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0. Introduction

In this paper we define some lifts of tensor fields of types (1, k) and
(0, k) as well as connections to a product preserving functor %. We study algeb-
raic properties of introduced lifts and we apply these lifts to prolongation of
geometric structures from a manifold M to % (M). In particular cases of the tan-
gent bundle of pr—velocities and the tangent bundle of infinitesimal near points our
constructions contain all constructions due to Morimoto (see [20]-[23]). In the
cases of the tangent bundle our definitions coincide with the definitions of Yano
and Kobayashi (see [31]). To construct our lifts and to study its properties we use
only general properties of product preserving functors. All lifts verify so-called
the naturality condition. It means that for a smooth mapping ¢ : M— N and for
two ¢-related geometric objects defined on M and N its lifts to F(M) and
F(N) respectively are F(¢)-related. We explain later the term ¢-related for
considered geometric objects.

In the presented paper we do not study problems of classifications of lifts.

A product preserving functor is a covariant functor % from the category of
manifolds into the category of fibered manifolds such that #(M, X M,) is equiva-
lent to #(M,) X F(M,). In Section 1 we formulate properties of product preserv-
ing functors used in the present paper.

Let # be a product preserving functor. In Section 2 we recall lifts of vector
fields and functions to #. Lifts of vector fields was introduced by Kolar in [14].
They are parametrized by elements of so-called the Weil algebra A = F[R)
associated to &. Lifts of functions to # was studied by Mikulski in [17]. They de-
pend on functions A : A— R. The defined lifts verify the naturality condition.

Let ¢ : M— N be a smooth mapping. Vector fields X, Y defined on M and N
respectively are called @-related if the following diagram
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(0.1) x] T

commutes. Two functions f, & defined on M and N respectively are called
@-related if f= g°¢. In Section 2 we prove a few new and “nice” algebraic prop-
erties of introduced lifts which will be very useful in other sections.

In Section 3 we define lifts of tensor fields of type (1, k). This family of lifts
is parametrized by elements of the Weil algebra A = % (R) associated to %. Each
a-lift verifies the naturality condition. In this case for a smooth mapping ¢ : M— N
two tensor fields S, S’ of type (1, k) defined on M and N respectively are called
¢-related if the following diagram

02 e -

TN Xy Xy IN ——> TN

commutes.

We study algebraic properties of a-lift, where a € A. Among a-lifts S so
called complete lift S€ = S where 1 is the unity of A, is the most important.
From the proved properties of a-lifts we deduce that for a tensor field S of type
(1,1) and for a polynomial W(f) we have W(S®) = (W(S))° (see Proposition 3.2).
It implies that for an almost complex structure (respectively an almost tangent
structure, an f-structure) S on M its complete lift S€ is an almost complex struc-
ture (respectively an almost tangent structure, an f-structure) on F(M) (see
Corollary 3.3). Next we verify that for a tensor field S of type (1, 1) on M we
have

Ny = (NY)©,

where N is the Nijenhuis tensor of S (see Proposition 3.4). From this properties
we conclude that for an almost complex structure (respectively an almost tangent
structure, an f-structure) S on M its complete lift S is integrable if and only if
so is S (see Theorem 3.5).
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In Section 4 we study lifts of tensor fields of type (0, k). This family of lifts
is parametrized by linear functions A :A— R on the Weil algebra A = F(R) of
%. Each A-lift satisfies the naturality condition. Analogously as for tensor fields
of type (1, k) two tensor fields G, G’ of type (0, k) are called ¢-related if the
following diagram

(0.3) d¢x...xd¢l lmn

TN Xy X, TN ——> R
commutes.

Next analogously as in previous sections we prove some properties of A-lifts
of tensor fields of type (0, k). Particularly, for a symmetric tensor G on M we
calculate the signature of G"% as a function of the signature of G and the signa-
ture of the symmetric form A° D (a, b) — 1(ab) € R associated with . From the
proved formula (see Proposition 4.5) we conclude immediately:

G"” is non-singular if and only if G and the form (a, 8) — A(ab) are
non-singular

G" is positive definite if and only if G and the form (a, b) — A(ab) are
positive definite,

We observe (Lemma 4.6) that there is no linear function 4: A— R on the
Weil algebra of & such that the associated form A® 2 (a, b) — A(ab) €ER is
positive definite instead of the identity functor ¥ given by F(M) = M and
F(p) = ¢. It means that we cannot obtain a Riemannian metric on F(M) by
A-lifts of Riemannian metrics from M. To obtain a pseudo-Riemannian metric or
an almost symplectic form on F (M) by a A-lift of a pseudo-Riemannian metric or
an almost symplectic form from M we need to use a linear function A :A— R on
the Weil algebra A of % such that the associated symmetric form (a, b) —
A(ab) is non-singular. In general, there is no function A with this property. We
give a necessary condition for the existence of such a function A (see Proposition
4.7). We study properties of lifted (pseudo-)Riemannian metrics and (almost) sym-
plectic forms in Section 6.

In Section 5 we define a complete lift of a linear connection from M to a
linear connection on % (M) and we study its properties. The complete lift of linear
connections verifies the naturality condition only for all embeddings ¢ : M — N of
two #-dimensional manifolds. For linear connections V and V’ defined on M and
N respectively we say that they are ¢-related if for all ¢-related vector fields X,
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X’ and all ¢@-related vector fields Y, Y’ the vector fields V,Y and V', Y’ are
also @-related.

We prove a “nice” formula for covariant derivations. If V is a linear connec-
tion on M, then its complete lift V° is the unique linear connection on % (M) such
that

V;(H)Y(b) — ( VXY) (ab}

for all vector fields X, Y on M and all ¢, b € A (Proposition 5.6). From this we
can conclude that the torsion and the curvature of V< are the complete lifts of the
torsion and the curvature of V (Proposition 5.6).

Lifts of generalized connections to a Weil functor were studied by Slovak
[28].

At the end of this section we prove that lifts of tensor fields commute with
the complete lift of linear connections (Proposition 5.11).

In Section 6 we study lifts of pseudo-Riemannian metrics and (almost) sym-
plectic forms and we prove some standard properties on Riemannian metrics,
Kahlerian structures and the integrability of lifted almost symplectic structures.
We can prolong such geometric structures to % (M) under the condition that there
is a linear function 2:A— R on the Weil algebra A = F(R) such that the
associated symmetric form A” 3 (a, b) — A(ab) € R is non-singular, We recall
that in general there is no function with this properties. In the case of the »-order
tangent bundle such a function exists and in this case considering a suitable func-
tion A our propositions coincide with the corresponding results of Morimoto [22].

In the last section we formulate corresponding local expressions of lifted ob-
jects.

In the paper we always suppose that all manifolds and mappings are of class

&

1. Product preserving functors

First we recall the definitions of prolongation functor and product preserving
functor.

DeriniTION 1.1. A prolongation functor is a covariant functor F from the categ-
ory of all manifolds and all mappings into the category of fibered manifolds satis-
fying the following conditions:

(1) For every manifold M, (M) is a fibered manifold over M and 7 = 7, :

FM— M is its projection. For a point £ € M we denote by F (M) =
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7, () the fibre over .
(2) The naturality condition. For every mapping ¢ : M — N of two manifolds
M, N, for the induced mapping F (@) : F(M) — F(N) the following

diagram
F(9)
FM —> FWV)
M — N
commutes.

(3) If ¢:M— N is an embedding of two #-dimensional manifolds M, N,
then for x € M the restriction F(@Q)z gy : F (M) = F,,(N) is a
diffeomorphism.

(4)  The regularity condition. If ¢, : M— N is a differentiable family of map-
pings, then F(¢,) : F(M) — F(N) is a differentiable family of mappings.

Let us observe that for every fixed natural number # the restriction of a pro-

longation functor to the category of n-dimensional manifolds and their embeddings
is so-called a natural bundle (see [25]). Kolar and Solvak have proved that the reg-
ularity condition is a consequence of conditions (1) and (2) of Definition 1.1 (see
[15]).

This definition immediately implies:

(1) if U< M is an open subset then we can identify #(U) with (M), by
F@ :FWU)— FM),y, where i : U— M is the inclusion;

(2) F(R" is isomorphic with the trivial bundle R" X F, where F = Z,(R").
The isomorphism ¥ : R” x F— F(R") is given by ¥(z, ) = F(c,) (%),
where 7, : R®— R” is the translation.

Every prolongation functor transforms immersions, submersions and embed-

dings into immersions, submersions and embeddings respectively (see [15]).
For two manifolds M,, M, we denote by =m;: M, X M,— M, the standard
projection on the i-th factor, where 1 = 1, 2.

