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Histone deacetylases 2 (HDAC2), Class I histone deacetylase (HDAC) family, emerged as an important therapeutic target for the
treatment of various cancers. A total of 48 inhibitors of two di	erent chemotypeswere used to generate pharmacophoremodel using
3DQSAR pharmacophore generation (HypoGen algorithm)module inDiscovery Studio.�e best HypoGenmodel consists of four
pharmacophore features namely, one hydrogen bond acceptor (HBA), and one hydrogen donor (HBD), one hydrophobic (HYP)
and one aromatic centres, (RA).�is model was validated against 20 test set compounds and this model was utilized as a 3D query
for virtual screening to validate against NCI andMaybridge database and the hits further screened by Lipinski’s rule of 5, and a total
of 382 hit compounds from NCI and 243 hit compounds from Maybridge were found and were subjected to molecular docking
in the active site of HDAC2 (PDB: 3MAX). Finally eight hit compounds, NSC108392, NSC127064, NSC110782, and NSC748337
from NCI database and MFCD01935795, MFCD00830779, MFCD00661790, and MFCD00124221 fromMaybridge database, were
considered as novel potential HDAC2 inhibitors.

1. Introduction

Histone deacetylases (HDACs) are the enzymes that deacety-
lase the epsilon-N-acetyl-lysine group on histone tails of
the protein and result in tightening of nucleosome structure
and gene silencing [1]. �ere are two types of histone
forms which are histone acetylases and histone deacetylases
[2]. Histone deacetylases (HDACs) are found in animals,
plants, fungi, archaebacteria, and eubacteria [3]. Histone
deacetylases are generally classi�ed into four di	erent classes,
namely, HDACs 1–3 and 8, belonging to Class I and related
to homologous to Rpd3, HDAC 4–7, 9-10 are Class II related
to Hda1, Sirt 1–7 are Class III and are similar to Sir2 and
HDAC11 belongs to Class IV. Classes I and II are operated
by zinc dependent mechanism and Class III by NAD [4–8].
Histone deacetylases (HDACs) control the gene expression
and cellular signaling and histone deacetylases 2 (HDAC2) is
overexpressed in solid tumors including colon cancer, lung
cancer, cervical carcinoma, breast cancer, and kidney/cervix
cancer and also in Alzheimer’s disease [9, 10]. Several

HDAC inhibitors are in clinical trial, namely, hydroxamic
acid derivatives, benzamide derivatives, cyclic peptides, and
short-chain fatty acids [11]. �e �rst histone deacetylase
(HDAC) inhibitor SAHA (suberoylanilide hydroxamic acid
or vorinostat) approved by FDA for treating cutaneous T-
cell lymphoma and other hydroxamic acids are in clinical
trial. �e benzamide derivatives, which are in clinical tri-
als, are Entinostat (MS-275 or pyridin-3-yl methyl 4-((2-
aminophenyl) carbamoyl) benzyl carbamate) currently in
phase II clinical trial for Hodgkin lymphoma, phase I trial
of advanced leukemia andmyelodysplastic syndrome (MDS),
and Mocetinostat (MGCD0103 or N-(2-Aminophenyl)-4-
[[(4-pyridin-3-ylpyrimidin-2-yl)amino]methyl] benzamide)
in phase II clinical trial for Hodgkin lymphoma, phase I trial
of advanced leukemia, myelodysplastic syndrome (MDS),
di	use large B-cell lymphoma, and follicular lymphoma [12–
15]. Ligand based pharmacophore modeling is a major tool
in drug discovery and is applied in virtual screening, de
novo design, and lead optimization [16]. Di	erent histone
deacetylase (HDAC) inhibitors had been synthesized and
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experimental activity was found. Di	erent pharmacophore
and virtual screening studies had been reported on histone
deacetylase (HDAC) with known hydroxamic acid deriva-
tives and QSAR studies reported on histone deacetylases 2
(HDAC2) with N(2-aminophenyl)-benzamides [17–19]. In
the present study benzamide derivatives are used to generate
the pharmacophore model and virtual screening studies have
been done for histone deacetylases 2 (HDAC2) proteins to
gain knowledge regarding pharmacophore model and virtual
screening. �is study aims to construct the chemical feature
based on pharmacophore models for histone deacetylases 2
(HDAC2).

