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Ligament-Bone Interaction in a 
Three-Dimensional Model of the 
Knee 
In mathematical knee-joint models, the ligaments are usually represented by straight-
line elements, connecting the insertions of the femur and tibia. Such a model may 
not be valid if a ligament is bent in its course over bony surfaces, particularly not 
if the resulting redirection of the ligament force has a considerable effect on the 
laxity or motion characteristics of the knee-joint model. In the present study, a 
model for wrapping of a ligament around bone was incorporated in a three-dimen
sional mathematical model of the human knee. The bony edge was described by a 
curved line on which the contact point of the line element representing a ligament 
bundle was located. Frictionless contact between the ligament bundle and the bone 
was assumed. This model was applied to the medial collateral ligament (MCL) 
interacting with the bony edge of the tibia. It was found that, in comparison with 
the original model without bony interactions, the bony edge redirected the ligament 
force of the MCL in such a way that it counterbalanced valgus moments on the 
tibia more effectively. The effect of the bony interaction with the MCL on the 
internal-external rotation laxity, however, was negligible. 

Introduction 
In previous knee-joint models, ligaments have been repre

sented by nonlinear elastic line elements which directly connect 
the insertions by straight lines (Crowninshield et al., 1976; 
Wismans et al., 1980; Wismans, 1980; Andriacchi et al., 1983; 
Essinger et al., 1989). A ligament may, however, wrap around 
a bone. For instance, a direct straight-line connection between 
the tibial and femoral insertions of the medial collateral lig
ament (MCL) runs through the articular surfaces of the tibia 
and the femur. If the MCL is represented by straight line 
elements, the ligament-bone interaction by the wrapping of a 
ligament around a bony surface, causing a realignment of the 
ligament force, is neglected. The question then is whether the 
redirection of a ligament force affects the laxity or motion 
characteristics of the knee-joint model. Hefzy and Grood (1983) 
proposed a model for the wrapping of ligaments around bones. 
Results with respect to its effect on the behavior of a knee-
joint model have not been reported. 

In the present study, a model for ligament-bone interaction 
was incorporated into a three-dimensional mathematical model 
of the human knee joint. The model of the wrapping of the 
MCL around the bony edge of the tibia was based on the 
assumptions and simplifications proposed by Hefzy and Grood 
(1983). The effect of this ligament-bone interaction on the 
restraining function of the MCL for axial and valgus rotations 
was evaluated. 

Contributed by the Bioengineering Division for publication in the JOURNAL 
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Methods 
General Description of the Knee Model. The same basic 

assumptions and simplifications as reported by Wismans et al. 
(1980) were used in developing the present knee model. The 
knee model describes the quasistatic behavior of the tibio
femoral joint for moderate loading conditions, whereby the 
femur is considered to move relative to the tibia. The geometry 
of the tibial and femoral articular surfaces, and the insertion 
locations of the ligaments were based on geometry measure
ments (Huiskes et al., 1985; Meijer et al., 1988; Blankevoort 
et al., 1991 a) on a knee specimen for which a set of experimental 
kinematic data was available (Blankevoort et al., 1988). Al
though the menisci do have a certain role in determining the 
laxity characteristics of the knee (Bargar et al., 1980; Markolf 
et al., 1981; Blankevoort et al., 1984), the menisci are not 
included because of the complexity of incorporating them in 
the present mathematical formulation of the knee model. This 
model also accounts for deformable articular contact, whereby 
friction is assumed to be negligible (Blankevoort et al., 1991b). 
The model describes the position of the femur relative to the 
tibia for a given configuration of external loads and kinematic 
constraints. A subsequent series of joint positions simulates 
knee motion. 

The position of the femur relative to the tibia is found by 
solving the equilibrium equations for forces and moments act
ing on the femur 

fe + ff + f, + fc = 0, (la) 
me + mr + ml + mc = 0, (lb) 

in which fe and me are the externally applied forces and mo-
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ments, fr and mr are the forces and moments required to main
tain the applied kinematic restraints, fi and mi are the forces 
and moments caused by ligament tensions, and fc and mc are 
the forces and moments generated by articular contact. The 
equilibrium equations are expressed relative to the tibial co
ordinate system. The externally applied forces and moments 
are assumed to be constant relative to the tibial coordinate 
system, whereas the other forces and moments are functions 
of the translations and rotations of the femur relative to the 
tibia. The equilibrium equations are solved through a Newton-
Raphson procedure, in which analytical partial derivatives of 
the equations with respect to the motion parameters are used. 