DeFINITION 1.2. A prolongation functor & is called a product preserving functor
if for all manifolds M,, M, the mapping
(F(r), Fm)) : FM, x M,) > FM,) X F(M,)

is a diffeomorphism.
For a product preserving functor % we will always identify F(M, X M,)
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with F(M,) X %(M,) by the deffeomorphism from the definition. After this iden-
tification we have

(1.1) FUHX L) =F ) X F)
(1.2) F(f, 9 =FN, F@)
for all mappings f,: M, — N,, f,: M,— N,, f :M— N, and g : M— N,

From the definition we obtain that a product preserving functor ¥ has a
poini-property i.e. F(point) = point. This implies that for a constant mapping ¢ : M
— N the induced mapping # (¢) is also constant.

The tangent bundle TM and the tangent bundle of p -velocities T;MZ
]OV(RP, M) (see [19], [21]) are important examples of product preserving functors.
The most general example of product preserving functor is so-called Weil functor
(see [24]). 1t is constructed as follows:

Let R[p] = RI[X,,...,X,]] be the algebra of all formal power series of p
indeterminates X, . ..,X, and let m, be the maximal ideal of R[p] of all formal
power series without constant terms. Let a be an ideal of RIpl such that R[p] /a
< oo, The algebra A = R[p] /a has the unique maximal ideal m = m,/a.

For this algebra A we construct a product preserving functor 7.

Let £, :R[p] — A be the natural projection. We denote by 7:%"(R") —
RI[p] the formal Taylor expansion at the origin t = 0, ie. for f€ " (R") we
have

v
=25 ()], x
Now we define an equivalence relation in the set %w(RP, M) of smooth mappings
R"— M (similar to the relation of jets): 7, 77 R’ — M are A-equivalent if

Er(fep) = Efe(f1))

for every f€ € (M). We denote by j'7 the equivalence class of 7 : R = M, by
T*M the set of all equivalence classes and by 7, : T*M— M the natural projec-
tion 7, (7*@) = ¢(0).

For a smooth mapping ¢:M— N we define TA(p :T"M— TN by
T 0G*D = j*(¢-7). 1f (U, @) is a chart on M, then (T*U, T*9) is a chart on
T*M. 1t is easy to observe that T isa product preserving functor.

In 1986 Eck {3], Kainz, Michor [11] and Luciano {16] have proved indepen-
dently that any product preserving functor is in fact equivalent to some Weil func-
tor.
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THEOREM 1.3. If % is a product presevving fumctor, then theve exists an algebra
A = RIp] /a such that F(M) = T* (M) for every manifold M.

In the paper we will not use the above theorem.

Product preserving functors have many interesting properties. In this section
we formulate some properties of product preserving functors used in the paper.
We start from the following proposition:

ProposITION 1.4, If F is a product presevving functor then A = F(R) is a real
associative, commultative and finite dimensional algebra.

If +,: R*—> R are the addition and the multiplication on R and m,: R— R is
the wmultiplication by a € R, then F(+), F(), FOm,) are the operations in
A, FO) and F(1) are the zevo and the unity in A (after identification of constant
mappings with their values).

The set N= F,(R) is the ideal of wilpotent elements of A. We have A=R-1D N.

The algebra A = F(R) will be called Weil algebra of #.

Proof. A= %(R) is an algebra by the functoriality of #. For instance, to
show the associativity of F(+) we apply ¥ to the formula + °(+ X id) =
+ -@Gd X +).

To prove the properties of N we observe that the restriction of # to the
category of 1-dimensional manifolds is a natural bundle, and by [26] it is of finite
order k. Let ¢ = t+ "™, Since jog = jeid, thus, for @ € N we have

a+d"' =7, @ = a.

It implies @' = 0. O

If we apply a product preserving functor to some particular manifolds as
groups, vector spaces, vector bundles and so on we obtain many interesting prop-
erties. We collect these properties in a few propositions. At the beginning we
formulate properties for vector spaces and vector bundles.

ProposiTion 1.5.  Let # be a product preserving functor.

1. If V is a finite dimensional vector space, then F(V) is a finite dimensional
vector space. If + : VX V>V is the sum mapping in V and for c ER, d,: V>V
is the multiplication by scalar &, then F(+) : F (V) X F(V) = F(V) is the sum
mapping m FV) and Fd,) : FV) — F (V) is the multiplication by scalar @ n
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F (V). The zevo of F(V) is F(0), where 0 : V— V is the constant zevo mapping.

2. If f : V— W is a linear mapping of two finite dimensional vector spaces, then
FH FV)—FW) is also linear.

3. Iff VX« X V,— W is a k-linear mapping, then F(f) : F(V)) X -+~
X FV,) = FW) is also k-linear.

4. If V= U, D U, is a direct sum of subspaces U,, U,, then we have F(V) =
FU) D FWU,.

5. If f : V— W is linear, then we have

(1.3) ker Z(f) = F(ker ), imF(f) = F(m f).

Proof. The proofs of parts 1-4 are standard (cf. the proof of Proposition
1.4). To show part 5 we consider a subspace U such that V= ker fP U. We de-
note by ¢ :ker f— V and j : U— V the inclusions. If we apply & to the equality
f°1 =0 and to the isomorphism f°j : U— im f we obtain F(f) ggerp = O and the
isomorphism F ()4, : F(U) — F(im f). This implies (1.3). O

For a vector space V we can define a richer structure on F(V). Namely, we
have

ProposiTioN 1.6, Let F be a product preserving functor and let A = F(R) be its
Weil algebra.

1. If V is a finite dimensional vector space, then F (V) is an A-module. If m : R
X V=V is the scalay multiplication in V, then the induced mapping F(m) : A X
F V) —= F(V) defines the action of A on F(V).

2. If f: V=W is a linear mapping, then F(f) : F() = FW) is a homo-
morphism of A-modules. If f : Vy X -« XV, — W is k-linear over R, then F(f) :
FV) X - X F(V) = FW) is k-linear over A.

3. If vy,...,0, is a basis of a vector space V, then F(v)),...,%(v,) is a basis of
the A-module F(V). Furthermore, if ay, . . .,ax is a basis of A over R, then all pro-
ducts a,F(,), where 1 =1,.. .,nand v =1,...,K, is a basis of F(V) over R.

The proof of parts 1 and 2 is standard. To show part 3 we apply & to the
isomorphism R” 2 (§',.. ., > X1 &v, € V.

We can prolong these properties to category of vector bundles. In this case
we obtain
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ProposiTioN 1.7. Let & be a product preserving functor.

1. If r: E— M is a vector bundle, then F(x) : F(E) = F(M) is a vector bun-
dle too. If V is the standard fibve of E and ¢ : E\;— U X V is a trivialization over
an open subset U C M, then F(V) is the standard fibre of F(E) and F(¢) :
F(E) \gun — FU) X F(V) is a trivialization over F(U)  F(M).

2. If W:E—E’ is a vector bundle homomorphism, then F(¥) :F(E)—
F(E’) is also a vector bundle homomorphism.

3. Let E,,...,E, be vector bundle over the same base M and E be a vector bundle
over N.If W : E, X, -++ X, E,— E is a k-linear mapping covering ¢ : M— N,V
then FO) :FE) Xgup  Xgan FE) = F(E) is a k-linear mapping
covering F () : F(M) — F(N).

4. If E = E, D E, is a divect sum of two vector bundles E, and E,, then F (E) :
F(E) ® F(E).

5. If f : E— E’ is a vector bundle homomorphism such that the function x—
dim ker £, is constant on the base of E®, then

(1.4) ker #(f) = F(ker f), imF(f) = F(Gm f).

For Lie groups and their actions on manifolds we collect properties interest-
ing for us in the followlng proposition.

ProposITION 1.8. Let F be a product preserving functor and A = F(R) be its
Weil algebra.

1. If G is a Lie group, then F(G) is also a Lie group. If m : G X G— G is the
product i G and 1 is the unity of G, then F(m) is the product in F(G) and F(1) is
the unity of F(G).

2. If a Lie group G acts on a manifold M and A: G X M— M is the action,
then F(G) acts on F (M) and F(A) : F(G) X F(M) — F(M) is the action.

In particular, if ad : G X G— G is the adjoint action of G on G, then F(ad) :
F(G) X F(G) — F(G) is the adjoint action of F(G) on F(G).

If 0: GLR") x R*"—R" is the standard action, then F(0) gives an action
on FR") of A-linear transformations and we have a Lie group monomorphism
I:F(GLR") — GL(FR") < GL(FR") given by IX)(y) = F(0) (X, y) for
XeFGLRY) andy € FR).

3. If f: G— G’ is a Lie group homomorphism, then F (f) : F(G) = F(G) isa

Y It means that for each point £ € M ¥ transfoms (E), X - -- X (E,), into E,,, and
wz = w.\(Ex)IX---x(Ek)z: (EI)I X o X (Ek)z—) E(IJ(I) is k-linear.

2 This assumption gives a sufficient and necessary condition under which im f € E” and
Ker f C E are vector subbundles.
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Lie group homomorphism. Particularly, if H C G is a Lie subgroup, then F(H) is a
Lie subgroup of F(G).

4. If P(IM, G, 7 is a principal fibre bundle with base M, structure group G and
projection 7, then F(P)(F (M), F(G), F(m)) is a principal fibre bundle with base
FD, structure group F(G) and projection F(x). If ¢ :Py— U X G is a tri-
vialization over U, then F(@) : F(P) g — F(U) X F(G) is a trivialization over
F).

