

http://dx.doi.org/10.1002/cpa.3160450502
http://doi.acm.org/10.1145/1127777.1127816

[32] ——, “Multiresolution analysis over simple graphs for brain computer interfaces,”

Journal of neural engineering, vol. 10, no. 4, p. 046014, 2013.

[33] I. Dutta, R. Banerjee, T. Acharya, and S. DasBit, “An energy efficient audio

compression scheme using wavelet with dynamic difference detection technique

in wireless sensor network,” in Proceedings of the International Conference

on Advances in Computing, Communications and Informatics, ser. ICACCI

’12. New York, NY, USA: ACM, 2012, pp. 360–366. [Online]. Available:

http://doi.acm.org/10.1145/2345396.2345456

[34] E. Le Pennec and S. Mallat, “Sparse geometric image representations with ban-

delets,” Image Processing, IEEE Transactions on, vol. 14, no. 4, pp. 423 –438,

April 2005.

[35] E. L. Pennec and S. Mallat, “Bandelet image approximation and compression,”

SIAM Journal of Multiscale Modeling and Simulation, vol. 4, p. 2005, 2005.

[36] B. Zeng and J. Fu, “Directional discrete cosine transforms-a new frame-

work for image coding,” IEEE Trans. Cir. and Sys. for Video Tech-

nol., vol. 18, no. 3, pp. 305–313, Mar. 2008. [Online]. Available:

http://dx.doi.org/10.1109/TCSVT.2008.918455

[37] R. Claypoole, G. Davis, W. Sweldens, and R. Baraniuk, “Nonlinear wavelet trans-

forms for image coding,” in IEEE Trans. Image Process, 1997, pp. 1449–1459.

[38] R. L. Claypoole, G. M. Davis, W. Sweldens, and R. G. Baraniuk,

“Nonlinear wavelet transforms for image coding via lifting,” Trans. Img.

Proc., vol. 12, no. 12, pp. 1449–1459, Dec. 2003. [Online]. Available:

http://dx.doi.org/10.1109/TIP.2003.817237

[39] N. Adami, A. Signoroni, and R. Leonardi, “State-of-the-art and trends in scal-

able video compression with wavelet-based approaches,” Circuits and Systems for

Video Technology, IEEE Transactions on, vol. 17, no. 9, pp. 1238 –1255, Septem-

ber 2007.

[40] A. Sánchez, G. Shen, and A. Ortega, “Edge-preserving depth-map coding us-

ing graph-based wavelets,” in Signals, Systems and Computers, 2009 Conference

Record of the Forty-Third Asilomar Conference on, 2009, pp. 578–582.

[41] W.-S. Kim, S. Narang, and A. Ortega, “Graph based transforms for depth video

coding,” in Acoustics, Speech and Signal Processing (ICASSP), 2012 IEEE Inter-

national Conference on, 2012, pp. 813–816.

136

http://doi.acm.org/10.1145/2345396.2345456
http://dx.doi.org/10.1109/TCSVT.2008.918455
http://dx.doi.org/10.1109/TIP.2003.817237

[42] E. Martinez-Enriquez, F. Diaz-de Maria, J. Cid-Sueiro, and A. Ortega, “Filter op-

timization and complexity reduction for video coding using graph-based trans-

forms,” in Image Processing (ICIP), 2013 20th IEEE International Conference on,

Sept 2013, pp. 1948–1952.

[43] E. Martinez-Enriquez and A. Ortega, “Lifting transforms on graphs for video cod-

ing,” in Data Compression Conference (DCC), 2011, march 2011, pp. 73 –82.

[44] E. Martinez-Enriquez, F. Diaz-de Maria, and A. Ortega, “Video encoder based

on lifting transforms on graphs,” in Image Processing (ICIP), 2011 18th IEEE

International Conference on, sept. 2011, pp. 3509 –3512.

[45] S. Narang, G. Shen, and A. Ortega, “Unidirectional graph-based wavelet trans-

forms for efficient data gathering in sensor networks,” in Acoustics Speech and

Signal Processing (ICASSP), 2010 IEEE International Conference on, 2010, pp.

2902 –2905.

[46] S. Narang and A. Ortega, “Local two-channel critically sampled filter-banks on

graphs,” in Image Processing (ICIP), 2010 17th IEEE International Conference

on, sept. 2010, pp. 333 –336.

[47] C.-P. Hsu, “Minimum-via topological routing,” Computer-Aided Design of Inte-

grated Circuits and Systems, IEEE Transactions on, vol. 2, no. 4, pp. 235 – 246,

1983.

