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LIFTINGS OF SOME TYPES OF TENSOR FIELDS
AND CONNECTIONS TO TANGENT BUNDLES

OF p’-VELOCITIES
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§ Introduction.

In the previous paper [6], we studied the liftings of tensor fields to
tangent bundles of higher order. The purpose of the present paper is to
generalize the results of [6] to the tangent bundles rY?M of p"-velocities in a
manifold M
explain the p’-velocities in a manifold and define the (1)-lifting of different-

notions due to C. Ehresmann [1] (see also [2]). In §1, we

iable functions for any multi-index i = (4;, 4, + * *, 4,) of non-negative integers
2; satisfying >4, <. In §2, we construct (-lifts of any vector fields and
(N-tifts of 1-forms. The (D-lift is a little bit different from the (2)-lift of
vector fields in [6].

In §83, we construct (4)-lifting of (0, g)-tensor fields and then (2)-lifting
of (1, g)-tensor fields to rT’iM for g==1. Unfortunately, the author could not
construct a natural lifting of (s, g)-tensor fields to 1?IPM for s=2.

Nevertheless, our (2)-liftings of (s, g)-tensor fields for s =0 or 1 are quite
sufficient for the geometric applications, because the important tensor fields
with which we encounter so far in differential geometry seem to be, fortu-
nately, only of type (s,q) with s =0 or 1.

As an application, we shall consider in §4, the prolongations of almost
complex structures and prove that if Mis a (homogeneous) complex manifold,
then 7'M is also a (homogeneous) complex manifold.

In §5, we consider the liftings of affine connections to TM and prove
that if M is locally affine symmetric then "M is also locally affine symmetric
with respect to the lifted affine connection.

In §6, we shall give a proof for the fact that if M is an affine sym-

. y’p . -
metric space then TM is also an affine symmetric space.
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In this paper, all manifolds and mappings (functions) are assumed to
be differentiable of class C*, unless otherwise stated.

We shall fix two positive integers » and p throughout the paper.

§1. Tangent bundles of p"-velocities.

Consider the algebra C=(R?) of all C™-functions on the p-dimensional
euclidean space R? with natural coordinates (¢,,%,, + - +,¢,). For any p-tuple
v = (v, s * + *,v,) Of non-negative integers »; we denote as usual by (3/6¢)"
the following partial differentiation

a v _ au]+...+v,,f
(L.1) ( ot f= oty - -atL

for feC*(R?). We define |v| and »! as follows:
Il =+ o e Ay =0l pte el

We denote by N(p,r) the set of all p-tuples » = (v, *++,»,) of non-
negative integers v, such that [v]=<<r. The set N(p,r) is a subset of the
additive group Z? of all p-tuples of integers.

Take two elements f,geC"(R?). We say f is r-equivalent to g if
8oty f = (8]at)’g at t = (¢, + + +,t,) =0 for every veN(p,r) and denote it by
f~yg. Clearly ~ is an equivalence relation in C=(R?).

! Now, let Mrbe an n-dimensional manifold. Consider the set S, (M) of
all maps ¢: R? > M. Take two elements ¢,¢9=S,(M). We say that ¢ is
r-equivalent to ¢ if fop~fo¢ for every feC*(M) and denote it by o~¢.
The relation ~ is also an equivalence relation in S,(M). We denoterby
TM the set of all equivalence classes in S,(M) with respect to the equival-
ence relation ~. We denote by [¢], the equivalence class containing
o=S,(M), and Vrve shall call it a p"-velocity in M at ¢(0). To introduce the
manifold structure in rng’ we define local coordinate system on M as fol-
lows: Take a coordinate neighborhood U in M with coordinate system
{xl,?cz, «-+,2,}. Define the coordinate functions {z¢|{ =1, « » -, n; vEN(p,7)}
on TU by
1.2) 20(0e)) = [ () @eoe) |,
for [(p],er??U (cf. (1.1)). It is straightforward to see that VY?M becomes a

manifold by the above coordinate systems {x{"}. The projection % defined
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by rz'rq([go],) = ¢(0) for =S, (M) is clearly a differentiable map of r’:l?‘)M onto M.

Dermvrion 1.1, The differentiable manifold 7M with projection T will
be called the tangent bundle of p"-velocities in M.