5. If f: PWM, G)— P'(M’, G) is a homomorphism of principal fibve bundles
covering ¢ : M— M’ with an induced Lie group homomorphism p;: G— G’, then
F(NH :FP)— F(P) is homomorphism of principal fibre bundles covering F(¢)
FM = FUM) and F(o,) : F(G) — F(G') is the induced Lie group homomorph-

1SM.

Proof. The unique nonstandard step of the proof is the injectivity of I from

part 2. .
2 n .
Applying F to R” X R* © GL(R") x R"— R” we obtain

A" X A" = FR™) x FR™) D FCLRY) x FR") —2 F(R")

given by ?(p)([xj], ") = (Zfﬂxf 2’). This formula implies the injectivity of
I O

There is a very interesting and nontrivial property saying that for two pro-
duct preserving functors #,, %, there exists a natural isomorphism %, (%,(M)) —
F,(F,(M). We will use this property only in the case when one of these functors
is the tangent bundle. We have

ProPoSITION 1.9.  Let F be a product preserving functor. There exists one and only
one family 0y 2 F(TM) — TF (M) of vector bundle isomorphisms

FIM) M, TEFM

F (b \ / Pzan

F (M)

(where pyy : TM — M is the projection) such that the following conditions hold :
(1) for every smooth mapping ¢ : M— N the following diagram
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TF (M) 29, TF V)

commutes
(2) for two manifolds M, N we have Nyuy = Ty X My
(3) if ¥gp: TR—=R X R and Ty g, : TFR) > F(R) X F(R) are the stan-

dard trivializations, then
F Wr) 3R
R F(TR)— FR X R) =FR) X FR)—> T(FR)).

Outline of the proof. Let us observe that according to (2) we need to define
Ngr = ()", Now (1) holds for M = R” and N = R". Next using charts we can
define 71,, for any M such that (1) holds. Ol

In [9] we have proved that condition (2) is a consequence of condition (1) from
Proposition 1.9,
We finish this section by remarks on Lie algebras. We have

ProposiTION 1.10.  Let F be a product preserving functor.

1. If g is a Lie algebra, then F (g) is also a Lie algebra with the Lie bracket
FA,1), where [,]:9 X g— g is the Lie bracket in g.

2. If f:g— g is a Lie algebra homomorphism, then F(f) : F(g) — F(g’) is
also a Lie algebra homomorphism.

3. If G is a Lie group and £(G) is its Lie algebra, then the vestriction

(T](;) |F(PG) : g(f(G)) - g(g(c))
is a Lie algebra isomovphism, wheve ng 1s from Proposition 1.9. The restriction

() |7y Will be denoted also by 1.

The verifications of parts 1 and 2 are standard. We will prove part 3 in Sec-
tion 2.
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2. Lifts of functions and vector fields

Let # be a product preserving functor and let A = % (R) be the correspond-
ing Weil algebra.

If A:A— R is a smooth function and f : M— R is a smooth function on a
manifold M, then we define A-lift of f to F (M)

2.1) O =2%0.

£ is a smooth function on F(M). It is easy to verify

ProposiTioN 2.1, Let &F be a product preserving functor and A = F(R) be its
Weil algebra. For any smooth function A : A— R the family of mappings € (M) >
fof® € € (FM is a lifting, i.e. for every smooth mapping ¢ : M— N and every
function f € €~ (N) we have (fep)? = P F ).

The A-lift have the following properties, being an immediate consequence of
the definition.
If 4,, 4, A— R are two smooth functions and @;, &, are reals, then

2.2) Flatte) o 0D 4o O
If A: A— R is linear and o, B are reals, then
(2.3) (af + B = ar ' + g”.

Let B = (a,,...,ax) be a basis of A over R. We consider # as a linear iso-
morphism A — R* and let Ty : A— R be the composition of B with the projection
R" — R on v-th factor, v = 1,.. K.

For a coordinate system (U, xl,. . .,xn) in M we define the induced coordin-
ate system {z"} on F(M) by

(2.4) "= @Y™, forv=1,.. K.

From (2.4) we obtain immediately

ProrosiTioN 2.2. Let F be a product preserving functor and A = FR) be its
Weil algebra.

If X, Y are vector fields on F (M) such that for every smooth function f on M and
every linear function 2 : A— R we have X(f *) = Y(f®), then X = V.
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Next we will study lifts of vector fields. The standard example is so-called
complete lift. If X : M— TM is a vector field on M, then we define X = Ny e
F(X), where 1, is the isomorphism from Proposition 1.9. It is a vector field on

F (M) called complete lift of X to F(M). We have

ProrosiTioN 2.3. Let F be a product presevving functor and A = FR) be its
Weil algebra. If ¢, is a local flow of X, then F(¢,) is a local flow of X°

Proof. 1t is clear that F(g,) is a local flow on F(M). Let X be the local vec-
tor field on F (M) defined by F(¢,).

According to the commutativity of the condition (1) from Proposition 1.9 we
can assume that M = R”.

For a point ¥y € F(R") the coordinates of X(y) are equal to %?((p,) @) |2,
€ A" = F(R"). On the other hand the coordinates of (Pg.*% (X)) (y) are equal to
F(% (p,|[=0>(y) = %5‘((,0,) @) |,o. In the last equality we apply that for any
vector space V the mapping
(2.9) €M, V)>h>Fh €6 FUMD, FV))
is linear. O

From the above proposition we obtain that the complete lift introduced here
coincides with the standard definition by flows which is introduced on natural

bundles. The complete lift has the following properties (see Salvioli [27], cf. also

[5])
(2.6) (X + BV =aX + BY°, (X, NN°=1X, Y9

for all vector fields X, Y on M and all reals «, 5.

We will define other examples of lifts of vector fields to %. We consider the
mapping ¥ : R X TM— TM given by ¥(¢, v) = tv. Using the natural isomorph-
isms 7y : F(TM) — T(FM), the induced mapping F(¥) : A X F(IN) = F(TM)

determines the mapping
U=, F@-Gd, X n,)) : AX TFM) — T(FM).
For an element @ € A and a vector v € T(FM) we define

(2.7 av= W, v).
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This product has the following properties

(a+b)i=adv+ b,
(ab) 7= a (b-D),

a@+w) =ai+ an,

dF(p) (a' 1) = a-dF (p) (D)

(2.8)

foralla, b €A, 7, w € T, (M), y € F(M) and every smooth mapping ¢ : M —
N. These properties are a simple consequence of the definition of “-”. We verify
only the last formula from (2.8). A verification of rest formulas are similar.

The equality dg(fv) = tdp(v) can be written without arguments in the form
do-¥ = ¥-(idg X d¢). Applying # and composing the obtained formula with 1y
and id, X 71, we obtain

Ny F(d) - F (@) =Gd, X 1ny) = 0y F @ Gd, X Fdp)ony)-
Using the commutativity of the second diagram from Proposition 1.9 we deduce

dF (@) T = dF (@) 0y F (W) (id, X 13
= e F(d)F (W@ -Gd, X ny)
=y F @ -Gd, X F(de) 1))
= P (id, X nyF(d) ny)
= T-(id, x dF (¢)).

“ oo

By the definition of
(2.8).
Let us also observe that after identification T,(¥(R")) with #(R") we have

the above equality is equivalent to the last formula from

av=av

for a€ A and 7 € T,(FR")) = FR", y € FR"), where A-module structure
on F(R") is defined in Proposition 1.6.
Now for a vector field X on M and an element ¢ € A we define

(2.9) X?=qgX"= U, X9.

X is a vector field on F(M) called a-lift of X. This a-lift was introduced by
Kolar [14]. From (2.9) we obtain immediately

(2.10) xX°=x",

where 1 is the unit of A. Kola# in [13] proved
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PrROPOSITION 2.4. Let F be a product preserving functor, A = F R) be its Weil
algebra and a € A. The family of mappings ¥ (M) 2 X=X € X(FM) is a
lifting i.e. for every smooth mapping ¢ : M— N and every @-velated vector fields X €
KM, YEKXWN) the vector fields X € X(FM), Y@ € X(FWN)) are Fp)-

related.

Proof. We apply ¥ to diagram (0.1) and next we use formulas (2.7) and (2.8).
td

We have the following proposition on flows of X,

ProPoSITION 2.5. Let F be a product presevving functor and A = F(R) be its
Weil algebra. If ¢ : (— &, + &) X U— M is a local flow of a vector field X on M,
then the mapping ¢ : (— &', +&) X FM) | U— F (M) given by

(2.11) @, y) = F(p) (ta, y)

(@}

is a local flow of X .

Proof. Let us observe that from the equality @t + s, 2 = ¢, ¢(s, 1))
the induced mapping F(¢) : A, 0 X F (M) y; — F(M) satisfies the condition
Flp)a+ b,y = F()(a, Fl)(b, y) for all a, b and all y such that a, b,
at b€ A ., and y, Flo)(b, y) € F(M) . It implies that ¢ is a local flow
on F(M).