[48] J. A. Cadzow, D. M. Wilkes, R. A. Peters, II, R. Alan, P. Ii, and X. K. Li, “Im-

age texture synthesis-by-analysis using moving-average models,” IEEE Trans on

Aerospace and Electrical Systems, vol. 29, 1993.

[49] H. Kaufman, J. Woods, S. Dravida, and A. Tekalp, “Estimation and identification

of two-dimensional images,” Automatic Control, IEEE Transactions on, vol. 28,

no. 7, pp. 745–756, 1983.

[50] G. Demoment, “Image reconstruction and restoration: overview of common esti-

mation structures and problems,” Acoustics, Speech and Signal Processing, IEEE

Transactions on, vol. 37, no. 12, pp. 2024–2036, 1989.

[51] N. Boulgouris, D. Tzovaras, and M. Strintzis, “Lossless image compression based

on optimal prediction, adaptive lifting, and conditional arithmetic coding,” Image

Processing, IEEE Transactions on, vol. 10, no. 1, pp. 1 –14, jan 2001.

[52] A. Deever and S. Hemami, “Lossless image compression with projection-based

and adaptive reversible integer wavelet transforms,” Image Processing, IEEE

Transactions on, vol. 12, no. 5, pp. 489 – 499, may 2003.

137

[53] G. P. Christophe, C. Tillier, and B. Pesquet-popescu, “Optimization of the predict

operator in lifting-based motion compensated temporal filtering,” in in Proc. of

Visual Communications and Image Processing, 2004.

[54] G. Shen, S. K. Narang, and A. Ortega, “Adaptive distributed transforms for irreg-

ularly sampled wireless sensor networks,” Acoustics, Speech, and Signal Process-

ing, IEEE International Conference on, vol. 0, pp. 2225–2228, 2009.

[55] B. Girod and S. Han, “Optimum update for motion-compensated lifting,” Signal

Processing Letters, IEEE, vol. 12, no. 2, pp. 150 – 153, feb. 2005.

[56] C. Tillier, B. Pesquet-Popescu, and M. van der Schaar, “Improved update opera-

tors for lifting-based motion-compensated temporal filtering,” Signal Processing

Letters, IEEE, vol. 12, no. 2, pp. 146 – 149, feb. 2005.

[57] J. M. Shapiro, “An embedded wavelet hierarchical image coder,” in Acoustics,

Speech, and Signal Processing, 1992. ICASSP-92., 1992 IEEE International Con-

ference on, vol. 4, Mar. 1992, pp. 657 –660 vol.4.

[58] B.-J. Kim and W. A. Pearlman, “An embedded wavelet video coder using three-

dimensional set partitioning in hierarchical trees (SPIHT),” in Data Compression

Conference, 1997. DCC ’97. Proceedings, Mar. 1997, pp. 251 –260.

[59] E. Martinez-Enriquez, M. de Frutos-Lopez, J. C. Pujol-Alcolado, and F. Diaz-de

Maria, “A fast motion-cost based algorithm for H.264/AVC inter mode decision,”

in Image Processing, 2007. ICIP 2007. IEEE International Conference on, vol. 5,

2007, pp. V – 325–V – 328.

[60] E. Martinez-Enriquez, A. Jimenez-Moreno, and F. Diaz-de Maria, “An adaptive

algorithm for fast inter mode decision in the H.264/AVC video coding standard,”

Consumer Electronics, IEEE Transactions on, vol. 56, no. 2, pp. 826–834, 2010.

[61] E. Martinez-Enriquez, A. Jimenez-Moreno, M. Angel-Pellon, and F. Diaz-de

Maria, “A two-level classification-based approach to inter mode decision in

H.264/AVC,” Circuits and Systems for Video Technology, IEEE Transactions on,

vol. 21, no. 11, pp. 1719–1732, 2011.

[62] E. Martinez-Enriquez, A. Jimenez-Moreno, and F. Diaz-de Maria, “A novel fast

inter mode decision in H.264/AVC based on a regionalized hypothesis testing,” in

Picture Coding Symposium, 2009. PCS 2009, 2009, pp. 1–4.

[63] E. Martinez-Enriquez and F. Diaz-de Maria, “A hierarchical classification-based

approach to inter mode decision in H.264/AVC,” in Multimedia and Expo, 2009.

ICME 2009. IEEE International Conference on, 2009, pp. 221–224.

138

[64] A. Jimenez-Moreno, E. Martinez-Enriquez, and F. Diaz-de Maria, “Mode

decision-based algorithm for complexity control in H.264/AVC,” Multimedia,

IEEE Transactions on, vol. PP, no. 99, pp. 1–1, 2013.

