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Abstract

Light is important for plants as an energy source and a developmental signal, but it

can also cause stress to plants and modulates responses to stress. Excess and fluctu-

ating light result in photoinhibition and reactive oxygen species (ROS) accumulation

around photosystems II and I, respectively. Ultraviolet light causes photodamage to

DNA and a prolongation of the light period initiates the photoperiod stress syn-

drome. Changes in light quality and quantity, as well as in light duration are also key

factors impacting the outcome of diverse abiotic and biotic stresses. Short day or

shady environments enhance thermotolerance and increase cold acclimation. Simi-

larly, shade conditions improve drought stress tolerance in plants. Additionally, the

light environment affects the plants' responses to biotic intruders, such as pathogens

or insect herbivores, often reducing growth-defence trade-offs. Understanding how

plants use light information to modulate stress responses will support breeding strat-

egies to enhance crop stress resilience. This review summarizes the effect of light as

a stressor and the impact of the light environment on abiotic and biotic stress

responses. There is a special focus on the role of the different light receptors and the

crosstalk between light signalling and stress response pathways.
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1 | INTRODUCTION

Sunlight provides plants with energy for photosynthesis and delivers

information about the time of the day and the season. Light intensity

and quality change constantly due to weather conditions (e.g., sunny

or cloudy skies) and due to the sun's inclination causing seasonal

shifts (e.g., spring with canopy closure) (Casal, 2013). Therefore, per-

ception of light quality and quantity and adequate responses are

essential for the plants' survival — not only during adverse light envi-

ronments, but also to respond appropriately to other abiotic and

biotic stress responses. Furthermore, due to climate change, plants

are more often confronted with adverse environmental conditions

which results in decreased plant fitness and may consequently lead

to a reduction of food and feed production for crop plants. An

increasing number of studies report on the plants' use of light infor-

mation to influence the outcome of diverse abiotic and biotic

stresses. Knowledge about the crosstalk between light signalling and

defence mechanisms might support the development of crops that

optimally use the light information and are more stress resistant in

times of global warming.
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Plants possess two different systems to perceive environmental

light information, photoreceptors and chloroplasts. Both systems are

involved in regulating plant stress responses and will be briefly intro-

duced in the following paragraphs. However, this review will mainly

focus on the photoreceptors. Readers may refer to Fernandez and

Strnad (2008); Crawford, Lehotai, and Strand (2018) and Zhang,

Zhang, Li, and Lu (2020) for a broader description of the role of plas-

tids in responses to stress.

Different parts of the solar light spectrum are sensed by specific

photoreceptors (for review, see Paik & Huq, 2019). In Arabidopsis

thaliana, red/far-red light is perceived by phytochromes (phyA to

phyE), blue light by cryptochromes (CRY1, CRY2 and CRY3),

phototropins (PHOT1, PHOT2) and F-box containing flavin-binding

proteins (ZEITLUPE, FKF1/LKP2), and UV-B light by the UVR8 recep-

tor. An overview of the most important photoreceptors and their sig-

nalling cascades in Arabidopsis is given in Figure 1.

Phytochromes predominantly absorb red and far-red light

(Figure 1). Their photosensory activity is the result of a light-induced,

reversible switching between the inactive red light-absorbing (Pr)-

form and the active far-red light-absorbing (Pfr)-form. Photo-activated

phytochromes repress the activity of SUPPRESSOR OF PHYA1/CON-

STITUTIVE PHOTOMORPHOGENIC1 (SPA1/COP1), an E3 ubiquitin

ligase. SPA1/COP1 degrades the ELONGATED HYPOCOTYL5 (HY5)

transcription factor essential for the light-dependent transcriptional

regulation of plant responses (Liu et al., 2015; Shin et al., 2013). Active

phytochromes mediate the degradation of PHYTOCHROME INTER-

ACTING FACTORS (PIFs) which repress photomorphogenesis (Li, Li,

Wang, & Deng, 2011). Phytochromes are involved in shade avoidance,

the regulation of seed germination, photomorphogenesis, flowering

time, the circadian clock and gravitropism (Casal, 2013; Correll

et al., 2003; Franklin & Whitelam, 2007b; Lin, 2000; Nagy &

Schäfer, 2002; Pierik & de Wit, 2014; Somers, Devlin, & Kay, 1998).