Without lost of the generality we can assume M = R”. Let X be a local vec-
tor field on F(R") defined by @. For a point y € F(R") by (2.9) and Proposition

d n n
2.3 the coordinates of X at y are equal to a5 ()W) o, € A" =FR".

The coordinates of X at y are equal to

d
%g(w) (ta, y)‘t=0 = d(oyy)g(([)) (a, 0)
=a-d,,F(p)(1, 0) by formula (2.8)

= a%?((p) ¢, 9z
=a % g(w,) (y) 1¢=0

because ¢, = @° (¢ X idg.), where ¢ : R— R is the constant mapping. UJ
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We can prove the following properties of a-lifts of vector fields.

PROPOSITION 2.6. Let & be a product preserving functor and A = F(R) be its
Weil algebra.

1. If X is a vector field on M, f is a function on M, 2 : A— R is a linear func-
tion and a € A, then

(2.12) X9y = X%,

where 1, : A— A is given by 1,(b) = ab.
2. If X, Y ave vector fields on M, a, B are reals and a, b € A, then

(2.13) (@X+ BY)?Y =aXx® +pY*?
(2.14) X(aa+Bb) — aX(a) + ,BX(b)
(215) [X(a)’ Y(b)] —_ [X, YJ(ab).

3. If X is a left invariant vector field on a Lie group G and a € A, then X @ s

a left invariant vector field on F(G).

Proof. In the proof of formula (2.12) we can assume that M = R”". By Prop-
osition 2.5, the last formula from (2.8) and the linearity of A we obtain

(Xm)fw) () = g; (f u)o(ﬁt) (Z/)’¢=o
_ % A-F(f+ ) (ta, )lrmo

d
= ](E (9](f°(,0)) (ta, y)lt=0>

= Mdy, F(f9)(a, 0))
= Aa-depF (f-) (1, 0))

= (Acla)(%?(f"(p) (t, y)l,=0)
= 1) (EF (700 W.y)

= (A1) (9 (% f °<p,)|,=o> (y)>

= el FXN) @)
= (X" (y).

The proof of formula (2.12) is finished.
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Formulas (2.13) and (2.14) are an immediate consequence of the definition of
a-lift and (2.6). To show formula (2.15) let us observe that for every function f
on M and every linear function 4: A— R by (2.12) and the formula [, [, = [,
we have

[X(a), Y(b)] (f(2)> — X(a)(Y(b)(f(x))) _ Y(b)(X(m(f(A)))
= (X(Y(N))) = — (Y (X))
= ([X, YI(H))*'

— [X, Kl(ab)(fm)-

Now using Proposition 2.2 we obtain (2.15).

To prove the part 3 we observe that for a flow ¢ of X we have @(¢, &g) =
Ep(t, @) for tER,E g€ G Applying F we deduce F(@) (b, & g =
EF(p)(b,d for all b€ A &, 7€ F(G). In particular F(¢)(ta, £7) =
EF (¢)(ta, §). Since F () (ta, y) is a flow of X “', thus X“ is left invariant. [

Formula (2.12) is very useful in the calculations (for instance it is used in the
proof of (2.15)). In future we will use also a similar formula for vector-valued
functions.

ProposiTiON 2.7. Let F be a product presevving functor and A = FR) be its
Weil algebra. Let V be a finite dimensional veclor space. For any vector field X on M,
any @ € A and any smooth function f 1 M— V we have

XNUF ) = aF (X)).

The proof is similar to the verification of formula (2.12).
From (2.4) and (2.12) we deduce

CoroLLaRY 2.8. Let (U, z') be a chart on M, 0y, . . . ,0, be ils adapted frame
and let ay,. . .,ax be a basis of A. Then {(ai)‘““’ li=1,....n,v=21,...,K) is the
adapted frame to the induced chart (F(U), ') on F(M).

From Corollary 2.8 we obtain immediately
ProposiTion 2.9. Let & be a product preserving functor and A = F(R) be its

Weil algebra. If S, S’ are two tensor fields of type (1, k) or (0, k) on F(M) such that
for all vector fields X,,...,X, on M and all elements a,,. . .,a, of A the equality
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S‘(Xl(al)’ . ~ka(ak)) — S’(Xl(al),. ) -,Xk(ak))

holds, then S = §.

Now we can prove the following proposition formulated in Section 1 (see
Proposition 1.10 (3)).

ProposiTion 2.10. Let F be a product presevving functor. If G is a Lie group and
%(G) is its Lie algebra, then the vestriction (Ng)\gwey @ F(L(G)) = L(F(G)) is a
Lie algebra isomorphism, wheve 1) is from Proposition 1.9.

The restriction (0¢) 5@ Will be denoted also by 7.

Proof. For a Lie group H its Lie algebra £ (H) consisting of all left invariant
vector fields on H we identify in the standard way with the tangent space T,H.

Let E,,...,E, be a basis of £(G) and a,...,dax be a basis of A = F(R). By
Proposition 1.6 (3) #(E,...,%(E)) is a basis of F(£(G)) over A. On the other
hand by Proposition 2.6 (3) Ej(a”) belong to £(F(G)) for j=1,...,Nand v =1,
...,K Of course, n,(a,F(E)) = E,*. By Proposition 1.6

i B

la,7(E), 0,7 (E)] = a,a,[F(E), F(E)] = a,a,7(E, E]).

Thus
nela,#(E), a,F(E)]D) = ny(a,a,F([E;, ED)
— [Ej, El] (aya,)
— [Ej(a,,), Ei(a,,)]
= [ne@,F (ED), ns(a,F(ED].
Since 7, is a linear isomorphism, thus the proof is finished. O

3. Lifts of tensor fields of type (1, k)

Let # be a product preserving functor and let A = F(R) be its Weil algebra.
We define lifts of tensor fields of type (1, k) from a manifold M to F(M).

We interpret a tensor field S of type (1, k) on a manifold M as a k-linear
mapping S : TM X, -+ X, TM — TM of the bundle product over M of k copies
of the tangent bundle into TM covering the identity on M. We recall that in this
case the k-linearity means that restrictions of S to fibres (TM X, -+ X, TM),
=T MX - X TM— T,M is k-linear for all x € M. Using 1, : F(TM) —
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T(FM) we define a mapping S : T(FM) X gup - X gun TFM) — T(FM) by
(3.1) S =0y FS)(ny X -+ X )

called complete lift of S from M to (M) . From Propositions 1.9 and 1.7 we deduce
that S€ is a tensor field of type (1, k) on F(M).
Let @ € A. For a tensor field S of type (1, k) on M we define

(3.2) 5?9 =q-S° = Wa, Y,

where the product “-” is defined by (2.7). From properties of the product “*” (see
(2.8)) we obtain immediately that S'” is a tensor field of type (1, k) on F(M): it
is called a-lift of S from M to F (M).

Let 7,(M) be the set of tensor fields of type (1, k) on M. Let S € T:(M),
S’€T,(N)and ¢:M— N be a smooth mapping. Tensor fields S, S’ are
@-related if diagram (0.2) commutes. We have

PropositioN 3.1. Let F be a product preserving functor and A = FR) be its
Weil algebra.

For every a € A the family of mappings T,(M) € S— S & T(FM) is a
lifting, ie. if SE€ T, (M and S" € T, (N) are @-related, where ¢ : M— N is a
smooth mapping, then S@ € T (FM) and §@ e THFM) are F (@) -related.

If S is a tensor field of type (1, k) and a € A, then for all vector fields X, . . .,

X, on M and all elements a,,...,a, € A we have

(3.3) S(a) (Xl(al)“ ) .ka(a;,)) = (S(Xl, N .,Xk))(aal'"a")_

Let us observe that according to Proposition 2.9 formula (3.3) determines un-

iquely s

Proof. Applying &, 1, and 1y to diagram (0.2) we deduce the first part of
the proposition.
To show formula (3.3) we apply & to the equality

StX, @),... tX (@) =t.. . 5X W),....X (1),

where the left and the right sides are considered as mappings defined on R X - --
X R X M, and we compose the induced mapping with the natural isomorphisms
7y and 77;,1. In consequence, we obtain

Sc(al‘ch,. . .,ak'Xkc) = al' . .ak'SC(chy- . ~!Xkc)~
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By (3.2) it implies (3.3). ]

We will study algebraic properties of a-lifts of tensor fields. At first, we de-
fine an operation on tensor fields.

For two tensor fields S, S” on M of type (1, k) and (1, k) respectively and
for i =1,...,k we define a new tensor field 0'(S, S") of type (1, k+ & ~— 1) on
M by
0 (S, SNy, ... 040

(3.4)
= SWy,. .., 01, S, Vi) Viswrstr e - o1 Vperr—1)

for v,,.. Wy 1 €ET M, z€ M.>
We have the following properties of a-lifts of tensor fields to #.

