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Abstract

Application of deep learning techniques for the de novo generation of molecules,

termed as inverse molecular design, has been gaining enormous traction in drug design.

The representation of molecules in SMILES notation as a string of characters enables

the usage of state of the art models in Natural Language Processing, such as the Trans-

formers, for molecular design in general. Inspired by Generative Pre-Training (GPT)

model that have been shown to be successful in generating meaningful text, we train

a Transformer-Decoder on the next token prediction task using masked self-attention

for the generation of druglike molecules in this study. We show that our model, Lig-

GPT, outperforms other previously proposed modern machine learning frameworks for

molecular generation in terms of generating valid, unique and novel molecules. Fur-

thermore, we demonstrate that the model can be trained conditionally to optimize

multiple properties of the generated molecules. We also show that the model can be

used to generate molecules with desired scaffolds as well as desired molecular prop-

erties, by passing these structures as conditions, which has potential applications in

lead optimization in addition to de novo molecular design. Using saliency maps, we

highlight the interpretability of the generative process of the model.
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Introduction

It has been postulated that the total number of potential drug like candidates range from

1023 to 1060 molecules1 of which, only about 108 molecules have been synthesized2. Since it is

difficult to screen a practically infinite chemical space, and there is a a huge disparity between

synthesized and potential molecules, generative models are used to model a distribution

of molecules for the purpose of sampling molecules that have desirable properties. Deep

generative models have made great strides in modeling data distributions in general data

domains such as Computer Vision3,4 and Natural Language Processing (NLP)5,6. Such

methods have also been adopted to model molecular distributions7,8. Such models learn

probability distributions over a large set of molecules and therefore are able to generate novel

molecules by sampling from these distributions7,9. The rapid adoption of deep generative

model has also led to the development of benchmark datasets such as the Molecular Sets

(MOSES)10 and GuacaMol9 datasets.

The representation of molecules in Simplified Molecular Input Line Entry System (SMILES)11

notation as a string of characters enables the usage of modern NLP deep learning models for

their computation12. Some of the earliest deep learning architectures for molecular gener-

ation involved the usage of Recurrent Neural Networks (RNNs) on molecular SMILES13,14.

Such models have also previously been trained on large corpus of molecules and then focused

through the usage of reinforcement learning15,16 or transfer learning13 to generate molecules

of desirable properties and activity.

Auto-Encoder variants such as the Variational Auto-Encoder(VAE)17–21 and Adversarial

Auto-Encoder(AAE)22–25 have also been employed for molecular generation. These models

contain an encoder that encodes molecules to a latent vector representation and a decoder

that maps latent vectors back to molecules. Molecules can then be generated by sampling

from these latent spaces. However, SMILES based methods often lead to a discontinuous

latent space20 since similar molecules can have very different SMILES representations. To

address this problem, SMILES strings have also been randomized as inputs for such mod-
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els26–28. Junction Tree VAE (JT-VAE)20 is also an alternative solution which represents

molecules as graph tree structures. JT-VAE also ensures 100% validity of generated mo-

lecules by maintaining a vocabulary of molecular components that can be added at each

junction of the molecule tree. Conditional Variational Auto-Encoders have also been used

to generate molecules with desired properties29.

Generative Adversarial Networks (GANs) have also gained traction for molecular design30–34.

This is mainly because of their ability to generate highly realistic content4. GANs are com-

posed of generators and discriminators that work in opposition of each other. While the

generator tries to generate realistic content, the discriminator tries to distinguish between

generated and real content. ORGAN31 was the first usage of GANs for molecular generation.

RANC34 introduced reinforcement learning alongside a GAN loss to generate molecules of

desirable properties. LatentGAN30 is a more recent method which uses latent vectors as

input and outputs. These latent vectors are mapped to molecules by the decoder of a pre-

trained auto-encoder. This ensures that the model can work with latent representations and

doesn’t have to handle SMILES syntax. Most of these methods have been benchmarked on

the MOSES and GuacaMol datasets for easy comparison.

Often, methods use Bayesian optimization35,36, reinforcement learning15,34 or other op-

timization methods37,38 to generate molecules exhibiting desirable properties. Mol-CycleGAN39

is a generative model that utilises the JT-VAE architecture and applies the CycleGAN40

loss to generate molecules of required properties using given molecule templates. Only a

few methods explicitly define the values of properties for generated molecules. Conditional

RNNs13,41, Deep learning enabled inorganic material generator (DING)29 and Conditional

Adversarially Regularized Autoencoder (CARAE)25 are three such methods that sample

molecules based on exact values. RNNs have also been previously used to generate mo-

lecules based on given scaffolds42. A graph based method has been designed that ensures

the presence of desired scaffolds while generating molecules with exact property values43.