Relative Joint Position and Kinematic Constraints. Two 
Cartesian coordinate systems are introduced for motion de
scription, a space-fixed system of the tibia and a body-fixed 
system of the femur. The A -̂axis points anteriorly, the Ar2-axis 
points medially and the x3-axis points proximally. Each po
sition of the femur is then characterized by a translation of 
the origin and three rotations about the axes of either the body-
fixed coordinate system or the space-fixed coordinate system. 
Introducing the translation vector a from O (the origin of the 
tibial coordinate system ) to 6 (the origin of the femoral co
ordinate system) and the rotation matrix R, the position of a 
material point P on the femur can be described by the vector 
p from O to P and the vector R-p from 6 to P. They are 
related by 

p = a + R p . (2) 
At the reference position where the coordinate systems coin
cide, f) is the position vector of the material point, a is a zero 
vector and R is the identity matrix. The reference position is 
defined for the knee joint in extension. In this reference po
sition, the origins of the tibial and the femoral coordinate 
systems are located 15 mm proximal relative to the insertion 
of the posterior bundle of the anterior cruciate ligament (pAC) 
on the tibia, in the approximate region where the helical axes 
for flexion motions are located (Blankevoort et al., 1990). 

For describing the rotations, the convention of the Joint 
Coordinate System as proposed by Grood and Suntay (1983) 
is used. This rotation convention defines the rotations about 
the bodyfixed axes of the moving tibia relative to the fixed 
femur in the sequence flexion, varus and internal rotation. 
Since the femur is moving relative to the tibia in the present 
model, a compatible rotation convention is then given by ro
tations about the body-fixed axes of the femur, provided that 
the rotations and the rotation sequence are reversed: external 
rotation (x3-axis), valgus (xraxis) and extension (x2-axis) 
(Woltring, 1990). 

One or more of the translations or rotations may be pre
scribed and their values can be substituted in the force, moment 
and contact equations. In order to maintain applied kinematic 
constraints, constraint forces and moments have to be intro
duced 

m 

1 

m 

mr= 2 -<,,.&, (3b) 
I 

in which fr is the constraint force acting on the femur, mr is 
the constraint moment about 6, 07 denotes the magnitude of 
the constraint load, and m is the number of kinematic con
straints. The vectors a,- and /3,- are determined by the derivatives 
of the translation vector and the rotation matrix with respect 
to the translation and the rotation components, respectively 
(Appendix). The values for at follow from the solution of the 
system of equilibrium equations. 

Ligaments. The ligaments are modelled by two or more 

line elements representing different fiber bundles in the liga
ment. The ligament bundles are assumed to be nonlinear elas
tic. This means that the tension in a ligament bundle is only 
a function of its length L or strain e. Ligament strain is defined 
by 

e = (L-L0)/L0, (4) 

in which L0 is the zero-load length of a ligament. 
Let s and R s denote the position vectors describing the 

insertions of a ligament bundle at tibia and femur, respectively 
(Fig. 1). Using Eq. (2), the unit vector pointing along the line 
of action of the ligament bundle as represented by a straight 
line, is given by 

v = (a + R-s-s)/lla + R-s-sll, (5) 

in the case that a ligament is represented as a straight line not 
wrapping around a bone. The force fj- acting on the femur and 
the moment my about 6 , which are caused by the tensile force 
in ligament bundle j is then expressed by 

tj= -fMj)yj, (6a) 
mJ = (R-sJ)xfJ, (6b) 

in which f/e,) is the tensile force in the ligament bundle. This 
force is either positive or zero. If £is the number of ligament 
bundles modelled, the total force f] acting on the femur and 
moment mi about 6 generated by the tensile forces in the 
ligament bundles are found by summation over all ligament 
bundles, yielding 

il='Z-fJ{eJ)yj, (7fl) 
l 

t 

m,= J](R-sJ)xfj. (lb) 
I 

For the interaction of a line element with a bony edge of 
the tibia, it is assumed that the ligament fiber bundle is bent 
at a point on a spatial curve fixed to the tibia (Fig. 1). The 
position vector of the contact point p on the curve is given by 

p = p(X)=[p,(X),p2(X),p3(X)]', (8) 
in which X is the curve position parameter. The ligament length 
is the sum of two line segments, one running from the tibial 
insertion to point p on the edge, and the second from p to the 

Fig. 1 Schematic representation of the coordinate systems and the 
model for ligament bone interaction. (x,,x2,x3) is attached to the tibia 
and is assumed to be space-fixed. (x,,^2,x3) is attached to the femur and 
is assumed to be body-fixed. The vector a describes the translation of 
the body-fixed origin relative to the space-fixed origin. The bony edge 
is modelled by a spatial circular curve. The ligament bundle is modelled 
by a line element which is divided into two segments, one from the tibial 
insertion S to the contact point P with the edge and the second from P 
to the femoral insertion S, S is described by the vector s and S is de
scribed by (a+ Rs). The contact point P on the edge is described by 
the vector p. p is a function of the position parameter X. 
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Table 1 The parameters of the line 
ligaments, k is the linear stiffness and 
for the joint in extension 

elements modeling the 
er is the reference strain 

Fig. 2 The force-strain ( f -e) relationship for the elastic line elements 
modelling the ligament fiber bundles. A quadratic curve is assumed for 
strains below 2e, and a linear relation is assumed for strains higher than 
2e,. 

femoral insertion. The ligament length is thus a function of 
the curve position parameter X 

L = Li+L2, (9a) 