2. Materials and Methods

2.1. Data Preparation. A training set of 48 histone deacety-
lases 2 (HDAC2) inhibitors of two di	erent chemotypes
were selected form previously published data and the IC50
values were identi�ed using the same biological assay. �e
chemotype A is N(2-aminophenyl)-benzamide [20–31] and
chemotype B is N-hydroxy benzamide derivatives (see sup-
plementary Figure 1 in the Supplementary Material available
online at http://dx.doi.org/10.1155/2014/812148) [32–34]. 3D
QSAR module in Discovery Studio (DS) was used for devel-
oping the pharmacophore. �e 2D structure of compounds
was drawn in ISIS draw and theywere converted into 3D form
and conformationalmodels were generated by FASTmethod,
the conformers minimized by the CHARMm force �eld and
the energy threshold value of 20 kcal/mol. A maximum of
255 conformers were developed for each compound and
these conformermodelswere used for hypotheses generation,
�tting the compound into the hypotheses and estimating the
activity of the compound. �e training set of 48 molecules
was chosen with IC50 values with a range from 0.014 �M to
21 �M.�e dataset activity (IC50) was classi�ed based on the
span over four orders of magnitude, that is, active (IC50 ≤0.1 �M, ++++), moderately active (0.1 ≤ IC50 ≤ 1 �M, +++),
less active (1 ≤ IC50 ≤ 10 �M, ++), and inactive (IC50 >10 �M, +).

2.2. Pharmacophore Model Generation. HypoGen algorithm
was applied to build the pharmacophore model and in the
present study four features, which are hydrogen bond donors
(HBD), hydrogen bond acceptors (HBA), ring aromatic
(RA), and hydrophobic (HY), were selected to generate
the pharmacophore hypotheses [35]. HypoGen generates
pharmacophore model based on chemical features of active
compounds in training set. �e uncertainty value 2 was
selected from default 3, which means the biological activity
is two times higher or lower than the true value. All other
parameters were kept as default. �e developed pharma-
cophore model was selected based on the highest correlation
coe�cient, lowest total cost, and root mean square deviation
(RMSD).

2.3. Pharmacophore Validation. �e pharmacophore model
is validated by three steps: cost analysis, Fischer’s randomiza-
tion test, and the test set prediction.�e quality of the model

is described in terms of �xed cost, total cost, and null cost.
�e �xed cost represents the simplest model and it �ts the
data perfectly. �e null cost represents no features with high
cost value and it estimates the activity to be average activity
of the training set compounds. �e best model was selected
based on the di	erence between the two cost values (null cost
− total cost); if the di	erence between the costs is greater
than 60 means, the model has excellent true correlation. If
the di	erence is 40–60, the model has prediction correlation
of 70–90%, and if the di	erence is below 40, it may be
di�cult to predict the model. Fischer’s randomization is the
second approach to validate the pharmacophore model. �e
95% con�dence level was selected to validate the study and
19 random spread sheets were constructed. �is method
generates the hypotheses by randomizing the activity of
the training set compounds. �e correlation between the
structure and biological activitywas validated by thismethod.
�e�nal sets of validationwere selected using twentyHDAC2
inhibitors as given in supplementary Figure 2. �e Ligand
pharmacophore mapping module in Discovery Studio was
used to map the ligands and estimate the predicted activity
of the test set compounds.

2.4. Database Search. Virtual screening studies were used
to �nd novel and potential leads from virtual database for
further development [36]. �e virtual screening studies were
used to �nd novel leads for HDAC2. �e Hypo1 model was
used as a 3D query in database screening, and the National
Cancer Institute (NCI) database containing 265242molecules
and Maybridge database containing 58723 molecules were
used for screening [37, 38]. Ligand pharmacophore mapping
protocol was used with �exible search option to screen the
database. Hit compounds from the database with estimated
activity less than 0.1�M were selected for further screening
using Lipinski’s rule of �ve; compounds have (i) molecular
weight less than 500, (ii) hydrogen donors less than 5, (iii)
hydrogen acceptors less than 10, and (iv) an octanol/water
partition coe�cient (Log�) value less than 5.

