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Abstract

Using X-ray as the irradiation source, a photodynamic therapy process can be initiated from under 

deep tissues. This technology, referred to as X-ray induced PDT, or X-PDT, holds great potential 

to treat tumors at internal organs. To this end, one question is how to navigate the treatment to 

tumors with accuracy with external irradiation. Herein we address the issue with a novel, 

LiGa5O8: Cr (LGO:Cr)-based nanoscintillator, which emits persistent, near-infrared X-ray 

luminescence. This permits deep-tissue optical imaging that can be employed to guide irradiation. 

Specifically, we encapsulated LGO:Cr nanoparticles and a photosensitizer, 2,3-naphthalocyanine, 

into mesoporous silica nanoparticles. The nanoparticles were conjugated with cetuximab and 

systemically injected into H1299 orthotopic non-small cell lung cancer tumor models. The 

nanoconjugates can efficiently home to tumors in the lung, confirmed by monitoring X-ray 

luminescence from LGO:Cr. Guided by the imaging, external irradiation was applied, leading to 

efficient tumor suppression while minimally affecting normal tissues. To the best of our 

knowledge, the present study is the first to demonstrate, with systematically injected nanoparticles, 
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that X-PDT can suppress growth of deep-seated tumors. The imaging guidance is also new to X-

PDT, and is significant to the further transformation of the technology.

Graphical Abstract

LiGa5O8:Cr nanoparticles mediate near-infrared X-ray luminescence and X-ray induced 

photodynamic therapy, making them attractive theranostic agents for cancer therapy.
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Nanomedicine; X-ray excited optical luminescence; photodynamic therapy; nanotheranostics; non-

small cell lung cancer

Photodynamic therapy (PDT) is a relatively new cancer treatment modality.1–3 PDT utilizes 

light reactive molecules called photosensitizers which, when exposed to light of proper 

wavelengths, produce cytotoxic reactive oxygen species (ROS). PDT can suppress tumor 

growth by directly killing cancer cells, damaging tumor-associated microvessels, or 

stimulating anti-tumor immune response.2, 4–5 The treatment modality is minimally invasive, 

induces low systematic toxicity, and incurs little cumulative toxicity.6–8 Despite of these 

advantages, the applications of PDT in the clinic have been limited. This is in large part 

attributed to the shallow tissue penetration (< 1 cm) of visible light and hence the inability of 

PDT to treat tumors at internal organs. Taking lung cancer for instance, PDT is not viable to 

treat the disease with external irradiation. There have been some successes on using 

bronchoscopic PDT to treat non-small cell lung cancer (NSCLC).9–11 The approach, 

however, is limited by the tumor location, size, and foci number.

Several groups have recently reported on X-ray induced PDT, or X-PDT (Table S1). A 

central component of this technology is an integrated nanosystem that we call X-ray 

nanosensitizer. Each X-ray nanosensitizer (abbreviated as nanosensitizer henceforth) 

consists of a nanoparticle scintillator core, and is loaded with photosensitizer molecules 
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whose excitation matches the emission of the scintillator. Upon X-ray irradiation, the 

nanoscintillator converts X-ray photons to visible photons, a phenomenon known as X-ray 

excited optical luminescence (XEOL);12–14 this is followed by activation of the 

photosensitizer in the nanosystem, leading to production of ROS, most importantly singlet 

oxygen (1O2). Because X-ray affords much greater tissue penetration capacity, this approach 

holds great potential in breaking the shallow penetration dogma.15–16 The theory was first 

proposed by Chen et al.17 and the feasibility was demonstrated in vitro with ZnS:Ag, CeF3, 

TiO2, and CdSe.18 Later, other types of nanoscintillators, including those made of Y2O3, 

GdO2S:Tb, LaF3:Ce, ZnS:Cu,Co, and CeF3,19–28 have also been prepared and investigated 

in vitro. Very recently, we and others demonstrated the efficacy of approach in small animal 

models.29–32 So far, however, all the in vivo studies were conducted in subcutaneous tumor 

models with intratumorally injected nanosensitizers. Bringing this technology forward, it is 

paramount to investigate whether systematically administered nanosensitizers can efficiently 

accumulate in tumors to mediate X-PDT. It is important that the assessment to be conducted 

in more clinically relevant tumor models. It demands that an imaging component to be 

included in the therapy so that irradiation can be delivered to tumors with high accuracy and 

at the best time interval. Currently, there have been few explorations along these directions.