DermviTiON 1.2, For any feC=(M), we define the (2)-lift f® of f, for
every 1= N(p,r), as follows:

(1.3) 79091 = - [ () o wr],

for [go],er'YeM. Clearly, f® is a well-defined differentiable function on rf’[I‘)M.
We note also that (x,)* = 2% holds on 7'72‘)U for the above coordinate system
{2y« 00,2}

For the sake of convenience we define f® =0 for any 1=Z? such that
AEN(p, ).

Lemma 1.3, The (2)-lifting f— f® is a linear map of C*(M) into
C”(Y’FM) and satisfies the following equality

(1.4) (fog)® = 30 f@. gt

nezZr

for every f,g=C*(M) and ieN(p,7r).
Proof. Straightforward verification similar to the one of Lemma 1.2 [6].

§2. Liftings of vector fields and 1-forms.

Let 9 (M)=2X9 M) be, as in [6], the tensor algebra of all tensor
fields on M.

Lemma 2.1, For any X 9 (M) and any A€ N(p,r) there exists one and
only one X*e 3(77'?M) satisfying the following equality

(2.1) X< W = (X f)e-D
Jor every feC(M) and peN(p,7).

Progf. Take a coordinate neighborhood U in M with coordinate system
{x, - -,z,} and let X = >g;-8/62; (a,eC(U)
in U. Consider the vector field X=X, on (

be the local expression of X
V) defined by

)
7,
T
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J

(2.2) X= ) a(j"")w .

”
“HeN(,7) j=

1
We see that X(z§) = a¥® = (Xz)*? for j=1,2,++,n; peN(p,7). Now,
making use of same arguments as in the proof of Lemma 1.4 [6], we can
prove that X(f®) = (Xf)*-? for every feC*(U) and p=N(p,7r). We can also
prove that if U’ is a coordinate neighborhood in M such that UnU’ = U"'+¢,
then X;|U" = X;,|U’ holds. Thus we obtain a vector field X<> on M
such that X <"l(r;r?)“(U) = Xy for every coordinate neighborhood U in M.
This vecotr field X<*> clearly satisfies the condition (2.1) for every feC*(M)
and gN(p,r). The uniqueness of X<*> is also easily verified. Q.E.D.

CoROLLARY 2.2, Let {2, +++,2,} be a local coordinate system on a neigh-
borhood U in M. Then, we have

(2.3) < P ><z>~ 3

- 1
0, ax'd

Sor every i =1,-++,n and 2&N(p,7).

Proof. Clear from the expression (2.2) of X<*> in (r%p)‘l(U).

CoroOLLARY 2.3. Notations being as in Corollary 2.2, we have

.0 (L) = 21

0%, oxin

Jor every i =1, +,n and 2, p=N(p,7).

Proof. By Corollary 2.2, we have

><ﬂ>fm - (a—f (I—P). Q,E,D.

0%,

of® _ (8
oz —(axi

DerniTion 2.4, The vector field X<* in Lemma 2.1 will be called the

<D-bft of X to y?z"M Jor 2&N(p,r). For the sake of convenience, we define
X< =0 for every 2&€Z? such that 2&N(p,7). The (D-lifting X—>X* is a
linear map of Z7}(M) into 7~ 5(7?M) for every ieZz?.

Lemma 2.5, For X, Ye 7 }(M), we have
(2.5) (X<, Y] = [X, Y4+
jbr eve?.y 2’ #EN(p; r)-
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Proof. Assume 2+ peN(p,r). Then, for any geC*(M) and v=N(p,7)
we have
[X<2>’ Y<y>] (g(u)) — X<1>y<p>g(v) . Y<p>X<z>g(v)
= X (Yg)* — Y (Xg)t~»
= X(Yg)tmm — Y<(Xg)omn
= (XYg—YXg)v=*n = ([X,Y]g)0~*»
=[X,Y]#+*>gw,
Since g=C*(M) and v=N(p,r) are arbitrary we get (2.5) if 2+ p=N(p, 7).
Assume 1+ pEN(p,7), then by our convention, we have [X, Y] = 0.
On the other hand, for any g=C*(M) and v=N(p,r) we have, by the same
calculation as above,
[X<*, V¥ ]9 = (XY g)¢+~b — (YXg)»™» = 0, since »— p— 2& N(p,7).
Thus (2,5) is verified in any case. Q.E.D.