PropOSITION 3.2. Let F be a product preserving functor, A = F(R) be its Weil
algebva and let a, b € A.

(1) If S is a symmelric (respectively skew-symmetric) tensor field of type (1, k) on
M, then S is a symmetric (respectively shew-symmetric) tensor field of type (1, k) on

FD.
(2) For tensor fields S, S’ of type (1, k) on M and reals e, 8 we have

(Q/S + 'BS,)(a) — as(a) + BS,(a),
S(aa+ﬁb) — as(a) + ,BS(b),

(3) For tensor fields S, S’ of type (1, k) and (1, k) vespectively on M, and i =
1,...,k we have

(pi(s, S/))(ab) — pi(s(a), S,(b)),

where p'(S, S") is defined by (3.4). Particularly, for two tensor fields S, S’ of type
(1,1) on M we obtain

S(E)S/(b) — (SS,) (ﬂb)'
(4) If S is a tensor field of type (1, k) on M and X is a vector field on M, then
LX(mS(b) = (LyS) (ab),

wheve L denotes the Lie derivation.
(5) If 04 : TM— TM is the identity tensor, then (8,)
la?’, (BM)C = 59(M)’

(@) .
= a* Ogqp. In particu-

3 if §, S are tensor fields of type (1, 1), then o' (S, ") is the composition of S : TM —
TM and S*: TM — TM.
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(6) If W(b) is a polynomial with veal coefficients and S is a tensor field of type
(1,1) on M, then W(S°) = (W(S))°.

Proof. The verification of parts (1)-(b) is obtained by similar methods. Part
(6) is an immediate consequence of parts (2), (5) and (3). In order to present these
methods we show part (3).

Let Xi,. .., Xt €EX M) and ay,. . .,q40-, €A =FR). Using (3.3) we

have

(pi(s(a), S,(b))) (Xl(a1> Xk(i';}"'?))

SO X SR X, X )
=S59C..... “" Y(SX,. ., ,+,,)>"’“' e Xt )
_se X S Xo) Koo ) @ ks

= (0'(S, SV Ky Koo Kops Kigrnns o) @ iew=d

= (0'(S, SN X, X e ;1’).

Now by Proposition 2.9 we obtain part (3).
In the proof of (4) we use additionally the formula

k
LS(X,...,.X) = [X, S(X,,....X)] — = S(X,,...,[X, X]1,....X,)
i=1

and Proposition 2.6. ]
From the above proposition we obtain

CoroLLARY 3.3. Let & be a product preserving functor. If t is an almost complex
structure (vespectively an almost tangent structure, an f-structure) on M, then £ is an
almost complex structure (vespectively an almost tangent structurve, an f-structure) on
FD.

If X is an infinitesimal fransformation of t, then X “ s an mfinitesimal trans-
formation of t° for everya € A = F(R).

Proof. The first part follows from Proposition 3.2 (6) and the second
one—from Proposition 3.2 (4). ]

The analogous properties were proved in the case of tangent bundle, 7-order
tangent bundle, p'-velocities bundle by Yano, Ishihara and Morimoto (see [30],
(18], [20], [22]).
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Next we propose to formulate the following important property.

PropPOSITION 3.4. Let F be a product preserving functor and A = FR) be the
corresponding Weil algebra. If t is a tensor field of type (1, 1) on M and a € A, then

Ntm) = (N,) @ y

where N denotes the Nijenhuis tensor. In particular, we have

Ntc = (N,)C.

Proof. To prove this proposition we apply the similar methods as in Proposi-
tion 3.2 to the Nijenhuis tensor

N(X, V) =X, Y] — tltX, Y1 — t[X, tY] + [tX, tY]. O
Now we can prove

THEOREM 3.5. Let & be a product presevving functor. Let | be an almost complex
structure (vespectively an almost tangent structure, an f-structuve) on M. Then £ isa
complex structure (vespectively a tangent structurve, an integrable f-structure) on
F (M) if and only if t is a complex structuve (vespectively a tangemt structurve, an in-

tegrable f-structure) on M.

Proof. For considered structures the integrability is equivalent to vanishing
of the Nijenhuis tensor. Our theorem is a simple consequence of Proposition 3.4.[]

Let us observe that using Proposition 3.4 we can prove the analogous
theorem for all geometric structures (defined by tensor fields £ of type (1, 1)) for
which the integrability is equivalent to vanishing of the Nijenhuis tensor.

4. Lifts of tensor fields of type (0, k) Lifts of k—forms

In this paragraph we can define lifts of tensor fields of type (0, k).

We interpret a tensor field G of type (0, k) on a manifold M as a k-linear
mapping G : TM X, -+- X,, TM— R of the bundle product over M of k copies
of the tangent bundle into R. We recall that k-linearity means that its restrictions
to fibres (TM X, -+ X, TM), = T,M X -+ X T,M— R are k-linear for all x
€ M. Using the natural isomorphism n, :%(TM) — T(FM) we define G:
T(FM) Xgup " Xgan TFM)— Aby
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4.1) C=F(G) -y X - X ny)

G is k-linear because F(G) is k-linear (see Proposition 1.7 (3)) and 7,, is linear
(see Proposition 1.9).
Let A: A— R be a linear function. We define

(4.2) G* = 21-G.

It is a tensor field of type (0, k) on F{(M) called A-lift of G from M to F(M).
Let 7,(M) be the space of tensor fields of type (0, k) on M. We verify

ProPOSITION 4.1. Let F be a product presevving functor, A = FR) be its Weil
algebra and let A : A— R be a linear function.

The family of mappings To(M) @ G— G € TUFM) is a lifting, i.e. if ten
sor fields G € T (M) and G' € T,(N) are @-related, wheve ¢ : M— N is a smooth
mapping, then G and G’ are F (@) -related.

If G is a tensor field of type (0, k), then for all vector fields X,,...,X, on M and
all elements a,,...,a, € A we have

4.3) GP XX = (GX,,. .. X)) e,

oY

where 1, : A— A is given by 1,(b) = ab.

Proof. The first part of the proposition is clear. We verify (4.3) in a similar
way as (3.3). From the equality G(4,X,,...,t,X) = t,...t,G(X,,...,X,) we con-
clude that

Glay X(,. . a0 X)) = 1, o FGXS, ... . X)),

Now, from (4.2) we obtain (4.3). ]
We have the following properties of A-lifts.

PROPOSITION 4.2. Let F be a product preserving functor, A = F(R) be its Weil
algebra, A, A : A— R be linear functions and let a € A.
(1) If G, G’ ave tensor fields of type (0, k) on M and «, B are reals, then

(O(G +BG/)(1) — aG(X) +BG,(Z),

(44) G(aZ+BA’) — aG(/l) + BG(Z’)'

(2) Let G be a tensor field of type (0, k) on M. If G is symmetric (respectively

skew- symmetric) then G is also symmetric (vespectively skew-symmetric).
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(3) If G is a tensor field of type (0, k) on M and S is a tensor field of type
1,s) onM, then fori = 1,.. .,k we have
(4.5) PGP, SU) = (0'(G, )%,
where ' (G, S) is a tensor field of type (0, k + s — 1) given by?

pi(Gs S) (Xu e an+s—1)

4.6
(46) = GXy. . Xy SKon o Xind)s Xiverrse o rXeresd)

for vector fields X, ..., X yomy on M.
(4) If G is a tensor field of type (0, k) on M and X is a vector field on M, then

(4.7) LywG?® = (L,G)*".

Proof. The verification is similar to the proof of Proposition 3.2. We use
(4.3) instead of (3.3) and (2.3) instead of (2.13). ]

From Proposition 4.2 (2) we obtain that if w is a k-form on M, then its A-lift
w(A) is a k-form on F(M). We prove also:

ProrosITION 4.3. Let F be a product preserving functor and A = F(R) be its
Weil algebra. If w is a k-form on M and A : A— R is a linear function, then

4.8) dw® = (dw)®.

Proof. To show this proposition we apply the similar methods as in Proposi-
tion 3.2. We use the formula

doy.. . X) = 1 |2 (- DX X0)

+ 5 (= DYlX, X, X K K X)) O

0<i<i<k

As an immediate consequence of Propositions 4.3 and 4.2 (4) we obtain

CorOLLARY 4.4. Let @ be a k-form and A: A= FR) — R be a linear func-
tion.

If w is closed, then its A-lift 0® is also closed.

If X is an infinitesimal transformation of w and a € A, then X @ s an

o . %)
mfinitesimal transformation of @ .

9 0'(G, S) is a contraction of G & S.
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If g is a pseudo-Riemannian tensor on M, then for each linear function A :
A—R its A-lift g° is a quadratic form on F(M) but, in general, g” is not
non-singular. We prove the following proposition about the signature of gw.

