LIFTINGS OF SOME TYPES OF TENSOR FIELDS AND CONNECTIONS TO TANGENT BUNDLES OF p'-VELOCITIES

AKIHIKO MORIMOTO

§ Introduction.

In the previous paper [6], we studied the liftings of tensor fields to tangent bundles of higher order. The purpose of the present paper is to generalize the results of [6] to the tangent bundles TM of p^r -velocities in a manifold M—notions due to C. Ehresmann [1] (see also [2]). In § 1, we explain the p^r -velocities in a manifold and define the (λ) -lifting of differentiable functions for any multi-index $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_p)$ of non-negative integers λ_i satisfying $\sum \lambda_i \leq r$. In § 2, we construct $\langle \lambda \rangle$ -lifts of any vector fields and (λ) -lifts of 1-forms. The $\langle \lambda \rangle$ -lift is a little bit different from the (λ) -lift of vector fields in [6].

In § 3, we construct (λ) -lifting of (0,q)-tensor fields and then (λ) -lifting of (1,q)-tensor fields to TM for $q \ge 1$. Unfortunately, the author could not construct a natural lifting of (s,q)-tensor fields to TM for $s \ge 2$.

Nevertheless, our (λ)-liftings of (s,q)-tensor fields for s=0 or 1 are quite sufficient for the geometric applications, because the important tensor fields with which we encounter so far in differential geometry seem to be, fortunately, only of type (s,q) with s=0 or 1.

As an application, we shall consider in §4, the prolongations of almost complex structures and prove that if M is a (homogeneous) complex manifold, then TM is also a (homogeneous) complex manifold.

In § 5, we consider the liftings of affine connections to TM and prove that if M is locally affine symmetric then TM is also locally affine symmetric with respect to the lifted affine connection.

In § 6, we shall give a proof for the fact that if M is an affine symmetric space then TM is also an affine symmetric space.

Received June 17, 1969.

In this paper, all manifolds and mappings (functions) are assumed to be differentiable of class C^{∞} , unless otherwise stated.

We shall fix two positive integers r and p throughout the paper.

§ 1. Tangent bundles of p^r -velocities.

Consider the algebra $C^{\infty}(R^p)$ of all C^{∞} -functions on the *p*-dimensional euclidean space R^p with natural coordinates (t_1, t_2, \dots, t_p) . For any *p*-tuple $\nu = (\nu_1, \nu_2, \dots, \nu_p)$ of non-negative integers ν_f we denote as usual by $(\partial/\partial t)^p$ the following partial differentiation

$$\left(\frac{\partial}{\partial t}\right)^{\nu} f = \frac{\partial^{\nu_1 + \dots + \nu_p} f}{\partial t_1^{\nu_1} \cdots \partial t_p^{\nu_p}}$$

for $f \in C^{\infty}(\mathbb{R}^p)$. We define $|\nu|$ and $\nu!$ as follows:

$$|\nu| = \nu_1 + \cdots + \nu_p, \ \nu! = \nu_1! \ \nu_2! \cdots \nu_p!.$$

We denote by N(p,r) the set of all p-tuples $\nu = (\nu_1, \dots, \nu_p)$ of non-negative integers ν_i such that $|\nu| \leq r$. The set N(p,r) is a subset of the additive group Z^p of all p-tuples of integers.

Take two elements $f, g \in C^{\infty}(\mathbb{R}^p)$. We say f is r-equivalent to g if $(\partial/\partial t)^{\nu} f = (\partial/\partial t)^{\nu} g$ at $t = (t_1, \dots, t_p) = 0$ for every $\nu \in N(p, r)$ and denote it by $f \sim g$. Clearly \sim is an equivalence relation in $C^{\infty}(\mathbb{R}^p)$.

Now, let M be an n-dimensional manifold. Consider the set $S_p(M)$ of all maps $\varphi \colon R^p \to M$. Take two elements $\varphi, \psi \in S_p(M)$. We say that φ is r-equivalent to ψ if $f \circ \varphi \sim f \circ \psi$ for every $f \in C^*(M)$ and denote it by $\varphi \sim \psi$. The relation \sim is also an equivalence relation in $S_p(M)$. We denote by TM the set of all equivalence classes in $S_p(M)$ with respect to the equivalence relation \sim . We denote by $[\varphi]_r$ the equivalence class containing $\varphi \in S_p(M)$, and we shall call it a p^r -velocity in M at $\varphi(0)$. To introduce the manifold structure in TM, we define local coordinate system on TM as follows: Take a coordinate neighborhood U in M with coordinate system $\{x_1, x_2, \dots, x_n\}$. Define the coordinate functions $\{x_i^{(\nu)} | i = 1, \dots, n; \nu \in N(p, r)\}$ on TU by

$$(1.2) x_i^{(\nu)}(\llbracket \varphi \rrbracket_r) = \frac{1}{\nu!} \left[\left(\frac{\partial}{\partial t} \right)^{\nu} (x_i \circ \varphi) \right]_{t=0}$$

for $[\varphi]_{\tau} \in TU$ (cf. (1.1)). It is straightforward to see that TM becomes a manifold by the above coordinate systems $\{x_i^{(\nu)}\}$. The projection τ defined

by $\pi^{r,q}([\varphi]_r) = \varphi(0)$ for $\varphi \in S_p(M)$ is clearly a differentiable map of TM onto M.

DEFINITION 1.1. The differentiable manifold TM with projection π will be called the tangent bundle of p^r -velocities in M.

Definition 1.2. For any $f \in C^{\infty}(M)$, we define the (λ)-lift $f^{(\lambda)}$ of f, for every $\lambda \in N(p,r)$, as follows:

(1.3)
$$f^{(2)}([\varphi]_r) = \frac{1}{\lambda!} \left[\left(\frac{\partial}{\partial t} \right)^{\lambda} (f \circ \varphi) \right]_{t=0}$$

for $[\varphi]_r \in TM$. Clearly, $f^{(1)}$ is a well-defined differentiable function on TM. We note also that $(x_i)^{(\nu)} = x_i^{(\nu)}$ holds on TU for the above coordinate system $\{x_1, \dots, x_n\}$.

For the sake of convenience we define $f^{(\lambda)} = 0$ for any $\lambda \in \mathbb{Z}^p$ such that $\lambda \notin N(p,r)$.

Lemma 1.3. The (λ)-lifting $f \to f^{(\lambda)}$ is a linear map of $C^{\infty}(M)$ into $C^{\infty}(TM)$ and satisfies the following equality

$$(1.4) (f \cdot g)^{(1)} = \sum_{\mu \in \mathbb{Z}_2} f^{(\mu)} \cdot g^{(1-\mu)}$$

for every $f, g \in C^{\infty}(M)$ and $\lambda \in N(p, r)$.

Proof. Straightforward verification similar to the one of Lemma 1.2 [6].

§ 2. Liftings of vector fields and 1-forms.

Let $\mathcal{J}(M) = \sum \mathcal{J}_q^s(M)$ be, as in [6], the tensor algebra of all tensor fields on M.

LEMMA 2.1. For any $X \in \mathcal{F}_0^1(M)$ and any $\lambda \in N(p,r)$ there exists one and only one $X^{<\lambda>} \in \mathcal{F}_0^1(TM)$ satisfying the following equality

(2.1)
$$X^{<\lambda>}f^{(\mu)} = (Xf)^{(\mu-\lambda)}$$

for every $f \in C^{\infty}(M)$ and $\mu \in N(p,r)$.