Lemma 2.6, For Xe 7~ 4y(M) and fe 7 (M), we have
(2.6) (fX)¥ = 3 f.x<>

vEN(,7)

Jor every 2= N(p, 7).
Proof. For any ge. 7 }(M) and p=N(p,r), we have

(fX)*g® = (fX-9)*D = (f+ Xg)*=»
= 31 fO . (Xg)#-1n = 3T f& .X<1+v>g(;‘)

vezr
= (D fOXI)gw,

Since g and g are arbitrary, we get (2.6) for every i€N(p,7). Q.E.D.

Remark 2.7. By our convention (cf. Def. 1.2) we can write (2.6) as
follows:

(2. 7) (f. X)d) = 2 f(y)X<l+v>.

yveZzZr

LemMmaA 2.8. Let f,,g,C(M) (i =1,++-,k) be such that 3¢, df, =0 on
M. Then the following equality

k
(2.8) 2

T

N g(}‘)df(ii‘ﬂ) =0
1 nezr ¢
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holds on 3‘5\4.}’07 every A€ N(p, 7).

Progf. Similar to the proof of Lemma 2.1 [6]. Q.E.D.

Lemma 2.9.  There is one and only ome lifting L;: 7 (M)~ 9(7'?M) Sor
every 2= N(p,r) satisfying the jfollowing condition:

(2.9) Ly(f-dg) = AeEpr‘”)dg““”’
Sor every f,9€ 7 {(M).
Proof. Similar to the proof of Lemma 2.2 [6].
Lemma 2.10. For fe 9 )M) and 0 9 Y(M), we have
(2.10) ()W = , Ezz}p F® . gamm
Jor every A= N(p,r).
Proof. Similar to the proof of Corollary 2.4 [6].

Lemma 2.11. For 9= 7 YM) and X= 7 {(M), we have
(2.11) G (XH) = (9(X))3="
Sor every 2, p= Nip, 7).

Proof. Let 6 =3 f,dx, be the local expression of 4. Making use of
Lemma 2.1, we calculate as follows:

OD(X <) = (2] frd 2 )P (X")
= ;yé‘zpf P dx¢ T (XH)
= 33 fOX ) = 313 [ X)) 68
= Z‘} %’ S(dxy (X))
= 21 (fi+dzy (X)) = (0(X))¢", Q.E.D.
§3. Lifting of (1,¢)-tensor fields.
Let (M) be the subalgebra of & (M) consisting of all covariant

tensor fields on M. We denote by %M the m(r,p) times direct sum of
%(TM), where m(r,p) denotes the number of elements in N(p,7). i.e.

https://doi.org/10.1017/50027763000013830 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000013830

TENSOR FIELDS AND CONNECTIONS 19

», D © 7D

FTHM) = 3 3 (T (TM),

q=0 AeN(p, r)

v, P P

where (7 YTM));, = 7~ YTM) for all 2 N(p,7).
Take two elements ¢ =(¢") and 5= (") in %(M). We define the
multiplication §®z7 of # and 7 by the following:

(3.1) @) = ) 2 R

,A—pne N(p, v)

for 2= N(p,r). We can readily see that %(M) is an associative graded
algebra over C‘”(TTZ}W) by this multiplication &.

», P

We have defined, in Lemma 2.9, the lifting L, of &7 4M) into &7 {(TM)

for 2=N(p,»). Define L: 7’?(M)—+%(TM) by L(6) = (Li0)entp.»n for
o=TI(M).

LemMA 3.1, There exists one and only one homomorphism L: T (M) —>%(M}
such that L| 7 3(M) = L.

Proof. Define L°: (T UM = Fo(M) by

Lq(oly . 'yaq) = L(al) ®- - - ® L(eq)

for 6, 97 M) i =1,2,--+,q. Then, L is a multilinear map satisfying the
following condition:

Lq(flau ¢ '9fq0q) = L(fl' ¢ 'fq)®Lq(01’ ¢ ',012)

for 9, M) and f,e T M) i=1,--+,q, from which we conclude that
there is a linear map L? of %g YM) into (M) such that

L, @ - @) = Lb) @ - - L(6)

for g, 7 YM), i=1, -+, q Thus L%g=0) define a homomorphism
L: F5M)-> M) such that L(g) = L(6) for 6.7~ (M). Q.E.D.