A novel NLP architecture called the Transformer5 has shown state-of-the-art performance
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in language translation tasks. Transformers consist of encoder and decoder modules. The

encoder module gains context from all the input tokens through self attention mechanisms.

The decoder module gains context from both the encoder as well as previously generated

tokens by attention. Using this context the decoder is able to predict the next token. The

decoder module has also been previously used independently for language modeling task and

is known as the Generative Pre-Training Transformer model (GPT)44. The GPT model has

been shown to develop better language embedding that model longer-distance connections.

Due to this, the embeddings have shown top performance when used for multiple language

modelling tasks such as natural language inference, question answering, sentence similarity

and classification45.

To yield the added benefits of this architecture, we train a a GPT model, named LigGPT,

to predict a sequence of SMILES tokens for molecular generation. To the best of our know-

ledge, this is the first work that has used the GPT architecture for molecular generation.

For this, we use a SMILES tokenizer to break SMILES strings into a set of relevant tokens.

Since predicted tokens are a result of attention applied to all previously generated tokens,

we believe, that the model easily learns the SMILES grammar and therefore, can focus on

higher level understanding of molecular properties. To this end, we also train our models

conditionally to explicitly learn certain molecular properties. The model displays perform-

ance that is at par with other methods benchmarked on the MOSES and Guacamol datasets.

Furthermore, we show that LigGPT controls user specified molecular properties and scaffolds

with extremely high accuracy, leading to our conclusion that it learns a good representation

of the chemical space. Due to this learned representation, the utility of LigGPT in molecular

design processes such as lead optimization is also highlighted.
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Methods

In this section, we first present the datasets used for all the experiments. We discuss the

properties used for conditional generation. This is then followed by the overview of the

proposed model. Schematic of the training and generation pipeline is shown in this section.

At last, the details of the experiments and the metrics used for the evaluation of different

models are provided.

Datasets

(a) (b) (c)

(d) (e) (f)

Figure 1: Probability distributions of properties (log P, molecular weight, QED, SAS, TPSA
and SMILES length) of molecules in the MOSES and GuacaMol datasets.

In this work, we used two benchmark datasets, MOSES and GuacaMol for training and

evaluation of our model. MOSES is a dataset composed of 1.9 million lead-like molecules

with molecular weight ranging from 250 to 350 Daltons, number of rotatable bonds lower

than 7 and and XlogP below 3.5. GuacaMol on the other hand is a subset of the ChEMBL

2446 database that contains 1.6 Million molecules. We used the rdkit toolkit47 to calculate
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Figure 2: Pipeline for Training and Generation using the LigGPT model.

molecular properties and to extract Bemis-Murcko scaffolds.48 The MOSES dataset was

created mainly to represent lead like molecules and therefore has a distribution of molecules

with ideal druglike properties. However, to test the models control on conditional generation

we require a larger distribution of property values available in the Guacamol dataset as can

be seen in Figure 1. Therefore, we use the GuacaMol dataset to test property conditional

generation. The MOSES dataset also provides a test set of scaffolds which we use to evaluate

scaffold and property conditional generation.

The models were trained to learn some properties of the molecules for controlled gener-

ation and optimisation. The properties used are the following:

• logP: the logarithm of the partition coefficient. Partition coefficient compares the

solubilities of the solute in two immiscible solvents at equilibrium. If one of the solvents

is water and the other is a non-polar solvent, then logP is a measure of hydrophobicity.

• Synthetic Accessibility score (SAS49): measures the difficulty of synthesizing a

compound. It is a score between 1 (easy to make) and 10 (very difficult to make).

• Topological Polar Surface Area (TPSA): the sum of surface area over all polar

atoms. It measures the drug’s ability to permeate cell membranes. Molecules with

TPSA greater than 140 Å2 tend to be poor in permeating cell membranes.
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Figure 3: LigGPT model architecture.

• Quantitative Estimate of Drug-likeness (QED50): This quantifies drug-likeness

by taking into account the main molecular properties. It ranges from zero (all proper-

ties unfavourable) to one (all properties favourable).

Model Overview

The model schematic of LigGPT for training and generation is given in Figure 2. For training,

we extract molecular properties and scaffolds from molecules using rdkit and pass them as

conditions alongside the molecular SMILES. For generation, we provide the model a set of

property and scaffold conditions along with a start token to sample a molecule.