Blue/UV-A light is perceived by cryptochromes (Figure 1) which

contain a flavin adenine dinucleotide (FAD) as chromophore (reviewed

in Wang & Lin, 2020). The cryptochromes are activated through inter-

conversion of flavin redox states (Bouly et al., 2007) caused by photoex-

citation (Liu, Liu, Zhao, Pepper, & Lin, 2011) resulting in the production

of small amounts of reactive oxygen species (ROS) in the nucleus (El-

Esawi et al., 2017). Two different ways of CRY-mediated signal trans-

duction have been discovered (reviewed in Wang & Lin, 2020): the

cryptochrome-interacting basic helix–loop–helix1 (CIB1)-dependent

CRY2 regulation of transcription (Liu et al., 2008) and the SPA1/

COP1-dependent proteolysis (Liang et al., 2018). Both pathways depend

on direct interaction between CRYs and these signalling components to

modulate gene expression or protein stability (Liu et al., 2011). Recently,

it was found that blue light inhibitors of cryptochromes 1 (BIC1) and

BIC2 inhibit cryptochrome function by blocking blue light-dependent

cryptochrome dimerization (Wang et al., 2017). CRY1 and CRY2 medi-

ate several responses such as the inhibition of hypocotyl elongation

(Ahmad & Cashmore, 1993), root growth (Canamero et al., 2006), the

regulation of the circadian clock (e.g., Devlin & Kay, 2000; Somers

et al., 1998), flowering time (Guo, Yang, Mockler, & Lin, 1998), and sto-

matal development (Kang, Lian, Wang, Huang, & Yang, 2009).

Phototropins (PHOT) also absorb blue light (Gallagher, Short, Ray,

Pratt, & Briggs, 1988) (Figure 1). They contain two photosensory light

oxygen voltage (LOV) domains (Christie, Salomon, Nozue, Wada, &

Briggs, 1999; Taylor & Zhulin, 1999) which function as a blue light

sensor that is autophosphorylated upon blue light photoexcitation.

This activates the C-terminal kinase domain, regulating in turn other

proteins. PHOT1 and PHOT2 have partially overlapping functions

such as phototropism, stomatal opening, chloroplast accumulation,

and cotyledon and leaf expansion. In addition, PHOT1 is involved in

regulating hypocotyl elongation and PHOT2 mediates chloroplast

avoidance movement (Christie, 2007).

The ZEITLUPE (ZTL) family belongs to the LOV domain photore-

ceptors and includes ZTL, flavin-binding Kelch repeat F-BOX1 (FKF1)

F IGURE 1 Simplified scheme of the major light signalling

pathways involved in responses to biotic and abiotic stresses. In

plants, the UVR8 photoreceptor exists as a dimer and upon UV-B

absorption, active UVR8 monomers interact with SUPPRESSOR OF

PHYA1/CONSTITUTIVE PHOTOMORPHOGENIC1 (SPA1/COP1), an

E3 ubiquitin ligase complex which degrades the ELONGATED

HYPOCOTYL5 (HY5) transcription factor. The association of UVR8

and COP1 is disrupted by REPRESSOR of UV-B

PHOTOMORPHOGENESIS1 (RUP1) and RUP2 which induce re-

dimerization. UVR8 can also directly bind to transcription factors

regulating light or stress acclimation responses. Cryptochromes (CRY)

represent blue-light-activated receptors. There are two different CRY-

mediated signal transduction pathways: the cryptochrome-interacting

basic helix–loop-helix1 (CIB1)-dependent regulation of transcription

and the SPA1/COP1-dependent proteolysis. Both pathways depend

on direct interaction between CRYs and their signalling components

to modulate gene expression or protein stability in response to blue

light. Blue light inhibitors of cryptochromes 1 and 2 (BIC1 and BIC2)

inhibit cryptochrome signalling by blocking blue light-dependent

cryptochrome dimerization. The photosensory activity of

phytochromes (Phy) is the result of a light-induced, reversible

switching between the inactive red light-absorbing Pr-form and the

active far-red light-absorbing Pfr-form. Photo-activated

phytochromes repress the activity of SPA1/COP1 releasing the

degradation of HY5. Active phytochromes also mediate the

degradation of PHYTOCHROME INTERACTING FACTORs (PIFs)

which repress light responses. Abbreviations: B, blue light; UV-B,

ultraviolet light, R, red light; FR, far-red light
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and LOV Kelch protein2 (LKP2) (Ito, Song, & Imaizumi, 2012; Takase

et al., 2011). They have overlapping roles in controlling stability of cir-

cadian clock components and in photoperiod control of flowering

(Christie, Blackwood, Petersen, & Sullivan, 2015; Song et al., 2014).