Namely we have

ProposiTION 4.5. Let A: A— R be a linear function on the Weil algebra A =
FR) of a product preserving functor F and let (p;, p;) be the signature® of the sym-
metric 2-form A X A D (a, b) — Alab) € R. If g is a symmetric tensor field of type
(0, 2) on M with a constant signature (b, , p,), then g% is a symmetric tensor field

of type (0, 2) on F(M) with a constant signature (b, p; + b, D5, pobs + Dubs)-

Proof. We fix a point of M. There is a basis X, .. .,X, of vector fields on
some neighborhood U of the fixed point such that

1, fori=j=1,...,‘z.'>;r

gX, X)=1—1, fori=j=p, +1,...,p, + b,
0, in the other cases.
There is a basis ay,...,a, of A such that

1, forl)=/vt=1,...,‘i>,;r
Aaa) =1—1, forv=p=p, +1,....p; +0;
0, in the other cases.

Now, by (4.3) we obtain

g(l)(Xi(av)’ ‘ij(a,,)) — (g(X” ‘Xj))()davau)
= 2(a,0,7 (g(X,, X))).

Since g(X;, X)) is a constant function, thus F(g(X;, X))) is also a constant func-
tion and F(g(X,, X))) = g(X;, X;). Now, by the linearity of 2 we obtain

gD X, X = g(X, X)A(a,a,)

1, fori=j=1,....p,,v=p=1,...p;

—1, fori=j=1,...p5, v=pu=p +1,...0} +p]

={—1, fori=j=p, +1,....p; +p;,v=u=1,....p;

1, fori=j=p +1,.. .0 +p,v=u=p+1,...p] +p;
0, in the other cases.

5 The signature of a symmetric form is a pair (p, q), where p is the number of positive

elements and ¢ is the number of negative numbers in a diagonal matrix of the form.
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It means that g is of constant signature (Dypi + bobrs bobi + baby) because
the family X,»(a”), i=1,...,n,v=1,...,Kis a basis of vector fields on Z(U). [J

We can apply the above proposition to lift a (pseudo-)Riemannian metric.

Let us observe that for a Riemannian metric g on M its lift gu) is never a
Riemannian structure on F(M). It is an immediate consequence of the following
lemma

LEMMA 4.6. If F is a product preserving functor such that dim A > 1%, then
there is no lnear function 2:A— R such that the symmeiric form A X A D
(a, b) — A(ab) € R is positive definite.

Proof. The assumption dimA > 1 implies that there is @ € A such that
a# 0 and @’ = 0. Now, by the linearity, we have A(a@®) = 0, i.e. the considered
symmetric form is not positive definite. ]

Let ¢ be a pseudo-Riemannian metric on M. Its A-lift gm is a pseudo-
Riemannian metric on % (M) if and only if A : A— R is a linear function such that
the symmetric form A X A 3 (a, b) = A(ab) € R is non-singular. Thus, to lift
pseudo-Riemannian metrics we need to find a linear function A with this property.
In general, there are no such linear functions A because we have.

ProrosiTION 4.7. Let F be a product preserving functor, A be its Weil algebra
and dim A > 1. Let E be a vector subspace of all elements a € A such that for each
nilpotent element u € A we have au = 07. If theve exists a linear function 2 : A— R
such that the symmetric form (a, b) — 2(ab) is non-singulay, then dim E = 1.

Proof. Let a € E and a # 0. Since the symmetric form (a, b) — A{ab) is
non-singular thus there exists b € A such that 1{ab) # 0. b can be written in the
form b = al + u, where @ € R and « is a nilpotent element because A = R-1 +
N, where N is the subalgebra of nilpotent elements. Now from 0 # A(ab) =
aAla) we obtain A(a) # 0. It implies that A|E : E— R is a monomorphism.
Hence dim E < 1. This finishes the proof. ]

® dim A =1 if and only if & is the identity functor, i.e. F(M) = M and F(¢) = o.
7 From the characterization of Weil algebras it follows that dim E > 1.
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5. Complete lift of linear connections

In this section we will study lifts of linear connections from a manifold M to
linear connections on & (M). We start from very general situation of connections
in principal fibre bundles.

We recall that for a Lie group G there is a natural isomorphism 7. :
F(EG) — L(FG) of Lie algebra (see Proposition 1.10). We prove the following
proposition about fundamental vector fields on a manifold associated with an ac-
tion of a Lie group. Namely we have

ProposiTion 5.1. Let F be product preserving functor. Let P be a G-space and
for an element U € L(G) let U™ be the fundamental vector field on M defined by U.
If L:P X %(G)— TP is given by L(p, U) = Up*, then for an element U of
P (FG) the corresponding fundamental vector field U™ on F(P) is given by U; =
(- F WD) (W, ng (D).

Proof. It A:P X G— P is the action of G on P, then, by Proposition 1.8 (2),
F(A) defines the action of F(G) on F(P). Let us observe that U, = dA(0,, 1),
where 0, is zero in T,P. Thus we have L = dA°(0, X idy ), where 0p: P— TP
is the zero vector field.

Let L:F(P) X £(FG) — T(FP) be the corresponding mapping for F(P).
Since L = d(FA)>(0gp X idgz,), thus by Propositions 1.9 and 1.10 (3) we
conclude

L= npFdA (" ¥ 77:;1)"(09(1» X idgze)
= 0,2 F(dA) > (07 *05m X 15).

The composition 75" O is zero section of F(TP)— Z(P), in consequence,
N7 Oz = F(0,). Now we obtain

L= np-F(dA)-(F(0,) X 77;1)
(5.1) = 10pX F(dA>(0p X idye))* (dge X 150
= npX FW) o GQdgep X 15).

It implies

U =Ly, O) = peFWL) @, 15 (D). O

Now we define a lift of connections in principal fibre bundles. Let w : TP —
¥(G) be a connection form on a principal fibre bundle P(M, G). Using the
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induced mapping F(w) : F(TP) — F(¥(G) and the canonical isomorphisms
np: F(IP) = TF(P), 15: FEG) — L(FG) we define o : TF(P) — L(FG) by

(5.2) o =g Flw en;.

w° is called complete lift of @ from P to F(P).
We have (see [26]).

ProposiTION 5.2. Let F be a product presevving functor. If w : TP— £(G) is a
conmection in a principal fibre bundle P(M, G), then the complete lift 0° : TF (P) —
C(FG) is a conmection in the principal fibre bundle F(P)(F (M), F(B)).

Proof. We define »: G X TP— TP by r(&, v) = dR:(v) = (dR (04 X
id;p) (€, v), where R(p, &) = R.(p) is the right translation on P, and Ad: G X
2(G)— 2(G) by Ad(, y) = ZL(ad)(y) = (dad (0 X idy o)) (€, y), where
ad(§, = ad.(0) is the adjoint action of G on G. Let 7:F(G) X T(FP)—
T(FP) and Ad: F(G) X L(FG) — L(FG) be the corresponding mappings for
the principal fibre bundle F(P) and the Lie group F((&). Similarly to (5.1) we
verify

(56.3) d = 0y F(Ad) > (dg e X 77;1)
(5.4) 7=, F@ e Gdge X 15).

Since @ is a connection, thus we have w*dR, = £(ad,_,)*® and w(U™) = U
for all U € £(G). Using our notations we can write equivalently these formulas

in the form
(5.5) wer = Ad-(k X w)
(5.6) wL =p,

where k: G— G is defined by k(&) = &' and p,: P X £(G) — #(G) is the
standard projection.
To show that ® is a connection in F(P) we need to verify

(5.7) w 7= Ad-(k X )

(5.8) oL =p,

where k= F &) : F(G) = F(G) and p,: F(P) X L(F(G)) = L(F(G)) is the
standard projection. p, is given by

(5.9) Py =1 F ) Gidgen X 0.
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We will verify (5.7). From (5.5), by (5.3) and (5.4) we obtain

07 = (6o F (@) 05" (peF () (idgigy X 15
= n°F (w7 (idge X 15)
= 0" FAD - (FK) X F(w))«lidg X n5)
= Ei"(idg((;) X ng)e (b X Flw)) e (idge X n5)
= Ad-(k X «°).

The formula (5.7) is proved. Analogously by (5.1), (5.6) and (5.9) we obtain (5.8).
O

From definition of the complete lift of connections we can deduce

ProposiTION 5.3. Let F be a product preserving functor and w : TP — £ (G) be
a conmection in a principal fibre bundle P(M, G).

(1) If T and T ave the hovizontal distributions for @ and o respectivelys), then I’
= np(F ).

@) If

hY: TP— TP, h*:T%(P)— TF(P)
v’ : TP— TP, v* :TF(P)— TF(P)

arve the horizontal and vertical projections for w and o respectively, then the diagrams

F(TP) ——> F(TP) F(TP) —=> F(TP)
T(FP) ", T(FP) T(FP) _*" _, T(FP)

commute.
(3) For a vector field X let X“ denote the horizontal lift of X to P with respect to
w”. Ifa € A, where A = FR) is the Weil algebra of F, then we have
(X (a))wc — (Xa)) (a)
8  They are considered as submanifolds of TP and T%(P) respectively.