Our model is illustrated in Figure 3. The model is essentially a mini version of the

Generative Pre-Training Transformer (GPT) model44. Unlike GPT1 that has around 110M

parameters, LigGPT has only around 6M parameters. LigGPT comprises stacked decoder

blocks, each of which, is composed of a masked self-attention layer and fully connected neural

network. Each self-attention layer returns a vector of size 256, that is taken as input by the

fully connected network. The hidden layer of the neural network outputs a vector of size

1024 and uses a GELU activation and the final layer again returns a vector of size 256 to be
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used as input for the next decoder block. LigGPT consists of 8 such decoder blocks.

To keep track of the order of the input sequence, position values are assigned to each

token. During conditional training, segment tokens are provided to distinguish between the

condition and the SMILES tokens. All the tokens are mapped to the same space using their

respective embedding layers. All the embeddings are then added, resulting in a vector of

size 256, which is then passed as input to the model.

GPT architectures work on a masked self-attention mechanism. Self-attention is calcu-

lated through ’Scaled Dot Product Attention’. This involves 3 sets of vectors, the query,

key and value vectors. Query vectors are used to query the weights of each individual value

vector. They are first sent through a dot product with key vectors. These dot products

are scaled by the dimensions of these vectors and then a softmax function is applied to get

the corresponding weights. The value vectors are multiplied by their respective weights and

added. The query, key and value vectors for each token are computed by weight matrices

present in each decoder block. Attention can be represented by the following formula:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V

Where Q, K and V are query, key and value vectors respectively. dk here is the dimension

of query and key vectors and T is transpose of the matrix.

Self-attention provides attention to all the tokens of a sequence for prediction. However,

this is not ideal when we are training a model to predict the next token in a sequence.

Therefore, masked self attention is applied to mask attention to all sequence tokens that

occur in future time steps. It is essential because, during generation, the network would

have access only to the tokens predicted in the previous time-steps. Moreover, instead of

performing a single masked self-attention operation, each block performs multiple masked

self-attention operations (multi-head attention) in parallel and concatenates the output.
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Multi-head attention provides better representations by attending to different representation

subspaces at different positions.

We train this model on molecules represented as SMILES string. For this, we use a

SMILES tokenizer to break up the string into a sequence of relevant tokens. Property

conditions are also sent through a linear layer that maps the condition to a vector of 256

dimensions. The resultant vector is then concatenated at the start of the sequence of the

embeddings of the SMILES tokens. For scaffold condition, we use an embedding layer to

map the tokens to 256-dimensional vectors as well. This embedding layer is shared with the

molecule embedding layer. Similar to property condition, the scaffold representation is then

concatenated at the start of the sequence of the embeddings of the SMILES tokens. The

model is trained such that the predicted tokens are a result of attention to both the previous

tokens as well as the conditions.

Training Procedure and Evaluation Metrics

Each model is trained for 10 epochs using the Adam optimizer with a learning rate of 6e−4.

During generation a start token of a single carbon atom is provided to the network along

with the conditions.

We trained and tested LigGPT on both the MOSES10 and GuacaMol9 datasets. We

also conducted experiments to check LigGPT’s capacity to control molecular properties

and core structures. The models were trained on a NVIDIA 2080Ti GPU. Most of the

models converged and showed best performance after 10 epochs. However, we noticed that

training them for slightly fewer epochs led to similar results in terms of validity, novelty and

uniqueness of generated molecules, which are the metrics used here (details below).

• Validity: the fraction of generated molecules that are valid. We use rdkit for validity

check of molecules. Validity measures how well the model has learnt the SMILES

grammar and the valency of atoms.

9



• Uniqueness: the fraction of valid generated molecules that are unique. Low unique-

ness highlights repetitive molecule generation and low level of distribution learning by

the model.

• Novelty: the fraction of valid unique generated molecules that are not in the training

set. Low novelty is a sign of overfitting. We don’t want the model to memorize the

training data.

• Internal Diversity (IntDivp): measures the diversity of the generated molecules.

This uses the Tanimoto similarity (T ) between the fingerprints of each pair of molecules

in the generated set (S).