[65] H. Everett, “Generalized Lagrange Multiplier Method for Solving Problems of

Optimum Allocation of Resources,” Operations Research, vol. 11, no. 3, pp. 399–

417, May - Jun., 1963.

[66] K. Ramchandran and M. Vetterli, “Best wavelet packet bases in a rate-distortion

sense,” Image Processing, IEEE Transactions on, vol. 2, no. 2, pp. 160–175, 1993.

[67] A. Ortega and K. Ramchandran, “Rate-distortion methods for image and video

compression,” Signal Processing Magazine, IEEE, vol. 15, no. 6, pp. 23 –50, Nov.

1998.

[68] H. Gish and J. Pierce, “Asymptotically efficient quantizing,” Information Theory,

IEEE Transactions on, vol. 14, no. 5, pp. 676–683, 1968.

[69] S. Mallat and F. Falzon, “Analysis of low bit rate image transform coding,” Signal

Processing, IEEE Transactions on, vol. 46, no. 4, pp. 1027–1042, 1998.

[70] G. J. Sullivan, T. Wiegand, and P. Corporation, “Rate-distortion optimization for

video compression,” IEEE Signal Processing Magazine, vol. 15, pp. 74–90, 1998.

[71] B. Usevitch, “Optimal bit allocation for biorthogonal wavelet coding,” in Data

Compression Conference, 1996. DCC ’96. Proceedings, 1996, pp. 387–395.

[72] T. André, M. Cagnazzo, M. Antonini, and M. Barlaud, “A scalable video coder

with scan-based lifted MCWT and model-based bitrate allocation,” I3S Internal

Report, no. I3S/RR-2004-42-FR, 2004.

[73] A. Gouze, C. Parisot, M. Antonini, and M. Barlaud, “Optimal weighted model-

based bit allocation for quincunx sampled images,” in Image Processing, 2003.

ICIP 2003. Proceedings. 2003 International Conference on, vol. 3, 2003, pp. III–

221–4 vol.2.

[74] C. Zhang and D. A. F. Florêncio, “Analyzing the optimality of pre-

dictive transform coding using graph-based models.” IEEE Signal Pro-

cess. Lett., vol. 20, no. 1, pp. 106–109, 2013. [Online]. Available:

http://dblp.uni-trier.de/db/journals/spl/spl20.html#ZhangF13

139

http://dblp.uni-trier.de/db/journals/spl/spl20.html#ZhangF13

	Abstract
	Resumen
	Table of Contents
	List of Figures
	List of Tables
	Acronyms
	Introduction
	Motivation
	Directional Transforms
	Graph-Based Representation of Data
	Lifting Transforms on Graphs
	Contributions
	Thesis Outline

	Overview of Lifting and Directional Transforms
	Lifting Transforms
	Lifting Transforms on Graphs
	Directional Transforms
	Directional Transforms for Sparse Image Representation
	Directional Transforms for Sparse Video Representation

	Lifting Transforms on Graphs
	Graph construction
	Graph-Based Representation of a Generic Signal
	Graph Weighting
	Discussion

	Graph-Based U/P Assignment Methods
	Some ``Classical'' Graph-Partition Problems
	U/P Assignment Methods for Lifting Transforms on Graphs
	Proposed Splitting Solution for a Coding Application

	Signal Model-Based U/P Assignment Methods
	Proposed U/P Assignment Problem Formulation
	Noisy Model (NM)
	Moving Average Model (MA)
	Spatio-Temporal Model (STM)
	Discussion

	Filter Design
	Prediction Filter Design
	Update Filter Design
	Discussion

	Summary of the Properties of the Transform
	Conclusions

	Video Coding Application
	Graph-Based Transform for Video Coding
	Graph Construction
	U/P Assignment and Filter Design
	Extending the Transform to Multiple Levels of Decomposition
	Experimental Results
	Performance in Uncovered Areas

	Towards a Complete Encoder
	Coefficient Reordering
	Optimal Weighting Vs. Fixed Weighting
	Encoder and Decoder Data Flow
	Low Complexity Approach
	Experimental Results

	Rate-Distortion Graph Optimization
	RDO for Lifting Transforms on Graphs
	Distortion Model
	Rate Model
	Lambda Calculation
	Optimization Process
	Discussion

	Conclusions

	Conclusions and Future Work
	Conclusions
	Future Work

	Greedy Algorithm for the SCU/SCP
	Additional Proofs
	Proof of Proposition 3.2
	Proof of Proposition 3.3

	Optimal Weighting for a Given Graph and U/P Assignment
	Optimal Weighting for Video Given an U/P Assignment
	Optimal Weighting for F Kinds of Links Given an U/P Assignment

	Bibliography