2.5. Molecular Docking. Docking is the binding orientation
of small molecules to their protein targets in order to predict
the a�nity and activity of the smallmolecules.Hence docking
plays an important role in the rational drug design.Molecular
docking studies were performed by using LigandFit module
in Discovery Studio [39]. �ere are three stages in LigandFit
protocol: (i) docking, in which attempt is made to dock a
ligand into a user de�ned binding site, (ii) in situ ligand
minimization, and (iii) scoring, in which various scoring
functionswere calculated for each pose of the ligands. Protein
preparationwas themain step in docking and all ligands were
docked into the active site of the receptor. Protein preparation
involves deletion of water molecules and addition of hydro-
gen atoms and applying CHARMm force �eld. �e active
sites were searched using �ood �lling algorithm. �e active
site was de�ned as region of HDAC2 that comes within 12 Å
from the geometric centroid of the ligand. Ten poses were
generated for each ligand during the docking process and the
best poses were selected based on the best orientation of the
molecule in the active site and dock score values, which was
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Table 1: Statistical results of the generated pharmacophore models.

Hypo Total cost Cost di	erencea RMS Error cost Correlation Max �t Features

1 223.598 68.459 1.64 204.016 0.759 6.4 HBA HBD HYP RA

2 228.662 62.395 1.7 209.498 0.735 6.9 HBA HBD HYP RA

3 238.771 53.286 1.82 219.538 0.689 6.86 HBA HYP RA RA

4 240.0 52.057 1.84 220.97 0.682 7.16 HBA HYP RA RA

5 241.524 50.533 1.84 221.036 0.682 5.77 HBA HYP HYP RA

6 241.71 50.347 1.86 222.568 0.674 6.98 HBA HYP RA RA

7 242.261 49.796 1.86 222.428 0.675 6.25 HBA HYP RA RA

8 242.339 49.718 1.85 221.941 0.677 5.83 HBA HYP RA RA

9 244.381 47.676 1.89 225.13 0.662 6.84 HBA HYP RA RA

10 244.543 47.514 1.88 224.225 0.666 5.88 HBA HYP HYP RA

Null cost = 292.057; �xed cost = 158.138; con�guration cost = 17.66.
aCost di	erence = null cost − total cost.

selected a�er energy minimization with smart minimization.
�e dock score was calculated using the following formula:

DockScore (force �eld)
=−( ligand

receptor interaction energy
+ ligand internal energy) .

(1)

Single dock score may fail to obtain active molecules;
hence, consensus scoring method was applied which consists
of LigScore1, LigScore2, Jain, Piecewise Linear Potential
(PLP1 and PLP2), and Potential of Mean Force (PMF).
�e active molecules were selected based on the consensus
scoring method and H-bond interaction with the recep-
tor. �e crystal structure of the HDAC2 protein (PDB
ID: 3MAX) was downloaded from the protein data bank
(http://www.rcsb.org/pdb). �e crystal structure of histone
deacetylases 2 (HDAC2) protein has three chains, which are
A, B, and C. �e chain A has higher docking score than
chains B and C, so chain A is selected for docking. �e
hit compounds from the database screening with positive
Lipinski’s drug likeness were subjected to molecular docking
studies into the active site of the 3MAX receptor.

3. Results and Discussion

3.1. Pharmacophore Generation. Pharmacophore model, vir-
tual screening, and molecular docking studies were per-
formed to �nd novel HDAC2 inhibitors. Dataset of 48
molecules with structural diversity and four orders of activity
magnitude (0.014 to 21 �M) were selected to develop phar-
macophore model using HypoGen algorithm in Discovery
Studio. Four features hydrogen bond donor (HBD), hydrogen
bond acceptors (HBA), ring aromatics (RA), and hydropho-
bic (HY) were selected. Top 10 hypotheses were generated
with the following features: HBA, HBD, RA, and HY. �e
statistical parameters such as cost values, correlation, and
RMSD were summarized in Table 1. �e best hypothesis was
selected out of 10 hypotheses by the highest cost di	erence.
Hypo1 has the highest cost di	erence between null cost and
total cost of 68.45, correlation coe�cient of 0.75, the lowest