IntDivp(S) = 1 − p

√

1

|S|2
∑

s1,s2∈S

T (s1, s2)p

The method implementation is available at https://github.com/devalab/liggpt

Results and Discussion

In this section, we first present the results on unconditional generation of molecules. Lig-

GPT’s performance is then compared with other state-of-the-art approaches, followed by

some insights on the interpretability of our model. We then demonstrate our model’s ability

of conditional generation based on property alone and scaffold alone. This is followed with

the results on conditional generation based on property and scaffold together. At last, a

potential use case of our model is demonstrated for one-shot optimization of QED value of

a starting molecule.

Unconditional Molecular Generation

The chemical space is practically inifinite due to which, the models are required to exhibit

high validity, uniqueness and novelty scores with respect to molecular generation. High values
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Table 1: Comparison of the different metrics corresponding to unconditional generation of
molecules using different approaches trained on MOSES dataset. Temperature value of 1.6
was used for LigGPT.

Models Validity Unique@10K Novelty IntDiv1 IntDiv2
CharRNN 0.975 0.999 0.842 0.856 0.85

VAE 0.977 0.998 0.695 0.856 0.85
AAE 0.937 0.997 0.793 0.856 0.85

LatentGAN 0.897 0.997 0.949 0.857 0.85
JT-VAE 1.0 0.999 0.9143 0.855 0.849
LigGPT 0.9 0.999 0.941 0.871 0.865

Table 2: Comparison of the different metrics corresponding to unconditional generation of
molecules using different approaches trained on GuacaMol dataset. Temperature value of
0.9 was used for LigGPT.

Models Validity Unique Novelty

SMILES LSTM 0.959 1.0 0.912
AAE 0.822 1.0 0.998
Organ 0.379 0.841 0.687
VAE 0.870 0.999 0.974

LigGPT 0.986 0.998 1.0

of these metrics would ensure that the models have learnt the molecule grammar well and

are not overfitting to the training data simultaneously. Internal diversity scores give an idea

about the extent of chemical space traversed by different models. So, LigGPT is compared

with previous approaches on these criteria. We compare the performance of LigGPT on the

MOSES dataset to that of CharRNN, VAE, AAE, LatentGAN and JT-VAE. JT-VAE uses

graphs as input while the others use SMILES. To get the optimal model for each dataset,

the generative performance of LigGPT is checked for several sampling temperature values

between 0.7 and 1.6. The model performs best at a temperature of 1.6 for MOSES and 0.9

for GuacaMol. The optimal model performance on each dataset is reported in Table 1 and

Table 2.

On the MOSES benchmark, LigGPT performs the best in terms of the two internal

diversity metrics. This indicates that even though LigGPT learns from the same chemical

space as other models, it is better than others in generating molecules with lower redundancy.

In case of validity, as mentioned earlier, JT-VAE always generates a valid molecule because
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it checks validity at every step of generation. Barring JT-VAE, we observe that CharRNN,

VAE and AAE have high validity but low novelty. Compared to these three & JT-VAE,

LigGPT has lower validity but much higher novelty which is more crucial for the purposes

of molecular design. We find that the performance of LigGPT is comparable to LatentGAN.

LatentGAN involves training of an autoencoder followed by the training of GAN on the

latent space of the trained autoencoder. This is a 2-step process while on the other hand,

LigGPT is trained end-to-end. LigGPT’s validity and uniqueness are slightly higher than

LatentGAN, but novelty scores are comparable. On the GuacaMol benchmark, LigGPT is

easily the preferred method when compared to other methods tested on it. It returns very

high validity, uniqueness and novelty scores on generation with a sampling temperature of 0.9.

We believe this boost in performance, as compared to MOSES, is due to a larger diversity

in molecules in the GuacaMol dataset (see Figure 1). Moreover, even though GuacaMol

dataset has larger molecules as compared to MOSES dataset, LigGPT generates molecules

with very high validity which indicates that this method handles long range dependencies

very well. LigGPT takes only about 10 minutes to be trained on an epoch of the GuacaMol

dataset. This is due to the parallel nature in which it computes self-attention as opposed

to the sequential nature of training for other models. Thus, it can quickly be retrained on a

new dataset or on a different set of properties.

While it is important to develop machine learning frameworks and pipelines for making

tasks more efficient, it is desirable to also demonstrate that these models allow for interpret-

ation. Figure 4 shows input saliency maps for some of the generated tokens of the shown

generated molecule. Input saliency methods assign a score to each input token that indic-

ates the importance of that token in generating the next token. ’(’, ’C’ and ’c’ refer to the

branching from chain, non-aromatic carbon and aromatic carbon respectively. From Figure

4, we see that when generating the ’O’ atom in the first saliency map, the model rightly

attends to the previous double bond and ’N’ atoms. Double bond satisfies the valency of

the oxygen atom and the ’N’ atom participates in the formation of tautomer (Lactam and
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Figure 4: Input saliency maps for the shown generated molecule. The dark purple underline
are the tokens under consideration for saliency maps. The intensity of color of each token
indicates the importance of that token for generating the underlined token.