We herein report 2,3-naphthalocyanine (NC) and LiGa5O8:Cr (LGO:Cr) co-loaded 

mesoporous silica nanoparticles (NC-LGO:Cr@mSiO2) as a novel type of nanosensitizer. 

NC-LGO:Cr@mSiO2 nanoparticles can efficiently mediate X-PDT, producing 1O2 and 

killing cancer cells. On the other hand, unlike previously investigated scintillators,28, 30, 32 

whose XEOL peaks lie in the visible spectrum window, LGO:Cr emits strong XEOL at ~ 

720 nm. More interestingly, the XEOL of LGO:Cr is persistent, lasting for minutes or even 

hours after the end of irradiation. The unique NIR and afterglow properties render LGO:Cr-

based imaging with good tissue penetration, low luminescence background, and, as a result, 

deep tissue detection capacity. We showed that when conjugated with cetuximab (CTX), an 

anti-epidermal growth factor receptor (EGFR) antibody, the LGO:Cr nanoparticles can go 

through intravenous (i.v.) administration and hone to NSCLC tumors implanted into the lung 

of rodent models. Excitingly, we were able to monitor the accumulation event by LGO:Cr-

mediated XEOL and employ the information to guide external X-ray irradiation to focus on 

tumors while sparing most normal tissues. While we previously studied LGO:Cr-based 

optical stimulated persistent luminescence,33–34 there has been no report on utilizing the 

material for scintillation and X-PDT purposes. The imaging-guidance feature and the use of 

orthotopic NSCLC models are new to the X-PDT investigation and represent an important 

advance in the methodology transformation.

Synthesis and characterization of LGO:Cr@mSiO2 nanoparticles

LGO:Cr nanoparticles were prepared using a polystyrene sphere-assisted sol-gel method.34 

Briefly, lithium nitrate, gallium nitrate and chromium nitrate were dissolved in water and 

mixed with acetylacetone, ammonium and polystyrene spheres to form a homogeneous sol. 

The sol was heated at 80 °C, and the resulting dry gel was calcined in the air at 1000–1100 

˚C for 3–5 h. The composition of the resulting material was determined by inductively 

coupled plasma (ICP) as LiGa5O8, with ~1wt% Cr dopant. X-ray diffraction (XRD) also 

confirmed that the material was spinel phase LiGa5O8 (JSPDF No. 76–199, Figure 1a).34–36
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Followed by mechanically grounding, sedimentation, filtration and centrifugation, LGO:Cr 

nanoparticles can be obtained with small sizes (Figure 1b). These nanoparticles were 

subsequently coated with a layer of mesoporous silica by following a published protocol.30 

Both tetraethyl orthosilicate (TEOS) and (3-aminopropyl)triethoxysilane (APTES) were 

used as silane precursors so that the nanoparticles possess multiple amine groups on the 

surface. Transmission electron microscopy (TEM) found that the resulting LGO:Cr@mSiO2 

particles had a LGO:Cr core size of 100.9 ± 31.7 nm (Figure 1b) and a silica coating 

thickness of 25.6 ± 2.5 nm (Figure 1c). For good colloidal stability, we then PEGylated the 

nanoparticles by conjugating NHS-PEG-COOH (m.w. = 5000) to the surface. The resulting 

nanoparticles are stable in aqueous solutions (Figure S1; referred to as PEG-

LGO:Cr@mSiO2 for simplicity).