The photoreceptor UV resistance LOCUS8 (UVR8) exists as a

dimer and upon UV-B absorption, active UVR8 monomers interact

with COP1 thus preventing the degradation of HY5 (Kliebenstein,

Lim, Landry, & Last, 2002; Rizzini et al., 2011) (Figure 1). The associa-

tion of UVR8 and COP1 is disrupted by REPRESSOR of UV-B PHO-

TOMORPHOGENESIS1 (RUP1) and RUP2 which induce re-

dimerization (Heijde & Ulm, 2013) thereby preventing

UVR8-signalling. In addition to the UVR8/COP1/HY5 pathway, UVR8

can also directly bind to transcription factors, repressing

brassinosteroid-promoted plant growth (Liang et al., 2018) and auxin-

induced root branching (Yang et al., 2020).

Beside photoreceptors, chloroplasts can perceive light information

via chlorophylls present in the light harvesting complexes in thylakoid

membranes. Plants acclimate to their environment by dynamically

adjusting the portion of light energy used to drive photosynthesis

(Walters, 2005; Waters & Langdale, 2009). Depending on the light avail-

ability, plants modify the structure of the grana and change the relative

ratios of chlorophyll a and b to optimize and protect photosynthesis and

to protect the photosynthetic apparatus (Walters, 2005; Weston,

Thorogoot, Vinti, & Lopez-Juez, 2000) from high light intensities. Chlo-

rophylls act as shade sensors since they absorb very well in the red

region of the light spectrum and not in the far-red region (Holmes &

Smith). Furthermore, chloroplasts sense environmental changes. A com-

plex plastid to nucleus signalling network (retrograde signalling) regu-

lates nuclear gene expression to respond optimally to environmental

stresses. As the role of retrograde signalling is not the main scope of this

review, the reader may refer to Fernandez and Strand (2008) and

Crawford et al. (2018) for more information.

In plant stress research, the regulatory functions of the main light

signalling components have been underestimated for a long time. Dur-

ing the last years, an increasing number of interactions between light

signalling pathways and stress responses have been discovered. For

example, a recent review summarizes the modulation of stress

responses by canopy light (Courbier & Pierik, 2019). Here, we give an

overview on the effects of light as a stressor and the impact of the

light environment (quantity, quality and duration) on biotic and abiotic

stress responses. We especially focus on how the light signalling path-

ways are linked to stress response pathways. However, it should be

noted that there are also stress responses independent of light that

are crucial for plant survival under adverse environmental conditions.

A summary of the key findings concerning the impact of light on abi-

otic and biotic stress responses presented in this review can be found

in the Information Box.

2 | LIGHT AS A STRESSOR

Excess light can be harmful for plants and causes oxidative stress

resulting in photodamage and photoinhibition (Ganguly, Crisp,

Eichten, & Pogson, 2018). Recurrent periods of excess light followed

by lower light intensities (fluctuating light stress) result in strong stress

responses just like the prolongation of the light period (photoperiod

stress) (Nitschke et al., 2016). The ultraviolet

(UV) part of light leads to serious damage of DNA (Hideg, Jan-

sen, & Strid, 2013). In the sections below, we describe the different

mechanisms of plants evolved to cope with light stress with a special

focus on the relevance of light signalling pathways (Figures 2–5).

2.1 | Excess light stress

Light intensity exceeding the energetic demand of photosynthesis

causes damage to the photosynthetic machinery, especially to photo-

system II (PSII), and thus causes photoinhibition (Figure 2). Protein D1,

which is part of the reaction centre of PSII, is one of the main targets

of photoinhibition (Edelman & Mattoo, 2008). The damaged D1 pro-

tein is removed and replaced by de novo synthesized proteins during

the D1 repair cycle (Baena-Gonzalez & Aro, 2002). This process is

highly dependent on the membrane fluidity of the thylakoid mem-

branes (Yamamoto, 2016). When the rate of photodamage exceeds

the D1 repair capacity, photoinhibition takes place.