Lactim) which increases the stability of the structure. When generating the ’C’ atom in the

second saliency map, the model attends to ’(’, ’)’ to check if they are balanced, and also

attends to the atoms in the non-aromatic ring. In the non-aromatic ring, it attends mostly

to the immediate neighbors - ’2’ and ’N’ atoms. When generating ’2’ token, it attends to

the immediate previous ’C’ token and the tokens in the non-aromatic ring. For the fourth

and fifth saliency map, when generating ’c’ tokens, the model rightly attends to the atoms

in the aromatic ring since that ring is still incomplete. Thus, these saliency maps provide

some insight on the chemical interpretability of the generative process.

Further, to evaluate the robustness of the proposed framework, LigGPT’s performance

is compared with CharRNN in the low data regime. Here, we train both the models only

on 10% of the MOSES training set and evaluate the metrics by generating 10,000 molecules.

The results are reported in Table S1 of the Supporting Information. With temperature

0.9, LigGPT outperforms CharRNN on validity as well as novelty. With temperature 1.6,

LigGPT has similar novelty as CharRNN but much better validity. Moreover, LigGPT

has only 50% of the trainable parameters of CharRNN. This indicates greater efficiency of
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(a) (b)

(c) (d)

Figure 5: Distribution of property of generated molecules conditioned on: (a) logP (b)
TPSA (c) SAS (d) QED . Distribution depicted using a solid red line corresponds to the
whole dataset. Trained on GuacaMol dataset with Temperature=0.9.

LigGPT owing to its masked self-attention.

Generation based on Single and Multiple Properties

Many processes in biology and chemistry require molecules to have certain property values

in order to perform some functions. For example, for molecules to penetrate the blood–brain

barrier (and thus act on receptors in the central nervous system), a TPSA value less than

90 Å2 is usually needed51. This motivates the need for models to have accurate conditional

generation. So, the next objective is to evaluate the ability of LigGPT to generate molecules

that exhibit specific properties (conditional generation). Since GuacaMol has a wider range
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in property values, we test the model’s ability to control molecular properties trained on it.

While only logP, SAS, TPSA and QED are used for property control, we would like to note

that the model can be trained to learn any property that is inferred from the molecule’s 2D

structure. For each condition, 10,000 molecules are generated to evaluate property control.

Table 3: Comparison of different metrics while generating molecules conditioned on single
property based on training on GuacaMol dataset. Temperature value of 0.9 was used.

Condition Validity Unique Novelty MAD

logP 0.992 0.975 1.0 0.217
TPSA 0.992 0.966 1.0 3.339
SAS 0.993 0.965 1.0 0.108
QED 0.995 0.973 1.0 0.049

Distributions of molecular properties of LigGPT generated molecules while controlling

a single property are depicted in Figure 5. The Mean Average Deviation (MAD), Validity,

uniqueness and novelty values for each property are reported in Table 3. As seen in Figure

5, the distribution of properties are centered around the desired value. This is further

exemplified by the low MAD scores (relative to the range of the property values) in the

Table 3.

Table 4: Multi-property conditional training on GuacaMol dataset. Temperature 0.9 was
used.

Condition Validity Unique Novelty MAD TPSA MAD logP MAD SAS

SAS+logP 0.991 0.935 1.0 - 0.241 0.12
SAS+TPSA 0.992 0.929 1.0 3.543 - 0.133
TPSA+logP 0.989 0.942 1.0 3.528 0.227 -

TPSA+logP+SAS 0.99 0.874 1.0 3.629 0.254 0.158

While generating molecules for specific purposes, in other words de novo design of mol-

cules, it is necessary to optimize more than one property. For example, one may want mo-

lecules that have a specific values for logP and TPSA values. Hence, we check the model’s

capacity to control multiple properties simultaneously. For this, SAS, logP and TPSA are

used. We evaluate the model’s ability to generate desired distributions using two and three

property controls at a time. Generated distribution of molecule properties is depicted in
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(a) (b)

(c) (d)

Figure 6: Distribution of property of generated molecules conditioned on: (a) TPSA + logP
(b) SAS + logP (c) SAS + TPSA (d) TPSA + logP + SAS. The values that are conditioned
to are given in the Figures.