(L1)
2 = (p(X)-s).(p(X)-s), (9b) 

(L2)
2 = (a + R • § - p(X)) • (a + R • § - p(X)), (9c) 

The unit vector along the line of action of the femoral force 
is denoted by 

v = (l/L2)(a + R-s-p(X)), (10) 

and the unit vector of the tibial force by 

w = (l/£,)(p(X)-s). (11) 

The position parameter X is found by minimizing L, which is 
evaluated through 

(dLi/dK) + (dL2/d\) = 0. (12) 

Substitution of the derivatives of L\ (9b) and L2 (9c) into X, 
and using Eqs. (10) and (11), yields 

(w-v)-(dp/aX) = 0. (13) 

This equation is solved to find the position parameter X for 
each iteration in the Newton-Raphson procedure. With the 
position parameter X, the length and strain of a line element 
are obtained by using (9) and (4). The expressions for the force 
ij and moment my are then the same as equations (6). 

The function f/ej) is assumed to be nonlinear for low strains 
and linear for strains higher than a certain level (Fig. 2) (Wis-
mans, 1980) 

f=V<ke2/e, 0<e<2e, , (14a) 

f=k(e-e,) e>2eh (146) 

/ = 0 £<0, (14c) 

in which/is the tensile force in a line element, k is the ligament 
stiffness, and e is the strain in the ligament calculated from its 
length L and the zero-load length L0 (4). At the reference 
(extension) position of the joint, the initial strain in a ligament 
bundle is given by the parameter er. This parameter determines 
the zero-load length of a ligament bundle if the reference length 
Lr of the bundle is known 

L0 = L/(er+l). (15) 

The medial collateral ligament (MCL) was modelled to wrap 
around the medial bony edge of the tibia. This bony edge was 
approximated by a spatial circular curve which runs through 
three points located on the bone. It was assumed that the 
ligament-edge contact remained present throughout the model 
simulation and that no loosening occured. This can be checked 

Ligament 

anterior 
cruciate 

posterior 
cruciate 

lateral 
collateral 

medial 
collateral 

medial 
capsule 

Ligament 
bundle 

aAc 
pAC 

aPC 
pPC 

aLC 
sLC 
pLC 

aMC 
iMC 
pMC 

aCM 
pCM 

k 
[N] 

5000 
5000 

9000 
9000 

2000 
2000 
2000 

2750 
2750 
2750 

1000 
1000 

er 

0.06 
0.10 

-0 .24 
-0 .03 

-0.25 
-0.05 

0.08 

0.04 
0.04 
0.03 

-0 .18 
-0 .04 

through graphical inspection at the extremes of the simulated 
motions. The presence of the bony edge increased the reference 
length of the MCL slightly for the reference position of the 
joint in the kinematic experiment, where the joint was posi
tioned in extension with no external loads. In the two models 
with and without the medial bony edge, the reference lengths 
of the MCL were thus slightly different, but the same ligament 
stiffnesses and reference strains were chosen (Table 1). The 
stiffness values of the ACL, PCL, and MCL were derived from 
the linear elastic modulus for the knee ligaments as reported 
by Butler et al. (1986), and the cross-sectional geometry from 
Danylchuk et al. (1975). The stiffness of the LCL was chosen 
from the model of Andriacchi et al. (1983), and that of the 
two bundles of the deep part of the MCL were estimated from 
Wismans (1980). The stiffness was equally divided over the 
different line elements of each ligament. The ligament reference 
strains in the model were estimated on the basis of a comparison 
of the internal and external rotation laxities between the model 
and the experimentally obtained values from the specimen of 
which the ligament insertion locations and the articular ge
ometry were obtained (Blankevoort et al., 1991b). The linear 
strain limit e, was set at 0.03 (Butler et al., 1986). 

Articular Contact. The model for deformable articular 
contact describes a thin linear elastic layer on a rigid foun
dation, as described by Blankevoort et al. (1991b). The contact 
model is a first-order approximation for the relation between 
normal surface stress a„ and the normal surface displacement 

with 

a„ = S(un/b), 

q-p)E 
~(l + v)(l-2v)' 

(16) 

(17) 

where b is the thickness of the cartilage layer, E is the elastic 
modulus, and v is the Poisson's ratio. In the present model 
where two bodies are in contact, the material properties and 
the thickness of the cartilage of the tibia and the femur are 
assumed to be constant over the articular surface. The param
eter b in equation (16) is then equal to the sum of the cartilage 
thicknesses of the opposing surfaces, and u is the sum of the 
tibial and femoral surface displacements. 

The compressive contact force on the femur fc and contact 
moment mc about 6 are evaluated by integration of the contact 
stresses over the femoral surface Ci: 

f e = - R - U o„&dCl 

m c= - R - \\ &„cxft da. 