Optical properties of LGO:Cr@mSiO2 nanoparticles

LGO:Cr@mSiO2 nanoparticles can be excited by X-ray to emit intense NIR luminescence 

centered on ~720 nm (Figure 1d, S2). Such XEOL emission is attributed to the spin-

forbidden 2E→4A2 transition of Cr3+, which was observed previously by us with bulk 

LGO:Cr under UV irradiation.33–34 The XEOL can not only be detected on a fluorescene 

spectrometer, but also on a bio-imaging scanner, for instance an IVIS system (Figure 1e). 

Interestingly, the XOEL has a long life-time. For instance, when 0.2 mg LGO:Cr@mSiO2 

nanoparticles were irradiated by X-ray (50 kV, 0.02 Gy), the material emitted persistent 

luminescence that can be visualized by IVIS in the bioluminescence (BLI) mode, minutes or 

even hours after the conclusion of irradiation (Figure 1e). Moreover, decayed LGO:Cr 

nanoparticles could be re-stimulated after short exposure to X-ray (Figure 1e,f), and repeated 

stimulation did not weaken the luminescence intensity (Figure S3). These properties suggest 

great potential of employing the XEOL of LGO:Cr for imaging.

For conventional fluorescence imaging, a major drawback is the skin autofluorescence. 

Autofluorescence becomes overwhelming when fluorophors of interest are located more 

than 1 cm beneath the skin, making deep-tissue imaging challenging or not possible.37 For 

LGO:Cr-based XEOL, however, background signal is expected to be at the minimum since 

irradiation is ceased at detection. Such a hypothesis was first tested with LGO:Cr@mSiO2 

nanoparticles (0.8 mg) lain under a 1.5-cm-thick pork slice (Figure 2a). Despite thick 

tissues, XEOL can be efficiently stimulated (1.52 × 109 p/s/cm2/sr with 0.02 Gy X-ray 

through 1.5-cm pork and 3.17 × 109 p/s/cm2/sr with 0.1 Gy X-ray; the tissue slice was 

removed before imaging, Figure 2a). Such luminescence was readily detected from under 

1.5-cm pork (Figure 2b), which is not possible with fluorescence.38–39 Such XEOL can be 

repeatedly stimulated without losing signal intensity (Figure 2b,c).

The tissue penetration was further investigated in vivo. Briefly, we intramuscularly injected 

LGO:Cr@mSiO2 nanoparticles (0.2 mg in 0.2 mL PBS) into the hind leg of an athymic nude 

mouse from the prone position. The animal was then flipped, and X-ray (0.02 Gy) was 

applied to the injected sites, but from the supine position. We then performed imaging (in 

the BLI mode) either immediately after the irradiation or 5 and 10 minutes apart. We found 

that from under bones and thick tissues, LGO:Cr@mSiO2 can be activated to emit strong 

and durable luminescence (>109 p/s/cm2/sr, Figure 3a,b). In addition, because of minimal 
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background, such XEOL-based imaging affords great signal-to-noise ratios (Table S2). The 

imaging quality is not compromised over repeated stimulations (Figure 3b). Overall, these 

results further confirm the advantages of LGO:Cr-mediated XEOL as a means for small 

animal imaging.40

NC-LGO:Cr@mSiO2-mediated X-PDT

We next examined whether LGO:Cr@mSiO2 can be employed to activate X-PDT. For this 

purpose, we loaded NC, a photosensitizer (maximum excitation wavelength of 712 

nm41–42), into the mesoporous layer of LGO:Cr@mSiO2 (2 wt%) to match the emission of 

LGO:Cr (Figure 4a). The resulting nanoparticles are stable in aqueous solutions and PBS 