RMS deviation of 1.64, and con�guration cost value of 17.66.
�is indicates themodel and the data correlated bymore than
90%. High correlation coe�cient and low RMSD indicate the
ability to predict the activity of the training set compounds

is high. �e Hypo1 has a correlation coe�cient value (�2 =
0.75), and the model strongly predicts the activity of training
set compounds. �e correlation between the experimental
activity and predicted activity of training set compounds
was shown in Table 2. For most of the compounds the
model predicts the activity correctly. Figure 1(a) shows the 3D
spatial arrangement of all featureswith distance constraints of
Hypo1. �e features of Hypo1 were mapped onto the active
compound 15 as shown in Figure 1(b). HBD is mapped by
amino group, HBA is mapped by phosphonate group, aro-
matic ring is mapped by aromatic group, and HY is mapped
by hydrophobic group. �e results indicate that HDAC2
inhibition requires the following features: HBD, HBA, RA,
and HYP. Inactive compound 29 was mapped partially onto
the features of Hypo1 as shown in Figure 1(c).�e �t value for
themost active and the least active compoundswas generated
to be 5.39 and 3.21, respectively.

3.2. Pharmacophore Validation. �e pharmacophore model
can be validated by three methods: cost analysis, test set
prediction, and Fischer’s randomization test.

3.2.1. Cost Analysis. �eHypoGen algorithm in DS produces
three cost values during the pharmacophore generation,
which are �xed cost, total cost, and null cost. �e model is
validated by the di	erence between the null cost and total
cost; if the model has cost di	erence above 60, it has the
predictability chance of greater than 90%. �e Hypo1 having
the cost di	erence of 68.45 shows signi�cant model (shown
in Table 1).

3.2.2. Test Set Prediction. A good pharmacophore model can
predict not only the activity of the training set compounds
but also external test set compounds. 20 compounds with
di	erent activity range were used as a test set to check the
predictability power of the pharmacophore model. Ligand
pharmacophoremapping protocol with �exible search option
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Table 2: �e experimental activity and estimated activity of the training set compounds are summarized here.