Proof. Take a coordinate neighborhood U in M with coordinate system $\{x_1, \dots, x_n\}$ and let $X = \sum a_i \cdot \partial/\partial x_i$ $(a_i \in C^{\infty}(U))$ be the local expression of X in U. Consider the vector field $\tilde{X} = \tilde{X}_U$ on $(\pi)^{-1}(U)$ defined by

(2.2)
$$\tilde{X} = \sum_{\mu \in N(n,r)} \sum_{j=1}^{n} a^{(\mu-\lambda)} \frac{\partial}{\partial x_j^{(\mu)}} .$$

We see that $\tilde{X}(x_j^{(\mu)}) = a_j^{(\mu-\lambda)} = (Xx_j)^{(\mu-\lambda)}$ for $j = 1, 2, \dots, n$; $\mu \in N(p, r)$. Now, making use of same arguments as in the proof of Lemma 1.4 [6], we can prove that $\tilde{X}(f^{(\mu)}) = (Xf)^{(\mu-\lambda)}$ for every $f \in C^{\infty}(U)$ and $\mu \in N(p, r)$. We can also prove that if U' is a coordinate neighborhood in M such that $U \cap U' = U'' \neq \phi$, then $\tilde{X}_U | U'' = \tilde{X}_{U'} | U''$ holds. Thus we obtain a vector field $X^{<\lambda>}$ on TM such that $X^{<\lambda>}|_{(\pi)}^{r,p}|_{(\pi)}^{r,p}$ for every coordinate neighborhood U in M. This vector field $X^{<\lambda>}$ clearly satisfies the condition (2.1) for every $f \in C^{\infty}(M)$ and $\mu \in N(p,r)$. The uniqueness of $X^{<\lambda>}$ is also easily verified. Q.E.D.

COROLLARY 2.2. Let $\{x_1, \dots, x_n\}$ be a local coordinate system on a neighborhood U in M. Then, we have

(2.3)
$$\left(\frac{\partial}{\partial x_i}\right)^{<\lambda>} = \frac{\partial}{\partial x_i^{(\lambda)}}$$

for every $i = 1, \dots, n$ and $\lambda \in N(p, r)$.

Proof. Clear from the expression (2.2) of $X^{(1)}$ in $\binom{r,p}{\pi}^{-1}(U)$.

COROLLARY 2.3. Notations being as in Corollary 2.2, we have

(2.4)
$$\left(\frac{\partial f}{\partial x_i}\right)^{(\lambda-\mu)} = \frac{\partial f^{(\lambda)}}{\partial x_i^{(\mu)}}$$

for every $i = 1, \dots, n$ and $\lambda, \mu \in N(p, r)$.

Proof. By Corollary 2.2, we have

$$\frac{\partial f^{(\lambda)}}{\partial x^{(\mu)}} = \left(\frac{\partial}{\partial x_{\lambda}}\right)^{\langle \mu \rangle} f^{(\lambda)} = \left(\frac{\partial f}{\partial x_{\lambda}}\right)^{(\lambda - \mu)}.$$
 Q.E.D.

DEFINITION 2.4. The vector field $X^{<\lambda>}$ in Lemma 2.1 will be called the $\langle \lambda \rangle$ -lift of X to TM for $\lambda \in N(p,r)$. For the sake of convenience, we define $X^{<\lambda>}=0$ for every $\lambda \in Z^p$ such that $\lambda \notin N(p,r)$. The $\langle \lambda \rangle$ -lifting $X \to X^{<\lambda>}$ is a linear map of $\mathcal{J}_0^1(M)$ into $\mathcal{J}_0^1(TM)$ for every $\lambda \in Z^p$.

LEMMA 2.5. For $X, Y \in \mathcal{F}_0^1(M)$, we have

$$[X^{\langle \lambda \rangle}, Y^{\langle \mu \rangle}] = [X, Y]^{\langle \lambda + \mu \rangle}$$

for every $\lambda, \mu \in N(p, r)$.

Proof. Assume $\lambda + \mu \in N(p, r)$. Then, for any $g \in C^{\infty}(M)$ and $\nu \in N(p, r)$ we have

$$\begin{split} & [X^{<\lambda>},\ Y^{<\mu>}]\ (g^{(\nu)}) = X^{<\lambda>}Y^{<\mu>}g^{(\nu)} - Y^{<\mu>}X^{<\lambda>}g^{(\nu)} \\ & = X^{<\lambda>}(Yg)^{(\nu-\mu)} - Y^{<\mu>}(Xg)^{(\nu-\mu)} \\ & = X^{<\lambda>}(Yg)^{(\nu-\mu)} - Y^{<\mu>}(Xg)^{(\nu-\lambda)} \\ & = (XYg - YXg)^{(\nu-\lambda-\mu)} = ([X,Y]g)^{(\nu-\lambda-\mu)} \\ & = [X,Y]^{<\lambda+\mu>}g^{(\nu)}. \end{split}$$

Since $g \in C^{\infty}(M)$ and $\nu \in N(p,r)$ are arbitrary we get (2.5) if $\lambda + \mu \in N(p,r)$.

Assume $\lambda + \mu \notin N(p,r)$, then by our convention, we have $[X,Y]^{<\lambda + \mu>} = 0$. On the other hand, for any $g \in C^{\infty}(M)$ and $\nu \in N(p,r)$ we have, by the same calculation as above,

 $[X^{<\lambda>}, Y^{<\mu>}]g^{(\nu)} = (XYg)^{(\nu-\mu-\lambda)} - (YXg)^{(\nu-\lambda-\mu)} = 0$, since $\nu - \mu - \lambda \notin N(p,r)$. Thus (2.5) is verified in any case. Q.E.D.

LEMMA 2.6. For $X \in \mathcal{J}_0^1(M)$ and $f \in \mathcal{J}_0^0(M)$, we have

$$(2.6) (f \cdot X)^{<\lambda>} = \sum_{\nu \in N(p, r)} f^{(\nu)} \cdot X^{<\lambda+\nu>}$$

for every $\lambda \in N(p,r)$.

Proof. For any $g \in \mathcal{J}_0^0(M)$ and $\mu \in N(p,r)$, we have $(f \cdot X)^{<\lambda>} g^{(\mu)} = (fX \cdot g)^{(\mu-\lambda)} = (f \cdot Xg)^{(\mu-\lambda)}$ $= \sum_{\nu \in \mathbb{Z}^p} f^{(\nu)} \cdot (Xg)^{(\mu-\lambda-\nu)} = \sum_{\nu \in \mathbb{Z}^p} f^{(\nu)} \cdot X^{<\lambda+\nu>} g^{(\mu)}$ $= (\sum_{\nu \in \mathbb{Z}^p} f^{(\nu)} X^{<\lambda+\nu>}) g^{(\mu)}.$

Since g and μ are arbitrary, we get (2.6) for every $\lambda \in N(p, r)$. Q.E.D.

Remark 2.7. By our convention (cf. Def. 1.2) we can write (2.6) as follows:

$$(2.7) (f \cdot X)^{\langle \lambda \rangle} = \sum_{\nu \in \mathbb{Z}^p} f^{(\nu)} X^{\langle \lambda + \nu \rangle}.$$

LEMMA 2.8. Let $f_i, g_i \in C^{\infty}(M)$ $(i = 1, \dots, k)$ be such that $\sum g_i df_i = 0$ on M. Then the following equality

$$(2.8) \qquad \qquad \sum_{i=1}^{k} \sum_{\mu \in \mathcal{D}} g^{(\mu)} df_{i}^{(\lambda-\mu)} = 0$$

holds on TM for every $\lambda \in N(p,r)$.

Proof. Similar to the proof of Lemma 2.1 [6].

Q.E.D.

Lemma 2.9. There is one and only one lifting L_{λ} : $\mathscr{F}_{1}^{0}(M) \to \mathscr{F}_{1}^{0}(TM)$ for every $\lambda \in N(p,r)$ satisfying the following condition:

$$(2.9) L_{\lambda}(f \cdot dg) = \sum_{\lambda \in \mathbb{Z}^p} f^{(\mu)} dg^{(\lambda - \mu)}$$

for every $f, g \in \mathcal{F}_0^0(M)$.

Proof. Similar to the proof of Lemma 2.2 [6].

LEMMA 2.10. For $f \in \mathcal{F}_0^0(M)$ and $\theta \in \mathcal{F}_1^0(M)$, we have

$$(2.10) (f \cdot \theta)^{(\lambda)} = \sum_{\mu \in \mathbb{Z}^p} f^{(\mu)} \cdot \theta^{(\lambda - \mu)}$$

for every $\lambda \in N(p,r)$.

Proof. Similar to the proof of Corollary 2.4 [6].

LEMMA 2.11. For $\theta \in \mathcal{F}_1^0(M)$ and $X \in \mathcal{F}_0^1(M)$, we have

$$\theta^{(\lambda)}(X^{<\mu>}) = (\theta(X))^{(\lambda-\mu)}$$

for every $\lambda, \mu \in N(p, r)$.