(Fig. S1). To assess 1O2 production, the resulting NC-LGO:Cr@mSiO2 nanoparticles (0.05 

mg/mL) were incubated with singlet oxygen sensor green (SOSG) in a PBS solution in a 

quartz cell. X-ray of different doses (0–4 Gy) was applied to the solution, and the 525-nm 

emission of SOSG was monitored (Figure 4b). X-ray alone induced minimal increase of 

luminescence, so did NC plus X-ray and LGO:Cr@mSiO2 plus X-ray. NC-

LGO:Cr@mSiO2, on the other hand, led to a significant, time-dependent increase of 

fluorescence intensity, suggesting efficient production of 1O2 by X-PDT (Figure 4b). Based 

on the readings, it was estimated that the 1O2 production efficiency (η) is 1.26% (Table S3, 

detailed in the Supporting Information).31

The 1O2 production was also analyzed in vitro with H1299 cells, which are a human NSCLC 

cell line.43 Briefly, NC-LGO:Cr@mSiO2 nanoparticles (50 μg/mL) were first incubated with 

H1299 cells for 2 h, after which the medium was replenished with a fresh one that contained 

5 μM SOSG. This was followed by X-ray irradiation (4 Gy) and microscopic imaging. 

Consistent with the observations in solutions, X-PDT (NC-LGO:Cr@mSiO2 plus X-ray) led 

to a significant increase of 1O2 levels in cells (Figure 4c). As a comparison, when the cells 

were treated with LGO:Cr@mSiO2 plus X-ray or X-ray only, there was no detectable 

increase of SOSG signals (Figure 4c). These results confirm that it takes the combination of 

NC, LGO:Cr@mSiO2, and X-ray to produce 1O2.

X-PDT to kill cancer cells

Cell viability was studied with H1299 cells using both ethidium homodimer-1 staining 

(Ethd-1, which is a cell-impermeant viability indicator) and MTT assay. For Ethd-1 staining, 

we found that NC-LGO:Cr@mSiO2 nanoparticles (50 μg/mL) plus X-ray irradiation (4 Gy) 

led to extensive cell death, manifested in an increased level of red fluorescence in cells 

(Figure 5a). As a comparison, cells treated by NC-LGO:Cr@mSiO2 alone or X-ray alone 

caused no significant change of red fluorescence (Figure 5a). Similar observation was made 

with MTT assays. When cells were treated with NC-LGO:Cr@mSiO2 nanoparticles alone 

(0–0.1 mg/mL, Figure S4) and X-rays alone (0–6 Gy, Figure 5b), there was no detectable 

cell viability drop at 24 hrs. With the combination (i.e. X-PDT), on the other hand, the 

treatment led to efficient cell death (Figure 5b). For instance, when 50 μg/mL of NC-

LGO:Cr@mSiO2 and 2 Gy irradiation was applied, the cell viability was reduced to 46.4 

± 7.4%. It is noted that H1229 cells are refractory to radiotherapy,44–46 and that ionizing 

radiation often induces not immediate cell death but reduced reproductive capacity that 
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would manifest in days or weeks.47 The viability drop by X-PDT but not X-ray alone at 24 

hrs, therefore, suggests a different, PDT related mechanism of cell death.

Such X-PDT-induced cytotoxicity can be activated from beneath thick tissues. This was 

confirmed by repeating the preceding MTT assays but with pork slices lain between X-ray 

source and cells. X-PDT (NC-LGO:Cr@mSiO2 50 μg/mL, 2 Gy X-ray) was able to 

efficiently kill H1299 cells, reducing the viability to 50.2 ± 3.4% and 60.1 ± 1.7% at a pork 

thickness of 1.6 cm and 2.8 cm, respectively (Figure 5c). These results were comparable to 

those without pork, suggesting relatively small impact of the tissue depth on treatment 

efficacy (46.4 ± 7.4%, Figure 5b).

Cetuximab conjugated NC-LGO:Cr@mSiO2 for tumor targeting

To ensure selective tumor eradication, it is essential that both nanosensitizers and radiation 

are navigated to tumors with high accuracy. To this end, we conjugated cetuximab to the 

carboxyl groups on the particle surface using EDC/NHS chemistry.48 The conjugation was 

confirmed by Fourier transform infrared spectroscopy (FT-IR, Fig. S5) and Coomassie blue 

(Bradford) protein assay (Fig. S6). Cetuximab-conjugated NC-LGO:Cr@mSiO2 (i.e. NC-

LGO:Cr@mSiO2-CTX) showed excellent stability in water and PBS solution (Figure S7). 