Plants have developed several mechanisms to avoid photodamage

to PSII (Takahashi & Badger, 2011). In response to direct sunlight,

plants move their leaves (heliotropism) and chloroplasts group at cell

walls parallel to the direction of the light to avoid absorption of exces-

sive sunlight (chloroplast avoidance response). PHOT2, together with

the CHLOROPLAST UNUSUAL POSITIONING1 (CHUP1) protein, are

essential for the chloroplast avoidance response (Oikawa et al., 2003)

(Figure 2). Screening against damaging radiation (UV and visible light)

by phenolic compounds (Agati, Azzarello, Pollastri, & Tattini, 2012)

helps plants to avoid damage to PSII and subsequent D1 protein degra-

dation (Takahashi & Badger, 2011). When these avoidance mechanisms

are insufficient, plants have to deal with the excess light absorbed by

the photosynthetic pigments which generate ROS (Apel & Hirt, 2004)

and result in oxidative stress. ROS trigger a direct inhibition of the D1

repair cycle (Takahashi & Murata, 2008). To avoid oxidative stress,

plants reduce ROS by several ROS scavenging enzymes and antioxi-

dants (Mittler, Vanderauwera, Gollery, & Van Breusegem, 2004). Plants

dissipate excess light absorbed by the light-harvesting complexes as

heat in a process called thermal energy dissipation (qE) which is part of

the non-photochemical quenching mechanisms (NPQ) in plants (Holt,

Fleming, & Niyogi, 2004) and can be activated by the generation of a

pH gradient across the thylakoid membrane.

Excess light stress (Figure 2) leads to specific and dynamic tran-

scriptional changes in gene expression (Li, Gao, Ren, & Tang, 2018). A

recent study identified a core set of high light-responsive genes

(Huang, Zhao, & Chory, 2019). The analysis revealed that plants

respond to high light through regulation of hormones, photosynthesis

and the phenylpropanoid pathway and that both abscisic acid and

PIFs are required for the high light response (Huang et al., 2019).

Moreover, it was shown that blue/UV-A photoreceptors are respon-

sive to high light. The involvement of CRY1, in a chloroplast-
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independent manner, was shown in an earlier study (Kleine, Kindgren,

Benedict, Hendrickson, & Strand, 2007). Genome-wide gene expres-

sion analysis revealed that among the high light-responsive genes

77 are CRY1-dependent, and 25 were HY5-dependent. Both cry1 and

hy5 mutants showed a misregulation of EARLY LIGHT-INDUCIBLE

PROTEIN1 (ELIP1) and ELIP2 whose induction is mediated via CRY1 in

a blue light intensity-dependent manner (Kleine et al., 2007).

Cryptochrome function during high light stress is connected to its

direct interaction with the oxidative stress system. Especially, CRY1

activation is associated with ROS formation and is able to induce cell

death in insect cells (Consentino et al., 2015; Jourdan et al., 2015).

In response to excess light, CRY1 is also involved in the accumula-

tion of anthocyanins through the induction of PRODUCTION OF

ANTHOCYANIN1/2 (PAP1/PAP2; Kleine et al., 2007) in a COP1/

SPA1/HY5-dependent manner (Maier & Hoecker, 2015). Growth of

plants under blue/UV-A light prior to excessive light treatment rev-

ealed that CRYs ameliorate the response to high light stress by pro-

moting the accumulation of soluble phenolic compounds in leaves and

thus improving the photosynthetic efficiency (Brelsford et al., 2019).

A similar role with respect to flavonoid accumulation was also shown

for UV-A and the UVR8 receptors (Brelsford et al., 2019).

2.2 | Stress caused by fluctuating light

During the day, plants are exposed to fluctuations in the light environ-

ment (Figure 3) caused by shade in understory plants, by cloud move-

ment or changes in sun elevation. Under fluctuating light, a fast

switch from light absorption to heat dissipation (see Section 2.1) as in

F IGURE 2 Signalling pathways involved in the crosstalk between

light and the response to excess light stress. Excess light stress results

in photoinhibition and ROS production which are counteracted by the

D1 repair cycle and reactive oxygen species (ROS) scavenging

enzymes. Upon perception of excess light, responsive genes are

induced resulting in the accumulation of anthocyanins and in an

upregulation of genes involved in D1 repair and ROS scavenging. A

specific role for blue light and UV-B, through CRY1 and UVR8 via

COP1/HY5 has been shown to be involved in the regulation of excess

light-responsive genes. Moreover, CRY1 itself, upon light perception,

produces ROS by the interconversion of the flavin redox states

caused by photoexcitation. Chloroplast avoidance movement

mediated through PHOT2 also contributes to enhanced high light

tolerance. For more detailed information about the different

pathways, please refer to Section 2.1. Abbreviations: B, blue light; R,

red light; UV, ultraviolet light [Colour figure can be viewed at

wileyonlinelibrary.com]

F IGURE 3 Signalling pathways involved in the crosstalk between

light and the response to stress caused by fluctuating light.

