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Graphical Abstract

A light-activated hypoxia-responsive conjugated polymer-based nanocarrier is developed for 

efficiently producing singlet oxygen (1O2) and inducing hypoxia to promote release of its cargoes 

in tumor cells, leading to enhanced antitumor efficacy. This dual-responsive nanocarrier provides 

an innovative design guideline for enhancing traditional photodynamic therapeutic efficacy 

integrated with a controlled drug release modality.
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Photodynamic therapy (PDT), as an important non-invasive therapeutic modality, has been 

clinically approved for cancer treatment.[1] PDT depends on the ability of photosensitizers to 

transfer energy from light to the surrounding molecular oxygen (3O2) to generate cytotoxic 

reactive oxygen species (ROS), especially singlet oxygen (1O2), resulting in the destruction 

of cells and tumor blood vessels.[2] PDT has particular advantages over other conventional 

therapies, in terms of its minimally invasive nature, tolerance of repeated doses, and fast 

healing process.[3] However, the limited water-solubility and tumor selectivity of most 

photosensitizers affect PDT efficacy and may induce the phototoxicity to adjacent normal 

tissues. To further enhance PDT's potency, polymer-photosensitizer conjugates or 

photosensitizer-loaded nanoparticles[4], such as polyplex micelles[5], gold nanoparticles[6], 

upconverting nanoparticles[7], carbon dots[8], and mesoporous silica nanoparticles[9] are 

utilized to optimize the tumor accumulation of therapeutics.

During the conversion of molecular oxygen (3O2) to singlet oxygen (1O2), the continuous 

oxygen consumption[10] and vascular shutdown effects[11] facilitate generation of hypoxic 

condition. In light of this, integration of a PDT system with a hypoxia-responsive drug 

delivery system could be promising for enhanced anticancer therapy. Herein, we report an 

innovative conjugated polymer-based nanocarrier capable of light-triggered ROS generation 

and subsequently hypoxia-responsive anticancer drug release (Figure 1). This formulation 

(designated DOX/CP-NI NPs) comprises of three components: ROS-generating and 

hypoxia-sensitive 2-nitroimidazole-grafted conjugated polymer (CP-NI), polyvinyl alcohol 

(PVA)-based surface coatings, and encapsulated drug doxorubicin hydrochloride (DOX) 

(Figure 1a). Conjugated polymers, with highly light harvesting and emitting, are being 

actively investigated in sensing, imaging, and medical therapeutics.[12] We synthesized a 

new multifunctional CP with dithiophene-benzotriazole[13] moiety that can be utilized as a 

visible/near-infrared (Vis/NIR) light-activated ROS generation source, and dithiophene-

thienopyrazine[14] moiety as NIR imaging agent. In order to achieve hypoxia-responsive 

transduction, this CP was further grafted with 2-nitroimidazole (NI), a hydrophobic 

component. NI can be converted to hydrophilic 2-aminoimidazoles under a hypoxic 

environment via a single-electron reduction catalyzed by a series of nitroreductases coupled 

to bioreducing agents, such as NADPH, a plentiful coenzyme in tissues.[15] The drug carrier 

based on NI-grafted conjugated polymer (CP-NI) is expected to be bioreduced under 

hypoxic conditions, leading to disassembly of drug carrier.

After intravenous (i.v.) injection, the DOX/CP-NI NPs could be accumulated into the tumor 

sites by the enhanced permeability and retention (EPR) effect[16], and then internalized into 

the cells through endocytosis (Figure 1b). Upon light irradiation, these NPs are able to 

produce 1O2 for disruption of the endo-/lysosomal membrane and induction of cell 

apoptosis.[17] Meanwhile, the dissolved oxygen can be rapidly consumed due to the 

generation of 1O2, which leads to a local hypoxic environment. Therefore, NI groups on the 

CP-NI could be reduced to hydrophilic 2-aminoimidazoles under bioreductive conditions in 
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cells, promoting the dissociation of DOX/CP-NI, and subsequent release of cargo. The 

released DOX could accumulate into the nuclei to induce DNA damage-mediated 

cytotoxicity[18], which combines with the apoptosis effect of PDT for an enhanced 

synergistic antitumor activity.