Moreover, due to relative hydrophobicity of NC molecules, there was limited leakage of the 

photosensitizer in aqueous surroundings (Figure S8).

Cetuximab targets EGFR, which is up-regulated in many types of cancer.49–50 In particular, 

EGFR is overexpressed in many patients with NSCLC, including 39% in adenocarcinoma, 

58% in squamous cell carcinoma, and 38% in large cell carcinoma.51 To study targeting 

specificity, we incubated NC-LGO:Cr@mSiO2-CTX with H1299 cells, which are EGFR-

positive.49 Microscopic imaging found efficient internalization of the nanoparticles (Figure 

6a, 0.05 mg/mL); as a comparison, NC-LGO:Cr@mSiO2 nanoparticles showed minimal cell 

uptake (Figure 6a). Notably, MTT assay found that there was no detectable cytotoxicity with 

NC-LGO:Cr@mSiO2-CTX in the dark in this concentration range (Fig. S9).

We further studied the targeting specificity in vivo with an orthotopic lung tumor model 

established with H1299 cells. Briefly, the animal models were established by percutaneously 

injecting H1299-luc cells in 50 μL of matrigel into the lateral thorax at the lateral dorsal 

axillary line of a nude mouse. The cells had been transfected with firefly luciferase (f-luc), 

so we can track the tumor growth using BLI. Fourteen days after the inoculation, NC-

LGO:Cr@mSiO2-CTX or NC-LGO:Cr@mSiO2 were i.v. injected into the animals (n = 3, 

0.4 mg per mouse). At selective time points, the chest area was exposed to short X-ray 

irradiation (0.02 Gy), and the animals were immediately imaged on an IVIS scanner. For 

animals injected with NC-LGO:Cr@mSiO2-CTX, strong signals were observed in the lung 

areas (Figure 6b), which was attributed to cetuximab-mediated tumor uptake. The peak 

signals (1.96 × 108 p/s/cm2/sr) were observed at 4 h (Figure 6c). In the control group, much 

lower tumor uptake was observed at all time points (e.g. 2.67 × 104 p/s/cm2/sr at 4 h). After 

the 24 h imaging, the animals were euthanized. Ex vivo imaging confirmed the high tumor 

uptake of NC-LGO:Cr@mSiO2-CTX (8.16 × 108 p/s/cm2/sr), but not NC-LGO:Cr@mSiO2 

nanoparticles (8.70 × 104 p/s/cm2/sr), as shown in Figure 6d,e.
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XEOL-guided X-PDT for lung cancer treatment

The therapy study was also conducted with the H1299 orthotopic tumor model. NC-

LGO:Cr@mSiO2-CTX nanoparticles were first i.v. injected (n = 6, 10 mg/kg). Four hours 

after the injection, X-ray (0.02 Gy) was applied to the lung area to stimulate XEOL. Based 

on the imaging results, the tumor areas were delineated and marked on the animal skin 

(Figure S10,11). After that, X-ray (6 Gy) was applied to the marked areas, with the rest of 

the body lead-shielded. In control groups, animals received PBS plus X-ray (6 Gy) or PBS 

only.

After the treatments, animals were subjected to BLI at different time points to monitor tumor 

growth. Region of interest (ROI) readings were recorded and compared between the therapy 

and control groups to assess the treatment efficacy. For the PBS control group, tumors grew 

rapidly, with the averaging ROI reading reaching 1.16 × 1010 p/s/cm2/sr on day 7 (Figure 7a, 

b). Radiation alone had mediocre impact on tumor growth, showing an average reading of 

5.82 × 109 p/s/cm2/sr on Day 7. As a comparison, tumor growth was efficiently suppressed 

when treated with NC-LGO:Cr@mSiO2-CTX plus radiation, with BLI readings of 3.98 × 