Proof. Let $\theta = \sum f_i dx_i$ be the local expression of θ . Making use of Lemma 2.1, we calculate as follows:

$$\begin{split} &\theta^{(\lambda)}(X^{<\mu>}) = (\sum f_i dx_i)^{(\lambda)}(X^{<\mu>}) \\ &= \sum_i \sum_{\nu \in \mathbb{Z}^p} f_i^{(\nu)} dx_i^{(\lambda-\nu)}(X^{<\mu>}) \\ &= \sum_i \sum_{\nu} f_i^{(\nu)}(X^{<\mu>}x_i^{(\lambda-\nu)}) = \sum_i \sum_{\nu} f_i^{(\nu)}(Xx_i)^{(\lambda-\nu-\mu)} \\ &= \sum_i \sum_{\nu} f_i^{(\nu)}(dx_i(X))^{(\lambda-\nu-\mu)} \\ &= \sum_i (f_i \cdot dx_i(X))^{(\lambda-\mu)} = (\theta(X))^{(\lambda-\mu)}. \end{split} \tag{Q.E.D.}$$

§ 3. Lifting of (1, q)-tensor fields.

Let $\mathcal{J}_*(M)$ be the subalgebra of $\mathcal{J}(M)$ consisting of all covariant tensor fields on M. We denote by $\mathcal{J}_*^{r,p}M$ the m(r,p) times direct sum of $\mathcal{J}_*^{r,p}(TM)$, where m(r,p) denotes the number of elements in N(p,r). i.e.

$$\mathcal{J}_*^{r,p}(M) = \sum_{q=0}^{\infty} \sum_{\lambda \in N(p,r)} (\mathcal{J}_q^{r,p}(TM))_{\lambda},$$

where $(\mathscr{T}_q^0(TM))_{\lambda} = \mathscr{T}_q^0(TM)$ for all $\lambda \in N(p,r)$.

Take two elements $\theta = (\theta^i)$ and $\eta = (\eta^i)$ in $\mathcal{F}_*^p(M)$. We define the multiplication $\theta \otimes \eta$ of θ and η by the following:

(3.1)
$$(\theta \otimes \eta)^{\lambda} = \sum_{\mu, \lambda - \mu \in N(p, r)} \theta^{\mu} \otimes \eta^{\lambda - \mu}$$

for $\lambda \in N(p,r)$. We can readily see that $\mathscr{T}_*^{r,p}(M)$ is an associative graded algebra over $C^{r,p}(TM)$ by this multiplication \otimes .

We have defined, in Lemma 2.9, the lifting L_{λ} of $\mathcal{J}_{1}^{0}(M)$ into $\mathcal{J}_{1}^{0}(T^{p}M)$ for $\lambda \in N(p,r)$. Define $L: \mathcal{J}_{1}^{0}(M) \to \mathcal{J}_{*}^{r,p}(TM)$ by $L(\theta) = (L_{\lambda}(\theta))_{\lambda \in N(p,r)}$ for $\theta \in T_{1}^{0}(M)$.

LEMMA 3.1. There exists one and only one homomorphism $\tilde{L}: \mathscr{T}_*(M) \to \overset{r,p}{\mathscr{T}_*}(M)$ such that $\tilde{L}|\mathscr{T}_1^0(M) = L$.

Proof. Define
$$L^q: (\mathscr{T}_1^0(M))^q \to \mathscr{T}_*^{r,p}(M)$$
 by

$$L^q(\theta_1, \cdots, \theta_q) = L(\theta_1) \otimes \cdots \otimes L(\theta_q)$$

for $\theta_i \in \mathcal{J}_1^0(M)$ $i = 1, 2, \dots, q$. Then, L is a multilinear map satisfying the following condition:

$$L^{q}(f_1\theta_1, \dots, f_q\theta_q) = L(f_1 \dots f_q) \otimes L^{q}(\theta_1, \dots, \theta_q)$$

for $\theta_i \in \mathcal{J}_1^0(M)$ and $f_i \in \mathcal{J}_0^0(M)$ $i=1,\cdots,q$, from which we conclude that there is a linear map \tilde{L}^q of $\mathcal{J}_q^{r,p}(M)$ into $\mathcal{J}_*(M)$ such that

$$\tilde{L}^{q}(\theta_{1} \otimes \cdot \cdot \cdot \otimes \theta_{q}) = L(\theta_{1}) \otimes \cdot \cdot \cdot \otimes L(\theta_{q})$$

for $\theta_i \in \mathcal{F}_1^0(M)$, $i = 1, \dots, q$. Thus $\tilde{L}^q(q \ge 0)$ define a homomorphism $\tilde{L}: \tilde{\mathcal{F}}_*^p(M) \to \mathcal{F}_*(M)$ such that $\tilde{L}(\theta) = L(\theta)$ for $\theta \in \mathcal{F}_1^0(M)$. Q.E.D.

Definition 3.2. For $K \in \mathcal{J}_q^0(M)$ we denote by $K^{(\lambda)}$ the λ -component of $\tilde{L}(K)$ for $\lambda \in N(p,r)$, i.e.

$$\tilde{L}(K) = (K^{(\lambda)}).$$

We shall call $K^{(\lambda)}$ the (λ) -lift of K. For the sake of convenience we put $K^{(\lambda)} = 0$ for $\lambda \in \mathbb{Z}^p$ such that $\lambda \in N(p, r)$.

LEMMA 3.3. The notation α_X^k being as in Lemma 3.7 [6], for any $K \in \mathcal{J}_q^0(M)$ and $X \in \mathcal{J}_0^1(M)$, we have

$$\alpha_X^k < \lambda > K^{(\mu)} = (\alpha_X^k K)^{(\mu - \lambda)}$$

for $\lambda, \mu \in N(p, r)$.

Proof. Using Lemma 2.11, we can prove the lemma in the same way as the one of Lemma 3.7 [6].

COROLLARY 3.4. For $K \in \mathcal{J}_q^0(M)$ and $X_i \in \mathcal{J}_0^1(M)$ $i = 1, \dots, q$, we have $K^{(\lambda)}(X_i^{(\mu_1)}, \dots, X_o^{(\mu_q)}) = (K(X_1, \dots, X_o))^{(\lambda - \Sigma \mu_i)}$

for every $\lambda, \mu_i \in N(p, r)$, $i = 1, \dots, q$.

Proof. We use Lemma 3.3 q-times.

Q.E.D.

LEMMA 3.5. For any $K \in \mathcal{F}_q^1(M)$ and $\nu \in N(p, r)$, there is a unique $\tilde{K} = K^{(\nu)} \in \mathcal{F}_q^1(TM)$ such that

$$(3.3) \tilde{K}(X_1^{\langle \lambda_1 \rangle}, \cdot \cdot \cdot, X_q^{\langle \lambda_q \rangle}) = (K(X_1, \cdot \cdot \cdot, X_q))^{\langle \lambda_+ \nu \rangle}$$

for every $X_i \in \mathcal{J}_0^1(M)$ and $\lambda_i \in N(p,r)$, where $\lambda = \sum_i \lambda_i$.