To substantiate our design, we first synthesized ROS-generating and hypoxia-sensitive CP-

NI by alternating copolymerization of fluorene (a high-efficient blue emitting unit), 

dithiophene-benzotriazole (an excellent sensitizer for the generation of 1O2
[13]), and 

dithiophene-thienopyrazine (a unit to effectively shift emission maximum to NIR 

wavelengths[14])-containing monomers via the Suzuki cross-coupling reaction. Then, the 

branched chains were further modified with NI by the nucleophilic substitution reaction 

(Figure S1). The obtained CP-NI was a hydrophobic polymer, which was utilized to 

encapsulate DOX through a double-emulsion-based solvent evaporation/extraction 

method[19] (Figure 1a). Under a hypoxic condition, the NI group on the branched chains is 

expected to be bioreduced and alter its hydrophobicity, which promotes the disassembly of 

DOX/CP-NI NPs.[20] The transmission electron microscopy (TEM) image of DOX/CP-NI 

NPs clearly revealed its core-shell structure (inset of Figure 2a). The average hydrodynamic 

diameter of the DOX/CP-NI NPs was determined as 118 nm by dynamic light scattering 

(DLS) (Figure 2a), which did not change for at least 7 days (Figure S4a), indicating the 

long-term stability of NPs in the culture media. The DOX loading capacity was measured to 

be 20.8% (wt/wt). The UV/Vis absorption spectrum of DOX/CP-NI NPs in aqueous 

suspension displayed two absorption bands at 500 and 600 nm, respectively (Figure 2b), 

suggesting the NPs had a broad absorption spectrum, and both visible and NIR light were 

able to induce the production of ROS. The maximum emission wavelength of CP-NI was 

740 nm (excitated at 488 nm) (Figure S5a), indicating that the NPs have NIR emission, 

which is suitable for in vivo imaging. Furthermore, there is no significant photobleaching of 

NPs within the 20 min irradiation period and only 13.3% decrease in fluorescence intensity 

under continuous illumination for 60 min (Figure S5b).

Next, the ROS generation induced by CP-NI or DOX/CP-NI NPs upon light irradiation was 

evaluated using 1,3-diphenylisobenzofuran (DPBF), a typical singlet oxygen (1O2) indicator, 

whose absorption is irreversibly quenched by 1O2
[21] The absorption intensity of DPBF in 

CP-NI NPs solution decreased quickly upon the irradiation with visible light (λ=532 nm) 

within 30 s, indicating that 1O2 was efficiently produced by CP-NI. In addition, using longer 

wavelength excitation (λ=635 nm) can also generate 1O2 rapidly (Figure S6). 2’,7’-

Dichlorofluorescin diacetate (DCFH-DA), as a ROS indicator utilized for assessment of 

ROS production, which can be rapidly oxidized by ROS to a green fluorescent molecule 

(dichlorofluorescein, DCF).[22] Upon the irradiation of CP-NI or DOX/CP-NI NP for 6 min, 

a strong fluorescence of DCF was detected at 525 nm, whereas the fluorescence intensity of 

the control groups without the NPs remained at the original level (Figure 2c). Meanwhile, a 

faster ROS production rate was achieved with increase in power density. While adding 

vitamin C (VC, a ROS scavenger), the fluorescence was significantly inhibited, further 

confirming DOX/CP-NI-mediated ROS generation upon light irradiation.