Compound number
Exp. IC50�M

Estimated IC50�M Error
Activity

magnitude (exp.)
Activity

magnitude (est.)
Fit scores

Compound 1 2 0.373 1.627 ++ +++ 3.981

Compound 2 0.313 0.178 0.135 +++ +++ 4.301

Compound 3 0.105 0.127 −0.022 +++ +++ 4.449

Compound 4 0.071 0.116 −0.045 ++++ +++ 4.488

Compound 5 0.34 0.133 0.207 +++ +++ 4.427

Compound 6 0.115 0.117 −0.002 +++ +++ 4.484

Compound 7 0.19 0.124 0.066 +++ +++ 4.457

Compound 8 0.78 0.252 0.528 +++ +++ 4.151

Compound 9 0.049 0.202 −0.153 ++++ +++ 4.247

Compound 10 3.3 2.801 0.499 ++ ++ 3.106

Compound 11 0.36 0.277 0.083 +++ +++ 4.11

Compound 12 0.13 0.122 0.008 +++ +++ 4.465

Compound 13 0.18 0.177 0.003 +++ +++ 4.304

Compound 14 0.14 0.088 0.052 +++ ++++ 4.609

Compound 15 0.014 0.014 0 ++++ ++++ 5.392

Compound 16 0.9 2.338 −1.438 +++ ++ 3.185

Compound 17 0.2 0.247 −0.047 +++ +++ 4.16

Compound 18 0.07 0.125 −0.055 ++++ +++ 4.456

Compound 19 0.06 0.058 0.002 ++++ ++++ 4.787

Compound 20 0.08 0.082 −0.002 ++++ ++++ 4.637

Compound 21 0.09 0.126 −0.036 ++++ +++ 4.451

Compound 22 0.1 0.198 −0.098 ++++ +++ 4.257

Compound 23 0.5 0.817 −0.317 +++ +++ 3.641

Compound 24 0.8 1.744 −0.944 +++ ++ 3.312

Compound 25 0.039 0.251 −0.212 ++++ +++ 4.153

Compound 26 0.27 2.13 −1.86 +++ ++ 3.225

Compound 27 0.043 0.254 −0.211 ++++ +++ 4.149

Compound 28 3.1 2.181 0.919 ++ ++ 3.215

Compound 29 21 18.8 2.2 + + 3.213

Compound 30 13 1.52 11.48 + ++ 3.372

Compound 31 1.3 1.891 −0.591 ++ ++ 3.277

Compound 32 0.6 0.574 0.026 +++ +++ 3.795

Compound 33 10 0.24 9.76 ++ +++ 4.172

Compound 34 0.032 0.218 −0.186 ++++ +++ 4.215

Compound 35 3.8 2.305 1.495 ++ ++ 3.191

Compound 36 0.019 0.017 0.002 ++++ ++++ 5.322

Compound 37 0.87 0.232 0.638 +++ +++ 4.188

Compound 38 1.48 1.229 0.251 ++ ++ 3.464

Compound 39 3.47 2.075 1.395 ++ ++ 3.237

Compound 40 0.46 2.075 −1.615 +++ ++ 3.237

Compound 41 0.26 2.115 −1.855 +++ ++ 3.228

Compound 42 0.56 0.796 −0.236 +++ +++ 3.652

Compound 43 5.54 1.82 3.72 ++ ++ 3.293

Compound 44 0.52 0.342 0.178 +++ +++ 4.019

Compound 45 1.44 2.101 −0.661 ++ ++ 3.231

Compound 46 0.33 0.773 −0.443 +++ +++ 3.665

Compound 47 1.81 0.696 1.114 ++ +++ 3.711

Compound 48 3.9 2.081 1.819 ++ ++ 3.235
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Figure 1: �e best pharmacophore model (Hypo1) of HDAC2 inhibitors generated by the HypoGen module: (a) the best pharmacophore
model Hypo1 represented with distance constraints (Å), (b) Hypo1 mapping with one of the active compounds 15, and (c) Hypo1 mapping
with one of the least active compounds 29. Pharmacophoric features are colored as follows: hydrogen bond acceptor (green), hydrogen bond
donor (magenta), hydrophobic (cyan), and ring aromatic (orange).

was used to map the test set compounds. In test set analysis,
formost of the compounds themodel predicted activity to the
tune of less than 10%. Out of 20 compounds 17 compounds
were predicted with an error factor less than 5% and 3
compounds were predicted with an error factor less than
10%. �e experimental and predicted activities of the test set
compounds were shown in Table 3.

3.2.3. Fischer Randomization Test. Fischer randomization
test was the third approach to validate the Hypo1 using
DS. In this method the experimental activity of the training
set compounds was randomly scrambled and generates the
random pharmacophore model using the same parameters
as used in developing the Hypo1 hypothesis. Con�dence
level of 95% was set and it created 19 spread sheets, all
19 random spread sheets have high cost values than total
cost, and correlation value is less than the Hypo1 (supple-
mentary Table 1). It clearly shows none of the randomly
generated pharmacophores has good statistical values than
Hypo1. �e di	erence in costs between the HypoGen and
Fischer randomizations was shown in Figure 2. All the three
validationsmethods demonstrated thatHypo1 hypothesis has
good predictability and can be chosen as the best model.

3.3. Database Screening. �e best pharmacophore model
Hypo1 was used as a 3D query to search the NCI (265242)
andMaybridge (58723) databases using �exible search option
in DS. A total of 6130 compounds from NCI and 1379 from
Maybridge were mapped using the features of Hypo1. A
total of 1198 and 440 compounds from NCI and Maybridge
showed HypoGen estimated value of less than 1�M and were
considered for further studies and these compounds were
screened for Lipinski’s rule of 5. A total of 625 (382 NCI, 243
Maybridge) compounds obeyed the rule and were subjected
to molecular docking studies.�e �owchart in Figure 3 was a
schematic representation of virtual screening process.

3.4. Molecular Docking. �e HDAC2 protein has three
chains which are A, B, and C. �e active compound MS-275
(Entinostat) was docked into active sites of all three chains
using LigandFit module in Discovery Studio, and out of
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Random19

Figure 2: Fischer randomization test for 95% con�dence level: phar-
macophore hypotheses versus total cost.

NCI database Maybridge
2,53,368 58,723

Pharmacophore mapping
NCI database Maybridge
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Estimated activity < 1
NCI database Maybridge

1, 198 440

Lipinski rule of �ve
NCI database Maybridge

382 243

Molecular docking using ligand �t (DS)

—
—

—
—

—
—

—
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Figure 3: Schematic representation of virtual screening process
implemented in the identi�cation of HDAC2 inhibitors.

three chains chain A has given the best docking score
and higher H-bond interactions than chains B and C. �e
docking score of all three chains with Entinostat was shown
in supplementary Table 2. Chain A was selected as an active
chain and the �nal hit compounds from virtual screening
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Table 3: �e experimental and estimated activity of test compounds.