Proof. Define $\tilde{L}_{\nu}: \mathscr{T}^{1}_{0}(M) \times \mathscr{T}^{0}_{q}(M) \to \mathscr{T}^{r,p}_{q}(TM)$ by the following (3.4) $\tilde{L}_{\nu}(X,T) = \sum_{n \in \mathscr{D}} X^{<\mu+\nu} \otimes T^{(\mu)}$

for $X \in \mathcal{J}_0^1(M)$ and $T \in \mathcal{J}_q^0(M)$. It is clear that \tilde{L} is a bilinear map over R. We now assert that the following

$$\tilde{L}_{\nu}(fX,T) = \tilde{L}_{\nu}(X,fT)$$

holds for every $X \in \mathcal{J}_0^1(M)$, $T \in \mathcal{J}_q^0(M)$ and $f \in \mathcal{J}_0^0(M)$. For, making use of Remark 2.7 and Lemma 3.1, we calculate as follows:

$$\begin{split} &\widetilde{L}_{\nu}(fX,T) = \sum_{\mu} (fX)^{<\mu+\nu>} \otimes T^{(\mu)} \\ &= \sum_{\mu} \sum_{\lambda} f^{(\lambda)} X^{<\lambda+\mu+\nu>} \otimes T^{(\mu)} \\ &= \sum_{\mu} \sum_{\lambda'} f^{(\lambda'-\mu-\nu)} X^{<\lambda'>} \otimes T^{(\mu)} \\ &= \sum_{\lambda'} \sum_{\mu} X^{<\lambda'>} \otimes f^{(\lambda'-\mu-\nu)} T^{(\mu)} \end{split}$$

$$\begin{split} &= \sum_{\lambda'} X^{<\lambda'>} \bigotimes (fT)^{(\lambda'-\nu)} \\ &= \sum_{\lambda} X^{<\lambda+\nu>} \bigotimes (fT)^{(\lambda)} = \tilde{L}_{\nu}(X, fT), \end{split}$$

which proves our assertion. Thus, we obtain a linear map L_{ν} of $\mathcal{F}_{q}^{1}(M)$ into $\mathcal{F}_{q}^{p}(TM)$ such that

$$L_{\nu}(X \otimes T) = \sum_{\mu \in \mathbb{Z}^p} X^{<\mu+\nu>} \otimes T^{(\mu)}$$

for $X \in \mathcal{F}_0^1(M)$ and $T \in \mathcal{F}_q^0(M)$. Put $\widetilde{K} = L_{\nu}(K)$. It is now sufficient to prove (3.3) for $K = X \otimes T$ with $X \in \mathcal{F}_q^0(M)$ and $T \in \mathcal{F}_q^0(M)$. Using Corollary 3.4 and Lemma 2.6, we can calculate as follows:

$$\begin{split} \tilde{K}(X_{1}^{<\lambda_{1}>}, \, \cdot \, \cdot \, \cdot \, , X_{q}^{<\lambda_{q}>}) &= \sum_{\mu} T^{(\mu)}(X_{1}^{<\lambda_{1}>}, \, \cdot \, \cdot \, \cdot \, , X_{q}^{<\lambda_{q}>}) X^{<\mu+\nu>} \\ &= \sum_{\mu} (T(X_{1}, \, \cdot \, \cdot \, \cdot \, , X_{q}))^{(\mu-\lambda)} X^{<\mu+\nu>} \\ &= \sum_{\mu'} (T(X_{1}, \, \cdot \, \cdot \, \cdot \, , X_{q}))^{(\mu)} X^{<\mu+\nu+\lambda>} \\ &= (T(X_{1}, \, \cdot \, \cdot \, \cdot \, , X_{q}) \cdot X)^{<\nu+\lambda>} = (K(X_{1}, \, \cdot \, \cdot \, \cdot \, , X_{q}))^{<\nu+\lambda>}. \end{split}$$

The uniqueness of \tilde{K} is clear, since (3.3) holds for every $X_i \in \mathcal{J}_0^1(M)$ and $\lambda_i \in N(p,r)$. Q.E.D.

Definition 3.6. For $K \in \mathcal{J}_q^1(M)$ and $\nu \in N(p,r)$, we denote \tilde{K} in Lemma 3.5 by $\tilde{K} = K^{(\nu)}$ and call it the (ν) -lift of K, i.e.

(3.6)
$$K^{(\nu)}(X_1^{<\lambda_1}, \cdots, X_q^{<\lambda_q}) = (K(X_1, \cdots, X_q))^{<\lambda+\nu>}$$

for $X_i \in \mathcal{J}_0^1(M)$, $\lambda_i \in N(p,r)$, where $\lambda = \sum \lambda_i$. We call $K^{(0)}$ the complete lift of K to TM.

LEMMA 3.7. For $K \in \mathcal{J}_q^1(M)$ $(q \ge 1)$ and $X \in \mathcal{J}_0^1(M)$, we have

(3.7)
$$\alpha_X^k < 1 > K^{(\mu)} = (\alpha_X^k K)^{(\mu + 1)}$$

for $k \leq q$ and $\lambda, \mu \in N(p, r)$.

Proof. It suffices to prove (3.7) for $K=Y\otimes T$ with $Y\in \mathcal{F}_0^1(M)$, $T\in \mathcal{F}_q^0(M)$. Using Lemma 3.3, we calculate as follows:

$$\alpha_X^k < \lambda > K^{(\mu)} = \alpha_X^k < \lambda > \sum_{\nu} Y^{<\nu + \mu} > \bigotimes T^{(\nu)}$$

$$= \sum_{\nu} Y^{<\nu + \mu} > \bigotimes \alpha_X^k < \lambda > T^{(\nu)}$$

$$\begin{split} &= \sum_{\nu} Y^{<\nu+\mu>} \otimes (\alpha_X^k T)^{(\nu-\lambda)} \\ &= \sum_{\nu} Y^{<\nu'+\lambda+\mu>} \otimes (\alpha_X^k T)^{(\nu')} \\ &= (Y \otimes \alpha_X^k T)^{(\lambda+\mu)} = (\alpha_X^k K)^{(\lambda+\mu)} \end{split} \qquad Q.E.D.$$

COROLLARY 3.8. We have

$$\alpha_X^k < 0 > K^{(\mu)} = (\alpha_X^k K)^{(\mu)}$$

for every $X \in \mathcal{J}_0^1(M)$, $K \in \mathcal{J}_q^1(M)$ and $\mu \in N(p,r)$.

§4. Prolongations of almost complex structures.

LEMMA 4.1. For any $A, B \in \mathcal{F}_1^1(M)$, we have

$$(4.1) (A \circ B)^{(0)} = A^{(0)} \circ B^{(0)}.$$

Let $I_M \in \mathcal{J}_1^1(M)$ be the (1,1)-tensor field of identity transformations of tangent spaces to M. Then, we have

$$(I_{M})^{(0)} = I_{p,\tau}$$

$$T_{M}$$

Proof. Making use of (3.6), we have, for any $X \in \mathcal{F}_0^1(M)$,

$$A^{(0)} \circ B^{(0)}(X^{<\lambda>}) = A^{(0)}(B^{(0)}(X^{<\lambda>}))$$

$$= A^{(0)}((B(X))^{<\lambda>}) = (ABX)^{<\lambda>}$$

$$= ((A \circ B)X)^{<\lambda>} = (A \circ B)^{(0)}(X^{<\lambda>})$$

for every $\lambda \in N(p,r)$. Therefore we get (4.1).

To prove (4.2), let $I_M = \sum (\partial/\partial x_i) \otimes dx_i$ be the local expression of I_M , where $\{x_i, \dots, x_n\}$ is a local coordinate system. Then, we have

$$\begin{split} (I_{\mathit{M}})^{(0)} &= \sum_{i,\,\mu} \left(\frac{\partial}{\partial x_{i}}\right)^{<\mu>} \otimes (dx_{i})^{(\mu)} \\ &= \sum_{i,\,\mu} \frac{\partial}{\partial x_{i}^{(\mu)}} \otimes dx_{i}^{(\mu)} = I_{p,\,r} \\ TM \end{split}$$

which proves (4.2).

COROLLARY 4.2. For any polynomial P(x) of one variable x with real coefficients and for any $A \in \mathcal{F}_1^1(M)$, we have

$$(4.3) (P(A))^{(0)} = P(A^{(0)}).$$

Proof. Use (4.1) and (4.2) repeatedly.

Q.E.D.

THEOREM 4.3. Let J be an almost complex structure on M with its Nijenhuis tensor N_J . Then, the bundle TM of p^r -velocities in M has an almost complex structure $J^{(0)}$ with its Nijenhuis tensor $(N_J)^{(0)}$.

THEOREM 4.4. If a manifold M is a complex manifold with almost complex structure J, so is the bundle TM of p^r -velocities in M with almost complex structure $J^{(0)}$.

§ 5. Lifting of affine connections.

Let ∇ be the covariant differentiation defined by an affine connection of M.

Theorem 5.1. There exists one and only one affine connection of TM whose covariant differentiation ∇ satisfies the following condition:

$$\tilde{\nabla}_{X} < \lambda > Y^{<\mu>} = (\nabla_{X} Y)^{<\lambda+\mu>}$$

for every $X, Y \in \mathcal{J}_0^1(M)$ and $\lambda, \mu \in N(p, r)$.