DeriniTiON 3.2, For Ke 97 Y(M) we denote by K® the i-component
of L(K) for 2eN(p,r), i.e.

L(K) = (K®),

We shall call K% the ()-lift of K. For the sake of convenience we put
K®» =0 for 2€Z? such that A€ N(p,7).
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LemMmaA 3.3, The notation % being as in Lemma 3.7 [6), for any K& 7 }(M)
and Xe 7 YM), we have

(3.2) 0.'7;(<Z> K® = (a’ij)(l"'l)
Jor 2, peN(p,7).

Proof. Using Lemma 2.11, we can prove the lemma in the same way
as the one of Lemma 3.7 [6].

COROLLARY 3.4, For Ke 77 YM) and X,€ 7 YM) i =1, +,q, we have
KO(X5#2, « o o, X§#) = (K(Xy, » » +, X))0-%40
Jor every 2, p4,€N(p,7), i =1,+++,q.
Proof. We use Lemma 3.3 g-times. Q.E.D.

LemmA 3.5. For any Ke 9 YM) and ve N(p, r), there is a unique

7, P

K= K»we g YTM) such that
(3-3) K(Xfxps .t '9X;2q>) = (K<X1’ ° '1Xq))<x+v>
Jor every X, 7 4M) and 3, EN(p,r), where 2= 3312;.

7D

Proof. Define L, : 7 {M) x T YM) = 7 LTM) by the following
{3.4) L(X,T) = Ez X<#> QT
neL?

for Xe 774M) and Te 7 YM). It is clear that L is a bilinear map over
R. We now assert that the following

(3.5) L(fX,T) = L(X, fT)

holds for every Xe 77i(M), Te 7 §M) and fe 7 {(M). For, making use
of Remark 2.7 and Lemma 3.1, we calculate as follows:

L(fX,T) = %J (fXy> QT®
= 2 ; f(l)X<2+!‘+"> ® T®
n
= 2 ,12 f(l"f"'»)X<1'> ® T
vy
— }2 Exqb ® f(z'—ll-u)T(/‘)
fn
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= X @ (FT)
= ;X“"”(@ (f® = L(X, fT),
which proves our assertion. Thus, we obtain a linear map L, of .77 }{M)
into % HTM) such that
LX®T)= 2} X QT®
nezr
for Xe g {(M) and Te g yM). Put K=L(K). It is now sufficient to

prove (3.3) for K=X®T with Xe 77 YM) and Te 7 {M). Using Corol-
lary 3.4 and Lemma 2.6, we can calculate as follows:

B(X02, oo o X3?) = %T(ﬂ)(X?xP’ e XEO) X
= 4:_‘; (T(Xy » + vy X)) e Xk

= ﬂZ (T(Xy, -+ +, X)) 0 X <travt>

= (T(X,, + + 5 X)) X)*0 = (K(Xy, =+, X)),

The uniqueness of K is clear, since (3.3) holds for every X, g {(M) and
LEN(p, 7). Q.E.D.

DeriniTION 3.6, For Ke g7 (M) and ve N(p,r), we denote K in
Lemma 3.5 by K = K and call it the ()-lift of K, i.e.

(3.6) KX, o« X3P) = (K(Xy, + + =, X))

for X,e 9 {(M), »,=N(p,r), where 2=312. We call K© the complete lift
of K to 3‘1.,M

LemMMA 3.7. For Ke 77N M) (g=1) and X= 7 §(M), we have
3.7 alyas KO = (@b K)@+D

Jor k=<q and 2, p=N(p,7).

Proof. It suffices to prove (3.7) for K=Y @ T with Ye 7 {(M), Te 7 }M).
Using Lemma 3.3, we calculate as follows:

ab<>K* = I TITDAD aidind ®T®
v

= Z Y<v+#> @ a’fg<1>T(“)
¥
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= Y @ (25T

= 2 Y<w+1+/,«> ® (a’%T) o
= (Y ® aiT)*** = (o K)O+® Q.E.D.

CoroLLARY 3.8. We have
a<o>K® = (a5 K)®
Sor every Xe 774 (M), Ke 7 {M) and ps=N(p,r).
§4. Prolongations of almost complex structures.