Compound number
Exp. IC50�M

Estimated IC50�M Error
Activity

magnitude (exp.)
Activity

magnitude (est.)
Fit scores

Compound 1 3.47 0.174 3.296 ++ +++ 6.298

Compound 2 10 4.253 5.747 + ++ 6.05

Compound 3 0.52 0.009 0.511 +++ ++++ 5.559

Compound 4 1.81 0.01 1.8 ++ ++++ 5.529

Compound 5 0.1 0.01 0.09 ++++ ++++ 5.518

Compound 6 0.08 0.012 0.068 ++++ ++++ 5.458

Compound 7 0.2 0.015 0.185 +++ ++++ 5.364

Compound 8 0.9 0.017 0.883 +++ ++++ 5.309

Compound 9 1.44 0.019 1.421 ++ ++++ 5.272

Compound 10 0.46 0.019 0.441 +++ ++++ 5.268

Compound 11 1 0.027 0.973 +++ ++++ 5.116

Compound 12 10 4.033 5.967 + ++ 5.097

Compound 13 0.09 0.033 0.057 ++++ ++++ 5.034

Compound 14 5.54 0.36 5.18 ++ +++ 4.99

Compound 15 0.26 0.046 0.214 +++ ++++ 4.887

Compound 16 0.33 0.048 0.282 +++ ++++ 4.865

Compound 17 1.48 0.06 1.42 ++ ++++ 4.771

Compound 18 3 0.202 2.798 ++ +++ 4.246

Compound 19 0.5 0.239 0.261 +++ +++ 4.174

Compound 20 0.05 0.47 −0.42 ++++ +++ 3.881

studies were docked into active site of 3MAX-A.�e docking
score along with binding orientations and hydrogen bonds
was considered for choosing the best pose of the docked
compounds. �e docking scores were compared with MS-
275 (Entinostat). �e docking score of the Entinostat was
42.6 kcal/mol and hit compounds from the virtual screening
studies show better binding than the active compound
Entinostat. �e Entinostat has the four hydrogen bonding
interactions with Arg39, Cys156, Gly305, and His183 given in
Figure 4(a). �e hit compounds that scored docking score
higher than active compound and form interaction with
the crucial amino acids were considered as e	ective leads
for designing novel HDAC2 inhibitors. 74 compounds from
both databases showed good interactions in the active site of
the HDAC2 and scored more than 45, about 20 compounds
that showed better docking score than active compounds
were chosen as leads and their docking score and H-bond
interactions were listed in supplementary Tables 3 and 4.
Finally four compounds from NCI, namely, NSC108392,
NSC127064, NSC110782, and NSC748337, were identi�ed
with good docking score and estimated activity value of
0.26 �M, 0.47 �M, 0.37 �M, and 0.41 �M, respectively.�e hit
NSC108392 (4-(((6-amino-3-methylpyrido[2,3-b]pyrazin-8-
yl)amino)methyl)benzenesulfonamide) has the docking score
of 121.9 kcal/mol and forms three hydrogen bond interactions
with Arg39 (3), His145, and Asp181 (2) amino acids shown
in Figure 4(b). �e binding mode of this compound at the
active site showed that mapping on HBD feature of Hypo1
formed interactions with Arg39 and HBA feature of Hypo1