(18a) 

(18b) 
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Fig. 3(b) 

Fig. 3 Perspective views of the knee model geometry for the model 
without (a) and with (b) the medial bony edge for the knee in extension. 
A = anterior cruciate, P = posterior cruciate, L = lateral collateral, M 
= medial collateral, C = medial capsule. 

in which 6 is the location of a point c on the femoral surface 
and ft is the outward normal on the surface in point c. These 
integrals are evaluated numerically for each iteration in the 
Newton-Raphson procedure (Blankevoort et al., 1991b). 

The elastic modulus of the cartilage was estimated at 5 N/ 
mm2 and the Poisson's ratio at 0.45. This was based on a 
medium-to-short time response of articular cartilage to inden
tation (Kempson et al., 1980; Mow et al., 1982). The thickness 
of the tibial and the femoral articular cartilage layer were 
assumed to be 2 mm (Walker and Hajek, 1972; Roth, 1977). 

Model Analyses. The geometrical data of a knee specimen 
from the experimental studies of Blankevoort et al. (198 8) were 
used as input for the knee model. The ligaments were subdi
vided into two or three bundles (Fig. 3) (Blankevoort et al., 
1991a). The anterior (ACL) and posterior (PCL) cruciate lig

aments were modelled by two fiber bundles each, which rep
resented the most anterior and posterior portions of each 
ligament. The guideline for the choice of the insertion location 
was the approximate elliptical shape of the femoral insertion 
of the ACL and PCL; the two apexes on the long axis of the 
elliptical shape identified the extremes of the insertion areas. 
The centers of the areas inside these apexes were chosen as the 
insertion points. The bundles originating from the femoral 
anterior and posterior insertions were then followed to the 
tibia to define the tibial insertions. The lateral collateral lig
ament (LCL) was modelled by three line elements which rep
resented the most anterior, posterior, and superior bundles as 
identified from the femoral insertion area. Two parts of the 
medial collateral ligament were identified: the superficial part 
(MCL) represented by three line elements, and the deep part 
(CMCL) represented by two line elements. The three line ele
ments of the MCL were identified from the femoral insertion 
area as posterior, anterior, and inferior. The two line elements 
of the CMCL were identified from the femoral insertion area 
as anterior and posterior and inserted just below the medial 
edge on the tibia. The geometries of the articular surfaces and 
the medial bony edge were measured by a stereophotogram-
metric method from Meijer et al. (1988). The surface geometry 
data points were used to obtain the parameters for the surface 
polynomials of each of the four surfaces; i.e., the medial and 
lateral tibial plateaus and the medial and lateral femoral con
dyles (Blankevoort et al., 1991b). Two flexion motions were 
simulated. These were flexion motions with an internal or an 
external moment of 3 Nm applied around the x3-axis resulting 
in a flexion motion combined with internal rotation for the 
first motion pathway and with external rotation for the second 
motion pathway. These motions represent motions along the 
so-called envelope of passive knee motion from Blankevoort 
et al. (1988). A second set of model evaluations was for a 
varus-valgus test for the joint in extension, and in 20 and 30 
degrees flexion. In the varus-valgus tests, the axial rotation 
was restrained. Both simulations were performed twice, with 
and without the MCL-bone interaction. In order to test the 
effect of MCL pretension on the aforementioned model sim
ulations, the simulations with MCL-bone interaction were re
peated after decreasing the reference strains by 0.03 relative 
to the initial values (Table 1). 

The varus-valgus laxity and stiffness parameters from the 
experiments of Markolf et al. (1978,1984) were compared with 
the model evaluations of the varus-valgus laxity. For this pur
pose, the following parameters were calculated from the model 
results: the total varus-valgus laxity at 20 Nm, the varus stiff
ness at 10 Nm and the valgus stiffness at 10 Nm for the joint 
in extension, in 20 and 30 degrees flexion. 

Results 
The geometric configurations of the model with and without 

the MCL wrapping around the medial bony edge of the tibia 
are shown in Fig. 3 for the joint in extension. Without the 
MCL-bone interaction, the MCL runs through the medial tibial 
articular surface, and the fibers of the CMCL were located 
more superficially than the MCL. With the medial bony edge, 
the MCL was redirected in its course, and the CMCL had a 
more proper anatomic location relative to the MCL. Although 
the medial tibial edge did redirect the MCL, the MCL was not 
entirely free from the medial surface of the femur, because of 
the absence of the femoral bony edge in the model. In the 
simulations with the MCL-bone interaction, no signs of loos
ening between the MCL and the edge were noticed. 

The presence or absence of the MCL-bone interaction had 
only little effects on the motion parameters describing flexion 
with an internal or an external moment of 3 Nm (Figs. 4 and 
5). The internal-external rotation as function of flexion was 
hardly affected (Fig. 4), nor were there large changes noticed 
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4). Only slight AP-shifts were noticed. The MCL release did 
cause a slight lateral shift for both the internal and external 
motion pathways (Fig. 5). 