Figure 6. Well separated clusters centered at the desired property values are observed. As

before, the low MAD values for each property combination, reported in Table 4, (as com-

pared to the range of property values) indicate the strong control LigGPT has over multiple

properties for accurate generation.
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Figure 7: Boxplot of the evaluation metrics for the scaffold conditioned results

Generation based on Scaffold

The above section demonstrated the ability of LigGPT to generate molecules with desired

properties. In certain exercises, for eg. lead optimization, chemists intend to generate mo-

lecules containing a specific scaffold/skeleton and at the same time achieve desired property

values. We evaluate the ability of LigGPT to generate structures with certain property val-

ues while maintaining the structure of the scaffold, results of which are presented in this

and the next sections. We conduct these experiments on the MOSES benchmark dataset as

it contains a set of test scaffolds that are non overlapping with the set of scaffolds that are

present in the training set. We select a random set of 100 test scaffolds, then generate 100

molecules for each scaffold followed by calculation of validity, uniqueness, novelty and ‘sim-

ilarity ratio’. ‘Similarity ratio’ is defined as the fraction of valid generated molecules having

Tanimoto similarity of the scaffold of the generated molecule and the conditioned scaffold

greater than 0.8. The distribution of each of the metrics in terms of box plot, with the

swarm plot overlaid on it, is shown in Figure 7. From the boxplot, it is seen that even after

using high temperature of 1.6, around 75 of the scaffolds have validity greater than 0.8. By
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virtue of high temperature, almost all the scaffolds have uniqueness greater than 0.8. All the

scaffolds have novelty greater than 0.8. Around 75 scaffolds have ’similarity ratio’ greater

than 0.9, which suggests most of the generated valid molecules have very similar scaffold

to the scaffold used for condition. Some examples of generated molecules for two scaffolds

are given in Figure S2 of the Supporting Information. In all the generated molecules, the

conditioned scaffold strucutre is maintained.

Generation based on Scaffold and Property

We evaluate the models ability to generate structures containing desired scaffolds while

controlling molecular properties. For our experiments, five scaffolds of different sizes were

randomly chosen from the MOSES test set (Figure S1 of the Supporting Information). In

these experiments, we define valid molecules as those molecular graphs that satisfy chemical

valencies and contain scaffolds that have a Tanimoto similarity of at least 0.8 to the desired

scaffold. The validity score of all scaffold based experiments are calculated based on this

definition.

Generated distributions for single property control can be seen in Figure 8. Tanimoto

similarity is calculated between the scaffold of the generated molecule and the conditional

scaffold. Distribution of these Tanimoto similarity scores are also plotted in Figure 8. The

distribution plots peak at 1 for all the scaffolds and properties. Since scaffold based genera-

tion is more constraining for property control, generated distributions are not as narrow and

well separated as before. The quantitative results for single property control are reported

in Table S2 in the Supporting Information. The low MAD scores still show that LigGPT

deviates only slightly from intended values despite the constraints. QED is a function that

is dependant on multiple molecular properties simultaneously. Therefore, QED is greatly

influenced by the structure of the scaffold itself making it very hard to control under such

constraints. We believe such competing objectives are the reason for large overlap between

distributions generated for QED control. Figure S3 of the Supporting Information shows
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 8: Distribution of property of generated molecules conditioned on: Scaffold + (a)
logP (c) SAS (e) TPSA (g) QED . Distribution of tanimoto similarity of the scaffolds of
the generated molecules and the scaffold used for condition for (b) logP (d) SAS (f) TPSA
(h) QED. Trained on MOSES dataset. Temperature 1.6 used.
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(a) (b)

(c) (d)

Figure 9: Distribution of property of generated molecules conditioned on: Scaffold + (a)
TPSA + logP (b) SAS + TPSA (c) SAS + logP (d) TPSA + logP + SAS. Trained on
MOSES dataset and temperature 1.6 used.

the molecules conditioned on scaffold + logP and scaffold + SAS. LigGPT adds different

functional groups to the scaffold in order to get the desired property value. Multi-property

control clusters are plotted in Figure 9. Even when using multiple properties, we see the

Tanimoto similarity distributions peaking at 1 in Figure 10. Understandably, property-based

clusters are not as well formed as before. However, there is a good separation between the

clusters for two property control. The intended values of molecular properties are close to the
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(a) (b)

(c) (d)

Figure 10: Distribution of tanimoto similarity of the scaffolds of the generated molecules
and the scaffold used for condition for (a) TPSA + logP (b) SAS + TPSA (c) SAS + logP
(d) TPSA + logP + SAS. Trained on MOSES dataset and temperature 1.6 used.

centers of these clusters. This can further be verified by results reported for multi-property

control in Table S3 in the Supporting Information. For three property control one of the

clusters (red) is not well formed due to highly constraining property values. We see that the

rest of the clusters are largely well formed and separated.