Lemma 4.1, For any A,Be 9 (M), we have
(4.1) (Ao B)® = A® o B®,

Let Iye 9 YM) be the (1,1)-tensor field of identity transformations of tangent
spaces to M. Then, we have

4.2 (Ip®™ =1,,,
™

Proof. Making use of (3.6), we have, for any Xe 7 (M),
AW o BO(X>) = A®(BO(X<))
= AO((B(X))*) = (ABX)**>
= ((Ae B)X)*> = (Ao B)"(X*?)
for every 2&N(p,7r). Therefore we get (4.1).

To prove (4.2), let Iy = 3\(d/ox;) @dx, be the local expression of Iy,
where {z,;, -+ +,2,} 15 a local coordinate system. Then, we have

]

(IM)(O) 12( 9 <p>®(d£¥7¢)(#)

a\0%;

0
= Do ®deP =L,

which proves (4.2).

COROLLARY 4.2. For any polynomial P(z) of one variable x with real coeffi-
cients and for any A€ 77 (M), we have

(4.3) (P(A))@ = P(AD).
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Proof. Use (4.1) and (4.2) repeatedly. Q.E.D.

TueoreM 4.3. Let J be an almost complex structure on M with its Nijenhuis
7P .. .
tensor N;.  Then, the bundle TM of p"-velocities in M has an almost complex
structure J© with its Nijenhuis tensor (N;)©.

THEOREM 4.4, If a manifold M is a complex manifold with almost complex

. r’p a e . .
structure J, so is the bundle TM of p"-velocities in M with almost complex structure

Jo,

§5. Lifting of affine connections.

Let V be the covariant differentiation defined by an afline connection
of M.

. . 7.7
THEOREM 5.1.  There exists one and only one affine connection of TM whose
covariant differentiation ¥ satisfies the following condition :

(5. 1) VX<1>Y<,&> = (VXY)<1+/I>
Jor every X, Y= 7 {M) and 2, p=N(p,7).

Progf. Take a coordinate neighborhood U with coordinate system
{@y, «++,2,} and let I'"¥; be the connection components of V with respect to
{xly i ‘,x“}, Le.

o _svpe. O
6.2) Vaaxt oz, ka” oy,

for i,j=1,---,n. Let I'’t be the connection components of V with respect
to another coordinate system {y,, ++-,%,} on U. Then, we have the fol-
lowing equalities:

' 02, 0%, 0Yr ja _ 0%y 0Ys
(5.3) FIJ a%(: ayz axj axa Fbc + 2 ayiay,- axa,

for i,7,k=1,2,---,n. (cf. for instance [3] p. 27). Let {2|i=1,-++,n;
7, P

vEN(p,7)} (resp. {y’}) be the induced coordinate system on (z)"'(U).
Define
54 T8 = L8070

for i,7,k=1,2,-++,n; 4 p,veEN(p,r). We can now prove that there exists
a connection V whose connection components with respect to {2} are given
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For, we can verify (5.5) [6] for A, #,v=N(p,7) in the same way as

by (5.4).
the proof of (5.5) [6], since we can use the equalities

af(l) =< af )(2"!-‘)

dxlo e

for every A, z=N(p,r) and feC*(U) (cf. Cor. 2.3).
Next, we shall verify the following
(5.5) Ve X507 = (Vg X,y 04>
for every i,j=1,++-n and 1, pxsN(p,r), where we have put X, =-£6—.
(3

Making use of Lemma 2.6 we calculate as follows:

. . 9 ~ E
T X3 =9, ( = STED =
3 J ax(jp) i C2), (Jo) OIXI}C”

7]
dagr>

e a a <Agpdy>
= k) (v=i~K) = BN __9
Sl = S (5a )

v,k

— k. 0 s — N<A+p>
=(Br2) = e Xy,

Now, we shall verify
_ (vain)<l+/4>

(5.6) V(f.xi)<x>X§">
for fec), i,j=1,-++,n and i, p=N(p,r).

For, the left hand side of (5.6) is equal to
sz(v)X§2+y>X§”> = 2 f(")vxganjf”
= f(»)(vxixj)<z+u+#> =(f- VXin)““‘) — (VinXj)<“">,

_ 0
Y= 55, and for every

which proves (5.6). Thus (5.1) is proved for

Xe 7 y(M).
Finally, we shall verify (5.1) for ¥ = X} £,X,€ 7 }(M) as follows:
Vr<rs (3 £, X)) = Tyer> 2_} FPX5H
= ]Zy (FPOVx< X34 4+ X f9 . X5}
= /Zu} {FOVLX )@ 4 (Xf oy}

)<1+lt>}

= 2 {(fs Vx X+ + (X f+ X

7

= (Vx(Z F X))
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The uniqueness of V is clear, since (5.1) holds for every X,Ye 7 }(M) and
2 rEN(p, 7). Q.E.D.