In the varus-valgus simulations, only the valgus tests were 
affected by the introduction of the MCL-bone interaction and 
the release of the MCL (Fig. 6). The MCL is tensed in valgus 
and the MCL-bone interaction was shown to be of particular 
importance here. Redirection of the MCL caused it to coun
terbalance more effectively the applied valgus moment with a 
reduced valgus rotation. The decrease of the valgus rotation 
for the 24 Nm valgus moment was 0.9 and 1.7 degrees for 
extension and 30 degrees flexion, respectively. The release of 
the MCL by decreasing the reference strains increased the 
valgus rotations by 1.2 and 1.8 degrees maximally for extension 
and 30 degrees flexion, respectively. At 30 degrees flexion, the 
moment-rotation curves were similar for the simulation with 
the released MCL wrapping around the bony edge and the 
simulation without the edge. 

The in vivo experiments of Markolf et al. (1978, 1984) con
cerned 49 normal subjects (normal group), which were tested 
only in extension, and 35 subjects with documented absence 
of the ACL (ACL group), which were tested in extension and 
20 degrees flexion. Of the latter group, only the data of the 
non-injured knees are used for comparison with the present 
model results. Markolf et al. (1978, 1984) performed their 
varus-valgus tests under semi-constrained conditions, in a sense 
that the axial rotation was restrained. The means and standard 
deviations of the varus-valgus laxity and stiffness parameters 
of the normal and non-injured knees are listed in Table 2, and 
are compared with the values obtained in the model with the 
MCL-bone interaction and the released MCL. The model char
acteristics compare relatively well with the in vivo experiments, 
although relative to the non-injured knees of the ACL group, 
the varus-valgus laxity in the model for extension was some
what higher and the stiffnesses somewhat lower. At 20 degrees 
flexion, the valgus stiffness in the model was a little higher 
than the reported experimental value. The effect of increasing 
the flexion angle from 20 to 30 degrees did not dramatically 
change the laxity parameters. 

Discussion 
This study was aimed at incorporating a description for a 

ligament wrapping around a bony edge in a three-dimensional 
mathematical model of the knee, and quantifying the effects 
on the passive motion characteristics of the knee when the 
MCL interacts with the medial tibial edge. The model as pro
posed by Hefzy and Grood (1983) for ligament-bone inter
action was incorporated into a three-dimensional mathematical 
model of the knee-joint. In the present mathematical formu
lation of the knee model, where the femur is assumed to move 
relative to the tibia, the equations of force and moment equi-

Table 2 Comparison of varus-valgus laxity and stiffness values between the 
data of Markolf et al. (1978, 1984) from in vivo testing of intact knees and 
the present knee model including the MCL-bone interaction and the released 
MCL 

Varus/valgus laxity at ± 20 Nm 
Markolf et al. (1978) 
Markolf et al. (1984) 

Knee model with medial edge 

Varus stiffness at 10 Nm 
Markolf et al. (1978) 
Markolf et al. (1984) 

Knee model with medial edge 

Valgus stiffness at 10 Nm 
Markolf e ta l . (1978) 
Markolf et al. (1984) 

Knee model with medial edge 

[deg] 

[Nm/deg] 

[Nm/deg] 

extension 

6.9±2.5 
4.7 ±2.5 
7.9 

6.1±4.0 
9.3±5.7 
5.4 

6.1 ±3.6 
11.0±7.3 
5.7 

20 deg 
flexion 

12.3±3.7 
11.9 

3.0±1.1 
3.2 

3.0±0.8 
5.1 

30 deg 
flexion 

11.8 

3.6 

4.9 

with respect to the coupled varus-valgus rotations (Fig. 4) and 
proximal-distal translations. For external rotation, the redi
rection of the MCL caused a slight anterior shift of the femur 
relative to the tibia of about 1 mm over the whole flexion range 
and a maximal medial shift of 1.2 mm (Fig. 5). The release of 
the MCL by a reduction of the reference strain by 0.03, caused 
an increase of the external rotation of 3.5 degrees maximally 
at extension, in the model with the MCL-bone interaction (Fig. 

int . /ext. [de E ] 

-

no edge with edge 

edge & adapted MCL 

/-" in* 3 

S ^ ext. 3 

Nm 

Nm 

0 10 20 30 40 50 60 70 00 90 
flexion [deg.] 

Fig. 4 The envelope of passive knee joint motion as simulated by the 
knee models without the medial edge (no edge), with the medial edge 
(with edge) and with the medial edge in combination with a release of 
the MCL (edge & adapted MCL). The internal motion pathway is a flexion 
motion with an internal moment of 3 Nm (Int. 3 Nm) and the external 
motion pathway is a flexion motion with an external moment of 3 Nm 
(Ext. 3 Nm). 

iml/posL i m m ] mod/ loMmmJ. _ 
Int. ri Null InL o Nm 

• & adapted MCL 

10 20 30 40 50 60 70 00 90 
flexion (deg.) 

10 20 30 40 50 60 70 00 90 
flexion [dee.] 