Fluctuating light results in photosystem (PS) I photoinhibition. To deal

with fluctuating light, plants developed alternative cyclic electron

transport forces (CEF), of which the PROTON GRADIENT

REGULATION5 (PGR5)-dependent CEF has a bigger role then the

NADH-dehydrogenase-like complex-dependent (NDH)- CEF.

Together with the Mehler and water–water cycle, these cyclic

electron transport forces act as alternative electron sinks. All these

mechanisms avoid PSI photoinhibition causing tolerance to fluctuating

light. Only far-red (FR) light is known to ameliorate the energy

dissipation via NPQ in PSII. For more detailed information about the

different pathways, please refer to Section 2.2. Abbreviations: ASC,

ascorbate; MDA, monodehydroascorbate; SOD, superoxide

dismutase; PQ, plastoquinone; PC, plastocyanin; Fd, ferredoxin;

cytb6f, cytochrome b6f; NPQ; non-photochemical quenching [Colour

figure can be viewed at wileyonlinelibrary.com]
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constant high light is not possible due to slow NPQ relaxation

(Kono & Terashima, 2014). Fluctuating light causes PSI photo-

inhibition due to a limitation of the electron flow on the acceptor side

of PSI and an accumulation of ROS (Sonoike, 1996) which damages

the iron–sulphur centres of PSI (Sonoike & Terashima, 1994). Since

damaged PSI is not de novo repaired, PSI photoinhibition has to be

avoided (Kudoh & Sonoike, 2002). Thus, plants developed short- and

long-term acclimation responses (for review, see Kono &

Terashima, 2014).

The short-term mechanisms include alternative electron transport

flows (Figure 3). Among the two known cyclic electron transport flows

around PSI are the NADH-dehydrogenase-like complex-dependent

pathway (Shikanai, 2016) and the PROTON GRADIENT REGULA-

TION5 (PGR5)-mediated pathway (Munekage et al., 2002). The latter

is essential for the protection of PSI by improving the PSI acceptor-

side limitation (Kono, Noguchi, & Terashima, 2014; Kono &

Terashima, 2014, 2016). Similarly, the water–water cycle

(Asada, 1999) and the Mehler ascorbate peroxidase pathway

(Schreiber, Hormann, Asada, & Neubauer, 1995) are crucial in the

response to fluctuating light (Kono et al., 2014). These alternative

electron flows act as electron sinks thereby protecting plants from

photoinhibition. Far-red light increased the photoprotection of PSI

against fluctuating light possibly due to the beneficial effects of far-

red light on photosynthesis thereby accelerating NPQ relaxation and

PSII yield (Kono, Yamori, Suzuki, & Terashima, 2017). In a recent

study, a FLUCTUATING LICHT ACCLIMATION PROTEIN1 (FLAP1)

was identified controlling NPQ formation during fluctuating light (Sato

et al., 2017).

Long-term adjustments in response to fluctuating light have been

recently studied in genome-wide transcriptome profile analysis in Ara-

bidopsis pointing to a global reprogramming of gene expression

(Schneider et al., 2019). Especially genes related to photoprotection,

photosynthesis, photorespiration, pigments, prenylquinone and vita-

min metabolism were differently expressed. Moreover, fluctuating

light acclimation interacts with leaf developmental stage and the time

of the day pointing to a possible role for the circadian clock. The

authors hypothesized that blue light might positively affects fluctuat-

ing light acclimation (Schneider et al., 2019).

2.3 | Photoperiod stress

Changes of the photoperiod, in particular a prolongation of the light

period, induce photoperiod stress (originally circadian stress)

(Nitschke et al., 2016; Nitschke, Cortleven, & Schmülling, 2017)

(Figure 4). Amongst others, the stress phenotype is characterized by

the induction of stress marker genes such as ZAT12 and BAP1 and

F IGURE 5 Signalling pathways involved in the crosstalk between

light and the response to UV stress. To overcome UV stress, plants

induce UV-B-responsive genes, including genes encoding ROS

scavenging enzymes, flavonol biosynthesis enzymes and cyclobutene

pyrimidine dimers (CPD) photolyases. The UV-B-responsive genes are

regulated via UVR8 and CRY1 in a COP1/HY5-dependent manner.

The CPD photolyases can also be induced through phyB and phyA.