DeriniTiOoN 5.2, We denote V in Theorem 5.1 by V =V and call it
the complete lift of V to ™.

ProposiTiON 5.3. Let T, B be the torsion and the curvature tensor field of
V=". Then we have
(6.7) T=T® gnd R = R,
where TO and R are the complete lift of T and R (c¢f. Def. 3.6).

Proof. Using the relation (3.6), we calculate as follows:
T(o)(X<x>, Y<,u>) — (T(X, Y)><Z+;z>
= (VoY — VpX — [X, Y]<*
— VX<1> y<e> — vy<p>X<1> . [X<1>’ Y<p>] — T(X<1>’ Y<;:>)

for every X,Ye 7 4M) and i, #=N(p,r), which proves T® = T.
Similarly, we have:

R(")(X“), Y“”)Z(”) = (R(X, Y)Z)<“"+”>
= (VvaZ - VYsz - V[X,y]Z)d“H'p)
= Vx> Vyew> 27 — Vypaps Vs 7> — V[X<z>,y<,1>]Z<">

= R‘B’(X<1>, Y<y>)z<v>

for every X, Y, Ze 7 {M) and 2, g, vEN(p,7), which proves R® = R.

Q.E.D.
ProrosiTioN 5.4. For any Ke 9 (M) (s =0 or 1) and X 7 }(M), we
have
(5.8) vx<°>K(p) = (VxK)",
5.9 VK® = (VK)®

Sor every peN(p,r).

Proof. 1t is sufficient to prove (5.8) for K=Y ®7T, where Ye 7 {(M),
Te 9 YM). Now, since K® = 1Y+ QT and since Vgz<> Is a deriva-
tion of ‘%g (TM), it suffices to verify (5.8) in the special cases, where
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K= fe g M) and K=Y 9 }M) and K == 7 }(M).
If K= f, then we have

Vy<os f® = X0 f0) = (X)) = (Vy f),
If K=Y, then we have
Vy<osY < = (VoY) = (VzY)®,
If K=, then we have, for p,»eN(p,r) and Y 7 M)
(§ <8P <> = Fy<0s(0PY ) — 4O (T g<0>Y <)
= Vz<ox(0(Y))*™ — 0¥((VY))*)

= (Vx0(Y)¥ — (6(VY)*
= ((VxY)¥) = (V20)(Y <),

and hence we get Vy<o>6® = (V8)®,
To prove (5.9), using Corollary 3.8, we calculate as follows

ax<>VEK® = Vgcos K® = (VzK)* = (ax(VK))® = ax<o>(VK)®,

Since (X<),(Xe 7 }(M)) spans the tangent space to 1;_1‘7,]\4 at [go],e%M, we
conclude that (5.9) holds. Q.E.D.
Combining Proposition 5.3 and 5.4 we have proved the following

THEOREM 5.5. Let T and R be the torsion and the curavture tensor field of
an affine connection V of M. According as T=0, T=0, R=0 or VR =0, we
P 7P . . .
have T = 0, Vo = 0, R® =0 or VR® = 0. In particular, if M is affine locally

. . . P . 7P
Symmelric with respect to V, so is TM with respect to V.

§6. Affine symmetric spaces.
Let : M— N be a map of a manifold M into another manifold N.
Then, the map ¢ induces a map 7o of TM into TN as follows:

6.1) (T0) [¢1,) = [@ o ¢,

for [«p]reyfl?M. The map erq) is a well-defined differentiable map, which will
be called the (r,p)-tangent to @. It is clear that if ¢ is a diffeomorphism

7D
then 7@ is also a diffeomorphism.
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Lemma 6,1, For any fC*(N), we have

6.2) F®TO = (f o )®

Jor every pe=N(p,r).