One Shot Lead Optimization

Due to LigGPT’s strong ability to control molecular properties, we believe it has potential

usage in real world problems such as lead optimization. We call this ‘one shot optimization’

as it’s a one step process of providing the desired scaffold and properties for optimized
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Figure 11: One shot optimization of QED value conditioned on the scaffold

molecule generation. To demonstrate this, three scaffolds from test set having QED around

0.4 are sampled. Using these scaffolds and QED 0.9 as the condition, we generate molecules

using LigGPT. Sample generated molecules are shown in Figure 11. The scaffold structure

is maintained in the generated molecules and their QED values are around 0.9. While the

usefulness is demonstrated here only on QED, we would like to note that it could be adopted

for other molecular properties as well. Furthermore, it could also be used in other molecular

design task such generation of active molecules with good docking scores for a particular

protein, provided, a dataset for the protein is available for training beforehand.

Conclusion

In this work, we designed a Transformer-Decoder model called LigGPT for molecular gen-

eration. This model utilises masked self-attention mechanisms that make it simpler to learn

long range dependencies between string tokens. This is especially useful to learn the se-

mantics of valid SMILES strings that satisfies valencies and ring closures. We see through our

benchmarking experiments that LigGPT shows very good validity scores even with sampling
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temperature as high as 1.6 for the MOSES dataset and 0.9 for the GuacaMol dataset. Fur-

thermore, as shown, this also allows the model to do well in low data regimes. The high

sampling temperatures enables the model to generate large amounts of novel and unique

molecules. Therefore, LigGPT is able to show good performance on both datasets with it

outperforming all other methods benchmarked on the GuacaMol dataset.

We also show that the model learns higher level chemical representations through mo-

lecular property control. LigGPT is able to generate molecules with property values that

deviate only slightly from the exact values that are passed by the user. It’s also able to gen-

erate molecules containing user specified scaffolds while controlling these properties. It does

this with good accuracy despite the constraining conditions of scaffold based drug design.

Through this, we convey LigGPT’s real world utility for molecular generation. Consequently,

we believe that the LigGPT model should be considered a strong architecture to be used by

itself or incorporated into other molecular generation techniques.

Acknowledgement

The authors thank Manasa Kondamadugu, Yashaswi Pathak, Sarvesh Mehta and Manan

Goel for their comments during the preparation of the manuscript. We thank IHub-Data,

IIIT Hyderabad for financial support.

Supporting Information Available

Supporting Information contains results of training on 10,000 molecules and results of scaf-

fold and property conditioning. Furthermore figures of scaffolds, generated molecules from

scaffold conditioning as well as scaffold and property conditioning experiments are provided.

23



References

(1) Polishchuk, P. G.; Madzhidov, T. I.; Varnek, A. Estimation of the size of drug-like

chemical space based on GDB-17 data. Journal of computer-aided molecular design

2013, 27, 675–679.

(2) Kim, S.; Thiessen, P. A.; Bolton, E. E.; Chen, J.; Fu, G.; Gindulyte, A.; Han, L.; He, J.;

He, S.; Shoemaker, B. A., et al. PubChem substance and compound databases. Nucleic

acids research 2016, 44, D1202–D1213.

(3) Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.;

Courville, A.; Bengio, Y. Generative adversarial nets. Advances in neural information

processing systems 2014, 27, 2672–2680.

(4) Karras, T.; Laine, S.; Aila, T. A style-based generator architecture for generative ad-

versarial networks. Proceedings of the IEEE conference on computer vision and pattern

recognition. 2019; pp 4401–4410.

(5) Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A. N.; Kaiser,  L.;

Polosukhin, I. Attention is all you need. Advances in neural information processing

systems. 2017; pp 5998–6008.

(6) Devlin, J.; Chang, M.-W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bid-

irectional transformers for language understanding. arXiv preprint arXiv:1810.04805

2018,

(7) Chen, H.; Engkvist, O.; Wang, Y.; Olivecrona, M.; Blaschke, T. The rise of deep

learning in drug discovery. Drug discovery today 2018, 23, 1241–1250.