To evaluate DOX/CP-NI NPs-mediated hypoxia generation in vitro, the NPs were incubated 

with PBS buffer containing NADPH, cytochrome c reductase, and DPBF (as 1O2 
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scavenger).[15b] The oxygen consumption, caused by the conversion of oxygen to ROS 

induced by CP-NI NPs with light irradiation, was measured using an oxygen-sensitive 

phosphorescent molecular probe[23]. Upon light irradiation, the samples of CP-NI or 

DOX/CP-NI NPs had a lower oxygen concentration compared with the other control 

samples. Of note, a faster oxygen consumption rate was achieved with increase in power 

density (Figure 2d). In this light-triggered hypoxic environment, the nitro groups on the 

side-chains of CP-NI were effectively reduced by electrons from NADPH catalyzed by the 

reductase, resulting in accelerating dissociation of DOX/CP-NI NPs. The corresponding 

evolution of morphology and size changes were clearly observed through TEM imaging and 

DLS (Figure 2e, 2f, and S4b). The NPs remarkably swelled after 5 min irradiation, and 

totally disassembled after 24h.

To evaluate the light-triggered release behavior of DOX from DOX/CP-NI NPs, the NPs 

were irradiated with light at a power density of 0.1 W cm−2 for 20 min before monitoring 

DOX release. After 48h, approximately 60 % of DOX was released at pH 7.4 due to the 

dissociation of the NPs, whereas only a small amount of DOX was released from the NPs in 

PBS solution without irradiation (Figure 2g). To validate if the DOX release speed directly 

corresponds to the reduction of NI groups in a low oxygen level rather than decreased pH 

level, the DOX release kinetics at pH 5.4 solution were investigated. The results showed that 

there was insignificant DOX release from the NPs incubated at pH 5.4 without light 

irradiation, confirming the NPs were stable under an acidic condition. It is especially worth 

noting that a higher cumulative DOX release at pH 5.4 was achieved compared to that at pH 

7.4 after irradiation with light, suggesting these NPs may potentially have better 

performance in the acidic endosomal environment[24]. Moreover, the DOX release profile of 

DOX/CP-NI NPs presented a pulsatile pattern when they were alternatively exposed to light 

and kept in dark every 20 min for several cycles (Figure 2h). Collectively, it was 

demonstrated that the disassembly of DOX/CP-NI NPs underwent a light-activated and 

hypoxia-dependent process.

To clarify CP-NI NPs-mediated ROS generation and the induced local hypoxic environment 

in tumor cells, the CP-NI NPs-loaded human cervical cancer (HeLa) cells were detected 

using ROS/hypoxia detection probes with or without light treatments, respectively. ROS-

induced and hypoxia-induced samples were used as the positive controls, and the untreated 

sample as a negative control. As shown in Figure 3a, the stronger fluorescence of the ROS 

production (green color) and hypoxia generation (magenta color) upon irradiation were 

observed by the confocal laser scanning microscopy (CLSM), indicating a high level of ROS 

production and a light-induced hypoxic environment inside cells. Furthermore, the CP-NI 

NPs-mediated ROS generation and oxygen consumption were quantitatively measured by 

the flow cytometry assays (Figure 3b). Under irradiation, the rates of ROS production and 

oxygen consumption of DOX/CP-NI-treated cells were 68.3% and 41.2%, respectively.

We next investigated the release of DOX in the cells triggered by light-induced hypoxic 

environment. HeLa cells were incubated with DOX/CP-NI NPs for 2 h in dark and then 

irradiated with light at a power density of 0.1 W cm−2 for 20 min. Afterwards, the cells were 

incubated with fresh culture medium for an additional 2 or 4h, followed by the observation 

via CLSM. DOX fluorescence was observed intracellularly during the first 2h of the cellular 
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uptake of DOX/CP-NI NPs (Figure S7 and Figure 4a). Notably, DOX/CP-NI NPs presented 

a concomitant increase of DOX fluorescence intensity in the nuclei with an additional 2 h 

and 4 h incubation. The broader red fluorescence and less green fluorescence suggested the 