forms the interactions with His145 and Asp181. NSC127064
((2S,3S,4S,5R)-2-(1-(benzyloxy)-6-imino-1H-purin-9(6H)-
yl)-5-(hydroxymethyl) tetrahydrofuran-3,4-diol) has the
docking score of 116.4 kcal/mol and forms seven hydrogen
bond interactions with Arg39, Cys156, Gly305, His145
(2), Asp181 (2), Trp140, and Gly142 amino acids shown in
Figure 4(c). �e binding mode and pharmacophore overlay
of the compound showed that OH mapped on HBD, NH2
mapped on HBA, and purine moiety mapped on RA form
interaction in the active site. NSC110782 (4-(2-((6-amino-
3-methylpyrido[2,3-b]pyrazin-8-yl) amino) ethyl) benzene
sulfonamide) has the docking score of 106.2 kcal/mol and
forms four hydrogen bond interactions with His145, Asp181
(3), Gly154, and Ala141 shown in Figure 4(d). �e binding
mode and pharmacophore overlay of this compound showed
that HBD mapped on NH2 and HBA mapped on pyrazine
moiety have interactions with the amino acid residues.
NSC748337 (3-(benzo[d]oxazol-2-yl)-5-(1-(piperidin-4-yl)-
1H-pyrazol-4-yl) pyridin-2-amine) has the docking score
of 105.6 kcal/mol and forms four hydrogen bond interac-
tions with Asp181 (2), His145, Ala141, and His183 shown
in Figure 4(e). �e nitrogen on piperidine mapped to
HBD has interactions with Ala141, amino group on
pyridine moiety mapped to HBA of Hypo1 has interac-
tions with His183, and Asp181 and nitrogen of pyridine
moiety have interactions with His145. Four compounds from
Maybridge database, MFCD01935795, MFCD00830779,
MFCD00661790, and MFCD00124221, were identi�ed
as novel HDAC2 inhibitors with estimated activity
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Figure 4: Binding orientations of hit compounds: (a) Entinostat, (b) NSC108392, (c) NSC127064, (d) NSC110782, (e) NSC748337, (f)
MFCD01935795, (g)MFCD00830779, (h)MFCD00661790, and (i)MFCD00124221 in the active site of 3MAX-Awith hydrogen bond interac-
tions.

value of 0.12 �M, 0.32 �M, 0.61 �M, and 0.68 �M,
respectively. MFCD01935795 (4-(3-ethylthioureido)-N-
(5-methylisoxazol-3-yl) benzenesulfonamide) as the docking
score of 98.8 kcal/mol having three H-bond interactions with
Cys156, Phe155, and His146 residues is shown in Figure 4(f).
�e protein-ligand interaction shows HBD of Hypo1 forms
hydrogen bond interaction with His146, and nitrogen on
iso-oxazole mapped with HBA forms hydrogen bond with
Phe155 and oxygen of sulphonamide forms bondwithCys156.

MFCD00830779 ((E)-N�-hydroxy-4-((2-methylthiazol-4-
yl)methoxy)benzimidamide) having the docking score of
96.89 kcal/mol forms �ve hydrogen bonds with Arg39,
His183, Asp181 (2), Asp269, and His146 amino acids. �e
binding mode of the compound shown in Figure 4(g) shows
Hypo1 of HBA mapped nitrogen of thiazole forms hydrogen
bonding with Arg39, HBD mapped on oxygen of N-hydroxy
has hydrogen bond interaction with His183, benzamide
of nitrogen has interaction with His146, and nitrogen of
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 5:�e pharmacophore overlay of hit compounds: (a) NSC108392, (b)NSC127064, (c) NSC110782, (d)NSC748337, (e)MFCD01935795,
(f) MFCD00830779, (g) MFCD00661790, and (h) MFCD00124221.

formamide has interaction with Asp181. MFCD00661790 (N-
(2-(3-(2,4-di�uorophenyl)thioureido)ethyl)-2-(4-hydroxy-
phenyl)acetamide) has the docking score of 81. Kcal/mol
forming four hydrogen bond interactionswithCys156,His153,
His146, and Ala141 amino acids, Hypo1 HBD mapped on
oxygen shows hydrogen bond interaction with Ala141, HBA
mapped on nitrogen forms bonds with His183, nitrogen of
thiourea forms bonds with His146, and acetamide of oxygen
has hydrogen bond with Cys156; the binding interactions
are shown in Figure 4(h). �e fourth hit MFCD00124221
(N-(4-(3-(2,3-dichlorophenyl)thioureido)phenyl)-2-hydrox-
ybenzamide) has docking score of 65.86 kcal/mol with three
hydrogen bonds with Cys156, Gly305, and His183. �e com-
plex shown in Figure 4(i) shows benzamide of oxygen with
Cys156, nitrogen with Gly305, and nitrogen of thiourea with
His183 and shows hydrogen bond interaction.

�e pharmacophore overlay of the hit compounds was
shown in Figure 5. �e identi�ed lead compounds along
with their estimated IC50 were shown in Figure 6. �e
studies show Arg39, Cys156, His145, and His146 were the
important amino acids in the active site involved in hydrogen
bond interaction. Based onpharmacophoremodeling, virtual

screening, and molecular docking studies, the compounds
listed in supplementary Table 3 are selected as novel leads
for e	ective HDAC2 inhibition. All identi�ed hits were with
diverse sca	olds and provide opportunities for designing
novel HDAC2 inhibitors. �e lead compounds were selected
based on the docking score and structural diversity. �e cor-
relation between the estimated activity and docking score of
top 10 lead compounds from NCI and Maybridge is 0.61 and
0.54, respectively, which suggests that the selected inhibitors
in the present study could be speci�c HDAC2 inhibitors.