Proof. Take a coordinate neighborhood U with coordinate system $\{x_1, \dots, x_n\}$ and let $\Gamma_{i,j}^k$ be the connection components of ∇ with respect to $\{x_1, \dots, x_n\}$, i.e.

(5.2)
$$\nabla_{\frac{\partial}{\partial x_i}} \frac{\partial}{\partial x_i} = \sum_k \Gamma_{ij}^k \frac{\partial}{\partial x_k}$$

for $i, j = 1, \dots, n$. Let $\Gamma_{ij}^{\prime k}$ be the connection components of ∇ with respect to another coordinate system $\{y_1, \dots, y_n\}$ on U. Then, we have the following equalities:

(5.3)
$$\Gamma_{ij}^{\prime k} = \sum_{a,b,c} \frac{\partial x_b}{\partial y_i} \frac{\partial x_c}{\partial x_j} \frac{\partial y_k}{\partial x_a} \Gamma_{bc}^a + \sum \frac{\partial^2 x_a}{\partial y_i \partial y_j} \frac{\partial y_k}{\partial x_a}$$

for $i, j, k = 1, 2, \dots, n$. (cf. for instance [3] p. 27). Let $\{x_i^{(\nu)} | i = 1, \dots, n; \nu \in N(p, r)\}$ (resp. $\{y_i^{(\nu)}\}$) be the induced coordinate system on $(\pi)^{-1}(U)$. Define

(5.4)
$$\tilde{\Gamma}_{(i,\nu)(j,\mu)}^{(k,\lambda)} = (\Gamma_{ij}^k)^{(\lambda-\nu-\mu)}$$

for $i, j, k = 1, 2, \dots, n$; $\lambda, \mu, \nu \in N(p, r)$. We can now prove that there exists a connection $\tilde{\nabla}$ whose connection components with respect to $\{x_i^{(\nu)}\}$ are given

by (5.4). For, we can verify (5.5) [6] for $\lambda, \mu, \nu \in N(p, r)$ in the same way as the proof of (5.5) [6], since we can use the equalities

$$\frac{\partial f^{(\lambda)}}{\partial x_i^{(\mu)}} = \left(\frac{\partial f}{\partial x_i}\right)^{(\lambda - \mu)}$$

for every $\lambda, \mu \in N(p, r)$ and $f \in C^{\infty}(U)$ (cf. Cor. 2.3).

Next, we shall verify the following

$$\tilde{\nabla}_{X_i^{<\lambda}} X_j^{<\mu} = (\nabla_{X_i} X_j)^{<\lambda+\mu}$$

for every $i, j = 1, \dots, n$ and $\lambda, \mu \in N(p, r)$, where we have put $X_i = \frac{\partial}{\partial x_i}$. Making use of Lemma 2.6 we calculate as follows:

$$\begin{split} \tilde{\nabla}_{X_{i}^{<\lambda}} \chi_{j}^{<\mu>} &= \tilde{\nabla}_{\frac{\partial}{\partial x_{i}^{<\lambda>}}} \left(\frac{\partial}{\partial x_{j}^{(\mu)}} \right) = \sum_{\nu,k} \tilde{\Gamma}_{(k,\nu),(j,\mu)}^{(k,\nu)} \frac{\partial}{\partial x_{k}^{(\nu)}} \\ &= \sum_{\nu,k} (\Gamma_{ij}^{k})^{(\nu-\lambda-\mu)} \frac{\partial}{\partial x_{k}^{(\nu)}} = \sum_{\nu,k} (\Gamma_{ij}^{k})^{(\nu)} \left(\frac{\partial}{\partial x_{k}} \right)^{<\lambda+\mu+\nu} \\ &= \left(\sum_{k} \Gamma_{ij}^{k} \frac{\partial}{\partial x_{k}} \right)^{<\lambda+\mu>} = (\nabla_{X_{i}} X_{j})^{<\lambda+\mu>}. \end{split}$$

Now, we shall verify

$$\tilde{\nabla}_{(f \cdot X_i) < \lambda} X_j^{< \mu} = (\nabla_{f X_i} X_j)^{< \lambda + \mu}$$

for $f \in C^{\infty}(U)$, $i, j = 1, \dots, n$ and $\lambda, \mu \in N(p, r)$.

For, the left hand side of (5.6) is equal to

$$\begin{split} \tilde{\nabla}_{\Sigma f^{(\nu)} X_i^{<\lambda+\nu} > X_j^{<\mu>}} &= \sum f^{(\nu)} \tilde{\nabla}_{X_i^{<\lambda+\nu} > X_j^{<\mu>}} \\ &= \sum f^{(\nu)} (\nabla_{X_i} X_j)^{<\lambda+\nu+\mu>} &= (f \cdot \nabla_{X_i} X_j)^{<\lambda+\mu>} &= (\nabla_{fX_i} X_j)^{<\lambda+\mu>}, \end{split}$$

which proves (5.6). Thus (5.1) is proved for $Y = \frac{\partial}{\partial x_j}$ and for every $X \in \mathcal{F}_0^1(M)$.

Finally, we shall verify (5.1) for $Y = \sum f_i X_j \in \mathcal{F}_0^1(M)$ as follows:

$$\begin{split} \tilde{\nabla}_{X^{<\lambda>}} &(\sum f_i X_j)^{<\mu>} = \tilde{\nabla}_{X^{<\lambda>}} \sum_{j,\nu} f_j^{(\nu)} X_j^{<\nu+\mu>} \\ &= \sum_{j,\nu} \left\{ f_j^{(\nu)} \tilde{\nabla}_{X^{<\lambda>}} X_j^{<\nu+\mu>} + X^{<\lambda>} f_j^{(\nu)} \cdot X_j^{<\nu+\mu>} \right\} \\ &= \sum_{j,\nu} \left\{ f_j^{(\nu)} (\nabla_X X_j)^{<\nu+\lambda+\mu>} + (X f_j)^{(\nu-\lambda)} X_j^{<\nu+\mu>} \right\} \\ &= \sum_{j} \left\{ (f_j \cdot \nabla_X X_j)^{<\lambda+\mu>} + (X f_j \cdot X_j)^{<\lambda+\mu>} \right\} \\ &= (\nabla_X (\sum f_i X_i))^{<\lambda+\mu>} \end{split}$$

The uniqueness of \tilde{V} is clear, since (5.1) holds for every $X,Y \in \mathcal{F}_0^1(M)$ and $\lambda, \mu \in N(p,r)$. Q.E.D.

DEFINITION 5.2. We denote $\tilde{\nabla}$ in Theorem 5.1 by $\tilde{\nabla} = \overset{r,p}{\nabla}$ and call it the complete lift of ∇ to $\overset{r,p}{TM}$.

PROPOSITION 5.3. Let \tilde{T} , \tilde{R} be the torsion and the curvature tensor field of $\nabla = \overset{r,p}{\nabla}$. Then we have

(5.7)
$$\tilde{T} = T^{(0)} \text{ and } R = \tilde{R},$$

where $T^{(0)}$ and $R^{(0)}$ are the complete lift of T and R (cf. Def. 3.6).