effective endo-/lysosomal escape of DOX/CP-NI NPs due to the light-triggered ROS 

generation and subsequent damage of the endo-/lysosomal membrane.[17] Meanwhile, 

oxygen was rapidly consumed to produce a local hypoxic condition, which resulted in the 

dissociation of DOX/CP-NI NPs and subsequent release of the DOX that specifically 

accumulated into the nuclei, as evidenced by the magenta fluorescent signals. To further 

demonstrate DOX/CP-NI NPs-mediated hypoxia-responsive DOX release, HeLa cells were 

incubated with DOX/CP-NI NPs in dark or in the presence of VC for inhibiting the ROS 

generation. As shown in Figure 4a, the cells incubated both in dark and with VC showed 

insignificant DOX fluorescent signals in the nuclei, and most of the DOX/CP-NI NPs were 

located in the endosomes. Collectively, these results substantiated that the light-activated 

hypoxic condition could promote the release of DOX in the cells.

Furthermore, the Annexin V-FITC/PI apoptosis detection assay[25] was performed to 

compare the apoptosis-inducing capabilities of DOX/CP-NI NPs before and after irradiation. 

The early and late apoptosis of HeLa cells were monitored by CLSM (Figure S8). After 

irradiation with light, DOX/CP-NI NPs-treated HeLa cells displayed a stronger fluorescence 

with apoptotic characteristics. In addition, the quantitative results by flow cytometry verified 

the optimal synergistic apoptotic efficacy of DOX/CP-NI NPs-mediated PDT and hypoxia-

responsive DOX release (Figure 4b). DOX/CP-NI NPs showed the highest total apoptotic 

ratio of 58.0% (a sum of the early apoptotic ratio of 32.1% and the late apoptotic ratio of 

25.9%) and the lowest viability of 35.6% compared with other samples.

The in vitro cytotoxicity of DOX/CP-NI NPs against HeLa cells was evaluated by using 3-

(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay[26]. DOX/CP-NI 

NPs irradiated with 532 nm light (0.1 W cm−2, 20 min) exhibited significantly enhanced 

cytotoxicity compared with the groups with CP-NI NPs in dark, DOX/CP-NI NPs in dark, 

CP-NI NPs in light, and DOX/CP-NI NPs in light at all studied DOX or CP-NI 

concentrations (Figure S9). Notably, the cytotoxicity increased along with the concentration 

of DOX with a half lethal dose (IC50) of 1.6 μg mL−1 at incubation time of 24 h. Moreover, 

treatment with only light or CP-NI NPs and DOX/CP-NI NPs without light did not result in 

a significant decrease in the cell viability (Figure 4c), indicating the negligible toxicity of 

both types of the NPs to HeLa cells. In contrast, CP-NI NPs under irradiation showed 

significant cytotoxicity to the cancer cells, which can be attributed to the production of ROS 

in the cells. In addition, incubation of the cells with DOX/CP-NI NPs at the same irradiation 

condition led to higher cytotoxicity than that of the cells treated with free DOX, indicating 

an enhanced potency could be achieved using a combination of photodynamic therapy and 

stimuli-responsive chemotherapy.

To explore the in vivo NIR imaging capability of the CP-NI, DOX/CP-NI NPs were 

administrated intravenously into the HeLa tumor-bearing mice via tail vein. The blood 

circulation profile of DOX/CP-NI NPs (Figure S10) gave half-life (T1/2) of 4.0 h, which 

indicating a long persistence of the NPs in bloodstream, which could be attributed to the 

presence of PVA shell[27]. And as shown in Figure 5a, a strong fluorescence signal of CP-NI 
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was detected at the tumor site 6 h post-injection. As time extended, a higher CP-NI signal in 

tumor than in the normal tissues after administration for 24h, suggesting that the DOX/CP-