UV-C irradiance, perceived by phyA or phyB, results in an inhibition of

programmed cell death (PCD). For more detailed information about

the different pathways, please refer to Section 2.4. Abbreviations: B,

blue light; R, red light; UV, ultraviolet light [Colour figure can be

viewed at wileyonlinelibrary.com]

F IGURE 4 Signalling pathways involved in the crosstalk between

light and the response to photoperiod stress. Photoperiod stress is

caused by a prolongation of the light period resulting in a stress

syndrome characterized by ROS production, jasmonic acid

(JA) accumulation and eventually programmed cell death (PCD). Both

cytokinin (CK) and CCA1/LHY are negative regulators of photoperiod

stress. For more detailed information about the different pathways,

please refer to Section 2.3 [Colour figure can be viewed at

wileyonlinelibrary.com]
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increased oxidative stress during the night following an extended light

period. The next day, a significant reduction of PSII maximum quan-

tum efficiency (Fv/Fm) and eventually programmed cell death in the

leaves ensues. Photoperiod stress induces an oxidative burst-like

response and is associated with increased apoplastic peroxidase and

decreased catalase activities (Abuelsoud, Cortleven, &

Schmülling, 2020). Arabidopsis mutants with a reduced cytokinin con-

tent or signalling are more sensitive to the stress than wild-type plants

indicating a protective function of the hormone, especially of the

root-derived trans-zeatin forms (Frank, Cortleven, Novak, &

Schmülling, 2020; Nitschke et al., 2016). In addition certain mutants

of the circadian clock showed a strong stress response which have a

lowered expression or impaired function of two key regulators of the

circadian clock — CIRCADIAN CLOCK ASSOCIATED1 (CCA1) and

LATE ELONGATED HYPOCOTYL (LHY) — in common (Nitschke

et al., 2016). This indicated that a functional clock is essential to cope

with photoperiod stress. Interestingly, recurrent photoperiod stress

events reduce the stress response to subsequent stresses suggesting

that it is memorized by plants (V.M.R., Sylvia Illgen, T.S. and A.C.,

unpublished result).

Which part of the light signalling pathway or which light quality

has an impact on the strength of the photoperiod stress response is

yet not known. This and the natural conditions under which photope-

riod stress occurs are presently being explored.

2.4 | Stress by ultraviolet light

UV light is part of the solar spectrum and can be divided into three

wavebands: UV-C (200–280 nm), UV-B (280–315 nm) and UV-A

(315–400 nm). While low doses of UV-B radiation are known to cause

non-harmful “eustress,” extreme irradiance causes “distress” and can

result in programmed cell death (Hideg et al., 2013) (Figure 5). UV

light is especially harmful to PSII (Ohnishi et al., 2005; Takahashi

et al., 2010) but also causes photodamage to DNA, production of ROS

and a change in cellular processes like photomorphogenic or wound

responses (Müller-Xing, Xing, & Goodrich, 2014).

DNA damage by UV light includes double strand breaks and the

formation of covalent bonds between adjacent pyrimidines, the so-

called cyclobutene pyrimidine dimers (CPDs) which results in inhibi-

tion of transcription and replication (Britt, 2002). Light-dependent

CPD photolyases repair these dimers restoring the native DNA form

(Britt, 2002). The expression of CPD photolyase genes is controlled

by red light in a phyB-dependent, by UV-A in a phyA-dependent, by

UV-B in an UVR8-dependent, and by blue light in a CRY-dependent

manner (Li et al., 2015) (Figure 5). The UVR8-COP1-HY5 pathway is

the main signalling cascade involved in UV tolerance. CRYs and UVR8

interact to regulate plant growth under UV light (Rai et al., 2019).

Recently, it was shown that cryptochromes, especially CRY1, modu-

late the UVR8 photoreceptor activity contributing to increased UV

tolerance (Tissot & Ulm, 2020). In addition to their role in CPD photo-

lyase gene expression, phyA and phyB act as protectors of UV-C-

triggered cell death in Arabidopsis (Rusaczonek et al., 2015). To cope

with UV damage, plants accumulate UV-protective compounds such

as phenolics in the vacuoles of the leaf epidermis (Emiliani, Grotewold,

Falcone Ferreyra, & Casati, 2013). Among them are phenolic acids,

anthocyanins and flavonols. The flavonoid biosynthesis pathway is

regulated by the production of flavonol glycosides family of transcrip-

tion factors which are induced by UV-B in an UVR8- and

HY5-dependent manner (Brown & Jenkins, 2008; Davey et al., 2012;

Favory et al., 2009). Furthermore, UV irradiance triggers the expres-

sion of genes involved in protection against oxidative stress to reduce

the ROS produced during UV stress. Similarly, transcription factors

and proteases, which play key roles in UV tolerance, are induced by

UV light (Brown et al., 2005; Müller-Xing et al., 2014) (Figure 5).