Proof. Take a point [(p],eyfI’:M. Then we have

(F® o T0) (1) = FO[P 0 p],) = % |(G) oloo ‘P»L,

=L [(F)wreaen] = Feome. Q.ED.

at t=0

Lemma 6.2, Let ®: M— N be a diffeomorphism of M onto N. Then for
any X 7 {M) we have

6.3) TT O(X%) = (TOX)

Jor every 2 N(p, ).

Progf. Take a function feC™(N). Then, by making use of Lemma 6.1
and 2.1, we have, for any geN(p,r):

TV‘YEQ(X<Z>)f(p) — X<I>(f("> orj""@) - X<1>(fo @)(p)
= (X(f o @)D = (TOX)f)*™D = (TOX)* f®.

Since feC*(N) and peN(p,7) are arbitrary, we get (6.3). Q.E.D.

LEMMA 6.3. Let V (resp. V') be an affine connection on M (resp. N) and let
@ : M— N be a diffeomorphism transforming V onto V', i.e. we have

TONxY) = VigexTOY
Jor X,Ye 7 {M). Then the map 1"7% transforms er onto rv’i.
Proof. Put @ = TTo. Tt suffices to verify
6.4) Vx> Y = Vg x> @Y

for every X,Ye 7 §{(M) and 1, n=N(p,r). Now, by making use of Theorem
5.1 and Lemma 6.2, we see the left hand side of (6.7) is equal to
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Trj]: q)(VXY)d FH> (T¢(VXY”<1+#>

7,

, D r, D
= (VroxTOY)'* = Vigox<>(TOY )" = Vx> Y >,
Q.E.D.

Lemma 6.4, Take a point x,&€M and let @ be a diffeomorphism of M onto
itself such that ®(x) = x, and that T, 0 = — lr, u Consider the constant map 7.,
of R? into M defined by 7,,(u) = x, for usR?. Put &,=1[7,1,. Then, we have
(To) (z,) = %, and that

(6°5) T:T® = — 1r (.
o

Proof. Take an element [go]leTgo(r;!gM), where ¢ : R—)rT’iM with ¢(0) = %,.
Making use of the same arguments as in the proof of Lemma 1.1 [5], we
can find a differentiable map ¢ : R?*' > M such that ¢(¢) =[¢,], for small
t, where we have put ¢.(u) = ¢(¢,u) for teR and u=sR?. Put ¢*(¢t) = ¢(t,u).
Then, since ¢(0) = [¢,], = &, = [I,,J, we can assume that ¢(0,4) = z, for small
uc R? (cf. the expression of (§) in the proof of Lemma 1.1 [5]). Take a
coordinate neighborhood U of %, with coordinate system {z, ---,2,}. Put
%, =2 for i =1,+++,n and veN(p,r). Then {z,,.} is a coordinate system
around %, We have to prove Trj"pd)([go]l) = —[¢],, le. to prove [r'%qiogo]l=
~[¢l,. To prove this, it suffices to prove the following

(6.6) (@ JOC T 0 01) = — (24, )0(00],)

for i =1,2,+--,n and v=N(p,7).
Since (YTPQ o)) =?F¢(go(t)) =7T7;D([¢’c]r) =[@o¢,],, we calculate as follows:

(xi,v><l><[%ogo]l>=[a%<xi,uo?fp¢w>l=o=[a" w0090 ],
sl (G weeoegd] |

Lo (G )qu )L,

( ) (G stowmen] )],

Now, making use of our assumption 7,0 = — Ly, and the fact that ¢*(0)=
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&0, u) = z, for small x=R?, we have
-2~ xﬂ@(w(t»)]ho = a0 0 $*1) = «P(TO[¢"])
= =0 = =[G ne ]
Therefore, we can continue the above calculation as follows:
@00 To o) =~ (50 (Fr=emw] )L,

ks (K e ga ], = = @O0,

which proves (6.6). Q.E.D.

CoROLLARY 6.5. Let M be an affine symmetric space with affine connection V.
Let @ : M—~M be the affine symmetry at a point z,=M. Then the (r,p)-tangent

.o . ne . . T )
T® to @ is also the affine symmetry of TM with affitne connection V at the point %,.

. - . r'p r'p . .
Proof. Since @ leaves V invariant, 7¢ also leaves V invariant by Lem-

ma 6.3. Next, since ¢ is an affine symmetry we see that T,@ = — 1y, .
¥, D

Thus, by Lemma 6.4, we get (6.5), which means that 7¢ is the affine

symmetry at Z,. Q.E.D.