NI NPs could be accumulated into the tumor sites. Upon light irradiation (maximum 

excitation wavelength: 532 nm, 0.28 W cm−2) for 5 min, a decreased fluorescence intensity 

was found at the tumor site at 48 h post administration, and followed the tumor and normal 

tissues were harvested for ex vivo imaging. The relative fluorescence signal biodistribution 

of DOX/CP-NI NPs can be found at the tumor and other normal organs (Figure 5b). The 

results were confirmed by the quantitative region-of-interest (ROI) analysis (Figure 5c). The 

fluorescence intensity biodistribution percentage of CP-NI was 2.8%, 34.7%, 2.7%, 27.8%,

11.7% and 20.3% of at heart, liver, spleen, lung, kidney, and tumor tissue, respectively. 

These results indicated that CP-NI has potential to be exploited as an efficient drug-delivery 

system for imaging-guided therapeutics[28].

To assess the in vivo efficacy of DOX/CP-NI NPs for antitumor treatment, the HeLa tumor-

bearing mice were exposed to treatment with different samples, including the saline, light, 

DOX/CP-NI NPs, CP-NI NPs with light, or DOX/CP-NI NPs with light. As shown in 

Figure 5d and 5e, the growth of the tumor was completely inhibited in the group associated 

with the light-activated hypoxia-triggered DOX release, compared with those of the saline, 

light-only or DOX/CP-NI NPs-only groups. The tumor treated with CP-NI NPs upon 

irradiation also showed a moderate tumor inhibition capability than those of control groups 

due to generation of ROS by CP-NI NPs with irradiation. However, it is notable that 

DOX/CP-NI NPs with light irradiation brought about the strongest effect on suppressing the 

tumor growth, which validated that hypoxia-responsive DOX release of DOX/CP-NI NPs 

activated by light enabled the reinforcement on the anticancer efficacy. The body weight of 

mice treated with different samples shown no noticeable change during the treatment (Figure 

S11). The hematoxylin and eosin (HE) and the terminal deoxynucleotidyl transferase dUTP 

nick end labeling (TUNEL) staining assays were also performed to evaluate the treatment 

efficacy with different treatments, respectively (Figure 5f). The images of HE-stained tumor 

tissue presented prominent necrosis of tumor cells treated by DOX/CP-NI NPs with light. 

The images obtained from the TUNEL staining showed the highest level of cell apoptosis in 

the tumor tissue of the mice receiving DOX/CP-NI NPs with light. Furthermore, no obvious 

pathological abnormalities were observed in normal organs (Figure S12). Additionally, 

considering the efficient penetration depth of the irradiation, a 635 nm laser was also 

employed to activate the DOX/CP-NI NPs for in vivo antitumor treatment (Figure S13), and 

the results also exhibited highly efficient antitumor potency.

In conclusion, we reported a novel drug delivery platform, for the first time, utilizing light-

activated hypoxia-responsive modality, which combines both photodynamic therapy and 

chemotherapy for enhanced treatment efficacy. Such conjugated polymer-based delivery 

system is able to efficiently produce ROS and induce hypoxia to promote release of its 

cargoes inside cells both in vitro and in vivo. This strategy provides an innovative design 

guideline for stimuli-responsive drug delivery systems[29], which can undergo a series of 

programmed multiple triggers: the effect of one primary trigger activates the other trigger(s) 

for achieving synergistic treatment efficacy[30].
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Figure 1. 
Schematic of the light-activated hypoxia-responsive drug delivery system. a) Formation and 

mechanism of DOX/CP-NI NPs. b) Schematic of DOX/CP-NI NPs for ROS generation and 

induced a local hypoxic environment capable of hypoxia-responsive release DOX into cell 

nuclei for enhanced synergistic anticancer efficacy.
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Figure 2. 
Characterization and in vitro light-activated hypoxia-responsive DOX release of DOX/CP-

NI NPs. a) Hydrodynamic size distribution and TEM image (inset) of DOX/CP-NI NPs. 