3 | LIGHT AND TEMPERATURE STRESS

Abrupt drops or boosts of temperature impose dramatic effects on

plant survival. The lowest temperature often coincides with the night

while midday is often the warmest moment of the day. It is therefore

not unexpected that temperature responses are closely linked with

light signals. Light signals reset the circadian clock but also provide

plants with information concerning, for example, seasonal changes or

day length, which enables them to anticipate future temperature con-

ditions (Figures 6 and 7).

3.1 | Light and cold acclimation

Low temperatures slow down metabolic processes in plants and

adversely affect growth (Figure 6). Some plants are able to increase

their tolerance after longer exposure to low non-freezing tempera-

tures, a process called cold acclimation (Guy, Kaplan, Kopka, Selbig, &

Hincha, 2008; Levitt, 1980; Thomashow, 1999). The changes occur-

ring in response to low temperatures resulting in increased freezing

tolerance include transcriptional and posttranscriptional changes that

can be abscisic acid (ABA)-dependent or -independent. The best

understood cold regulatory pathway in Arabidopsis is the C-repeat/

dehydration-responsive element - binding factor (CBF/DREB) signal-

ling cascade. The CBF regulon consists of the stimulation of the cen-

tral regulatory genes, CBF1 to CBF3, after cold temperatures resulting

in the induction of cold-regulated (COR) genes (Pareek, Khurana,

Sharma, & Kumar, 2017; Thomashow, 2010). The induction of CBF

genes is under control of CCA1 and LHY, the central regulators of the

circadian clock, with a peak around ZT (zeitgeber) 4 – 8 and a trough

at ZT16 (Dong, Farre, & Thomashow, 2011; Fowler, Cook, &

Thomashow, 2005). A direct link between the clock and the cold

responses forms PIF7 whose activity is regulated by TOC1 (TIMING

OF CAB EXPRESSION 1) acting together with phyB as a transcriptional

repressor of CBF2 (Kidokoro et al., 2009). Besides this circadian regu-

lation of cold acclimation, light and photoperiod are also crucial

(Maibam et al., 2013).

Light is required for the induction of several genes involved in

cold acclimation, including the CBFs (Kim, Kim, Park, & Kim, 2002;
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Soitamo, Piippo, Allahverdiyeva, Battchikova, & Aro, 2008) (Figure 6).

Light signalling mediated through phyB is important for cold-induced

gene expression in Arabidopsis (Kim et al., 2002), rice (He et al., 2016)

and tomato (Wang et al., 2016). Recently, it was shown that phyB

positively regulates freezing tolerance by direct interaction with CBFs

(Jiang et al., 2020) which additionally interact with PIF3 (Jiang

et al., 2017). The CBF-PIF3-phyB complex prevents PIF3 and phyB

from undergoing light-dependent degradation. The cold-stabilized

phyB promotes the degradation of PIF1, PIF4 and PIF5 resulting in

the expression of the COR genes, thus increasing freezing tolerance in

Arabidopsis (Jiang et al., 2020). In tomato, it was reported that phyA

and phyB function antagonistically to regulate cold acclimation. Far-

red light-induced activation of phyA leads to the induction of ABA sig-

nalling and subsequent jasmonate signalling causing an activation of

the CBF pathway resulting in cold acclimation (Wang et al., 2016). A

similar influence of light quality was shown in Arabidopsis. Low red to

far-red ratio (R:FR) increases CBF gene expression in a circadian-

regulated but ABA-independent manner thereby enabling plants to

confer freezing tolerance at higher temperatures than those required

for cold acclimation (Franklin & Whitelam, 2007a). Using this regula-

tory mechanism, the reduced ambient temperature, shorter days and

increased twilight (during which the R:FR ratio is lower) during

autumn might initiate a certain degree of cold acclimation before the

onset of winter (Franklin & Whitelam, 2007a). A comparable effect of

a lower R:FR ratio on frost tolerance was also found in barley (Ahres,

Gierczik, Boldizsár, Vítámvás, & Galiba, 2020).

In addition, the photoperiod can regulate the CBF regulon (Figure 6).