Proof. Using the relation (3.6), we calculate as follows:

$$\begin{split} &T^{(0)}(X^{<\lambda>},\ Y^{<\mu>}) = (T(X,Y))^{<\lambda+\mu>}\\ &= (\nabla_X Y - \nabla_Y X - [X,Y])^{<\lambda+\mu>}\\ &= \tilde{\nabla}_{X}^{<\lambda>} Y^{<\mu>} - \tilde{\nabla}_{Y}^{<\mu>} X^{<\lambda>} - [X^{<\lambda>},\ Y^{<\mu>}] = \tilde{T}(X^{<\lambda>},\ Y^{<\mu>}) \end{split}$$

for every $X,Y \in \mathcal{J}_0^1(M)$ and $\lambda, \mu \in N(p,r)$, which proves $T^{(0)} = \tilde{T}$. Similarly, we have:

$$\begin{split} R^{(0)}(X^{<\lambda>},\ Y^{<\mu>})Z^{(\nu)} &= (R(X,Y)Z)^{<\lambda+\mu+\nu>} \\ &= (\nabla_X\nabla_YZ - \nabla_Y\nabla_XZ - \nabla_{[X,Y]}Z)^{<\lambda+\mu+\nu>} \\ &= \tilde{\nabla}_{X}^{<\lambda>}\tilde{\nabla}_{Y^{<\mu>}}Z^{<\nu>} - \tilde{\nabla}_{Y^{<\mu>}}\tilde{\nabla}_{X}^{<\lambda>}Z^{<\nu>} - \tilde{\nabla}_{[X^{<\lambda>},Y^{<\mu>}]}Z^{<\nu>} \\ &= \tilde{R}(X^{<\lambda>},\ Y^{<\mu>})Z^{<\nu>} \end{split}$$

for every $X, Y, Z \in \mathcal{J}_0^1(M)$ and $\lambda, \mu, \nu \in N(p, r)$, which proves $R^{(0)} = \tilde{R}$. Q.E.D.

Proposition 5.4. For any $K \in \mathcal{F}_q^s(M)$ $(s=0 \ or \ 1)$ and $X \in \mathcal{F}_0^1(M)$, we have

$$\tilde{\nabla}_{X} < 0 > K^{(\mu)} = (\nabla_{X} K)^{(\mu)},$$

for every $\mu \in N(p,r)$.

Proof. It is sufficient to prove (5.8) for $K = Y \otimes T$, where $Y \in \mathcal{F}_0^1(M)$, $T \in \mathcal{F}_q^0(M)$. Now, since $K^{(\mu)} = \sum Y^{<\nu+\mu>} \otimes T^{(\nu)}$, and since $\tilde{\nabla}_{X^{<0>}}$ is a derivation of $\mathcal{F}_q^{(\nu)}(TM)$, it suffices to verify (5.8) in the special cases, where

 $K = f \in \mathcal{J}_0^0(M)$ and $K = Y \in \mathcal{J}_0^1(M)$ and $K = \theta \in \mathcal{J}_1^0(M)$. If K = f, then we have

$$\tilde{\nabla}_{X^{<0}} f^{(\mu)} = X^{<0} f^{(\mu)} = (Xf)^{(\mu)} = (\nabla_X f)^{(\mu)}.$$

If K = Y, then we have

$$\tilde{\nabla}_{X^{<0}} \cdot Y^{<\mu>} = (\nabla_X Y)^{<\mu>} = (\nabla_X Y)^{(\mu)}.$$

If $K = \theta$, then we have, for $\mu, \nu \in N(p, r)$ and $Y \in \mathcal{J}^{1}_{0}(M)$ $(\tilde{\nabla}_{X^{<0}} > \theta^{(\mu)}) Y^{<\nu} = \tilde{\nabla}_{X^{<0}} > (\theta^{(\mu)} Y^{<\nu}) - \theta^{(\mu)} (\tilde{\nabla}_{X^{<0}} > Y^{<\nu}))$ $= \tilde{\nabla}_{X^{<0}} > (\theta(Y))^{(\mu-\nu)} - \theta^{(\mu)} ((\nabla_{X}Y))^{<\nu})$ $= (\nabla_{X} \theta(Y))^{(\mu-\nu)} - (\theta(\nabla_{X}Y))^{(\mu-\nu)}$ $= ((\nabla_{X} \theta Y)^{(\mu-\nu)} = (\nabla_{X} \theta)^{(\mu)} (Y^{<\nu}).$

and hence we get $\tilde{\nabla}_{X} < 0 > \theta^{(\mu)} = (\nabla_X \theta)^{(\mu)}$.

To prove (5.9), using Corollary 3.8, we calculate as follows

$$\alpha_{X} < 0 > \tilde{\nabla} K^{(\mu)} = \tilde{\nabla}_{X} < 0 > K^{(\mu)} = (\nabla_{X} K)^{(\mu)} = (\alpha_{X} (\nabla K))^{(\mu)} = \alpha_{X} < 0 > (\nabla K)^{(\mu)}.$$

Since $(X^{<0>})_{[\varphi]}$, $(X \in \mathcal{J}_0^1(M))$ spans the tangent space to TM at $[\varphi]_r \in TM$, we conclude that (5,9) holds. Q.E.D.

Combining Proposition 5.3 and 5.4 we have proved the following

THEOREM 5.5. Let T and R be the torsion and the curavture tensor field of an affine connection ∇ of M. According as T=0, T=0, R=0 or $\nabla R=0$, we have $T^{(0)}=0$, $\nabla T^{(0)}=0$, $R^{(0)}=0$ or $\nabla R^{(0)}=0$. In particular, if M is affine locally symmetric with respect to ∇ , so is TM with respect to ∇ .

§ 6. Affine symmetric spaces.

Let $\varphi: M \to N$ be a map of a manifold M into another manifold N. Then, the map φ induces a map $T\varphi$ of TM into TN as follows:

(6.1)
$$(T\Phi)(\lceil \varphi \rceil_r) = \lceil \Phi \circ \varphi \rceil_r$$

for $[\varphi]_r \in TM$. The map $T^p \varphi$ is a well-defined differentiable map, which will be called the (r, p)-tangent to φ . It is clear that if φ is a diffeomorphism then $T\varphi$ is also a diffeomorphism.

Lemma 6.1. For any $f \in C^{\infty}(N)$, we have

$$(6.2) f^{(\mu)} \circ \overset{r, \mathfrak{p}}{T} \Phi = (f \circ \Phi)^{(\mu)}$$

for every $\mu \in N(p,r)$.

Proof. Take a point $[\varphi]_r \in TM$. Then we have

$$\begin{split} &(f^{(\mu)} \circ \overset{r,p}{T} \boldsymbol{\emptyset}) \left([\varphi]_r \right) = f^{(\mu)} ([\boldsymbol{\emptyset} \circ \varphi]_r) = \frac{1}{\mu \,!} \left[\left(\frac{\partial}{\partial t} \right)^{\mu} (f \circ | (\boldsymbol{\emptyset} \circ \varphi)) \right]_{t=0} \\ &= \frac{1}{\mu \,!} \left[\left(\frac{\partial}{\partial t} \right)^{\mu} ((f \circ \boldsymbol{\emptyset}) \circ \varphi) \right]_{t=0} = (f \circ \boldsymbol{\emptyset})^{(\mu)} ([\varphi]_r). \end{split} \qquad \qquad \text{Q.E.D.}$$

Lemma 6.2. Let $\Phi: M \to N$ be a diffeomorphism of M onto N. Then for any $X \in \mathcal{J}_0^1(M)$ we have

(6.3)
$$T^{r,p} \Phi(X^{\langle \lambda \rangle}) = (T \Phi X)^{\langle \lambda \rangle}$$

for every $\lambda \in N(p, r)$.

Proof. Take a function $f \in C^{\infty}(N)$. Then, by making use of Lemma 6.1 and 2.1, we have, for any $\mu \in N(p,r)$:

$$\begin{split} &T \overset{r,p}{T} \varPhi(X^{<\lambda>}) f^{(\mu)} = X^{<\lambda>} (f^{(\mu)} \circ \overset{r,p}{T} \varPhi) = X^{<\lambda>} (f \circ \varPhi)^{(\mu)} \\ &= (X (f \circ \varPhi))^{(\mu-\lambda)} = (T \varPhi X) f^{(\mu-\lambda)} = (T \varPhi X)^{<\lambda>} f^{(\mu)}. \end{split}$$

Since $f \in C^{\infty}(N)$ and $\mu \in N(p, r)$ are arbitrary, we get (6.3). Q.E.D.

Lemma 6.3. Let ∇ (resp. ∇') be an affine connection on M (resp. N) and let $\Phi: M \to N$ be a diffeomorphism transforming ∇ onto ∇' , i.e. we have

$$T\Phi(\nabla_X Y) = \nabla'_{T\Phi X} T\Phi Y$$

for $X,Y \in \mathcal{J}_0^1(M)$. Then the map $T\Phi$ transforms ∇ onto ∇ .