108, 5.98 × 108, and 9.33 × 108 p/s/cm2/sr on Day 1, 3, and 7, respectively (Figure 7a). This 

amounts to tumor inhibition rates of 3.43, 5.16, and 8.04%. Immediately after the imaging 

on Day 7, we euthanized the animals, dissected lungs from the thorax, and conducted BLI 

with the tissues. The residual f-luc signals confirmed the large difference between the X-

PDT group and the X-ray only group (Figure S12). The BLI data also corroborated well 

with haematoxylin and eosin (H&E) staining resulting, finding many necrotic areas in the X-

PDT group along with less tumor nodules and smaller tumor sizes (Figure 7c). Meanwhile, 

H&E staining with tissues from the adjacent organs, including the heart, liver, kidney, and 

spleen, found no detectable toxicity (Figure S13). This is attributed to imaging-guided 

irradiation that maximized the selectivity of the treatment and minimized damage to normal 

tissues.52

Discussions and Conclusion

Breaking the shallow penetration dogma of conventional PDT, X-PDT holds great potential 

in managing tumors in deep-tissues. So far, however, there have been few successful 

demonstrations with systematically injected nanoscintillators. One of the problems is the 

relatively large nanoparticle size (e.g. ~ 407 nm MC540-SrAl2O4:Eu@SiO2,
30 ~20 μm 

Gd2O2S:Tb,[10b] and mircosize SiC/SiOx[10e]). In the current study, we were able to achieve 

good X-PDT efficiency with ~100 nm NC-LGO:Cr@mSiO2. After PEGylation and 

conjugation with cetuximab, the nanoparticles were able to home efficiently to tumors 

implanted into the lung after i.v. injection.

The tumor selectivity is further enhanced by navigating X-ray irradiation to tumor areas with 

imaging-guidance. This is possible because LGO:Cr affords NIR and persistent 

luminescence and, as a result of it, deep tissue detection capacity. As a comparison, most 

previously investigated scintillator materials have their emission in the visible spectrum 

window (e.g. SrAl2O4:Eu, Gd2O2S:Tb, and SiC/SiOx). There have been extensive efforts on 

improving the penetration depth of light-mediated imaging and therapy,53–62 and the current 
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approach echoes the endeavor. Interestingly, our studies found that the persistent XEOL of 

LGO:Cr is able to mediate X-PDT and cell killing after the conclusion of X-ray irradiation 

(Figure S14, S15). This may allow X-PDT to be activated by intermitted X-ray irradiation 

that can further ionizing-irradiation induced toxicity. This possibility will be investigated in 

future studies.

In summary, we have investigated LGO:Cr as a novel scintillator material for efficient X-

PDT against NSCLC. Unlike previous scintillators, LGO:Cr affords NIR and persistent 

luminescence. This enables XEOL-based tracking of nanoparticles in vivo and imaging-

guided irradiation during therapy. The resulting therapy is efficient and highly selective, 

causing minimal collateral damage. These advances are of great value to the development of 

X-PDT as a novel treatment modality.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Compositional and optical characterizations of LGO:Cr nanoparticles. a) XRD spectrum of 

LGO:Cr. b) TEM image of LGO:Cr nanoparticles. c) TEM image of LGO:Cr@mSiO2 

nanoparticles. d) XEOL of LGO:Cr@mSiO2 nanoparticles. e) LGO:Cr@mSiO2 phantom 

images, based on XEOL and recorded on an IVIS scanner in the BLI mode. f) Time-

dependent XEOL intensity change, based on results from d).
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Figure 2. 
XEOL imaging from beneath deep tissues using LGO:Cr nanoparticles. a) Stimulation of 

XEOL from under 1.5-cm thick pork. Pork slice was put on top of the particles during X-ray 

irradiation but removed during imaging. Left: afterglow images taken 1 min after X-ray 

irradiation. Right: afterglow images taken 5 min after X-ray irradiation. b) XEOL can be 

detected from under 1.5-cm thick pork. The images were acquired immediately after as well 

as 5 min and 10 min after X-ray exposure. The pork slice was remained on top of the 

particles throughout the experiment. c) XEOL intensity changes, based on BLI imaging 

results from b).
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Figure 3. 
In vivo XEOL imaging with intramuscularly injected LGO:Cr@mSiO2 nanoparticles. The 

nanoparticles (0.2 mL, 1 mg/mL) were intramuscularly injected into the hind leg at the 

prone position; the X-ray stimulation and imaging were performed at the supine position. a) 

In vivo images, taken immediately after as well as 5 and 10 min after X-ray irradiation. 