9 X is the unique vector fields on P such that w°X* = 0, dr-X* = X-r, where  : P
— M is the bundle projection.
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Proof. Part (1) is an immediate consequence of the definition of ° and of
formula (1.4). Part (2) follows from (1) and the following equality for the vertical
distributions V(FP) = 1p,(#(VP)) which is a consequence of (1.4).

Part (3) is a consequence of the definitions of wc, X(a), of the fact that
F(n) : F(P) — F(M) is the bundle projection and of the last formula from (2.8)
for ¢ = 7. O

The constructed complete lift of connection satisfies the naturality condition. In
order to formulate this property we introduce a definition of f-related connections.

Let f : P— P’ be a homomorphism of principal fibre bundles and let p,: G
— G’ be the corresponding Lie group homomorphism. Connections w : TP —
2(G) and @’ : TP’ — L(G’) are called f-related if the following diagram

FUM) —— LFOD)
(5.10) F(Lp)) l lL(z’i(w))

FUN) ——> LEFWI))

commutes.
Now we have (cf. Pogoda [26]).

PROPOSITION 5.4. Let F be a product preserving functor. Let f : P(M, G) —
P (M’, G’) be a homomorphism of principal fibre bundles and let w, @' be connections
in P(M, G) and P'(M’, G’) respectively. If @ and o are f-velated, then @ and o/©
are F(f) -related.

Proof. Applying F to diagram (5.10) and using 0p, 9p, Mg Ne We complete
the proof. OJ

Proposition 5.4 means that the family of mappings w — o is “gauge-natural”
transformation (see [3]).

To transform the obtained results for linear connections we will need some
following properties of linear bundles.

PROPOSITION 5.5. Let F be a product preserving functor and A = F(R) be its
Weil algebra.
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For every manifold M theve exists one and only one monomorphism
I, : F(LM) — L(F (M)

of principal fibve bundles covering the identity on F(M) and with the inclusion
I:F(GLR") — GL(FR") given in Proposition 1.8 (2) such that for each chart
(U, @) on M we have I;°F(0,) = 0g,, where 0,: U= LM and 04, : F(U) —
L(FM) are local sections associated with ¢ and F (@) respectively.

The family {I,) is wnatural, ie. for every embedding ¢ : M— N of two
n-dimensional mavifolds M, N the diagram

o
PP ——> TP

- | |-

26 2 2(6)
commutes, wheve L(@) : LM — LN is the induced mapping.

Proof. We choose the canonical mapping K,, : LM X R — TM, K, v =
I(v). Let us define I, : F(LM) — L(FM) by

(5.12) LD @) = (e FEKD) U, D),

where € FUULM), 7€ A" and 1, is defined in Proposition 1.9. Since
K, (X, v) = K, (I, X v) we obtain FK,UX, ?) =FKpy (U, X0) for all ] €
FAM), X € F(GLR") € GL(FR") and # € A", where the inclusion I is de-
scribed in Proposition 1.8 (2). Therefore

(LX) () = 1,,(D)(X0) = (I,,(DX) (9,

ie. I, is a principal fibre bundle homomorphism. Since the corresponding Lie
group homomorphism is the inclusion I, I, is a pricipal fibre bundle monomorph-
ism.

If ¢ is a chart on M, then K,(0,(z), v) = do (@), v) after the standard
identification TR” with R” X R”, Using # and (5.12) we obtain

Li(F(0,) (@) (@) = (9, F(Kp) (F(0,) (@), D)
= (0, F(do N (F (@) (D, D)
= dF (") (F (@) (D), D)
= 0 (D) ().
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Thus I, F (6,) = 04, O

We will study lifts of linear connections from a manifold M to linear connec-
tions on #(M).

Let w: TLM — gl(n, R) be a connection form on the bundie of linear frames
(a linear connection on M), where gl(n, R) denotes the Lie algebra of the linear
group and # = dim M. If we apply our construction to a linear connection w, we
obtain a connection @ : T (LM) — £(FGLR") in F(LM). Using the inclusion
L, : F(LM) — L(F(M)) from Proposition 5.5 we prolong @ to one and only one
linear connection TL(F(M)) — GL(F(R™) denoted also by «® and called also
the complete lift.

We prove the following property of o

ProPOSITION 5.6. Let F be a product preserving functor.

Let w: TLM— gl(n, R) be a linear conmection on M. If V and V° are the
covariant derivations of w and o respectively, then for all vector fields X, Y on M
and alla, b € A = FR) we have

(5.13) Viw Y = (7,1).

VC is the unique linear connection on F (M) satisfving equality (5.13) for all vec-
tor fields X, Y on M and all a, b € A.

IfV and V' ave two @-velated conmnections on n-dimensional manifolds N and M
respectively, wheve ¢ : M — N is an embedding, then V and V' are F (@) -related.

Proof. For a vector field X on M let X~ : LM— R” be the corresponding
mapping such that for p € LM the value X ~(p) are coordinates of X((p)) in the
basis p. Now we have (see [2] or [13))

(5.14) V)~ =X“(Y").

Since Y, = K, (I, Y~ (D), where K, :LM X R"— TM is the canonical
mapping, then

Yemm = O FEN T FEXD) = Ky Ty, FY D).

It implies (Y) ~<I,, = F(¥ ).
Now we deduce immediately

(Y?) ~oI, = b(FY ).

Hence, by Propositions 5.3 (3) and 2.7 we obtain
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Vea¥Y®) ~ol, = XY™ ~-1,
= (X)) 0MFY "))

bX) (F(Y))

abF (X (V)

abF ((V,Y) )

— ((VXy)(ab)) ~°IM-

I

I

This formula implies (5.13).
The uniqueness of 7¢ follows immediately from Corollary 2.8. The last part
of the proposition is a consequence of (5.13). O

The above theorem means that in the case of the tangent bundle # (M) = TM
the constructed connection coincides with the connection defined by Yano and
Kobayashi [32]. In the case of #-order tangent bundle, the tangent bundle of
p -velocities, the tangent bundle of infinitesimal near points our construction coin-
cides with the definition of Morimoto [18]-{23].

From Proposition 5.6 we can deduce formulas for Christoffel’s symbols of Ve
We will formulate these formulas in Section 7.

For torsions and curvatures of V and V< we have

PROPOSITION 5.6. Let F be a product preserving functor. If T and R is the torsion
and the curvature of V, then T and RS are the torsion and the curvature of Ve

Proof. Let X, Y be vector fields on M and a, b be elements of the corres-
ponding Weil algebra A = F(R). If T is the torsion of Vc, then from Proposition
5.6 and (2.15) we obtain

T(X(a), Y(b)) — V}C{‘(u)Y(h) _ Vi(b)X(a) _ [X(ﬂ), Y(b)]
— (VXI/)(ab) _ (VYX)(ab) _ [X, n(ab)

— (T(X, Y))(ab)
— TC(X(G), Y(b)).

According to Proposition 2.9, T = T Analogously we verify the formula for
curvature tensors. ]

Proposition 5.6 implies immediately

CoroLLARY 5.8. V is a torsionless commection if and only if so is V. V is a
L . e
curvatureless conmection if and only if so is V.
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We show the following proposition about relationships between geodesics of
V and geodesics of ad

PROPOSITION 5.9. Let F be a product preserving functor. If v : (—e, +e) > M
is a geodesic of V, then for each element @ of the covvesponding Weil algebra A =
FR) the curve 1, = F(7) (ta) is a geodesic of V.

Proof. Let X be a local vector on M such that 7(8) = X(y(9).

Let ¢ be a flow of X. Then 7(t + 8) = ¢(¢, 7(s)) for sufficiently small ¢, s.
Applying F we get F(y) (@ + b) = F(p) (@, F(9) (b)) for a, b in sufficient small
neighborhood of 0 € A. Therefore, by Proposition 2.5, we obtain

700 = £ FD (s + D) sy

=L 5o (0, F D )
=X, ®).
Since (VyX)e7= 0, then
WX F () = " 0y F(TX)op) = 0.
Now, by (5.13) we have

(V77 (D = (VewX ) (,(8)
= (VXX)(a )('fa(t))
= 0.

It means that 7, is a geodesic'?. J
We can also prove

Proposttion 5.10. Let F be a product preserving functor and A = F(R) be its
Weil algebra. Let V be a conmection of M and 1 be its geodesic. If X is a Jacobi field
alomg v and a € A, then X, () = (1, F(X)) (ta) is a Jacobi field along 1,(H) =
F(p) (ta).

Proof. According to Proposition 5.9 7, is a geodesic on F(M) and if Yis a
local vector fields on M such that Y(3(®) = 7(® then Y (7,()) = #,(®. Since

19 From the proof we deduce that if a° = 0, then 7, is geodesic on F (M) for every con-
nection V on M and every curve ¥ on M.
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X is a Jacobi field along 7 if and only if
ViX + V.T(X, P + R(X, P7 =0,
thus using the methods from Proposition 5.9 we can conclude our proposition. [

We finish this section by the following proposition about covariant deriva-
tions.

ProrosiTion 5.11. Let F be a product preserving functor, A = FR) be its Weil

algebra, V be a linear connection on a manifold M, X be a vector field on M and let a
€ A.