LemmA 6.6.  Let V be an affine connection on a manifold M, and let X 7 {(M)
be an infinitesimal affine transofrmation of V. Then, the <D-lift X*> of X s also

. . . . - P 7P
an infinitesimal affine transformation of V=V on TM for every i< N{p,r).

Proof. A necessary and sufficient condition for X to be an infinitesimal
affine transformation of M is that

o Vr—Vyo = V[X.Y]

for every Ye 77 {(M), where &% denotes the Lie derivation with respect to
X. Therefore, we have to prove the following

(6-7) _%'<1> ° V{; K— V{, o GGxK = V[x<1>,{;]K
for every Ke. 5 (TM) and Ye g~ 5(7?M). To prove (6.7) it suffices to prove
(6.7) for the special cases, where ¥ = Y=< with Ye g 4(M), peN(p,r) and

K=2Z or » with Ze 77 }{(M), 0.9 (M) and v=N(p,r). Moreover, to
prove (6.7) for the case K=6% with 6= 7 }(M), it suffices to prove (6.7)
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for ¢ = df with fe 77 {(M).
If K= 27>, then we calculate as follows:
Ga<tsVyws 2 — Vy<w» Fgers 2>
= [X, (Vo2)] — Ty X, 2]
= [X, VpZ > — (Vo[ X, Z]) 4>
= (X, VyZ]— V[ X, ZDH*"> = (G o Ve)Z — (Vy o GR)Z)He+>
= (Viz,.iZ) 4 = Vig<as p<u>) 257,

which proves 6.7) for K= Z<".

To prove (6.7) for the case K=df» with fe 7 §(M), we first note
that the following equalities hold:

(6.8) (ZAOT) = X(6(Y)) — 0(X,Y])
(6.9) (Vx(dNY) = XY f — (VxY)f

for X,Ye 7 {(M), fe 9 M) and 9= 7 UM).
Take a vector field Ze 774(M) and peN(p,r). Making use of (6.8),
6.9, Lemma 2.5 and (5.1), we calculate as follows:

{ F<r>(Vran>(d fO) — Vy<n> Fas(d fO)) HZ )

= X ((Vy<r(d fONZP)) — Vywsd fOUX P, Z<07])
— (Vyawrd(X*> fO))(Z <)

= XY #2207 fO — (Vyu>Z <*7) f)
—~{Y X, Z971fO — (Vyaw[X P, Z°77]) fO)
Y ZO XD O — (Vyens Z) X fO)

=[X{YZf — (Vx2)f} =YX, Z1f — (V[ X, Z1f — (V+[X, Z]) f}
—{YZXf — (Ve Z)X f}J0HD

= U AVydf) — Vy.SEd F)HZ)J 0D

= (V@ )@NC™0 = (X, YIZf — (Vip.nnZ) f)e7#0

= [X, Y120 f0) — (Vizers, pens1Z 0) fO

= (Vix<i>,peuryd fONZ ),

which proves (6.7) for K=df®, since Ze 7 {M) and p=N(p,r) are

arbitrary. Thus (6.7) holds for any K and Y. Q.E.D.
From Lemma 6.6 we obtain
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ProrosiTION 6.7. If the group of affine transformations of M with V 1is
.. . 7D . 7P
transitive on M, then the group of affine transformations of TM with respect to V
. ., r’p
s transife on TM.

From Proposition 6.7 and Corollary 6.5 we obtain the following

. . . . », D
TueorREM 6.8. If M is an affine symmetric space with connection V, then TM

. . . . onp
is also an affine symmetric space with connection V .

§7. Remarks.

Let P(M,z,G) be a principal fibre bundle with base M, projection =
and structure group G. We shall be able to prove that TP (Y7?M, rﬁr, YTPG)
becomes canonically a principal fibre bundle with structure group ,%?G’
which is a Lie group by the natural group multiplication. Let w be a
connection form on P. Then by the same methods as in [5], we can con-
struct the prolongation «"'” of o to TP If P= F(M) is the frame bundle
of M then a linear connection on M will induce a linear connection on 7M
by the above procedure. We shall investigate the relationships between this
procedure and the liftings of affine connections in §5 in a forthcoming
paper, where we shall also study the prolongations of G-structures to the
tangent bundles of p”-velocities, which will generalize the results in [4].
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