XEOL can be repeatedly stimulated and the signals can be detected from beneath the mouse 

body. b) Changes of XEOL intensity, based on imaging results from (a).
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Figure 4. 
1O2 production under X-ray irradiation using LGO:Cr nanoparticles as nanotransducers. a) 

Absorption spectrum of NC (black) and XEOL spectrum of LGO:Cr (red). Both spectra 

peaked at ~720 nm. b) 1O2 production, measured by SOSG assay. NC-LGO:Cr@mSiO2 

efficiently produces 1O2 under X-ray irradiation, manifested as increased 525-nm 

fluorescence. As a comparison, there was almost no 1O2 produced in the controls. c) In vitro 

SOSG assay with H1299 cells. Efficient 1O2 was produced within cells when X-ray was 

applied following cell incubation with NC-LGO:Cr@mSiO2 nanoparticles. Scale bars, 100 

μm.
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Figure 5. 
In vitro viability of X-PDT. a) Ethd-1 assay for assessment of X-PDT induced cell death. In 

accordance with the results from Figure 4c), extensive cell death (red fluorescence, ex/em: 

530 nm/635 nm) was observed when cells were treated with NC-LGO:Cr@mSiO2 plus X-

ray. Scale bars, 100 μm. b) Viability changes, based on MTT assays performed 24 hrs after 

treatments. While X-ray alone and LGO:Cr@mSiO2 plus X-ray caused no viability drop, 

NC-LGO:Cr@mSiO2 plus X-ray (i.e. X-PDT) induced efficient cell death. c) Impact of 

tissue depth on X-PDT efficiency. X-PDT can be stimulated from beneath thick tissues (e.g. 

1.6 and 2.8 cm) to cause efficient cell death.
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Figure 6. 
Tumor targeting of NC-LGO:Cr@mSiO2-CTX. a) In vitro microscopic analysis, conducted 

with H1299 cells. NC-LGO:Cr@mSiO2-CTX can be efficiently internalized by H1299 cells. 

As a comparison, NC-LGO:Cr@mSiO2 showed minimal cell uptake. Scale bars: 100 μm. b) 

In vivo imaging, based on XEOL signals and assessed in H1299 lung tumor models. NC-

LGO:Cr@mSiO2 and NC-LGO:Cr@mSiO2-CTX nanoparticles (0.4 mg per animal) were 

intravenously injected to the animals. For imaging, X-ray (0.02 Gy) was applied to the lung 

areas, followed by immediate BLI. Strong luminescent signals in the lung were found in the 

NC-LGO:Cr@mSiO2-CTX group but not the NC-LGO:Cr@mSiO2 group. c) XEOL 

intensity changes, based on BLI imaging results from b). d) Ex vivo images with dissected 

tissues from b). 1. Intestine; 2. liver; 3. spleen; 4. kidneys; 5. brain; 6. muscle; 7. lung. e) 

Luminescent intensity changes, based on BLI imaging results from d).
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Figure 7. 
In vivo therapy of X-PDT. a) Tumor growth, assessed by monitoring BLI signal changes at 

different time points. Compared to irradiation alone, X-PDT much more efficiently 

suppressed tumor growth. *** P<0.001. b) Representative BLI images for the three 

treatment groups, taken on Day 7. c) H&E staining on tumor tissues. Compared to the 

control and irradiation alone, X-PDT effectively controls the tumor generation in the lung. 

Scale bars, 200 μm.
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