If S is a tensor field of type (1, k) on M and b € A, then
V;(a)s(b) —_ (VXS) {ab}

If G is a tensor field of type (0, k) on M and A: A— R is a linear function,
then

V)C((a)Gu) — (VXG) (Xula).
Proof. Let X,,...,X, be vector fields on M and a,,...,a, € A. Using
k
(VS (X, ... X)) =Ve(S(X,,...,. X)) — 2 SUX,..., VX, ..., X)
i=1

from (3.3) and (5.13) we obtain
VoS X, .., X)) = V3 (S X, .. X))
- il SUX L VowX . X )
= V,i(:(s(xl,. LX)
- ,«il SYX WX LX)
= (TS, .., X)) o
— ;‘:1 (S, .., VX, . . X)) o

= ((VXS) (le . ’Xk)) (baa,...a,)
= (VXS) “ (X](al)y s ka(ak)) .

According to Proposition 2.9 the first part is verified.
A verification of the second part is similar. We use (4.3) instead of (3.3). [J
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6. Lifts of Riemannian metrics and symplectic structures

From propositions proved in Sections 4 and 5 we can deduce:

Prorosition 6.1. Let & be a product preserving functor and A = F(R) be its
Weil algebra. Let A : A— R be a linear function such that the symmetric form A X A
S (a, b) — A(ab) € R is non-singular and let (o), p;) be its signature.

(1) If g is a pseudo-Riemannian metric on M, then gw 18 a psendo- Riemanwian
metric on F(M). If (p,, p,) is the signature of g, then the signature of g% is (p;pj
+ bebas 0y0; Y+ Deb3)-

(2) If V is the Riemannian connection of g, then V< is the Riemanmian connec-
tion of gm

(3) If X is a Killing vector field for g and a € A, then X9 s a Killing vector

field for g%

Proof. The part (1) is an immediate consequence of Proposition 4.5, the part
(2) follows from Proposition 5.11 and the part (3) from Proposition 4.2 (4). U

A Kihlevian structure on a manifold M is a couple (g, J), where g is a
pseudo-Riemannian tensor on M and J is a complex structure on M such that

gUX, N =—gX,JV), ViJ=0

for all vector fields X, Y on M, where V is the Riemannian connection of g. For
Kéahlerian structures we have

THEOREM 6.2. Let F be a product preserving functor and A = F(R) be its Weil
algebra. Let 2 : A— R be a linear function such that the symmetric form A X A 2
(a, b) — A(ab) € R is non-singular. If (g, J) is a Kahlerian structure on M, then
(g, J9 is a Kahlerian structure on F(M).

Proof. According to Proposition 6.1 gm is a pseudo-Riemannian metric on
F (M) with Riemannian connection Vc, where V is Riemannian connection of g,
and by Theorem 3.5 ]C is a complex structure on F(M).

Using the notation of Section 4 the formula g(JX, ¥) = — g(X, JY) can be
written in the form o'(g, /) = — o°(g, J). Using Propositions 4.2 (3) and 5.11
we finish the proof. O
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An almost symplectic structure on a manifold M is a 2-form w on M such that
the mapping TM D v—i,w € T*M is an isomorphism of vector bundles. The
dimension of manifold M on which there is an almost symplectic structure is odd.
An almost symplectic structure w on M is called a symplectic structure if dw = 0.
We prove

ProposiTiON 6.3. Let F be a product preserving functor and A = FR) be its
Weil algebra. Let A: A— R be a linear function such that the symmetvic form A X A
2 (a, b) — A(ab) € R is non-singular. If w is an almost symplectic structure on M,
then wu) is an almost symplectic structure on F(M).

If w 1s a symplectic structure, then so is o”.

Proof. Let dim M = 2u. For each point of M there are a neighborhood U and
vector fields X,,...,X,, X,.1,...,X,, defined on U such that (see [11] or [4])

1, fj=i+un1=1,...,n
olX,X)=1-1, ifi=j+nj=1,...,n
0, in the other cases.

Let ay,. .., ag be a basis of A such that
1 forv=p=1,...,p

Alaa) =1—1 forv=pu=p+1,.. K
0 in the other cases.

where (p, K — p) is the signature of A X A > (a, b) — A(ab) €ER and K = dim A
Now, using (4.3) we compute the matrix £, 0f ™. We obtain

Quvaw =0 X, X = 2a,0,F (0(X, X)).
Since w (X, Xj) is constant thus we have (cf. the proof of Proposition 4.5)

1, fj=i+n,v=p=1,...,p
=1, ifj=i+nv=pu=p+1,.. K

Ripiw = 0X, XD aa) =11, fi=j+nv=pu=1,...p
1, ifi=j+nv=pu=p+1,...,K
0, in the other cases.

It means that the matrix 2 = [£,,,,] is a block-matrix of the form
A4 0 - 0
0o 0 A, ~ 0

0 0 - A
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where p matrixes from A4,,. .., Ag are equal to
0 I,
/= [— I, 0 ]

and K — p from this sequence are equal to — J. It implies that £ is a non-
singular matrix. Thus, »® is an almost symplectic structure on F{(M).
The last part of the proposition follows from Corollary 4.4. O

Let (g, J) be a Kahlerian structure on M. Then w(X, ¥) = g(X,JY) is a
symplectic structure associated to the given Kahlerian structure (g, J). From
Proposition 4.2 (3) we obtain immediately

CorOLLARY 6.4, Let A: A— R be a linear function such that the symmetric form
A X AD (a, b)— A(ab) € R is non-singular. If w is a symplectic structure associ-
ated to a Kahlerian structuve (g, J), then @® is associated to (gu), J Y.

7. Final remarks — local expressions

We have proved all our theorems and propositions without using local
expressions for lifted geometric objects. In the cases of the tangent bundle, the
7-tangent bundle, the tangent bundle of p”-velocities local expressions of coordin-
ates of lifted objects were very important to prove main results. In the cases of
these bundles local expressions have a nice and simple form because in the corres-
ponding Weil algebras we can choose a basis with simple structure constants. In
the general case formulas are more complicated.

Let & be a product preserving functor. In this section we fix a basis ay,.. .,
ay of the Weil algebra A = F(R) associated to ¥ and let a,, be the structural
constants given by

x
Ay, Gy

M

(7.1) aa,=

x=1

We denote by a;k,. .. ,a; : A— R the dual basis.
We start our considerations from looking for a formula for (fg) u), where f, g
are functions on M and A : A— R is a linear function. Using the formulas

(7.2) F(f) = § FY% G = F(NF ()

from the definition offu) we conclude
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(9" = 2F(fg) = 2-:(F(HF ()

K * *
_ A(F @D @b
(7.3) 2 A e e,

K
= 3 afﬂl (d,t)f (a,’f)g(a,’f)’

v, =1

Particularly, if A = a: is an element of the dual basis from (7.3) we obtain
(7.4) (f )(a,c — Z f(a )g(af)

If f is a function on M, X is a vector field on M and @ € A, then from the
equality (fX)° = F(f)- X, the definition of @-lift of vector fields and from (7.2)
we have

UF0Y =a (0 =aF(f)-X°
(7.5) = %Jf(at)aa,;Xc

K *
— Z (EV)X(E%).
u=1f
Particularly, if @ = @, is an element of the basis of A, then from (7.5) and (7.1) we
obtain

(fX) @) _ §:f(au (aya,)
v=1
7.6
( ) — § f(a ))((a,c

Let (U, 2") be a chart on M. If X = 3_ X', is the local expression of a
vector field X, then from (7.6) and Corollary 2.8 we obtain

n K .
(a,,) _ Z (X a)(a,,) => > a:u(Xt) (a,"})a;ap
i=1 i=1 g, x=1
7.7 L i (@)
=X 2 a,(X)*5,.
i=1 g,x=1
The above formula means that Z a (X )(a” are coordinates of X '*.
Now using Propositions 3.1 and 4.1 we can calculate the local coordinates of
S® where S is a tensor fields of type (1, k) or (0, k).
To finish this section we prove a formula for the Christoffel’ symbols of the
complete lift of a linear connection V.
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From Proposition 5.6, Coroliary 2.8 and formulas (7.1), (7.6) and (7.7) we

Vac‘.u 0, = V%a,,) aj(au) = (Va, aj)(a;ﬂu) =3 (Fil;ak)(a,,a”)
’ k=1

I

X
2 a:u (r:};cak) @

p=

i
M=

=
L)
-

1

X 14
Z aua ow
o.x,w=1

il
M=

([‘n) (”w k x*

b
il
-

Since the Christeffel’ symbols F((i'f:)‘,)(j,m are defined by

thus

(7.8)

[1]

(71

(81

(91

(10}
(11]

(k x)
(l W), (7.) ak X

Mb:

Vs, 0= 2

k=1x

1

from these two formulas we obtain

kyx) _ X o x kN (@)
L = Zla,,ﬂa,,w ;).
o0,0=
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