(8) Sanchez-Lengeling, B.; Aspuru-Guzik, A. Inverse molecular design using machine learn-

ing: Generative models for matter engineering. Science 2018, 361, 360–365.

24



(9) Brown, N.; Fiscato, M.; Segler, M. H.; Vaucher, A. C. GuacaMol: benchmarking models

for de novo molecular design. Journal of chemical information and modeling 2019, 59,

1096–1108.

(10) Polykovskiy, D.; Zhebrak, A.; Sanchez-Lengeling, B.; Golovanov, S.; Tatanov, O.; Bely-

aev, S.; Kurbanov, R.; Artamonov, A.; Aladinskiy, V.; Veselov, M., et al. Molecular

sets (moses): A benchmarking platform for molecular generation models. Frontiers in

pharmacology 2020, 11 .

(11) Weininger, D. SMILES, a chemical language and information system. 1. Introduction

to methodology and encoding rules. Journal of chemical information and computer

sciences 1988, 28, 31–36.

(12) Pathak, Y.; Laghuvarapu, S.; Mehta, S.; Priyakumar, U. D. Chemically interpretable

graph interaction network for prediction of pharmacokinetic properties of drug-like

molecules. Proceedings of the AAAI Conference on Artificial Intelligence. 2020; pp

873–880.

(13) Segler, M. H.; Kogej, T.; Tyrchan, C.; Waller, M. P. Generating focused molecule

libraries for drug discovery with recurrent neural networks. ACS central science 2018,

4, 120–131.

(14) Gupta, A.; Müller, A. T.; Huisman, B. J.; Fuchs, J. A.; Schneider, P.; Schneider, G.

Generative recurrent networks for de novo drug design. Molecular informatics 2018,

37, 1700111.

(15) Popova, M.; Isayev, O.; Tropsha, A. Deep reinforcement learning for de novo drug

design. Science advances 2018, 4, eaap7885.

(16) Olivecrona, M.; Blaschke, T.; Engkvist, O.; Chen, H. Molecular de-novo design through

deep reinforcement learning. Journal of cheminformatics 2017, 9, 48.

25



(17) Liu, Q.; Allamanis, M.; Brockschmidt, M.; Gaunt, A. Constrained graph variational

autoencoders for molecule design. Advances in neural information processing systems

2018, 31, 7795–7804.

(18) Kusner, M. J.; Paige, B.; Hernández-Lobato, J. M. Grammar variational autoencoder.

arXiv preprint arXiv:1703.01925 2017,

(19) Simonovsky, M.; Komodakis, N. Graphvae: Towards generation of small graphs using

variational autoencoders. International Conference on Artificial Neural Networks. 2018;

pp 412–422.

(20) Jin, W.; Barzilay, R.; Jaakkola, T. Junction tree variational autoencoder for molecular

graph generation. arXiv preprint arXiv:1802.04364 2018,

(21) Lim, J.; Ryu, S.; Kim, J. W.; Kim, W. Y. Molecular generative model based on condi-

tional variational autoencoder for de novo molecular design. Journal of cheminformatics

2018, 10, 1–9.

(22) Kadurin, A.; Nikolenko, S.; Khrabrov, K.; Aliper, A.; Zhavoronkov, A. druGAN: an

advanced generative adversarial autoencoder model for de novo generation of new mo-

lecules with desired molecular properties in silico. Molecular pharmaceutics 2017, 14,

3098–3104.

(23) Putin, E.; Asadulaev, A.; Vanhaelen, Q.; Ivanenkov, Y.; Aladinskaya, A. V.; Aliper, A.;

Zhavoronkov, A. Adversarial threshold neural computer for molecular de novo design.

Molecular pharmaceutics 2018, 15, 4386–4397.

(24) Polykovskiy, D.; Zhebrak, A.; Vetrov, D.; Ivanenkov, Y.; Aladinskiy, V.; Mamoshina, P.;

Bozdaganyan, M.; Aliper, A.; Zhavoronkov, A.; Kadurin, A. Entangled conditional

adversarial autoencoder for de novo drug discovery. Molecular pharmaceutics 2018,

15, 4398–4405.

26



(25) Hong, S. H.; Ryu, S.; Lim, J.; Kim, W. Y. Molecular Generative Model Based on an

Adversarially Regularized Autoencoder. Journal of Chemical Information and Modeling

2019, 60, 29–36.
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