Comparative study on previous developed models with
present study shows common pharmacophore features were
present in all studies. Pharmacophore model on histone dea-
cetylase (HDAC) with known hydroxamic acids and cyclic
peptides shows four pharmacophore features: one hydrogen
acceptor and one hydrophobic and two aromatic rings [17]
and in the study with known hydroxamic acids, benzamides,
and biphenyl derivatives on HDAC [40] three pharma-
cophore features were shown: hydrogen acceptors, hydrogen
donors, and hydrophobic aromatic ring. Pharmacophore
model on histone deacetylase (HDAC8) with known hydrox-
amic acids has shown four pharmacophore features: one
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Figure 6: Identi�ed lead compounds through NCI and Maybridge database search: (a) NSC108392, (b) NSC127064, (c) NSC110782, (d)
NSC748337, (e) MFCD01935795, (f) MFCD00830779, (g) MFCD00661790, and (h) MFCD00124221.

hydrogen acceptor, two hydrogen donors, and one hydro-
phobic group [18]. �e present developed pharmacophore
model on HDAC2 with known benzamide derivatives shows
four pharmacophore features: one hydrogen acceptor, one
hydrogen donor, and one hydrophobic and one aromatic
rings, which correlates with the previous studies.

�e selected eight lead compounds and Entinostat were
docked into the active sites of histone deacetylase (HDAC)
(PDB: 1ZZ1) and histone deacetylase (HDAC8) (PDB: 1T64),

and in both the receptors chain A was selected for docking.
�e docking result shows that compounds with HDAC
and HDAC8 comparably showed lesser docking score and
interactions than HDAC2. �e docking scores and H-bond
interactions were shown in supplementary Tables 5 and 6.

�e combinations of pharmacophore, virtual screening,
and molecular docking successfully give more potential
inhibitors that can have great impact for future experimental
studies in diseases associated with HDAC2 inhibition.
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4. Conclusion

In this study, ligand pharmacophore model developed by
HypoGen algorithm in DS, 10 hypotheses were generated
using 48 training set compounds with structural diversity.
�e best pharmacophore Hypo1 was characterized by high
cost di	erence and correlation coe�cient comprised of
HBD, HBA, RA, and HY features. �e Hypo1 was validated
by external test set and Fisher’s randomization test suggests
the model has good predictability. �e Hypo1 was used
as a 3D query to screen NCI and Maybridge databases.
625 compounds with estimated activity less than 1�M and
favourable Lipinski’s rule were selected for docking studies.
In molecular docking studies the important interactions with
inhibitors and active site residues were determined. Based on
docking score and interactions twenty hits were found and
�nally eight hits NSC108392 (4-(((6-amino-3-methylpyri-
do[2,3-b]pyrazin-8-yl)amino)methyl)benzenesulfonamide),
NSC127064 ((2S,3S,4S,5R)-2-(1-(benzyloxy)-6-imino-1H-
purin-9(6H)-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-
diol), NSC110782 (4-(2-((6-amino-3-methylpyrido[2,3-b]pyr-
azin-8-yl)amino)ethyl)benzenesulfonamide), NSC748337 (3-
(benzo[d]oxazol-2-yl)-5-(1-(piperidin-4-yl)-1H-pyrazol-4-
yl)pyridin-2-amine), MFCD01935795 (4-(3-ethylthiourei-
do)-N-(5-methylisoxazol-3-yl) benzenesulfonamide),
MFCD00830779 ((E)-N�-hydroxy-4-((2-methylthiazol-4-yl)
methoxy)benzimidamide), MFCD00661790 (N-(2-(3-(2,4-
di�uorophenyl)thioureido)ethyl)-2-(4-hydroxyphenyl)acet-
amide), and MFCD00124221 (N-(4-(3-(2,3-dichlorophenyl)
thioureido)phenyl)-2-hydroxybenzamide) were selected
based on structural diversity and stability. �ese novel com-
pounds can be used for experimental studies for the inhi-
bition of HDAC2.
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