Proof. Put $\tilde{\Phi} = T T \Phi$. It suffices to verify

$$\tilde{\varphi}\nabla_{X^{<\lambda}}Y^{<\mu} = \nabla_{\tilde{\varphi}X^{<\lambda}}\tilde{\varphi}Y^{<\mu}$$

for every $X,Y \in \mathcal{J}_0^1(M)$ and $\lambda, \mu \in N(p,r)$. Now, by making use of Theorem 5.1 and Lemma 6.2, we see the left hand side of (6.7) is equal to

$$\begin{split} &T\overset{r,p}{T}\varPhi(\nabla_XY)^{<\lambda+\mu>}=(T\varPhi(\nabla_XY))^{<\lambda+\mu>}\\ &=(\nabla'_{T\varPhiX}T\varPhiY)^{<\lambda+\mu>}=\overset{r,p}{\nabla'_{(T\varPhiX}<\lambda>}(T\varPhiY)^{<\mu>}=\overset{r,p}{\nabla'_{\tilde{\varPhi}X}<\lambda>}\tilde{\varPhi}Y^{<\mu>}. \end{split}$$

Q.E.D.

LEMMA 6.4. Take a point $x_0 \in M$ and let Φ be a diffeomorphism of M onto itself such that $\Phi(x_0) = x_0$ and that $T_{x_0}\Phi = -1_{T_{x_0}M}$. Consider the constant map T_{x_0} of R^p into M defined by $T_{x_0}(u) = x_0$ for $u \in R^p$. Put $\tilde{x}_0 = [T_{x_0}]_r$. Then, we have $T_{x_0}(T_0) = \tilde{x}_0$ and that

(6.5)
$$T_{\tilde{x}} T \Phi = -1_{T_{\tilde{x}_{0}}(\tilde{T}^{p}M)}.$$

Proof. Take an element $[\varphi]_1 \in T_{\widetilde{x}_0}(TM)$, where $\varphi: R \to TM$ with $\varphi(0) = \widetilde{x}_0$. Making use of the same arguments as in the proof of Lemma 1.1 [5], we can find a differentiable map $\psi: R^{p+1} \to M$ such that $\varphi(t) = [\psi_t]_r$ for small t, where we have put $\psi_t(u) = \psi(t,u)$ for $t \in R$ and $u \in R^p$. Put $\psi^u(t) = \psi(t,u)$. Then, since $\varphi(0) = [\psi_0]_r = \widetilde{x}_0 = [r_{x_0}]$, we can assume that $\psi(0,u) = x_0$ for small $u \in R^p$ (cf. the expression of $(\widetilde{\phi})$ in the proof of Lemma 1.1 [5]). Take a coordinate neighborhood U of x_0 with coordinate system $\{x_1, \dots, x_n\}$. Put $x_{i,v} = x_i^{(p)}$ for $i = 1, \dots, n$ and $v \in N(p,r)$. Then $\{x_{i,v}\}$ is a coordinate system around \widetilde{x}_0 . We have to prove $TT \varphi([\varphi]_1) = -[\varphi]_1$, i.e. to prove $[T\varphi \circ \varphi]_1 = -[\varphi]_1$. To prove this, it suffices to prove the following

$$(6.6) (x_{i,\nu})^{(1)}([T\Phi \circ \varphi]_1) = -(x_{i,\nu})^{(1)}([\varphi]_1)$$

for $i = 1, 2, \dots, n$ and $\nu \in N(p, r)$.

Since $(T\Phi \circ \varphi)(t) = T\Phi(\varphi(t)) = T\Phi([\varphi_t]_r) = [\Phi \circ \psi_t]_r$, we calculate as follows:

$$\begin{split} &(x_{i,\nu})^{(1)}([\stackrel{r,p}{T}\varPhi \circ \varphi]_1) = \left[\frac{\partial}{\partial t} \left(x_{i,\nu} \circ \stackrel{r,p}{T}\varPhi \circ \varphi \right) \right]_{t=0} = \left[\frac{\partial}{\partial t} \left(x_{i,\nu}([\varPhi \circ \psi_t]_r) \right) \right]_{t=0} \\ &= \frac{1}{\nu!} \left[\frac{\partial}{\partial t} \left(\left[\left(\frac{\partial}{\partial u} \right)^{\nu} (x_i \circ \varPhi \circ \psi_t) \right]_{t=0} \right. \\ &= \frac{1}{\nu!} \left[\frac{\partial}{\partial t} \left(\left[\left(\frac{\partial}{\partial u} \right)^{\nu} x_i(\varPhi (\psi(t,u)) \right]_{u=0} \right) \right]_{t=0} \\ &= \frac{1}{\nu!} \left[\left(\frac{\partial}{\partial u} \right)^{\nu} \left(\left[\frac{\partial}{\partial t} x_i(\varPhi (\psi^u(t))) \right]_{u=0} \right) \right]_{u=0} \end{split}$$

Now, making use of our assumption $T_{x_0} \Phi = -1_{T_{x_0} M}$ and the fact that $\phi^u(0) =$

 $\psi(0, u) = x_0$ for small $u \in \mathbb{R}^p$, we have

$$\begin{split} & \left[\frac{\partial}{\partial t} \; x_i(\varPhi(\psi^u(t))) \right]_{t=0} = x_i^{(1)}([\varPhi \circ \psi^u]_{\scriptscriptstyle 1}) = x_i^{(1)}(T\varPhi[\psi^u]_{\scriptscriptstyle 1}) \\ & = - \; x_i^{(1)}([\psi^u]_{\scriptscriptstyle 1}) = - \left[\frac{\partial}{\partial t} \; x_i(\psi^u(t)) \right]_{t=0}. \end{split}$$

Therefore, we can continue the above calculation as follows:

$$\begin{split} &(x_{i,\nu})^{(1)}([T\Phi\circ\varphi]_{\mathbf{1}}) = -\frac{1}{\nu\,!} \left[\left(\frac{\partial}{\partial u}\right)^{\nu} \left(\left[-\frac{\partial}{\partial t} \, x_i \phi^u(t)\right]_{t=0}\right) \right]_{u=0} \\ &= -\frac{1}{\nu\,!} \left[\frac{\partial}{\partial t} \left(\left[\left(\frac{\partial}{\partial u}\right)^{\nu} (x_i\circ\phi_t)\right]_{u=0} \right. = -\left. (x_{i,\nu})^{(1)} ([\varphi]_{\mathbf{1}}), \right. \end{split}$$

which proves (6.6).

Q.E.D.

COROLLARY 6.5. Let M be an affine symmetric space with affine connection ∇ . Let $\Phi: M \to M$ be the affine symmetry at a point $x_0 \in M$. Then the (r, p)-tangent T^p to Φ is also the affine symmetry of T^p with affine connection ∇ at the point \tilde{x}_0 .

Proof. Since Φ leaves ∇ invariant, $T\Phi$ also leaves ∇ invariant by Lemma 6.3. Next, since Φ is an affine symmetry we see that $T_{x_0}\Phi = -1_{Tx_0M}$. Thus, by Lemma 6.4, we get (6.5), which means that $T\Phi$ is the affine symmetry at \tilde{x}_0 .

LEMMA 6.6. Let ∇ be an affine connection on a manifold M, and let $X \in \mathcal{F}_0^1(M)$ be an infinitesimal affine transformation of ∇ . Then, the $\langle \lambda \rangle$ -lift $X^{\langle \lambda \rangle}$ of X is also an infinitesimal affine transformation of $\nabla = \nabla$ on TM for every $\lambda \in N(p,r)$.