Scale bar is 50 nm. b) Normalized UV/Vis absorption spectra of DOX, CP-NI NPs, and 

DOX/CP-NI NPs. c) Fluorescence intensity of DCF at 525 nm in PBS, with DOX in PBS, 

with DOX/CP-NI NPs in PBS, and with CP-NI NPs in PBS after irradiation with light for 

different time. VC was the ROS scavenger. d) Phosphorescence (PS) lifetime profile over 

exposure time in PBS, with DOX in PBS, with CP-NI NPs in PBS, and with DOX/CP-NI 

NPs in PBS containing an oxygen concentration molecule probe. DPBF as the 1O2 

scavenger. e) TEM images of DOX/CP-NI NPs for different time after 5 min light 

irradiation. Scale bars are 200 nm. f) Size distribution of DOX/CP-NI NPs at 24h after 5 min 

light irradiation treatment. g) In vitro release of DOX from DOX/CP-NI NPs in PBS in dark 

or in light and with different pH at 37 °C. h) Pulsatile release profile of DOX/CP-NI NPs at 

different pH presents the rate of DOX release both in dark and in light. Error bars indicate 

SD (n = 3).
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Figure 3. 
CP-NI NPs-mediated generation of ROS and hypoxic environment in HeLa cells. a) 

Confocal fluorescence images of HeLa cells with ROS/hypoxia detection probes in different 

treatments: untreated, CP-NI NPs without light, CP-NI NPs with light, and positive control 

groups (ROS-induced and hypoxia-induced), respectively. Scale bar is 50 μm. b) Flow 

cytometry analysis of ROS production and hypoxia environment in HeLa cells with different 

treatments.
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Figure 4. 
Intracellular DOX/CP-NI NPs-mediated hypoxia-triggered DOX release. a) Intracellular 

delivery of DOX/CP-NI NPs on HeLa cells treated with different formulations observed by 

CLSM, including without light, with light, and with the ROS scavenger VC. The endosomes 

and lysosomes were stained by LysoTracker Green, and the nuclei were stained by Hoechst 

33342. Merged (DOX/ LysoTracker/ Hoechst). Scale bar is 20 μm. b) Flow cytometry 

analysis of HeLa cell apoptosis induced by different formulations for 12 h using the Annexin 

V-FITC/PI staining. c) In vitro cytotoxicity of HeLa cells incubated for 24 h with free DOX, 

and CP-NI NPs and DOX/CP-NI NPs without or with irradiation (5 or 20 min). Control 

sample was without any treatment. Error bars indicate SD (n = 3).
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Figure 5. 
In vivo fluorescence imaging and antitumor efficacy of DOX/CP-NI NPs. a) In vivo 

fluorescence images of the HeLa tumor-bearing nude mice at 6, 12, 24, and 48 h after 

intravenous injection of DOX/CP-NI NPs. Arrows indicate the sites of tumors. b) Ex vivo 

fluorescence imaging of the normal organs and tumor collected from the mice at 48 h after 

administration (1: heart, 2: liver, 3: spleen, 4: lung, 5: kidney, 6: tumor). c) The quantitative 

region-of-interest (ROI) analysis of fluorescent signals of the tumor and normal organs. 

Error bars indicate SD (n = 3). d) The HeLa tumor growth curves upon different treatments 

(2.0 mg kg−1 DOX, 3.6 mg kg −1 CP-NI). *P < 0.05, **P < 0.01 (two-tailed Student's t-test). 

Error bars indicate SD (n = 5). e) Representative images of the HeLa tumors after treatment 

with different samples at day 12 (from top to bottom, 1: saline, 2: light, 3: CP-NI NPs, 4: 

CP-NI NPs with light, 5: DOX/CP-NI NPs with light). f) Histological observation of the 
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tumor tissues stained with H&E after treatment with different samples, and detection of 

apoptosis in the tumor tissues after treatment with the TUNEL staining assay. Scale bars are 

100 μm.
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