Fig. 5 The two coupled translations of the femur relative to the tibia 
as functions of flexion for the internal (Int. 3 Nm) and external (Ext. 3 
Nm) motion pathways, which were found to be sensitive to the MCL-
bone interaction: anterior-posterior translation and medial-lateral trans
lation. The model configurations were without the medial edge (no edge), 
with the medial edge (with edge) and with the medial edge in combination 
with a release of the MCL (edge & adapted MCL). 
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Fig. 6 The varus-valgus characteristics at extension and 30 degrees 
flexion (or the three model configurations: without the medial edge (no 
edge), with the medial edge (with edge) and with the medial edge in 
combination with a release of the MCL (edge and adapted MCL). 

librium are expressed as forces and moments acting on the 
femur. The wrapping of a ligament around a bony edge of the 
tibia, implies only a redirection of the ligament force acting 
on the femur. When a ligament wraps around a bony edge of 
the femur not only the ligament force is redirected, but also 
the force at the contact with the femur will participate in the 
equilibrium equations. In this case the mathematics of the 
ligament bone interaction is somewhat more complicated, par
ticularly if it is combined with the wrapping of a ligament 
around a tibial bony edge. In this paper only the wrapping of 
a ligament around a tibial bony edge is addressed and applied 
to the MCL. The parametric model analyses of this interaction 
showed that it did not dramatically change the model char
acteristics with respect to forced internal-external rotations and 
forced varus rotations. The redirection of the MCL tensions 
did cause the MCL to counterbalance more effectively the 
forced valgus rotations. This increased effectiveness could be 
quantified by the reduction of the initial strain by 0.03 relative 
to the model without the MCL-edge, which resulted in the 
same valgus characteristics at 30 degrees flexion as compared 
to the model without the medial edge. This means that with 
a MCL stiffness of 8250 Newton per unit strain, a reduction 
of the MCL force of about 250 N is obtained for the maximum 
valgus moment. 

The ligament reference strains of the ligament fiber bundles 
in the model were adapted as to match the internal and external 
rotation laxities of the knee specimen which was modeled on 
the basis of previously reported experiments (Blankevoort et 
al., 1988). Hence, the motion characteristics of the model for 
the internal and external motion pathways were very close to 
those of the experiments (Blankevoort et al., 1991b). Because 
of the small effects on these motion pathways, the match 
between the model and the experiments seems independent of 
the presence or absence of the MCL-bone interaction. Since 
varus-valgus tests were not included in the previously men
tioned experimental study, the varus-valgus characteristics of 
the model with the MCL-bone interaction were compared to 
values as reported in the literature. The data of Markolf et al. 
(1978, 1984) were chosen because of the consistency of the 
results relative to their in vitro experiments (Markolf et al., 
1976, 1981), the load-application method and the technique 
of measuring the relative varus-valgus rotations. The varus-
valgus laxity at 20 Nm and the stiffnesses at 10 Nm of the 
knee model agree very well with the reported data. It must be 
mentioned, however, that the knee model in this study rep
resented one individual joint specimen with estimated ligament 
stiffnesses and reference strains. Further model analyses, using 
the geometric data from more knees, are needed to substantiate 
the validity of the knee model in this respect. 

The incorporation of a ligament wrapping around bone in 
a three-dimensional mathematical model of the human knee 
is feasible and is important with respect to those studies which 
are focused on mechanical aspects in which the redirection of 

ligaments over bony surfaces plays an important role. This is 
the case for the medial collateral ligament interacting with the 
medial bony edge of the tibia, where it concerns the forced 
valgus laxity, but the effects are not dramatic. The mathe
matical formulation of the ligament-bone interaction can also 
be applied, in adapted form, to the anterior cruciate ligament 
interacting with intercondylar notch of the femur, which may 
occur for extension and hyperextension of the joint. 

Acknowledgment 
This research program was sponsored in part by grant 90-

90 from The Netherlands Organization for Research (NWO/ 
MEDIGON). The basis of the computer programs of the knee 
model was developed by L. Dortmans and the model for the 
ligament-bone interaction was incorporated in the knee model 
by R.A.M. van Helvoort, both from the Faculty of Mechanical 
Engineering of the Eindhoven University of Technology. 

References 
Andriacchi, T. P., Mikosz, R. P., Hampton, S. J., and Galante, J. O., 1983, 

"Model Studies of the Stiffness Characteristics of the Human Knee Joint," J. 
Biomechanics, Vol. 16, pp. 23-29. 

Bargar, W. L., Moreland, J. R., Markolf, K. L., Shoemaker, S. C , Amstutz, 
H. C , Grant, T. T., 1980, "In vivo Stability Testing of Post Meniscectomy 
Knees," Clin. Orthop. Rel. Res., Vol. 150, pp. 247-252. 

Blankevoort, L., Huiskes, R., and de Lange, A., 1984, "An in-vitro Study 
of the Passive Kinematic Behavior of the Human Knee-Joint," 1984 Advances 
in Bioengineering, Ed. by Spilker, R. L., The American Society of Mechanical 
Engineers, New York. 

Blankevoort, L, Huiskes, R., and de Lange, A., 1988, "The Envelope of 
Passive Knee Joint Motion," / . Biomechanics, Vol. 21, pp. 705-720. 