Proof. A necessary and sufficient condition for X to be an infinitesimal affine transformation of M is that

$$\mathscr{L}_X \circ \nabla_X - \nabla_Y \circ \mathscr{L}_X = \nabla_{[X,Y]}$$

for every $Y \in \mathcal{F}_0^1(M)$, where \mathcal{L}_X denotes the Lie derivation with respect to X. Therefore, we have to prove the following

$$\mathcal{L}_{X^{<\lambda}} \circ \tilde{\nabla}_{\tilde{Y}} K - \nabla_{\tilde{Y}} \circ \mathcal{L}_{X^{<\lambda}} K = \tilde{\nabla}_{[X^{<\lambda}},_{\tilde{Y}}] K$$

for every $K \in \mathcal{J}^{r,p}(TM)$ and $\tilde{Y} \in \mathcal{J}^{r,p}_0(TM)$. To prove (6.7) it suffices to prove (6.7) for the special cases, where $\tilde{Y} = Y^{<\mu>}$ with $Y \in \mathcal{J}^1_0(M)$, $\mu \in N(p,r)$ and $K = Z^{<\mu>}$ or $\theta^{(\mu)}$ with $Z \in \mathcal{J}^1_0(M)$, $\theta \in \mathcal{J}^0_1(M)$ and $\mu \in N(p,r)$. Moreover, to prove (6.7) for the case $K = \theta^{(\mu)}$ with $\theta \in \mathcal{J}^0_1(M)$, it suffices to prove (6.7)

for $\theta = df$ with $f \in \mathcal{J}_0^0(M)$.

If $K = Z^{\langle \nu \rangle}$, then we calculate as follows:

$$\begin{split} &\mathcal{L}_{X^{<\lambda}}, \tilde{\nabla}_{Y^{<\mu}} Z^{<\nu} - \tilde{\nabla}_{Y^{<\mu}} \mathcal{L}_{X^{<\lambda}} Z^{<\nu} \\ &= [X^{<\lambda}\rangle, \ (\nabla_{Y}Z)^{<\mu+\nu}] - \tilde{\nabla}_{Y^{<\mu}} [X^{<\lambda}\rangle, \ Z^{<\nu}] \\ &= [X, \ \nabla_{Y}Z]^{<\lambda+\mu+\nu} - (\nabla_{Y}[X,Z])^{<\lambda+\mu+\nu} \\ &= ([X, \nabla_{Y}Z] - \nabla_{Y}[X,Z])^{<\lambda+\mu+\nu} = (\mathcal{L}_{X} \circ \nabla_{Y})Z - (\nabla_{Y} \circ \mathcal{L}_{X})Z)^{<\lambda+\mu+\nu} \\ &= (\nabla_{[X,Y]}Z)^{<\lambda+\mu+\nu} = \nabla_{[X^{<\lambda}\rangle, Y^{<\mu}\rangle} Z^{<\nu}, \end{split}$$

which proves (6.7) for $K = Z^{\langle v \rangle}$.

To prove (6.7) for the case $K = df^{(\nu)}$ with $f \in \mathcal{F}_0^n(M)$, we first note that the following equalities hold:

(6.8)
$$(\mathscr{L}_X \theta)(Y) = X(\theta(Y)) - \theta([X, Y])$$

$$(6.9) \qquad (\nabla_X(df))(Y) = XYf - (\nabla_XY)f$$

for $X, Y \in \mathcal{J}_0^1(M)$, $f \in \mathcal{J}_0^0(M)$ and $\theta \in \mathcal{J}_1^0(M)$.

Take a vector field $Z \in \mathcal{F}_0^1(M)$ and $\rho \in N(p,r)$. Making use of (6.8), (6.9), Lemma 2.5 and (5.1), we calculate as follows:

$$\begin{split} & \{ \mathcal{L}_{X^{<\lambda}} \setminus (\tilde{\nabla}_{Y^{<\mu}} \setminus (df^{(\nu)})) - \tilde{\nabla}_{Y^{<\mu}} \cdot \mathcal{L}_{X^{<\lambda}} \setminus (df^{(\nu)}) \} \{ Z^{<\rho} \rangle) \\ & = X^{<\lambda^{>}} ((\tilde{\nabla}_{Y^{<\mu}} \setminus (df^{(\nu)}))(Z^{<\rho})) - \tilde{\nabla}_{Y^{<\mu}} \cdot df^{(\nu)}) ([X^{<\lambda^{>}}, Z^{<\rho}]) \\ & - (\tilde{\nabla}_{Y^{<\mu}} \setminus d(X^{<\lambda^{>}} f^{(\nu)}))(Z^{<\rho})) \\ & = X^{<\lambda^{>}} (Y^{<\mu} \setminus Z^{<\rho} \setminus f^{(\nu)}) - (\tilde{\nabla}_{Y^{<\mu}} \setminus Z^{<\rho}) f^{(\nu)}) \\ & - \{ Y^{<\mu^{>}} [X^{<\lambda^{>}}, Z^{<\rho^{>}}] f^{(\nu)} - (\tilde{\nabla}_{Y^{<\mu}} \setminus Z^{<\rho^{>}}) X^{<\lambda^{>}}, Z^{<\rho^{>}}]) f^{(\nu)} \} \\ & - \{ Y^{<\mu^{>}} Z^{<\rho^{>}} X^{<\lambda^{>}} f^{(\nu)} - (\tilde{\nabla}_{Y^{<\mu}} \setminus Z^{<\rho^{>}}) X^{<\lambda^{>}} f^{(\nu)} \} \\ & = [X \{ YZf - (\nabla_{Y}Z)f \} - \{ Y[X,Z]f - (\nabla_{Y}[X,Z]f - (\nabla_{Y}[X,Z])f \} \\ & - \{ YZXf - (\nabla_{Y}Z)Xf \}]^{(\nu-\mu-\rho-\lambda)} \\ & = [\{ \mathcal{L}_{X}(\nabla_{Y}df) - \nabla_{Y}\mathcal{L}_{X}df \} \} (Z)]^{(\nu-\mu-\rho-\lambda)} \\ & = [\{ (\nabla_{[X,Y]}(df)(Z))^{(\nu-\mu-\rho-\lambda)} = ([X,Y]Zf - (\nabla_{[Y,Y]}Z)f)^{(\nu-\mu-\rho-\lambda)} \\ & = [X^{<\lambda^{>}}, Y^{<\mu^{>}}]Z^{<\rho^{>}} f^{(\nu)} - (\nabla_{[X^{<\lambda^{>}}, Y^{<\mu^{>}}]}Z^{<\rho^{>}}) f^{(\nu)} \\ & = (\nabla_{[X,Y]}(df)(Z)^{(\nu)}(Z^{<\rho^{>}}), \end{split}$$

which proves (6.7) for $K = df^{(\nu)}$, since $Z \in \mathcal{F}_0^1(M)$ and $\rho \in N(p, r)$ are arbitrary. Thus (6.7) holds for any K and \tilde{Y} . Q.E.D.

From Lemma 6.6 we obtain

PROPOSITION 6.7. If the group of affine transformations of M with ∇ is transitive on M, then the group of affine transformations of TM with respect to $\nabla^{r,v}$ is transitive on TM.

From Proposition 6.7 and Corollary 6.5 we obtain the following

Theorem 6.8. If M is an affine symmetric space with connection ∇ , then TM is also an affine symmetric space with connection ∇ .

§ 7. Remarks.

Let $P(M,\pi,G)$ be a principal fibre bundle with base M, projection π and structure group G. We shall be able to prove that TP (TM, $T\pi$, TG) becomes canonically a principal fibre bundle with structure group TG, which is a Lie group by the natural group multiplication. Let ω be a connection form on P. Then by the same methods as in [5], we can construct the prolongation $\omega^{(r,P)}$ of ω to TP. If P = F(M) is the frame bundle of M then a linear connection on M will induce a linear connection on TM by the above procedure. We shall investigate the relationships between this procedure and the liftings of affine connections in §5 in a forthcoming paper, where we shall also study the prolongations of G-structures to the tangent bundles of p^r -velocities, which will generalize the results in [4].

REFERENCES

- [1] C. Ehresmann, Les prolongements d'une variété différentiable I. Calcul des jets, prolongement principal, C.R. Acad. Sci. Paris, 233(1951), 598-600.
- [2] _____, Les prolongements d'une variété differentiable II, L'espace des jets d'ordre r de V_m dans V_m , ibid., 777-779.
- [3] S. Helgason, Differential geometry and symmetric spaces, Acad. Press, 1962.
- [4] A. Morimoto, Prolongations of G-structures to tangent bundles of higher order, Nagoya Math. J. 38 (1970), 153-179.
- [5] ————, Prolongations of connections to tangential fibre bundles of higher order, to appear.
- [6] ______, Liftings of tensor fields and connections to tangent bundles of higher order, to appear.

Nagoya University