Blankevoort, L., Huiskes, R., and de Lange, R., 1990, "Helical Axes of 
Passive Knee Joint Motions," / . Biomechanics, Vol. 23, pp. 1219-1229. 

Blankevoort, L., Huiskes, R., and de Lange, A., 1991a, "Recruitment of 
Knee Joint Ligaments," ASME JOURNAL OF BIOMECHANICAL ENGINEERING, Vol. 
113, pp. 94-103. 

Blankevoort, L., Kuiper, J. H., Huiskes, R., and Grootenboer, H. J., 1991b, 
' 'Articular Contact in a Three Dimensional Model of the Knee,'' J. Biomechanics 
(in print). 

Butler, D. L., Kay, M. D., and Stouffer, D. C , 1986, "Comparison of 
Material Properties in Fascicle-Bone Units from Human Patellar Tendon and 
Knee Ligaments," J. Biomechanics, Vol. 19, pp. 425-432. 

Crowninshield, R., Pope, M. H., and Johnson, R. J., 1976, "An Analytical 
Model of the Knee," J. Biomechanics, Vol. 9, pp. 397-405. 

Danylchuk, K., 1975, "Studies on the Morphometric and Biomechanicai Char
acteristics of Ligaments of the Knee Joint," M.Sc. thesis, University of Western 
Ontario, London, Ontario, Canada. 

Essinger, J. R., Leyvraz, P. F., Heegard, J. H., and Robertson, D. D., 1989, 
"A Mathematical Model for the Evaluation of the Behavior During Flexion of 
Condylar-Type Knee Prostheses," / . Biomechanics, Vol. 22, pp. 1229-1241. 

Hefzy, M. S., and Grood, E. S., 1983, "An Analytical Technique for Mod
elling Knee Joint Stiffness—Part II: Geometric Non-Linearities," ASME JOUR
NAL OF BIOMECHANICAI ENGINEERING, Vol. 105, pp. 145-153. 

Huiskes, R. Kremers, J., de Lange, A., Woltring, H. J., Selvik, G., and van 
Rens, Th.J.G., 1985, Analytical Stereophotogrammetric Determination of Three-
Dimensional Knee-Joint Geometry," J. Biomechanics, Vol. 18, pp. 559-570. 

Grood, E. S., and Suntay, W. J., 1983, "A Joint Coordinate System for the 
Clinical Description of Three Dimensional Motions: Application to the Knee," 
ASME JOURNAL OF BIOMECHANICAL ENGINEERING, Vol. 105, pp. 136-144. 

Kempson, G. E., 1980, "The Mechanical Properties of Articular Cartilage," 
The Joints and Synovial Fluid, Vol. II, Academic Press, New York, Ed. by 
Sokoloff, L., pp. 177-238. 

Markolf, K. L., Mensch, J. S., and Amstutz, H. C , 1976, "Stiffness and 
Laxity of the Knee—The Contributions of the Supporting Structures," J. Bone 
and Joint Surg, Vol. 58-A, pp. 583-594. 

Markolf, K. L„ Graff-Radford, A., and Amstutz, H. C , 1978, "In Vivo 
Knee Stability. A Quantitative Assessment Using an Instrumented Clinical Test
ing Apparatus," J. Bone and Joint Surg., Vol. 60-A, pp. 664-674. 

Markolf, K. L., Bargar, W. L., Shoemaker, S. C , and Amstutz, H. C , 1981, 
"The Role of Joint Load in Knee Stability," J. Bone and Joint Surg., Vol. 63-
A, pp. 570-585. 

Markolf, K. L., Kochan, A., and Amstutz, H. C , 1984, "Measurement of 
Knee Stiffness and Laxity in Patients with Documented Absence of the Anterior 
Cruciate Ligament," J. Bone and Joint Surg., Vol. 66-A, pp. 242-253. 

Meijer, R. C. M. B., Huiskes, R., and Kauer, J. M. G., 1989, " A Stereo
photogrammetric Method for Measurements of Ligament Structure," J. Bio
mechanics, Vol. 22, pp. 177-184. 

Mow, V. C , Lai, W. M., and Holmes, M. H., 1982, "Advanced Theoretical 
and Experimental Techniques in Cartilage Research," Biomechanics: Principles 
and Applications, Ed. by Huiskes R., van Campen, D. H. and de Wijn, J. R., 
Martinus Nijhoff Publishers, The Hague, pp. 47-74. 

268 / Vol. 113, AUGUST 1991 Transactions of the ASME 

Downloaded 20 Nov 2008 to 131.155.151.52. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Roth, V., 1977, "Two Problems in Articular Biomechanics: I. Finite Element 
Simulation for Contact Problems of Articulations, II. Age Dependent Tensile 
Properties," Ph.D. thesis Rensselaer Polytechnic Institute, Troy NY. 

Walker, P. S., and Hajek, J. V., 1972, "The Load-Bearing Area in the Knee 
Joint," J. Biomechanics, Vol. 5, pp. 581-589. 

Wismans, J., Veldpaus, F., Janssen, J., Huson, A., and Struben, P., 1980, 
"A Three-Dimensional Mathematical Model of the Knee-Joint," J. Biome
chanics, Vol. 13, pp. 677-685. 

Wismans, J., 1980, "A Three-Dimensional Mathematical Model of the Human 
Knee Joint," PhD thesis, Eindhoven University of Technology, Eindhoven, The 
Netherlands. 

Woltring, H. J., 1991, "Representation and Calculation of 3-D Joint Move
ment," Human Movement Sc, Vol. 10(5) (in print). 

This means that the direction of the load coincides with the 
direction of the constrained degree of freedom. The magnitude 
of the constraint loads are determined by solving the force and 
moment equilibrium equations (1) containing the restraint 
forces fr and mr (3). 

The system used to specify the rotation matrix R is known 
as Bryant angles, where the angular orientation of the moving 
coordinate system is thought to be the results of three successive 
rotations through angles </> (x3-axis), \p (xi-axis) and to (x2-axis). 
In this way rotation matrix R is 

R = 

cose/> cosco — sinc/> sinxp sinco - sinc/> cosi/< cos<t> sinco + sinc/> sini/< cosco 

sinc/> cosco + cos0 sinxp sinco cosc/> cosxp sinc/> sinco - cosc/> sinxp cosco 

- cosxp sinco sinxp cosxp cosco 

(A9) 

A P P E N D I X 

Kinematic Constraints 
For the evaluation of the kinematic constraints, the kine

matic constraint vectors are obtained through the derivatives 
of the translation vector and the rotation matrix with respect 
to the translation and rotation components, respectively. This 
is performed through applying variational calculus to the kin
ematic equation (2): 

5p = 5a + 5R-p. (Al) 

This can be rewritten to 

5p = 5a + 5 R R ' R p \ (A2) 

The rotation matrix R is proper orthogonal, so 5R-R' is skew 
symmetric. Vector bir exists such that for every w holds: 

SR-R'-W = 5TTXW. (A3) 

Vector Sir is called the axial vector of 5RR'. Together with 
R, this vector determines 5R uniquely. The variation of the 
kinematic equation can be written as: 

5p = 5a + 57rX(R-fl). (A4) 

One or more of the position parameters may be prescribed. 
These kinematical constraints can be written as 

£,(a,R) = 0. (A5) 

Variation of this expression yields: 

£,(a + 5a,R + 5R) = 0. (A6) 

Using a Taylor-series expansion it can be shown that 5a and 
5R are kinematically admissable, i.e., they do not violate the 
constraints if 

a r 5 a + /S,-5ir = 0 (A7) 

The vectors a, and /J,- are determined uniquely by the kine
matical conditions. They will be derived here for each of the 
degrees of freedom to be constrained. During kinematically 
admissable variations, i.e. variations which do not violate the 
constraints, no work is done by the load that is needed to retain 
the prescribed femoral position parameters. Hence 

For variations 5R of the rotation matrix R, the following holds: 

(A10) 
„„ dR „ BR „, dR „ 
5R = —-OC/. + — 5^ + — 5co. 

aq> o\p do) 

The axial vector bir of the skew-symmetric matrix 5 R R ' can 
then be determined, yielding 

cosc/> Sxp - s'm4> cost/' <5co 

bir = sine/) 8\fr + cosc/> cosxp 5co (All) 

- 5c/> + sinxp 5co 

Variations 5c/>, d\p and Sco can be expressed as a function of 
bir: 

5 0 = [ - e 3 + tan\p( - sinc6 e] + cosc6 e2)] • bir, 

8\p = (cosc/i e] + sinc/> e2) • bir, 

1 
<5co = 

COSi/' 
( - sinci ej + cos<j> e2) • 5ir, 

(A12«) 

(A12b) 

(A12c) 

fr-5a + nv8ir = 0. (A8) 

in which eu e2, and e3 are the unit vectors pointing along the 
corresponding coordinate axes. These relations do not hold 
when cosxp = 0, in which case Sc/>, b\p and 5co cannot be calculated 
from bir. Then the rotation matrix R is called singular. 

Since the three translation components (ai,a2,«3) and the 
three rotation angles (4>,\p,u) can be prescribed, there are six 
possible kinematical conditions. For each of them a,- and /Sy 
will be derived. 

If a translation component a,- has a prescribed value, then 
5a, has to be equal to zero. It can be concluded from (A7) that 
aj=Ci and /3/ = 0. 

If the rotation angle </> has a prescribed value, then 5c6 has 
to be equal to zero. It can be concluded from (A7) and (A12«) 
that aj = 0 and 

Pj = - e3 + tam/'( - sin</> ej + coscfc e2) (A13a) 

If the rotation angle \p has a prescribed value, then it follows 
from (A126): 

j3y= cose/) e! + sine/) e2, (A136) 

and finally for prescribing the rotation angle co (A 12c): 

a— (-sine/) ei + cose6 e2). (A13c) 
cosy-
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