Lee and Thomashow (2012) showed that short day-grown plants are

more freezing tolerant than long day-grown plants. Under long day con-

ditions, the CBF regulon is repressed by phyB, PIF4 and PIF7 causing a

reduction of freezing tolerance. This repression is relieved by shortening

of the daylength causing an increased expression of the CBF genes pre-

paring plants for upcoming colder temperatures. In addition, geographical

distant accessions of Arabidopsis exhibit differences in freezing tolerance

which can be related to the photoperiod conditions they are geographi-

cally associated to (Alonso-Blanco et al., 2005).

Another key regulator of cold and light is HY5, a bZIP transcrip-

tion factor, which has a prominent role in light signalling (Lau &

Deng, 2010) (Figure 6). In response to low temperatures, HY5 is

responsible for the induction of ca. 10% of all cold-inducible genes in

Arabidopsis through the Z-box containing a low-temperature-

responsive element. Among the HY5-inducible genes are those

involved in anthocyanin biosynthesis protecting plants from high ROS

accumulation (Harvaux & Kloppstech, 2001). HY5 levels are also tran-

scriptionally regulated by low temperature via a CBF- and ABA-

independent pathway and posttranslationally via nuclear exclusion of

COP1 (Catalá, Medina, & Salinas, 2011).

Together, these studies clearly point to a complex crosstalk

between light and the response to cold temperatures. Light provides

information concerning daily or seasonal changes to plants — be it

light quality or quantity — enabling them to get prepared for colder

temperatures by adapting the cold acclimation response but also by

decreasing ROS levels (Figure 6).

3.2 | Light and thermotolerance

High temperatures damage cellular components (Larkindale &

Knight, 2002; Pospisil, 2016), affect membrane fluidity and

F IGURE 6 Crosstalk between light and cold acclimation signalling

pathways. Upon cold temperatures (indicated by the ice crystal), the

circadian clock-regulated CBF genes are induced resulting in cold

acclimation. Upon light perception, HY5 is activated which induces

the expression of anthocyanin biosynthesis and cold-responsive

genes through the Z-box/LTRE thereby also reducing ROS. Changes

in light quality (R:FR) are sensed by phyB which exists in an active

PfrB and an inactive PrB form. Under high R:FR, PfrB represses CBF

gene expression, while low R:FR caused by, for example, increased

twilight during autumn results in cold acclimation by decreasing the

amount of active PfrB. PIF7 which represses CBF gene expression is

under control of TOC1, a central component of the circadian clock,

and under the control of phyB. Under short day conditions (SD), CBF

genes are strongly induced causing cold acclimation. Under warmer

long day conditions (LD), PIF4 and PIF7 which are under the control of

phyB are higher expressed resulting in an inhibition of CBF gene

expression. As days shorten, for example, during autumn, this

repression falls away resulting in cold acclimation. CBF proteins

interact with phyB and PIF3 causing degradation of PIF1, PIF4 and

PIF5 which releases COR genes from PIF repression. For more

information concerning the different pathways, please refer to

Section 3.1. Abbreviations: R, red light; FR, far-red light; LTRE, low

temperature responsive element [Colour figure can be viewed at

wileyonlinelibrary.com]
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permeability (Sangwan, Orvar, Beyerly, Hirt, & Dhindsa, 2002), alter

enzyme activity resulting in metabolic imbalances (Kampinga,

Brunsting, Stege, Burgman, & Konings, 1995), and negatively influence

photosynthesis by impairing PSII electron transport and the D1 repair

cycle (Balfagon et al., 2019; Murata, Takahashi, Nishiyama, &

Allakhverdiev, 2007; Pospisil, 2016). Plants cope with normally lethal

high temperatures after being exposed to lower non-lethal high tem-

peratures in a process called thermotolerance (Larkindale, Hall,

Knight, & Vierling, 2005; Larkindale & Vierling, 2008; Song, Jiang,

Zhao, & Hou, 2012). Essential during thermotolerance is the induction

of heat shock factors (HSFs) activating the expression of protective

chaperones, such as HEAT SHOCK PROTEIN70 (HSP70), preventing

protein denaturation (Mittler, Finka, & Goloubinoff, 2012).

In Arabidopsis, thermotolerance varies diurnally reaching a peak at

noon and a trough at dawn (Han, Park, & Park, 2019a). This regulation

is correlated with the higher expression of HSPs during the light

period (Dickinson et al., 2018). Light gates the magnitude of the

response to high temperature, with the expression of HSPs being

much higher after a temperature shift. This light priming effect on

thermotolerance is caused by light-induced chloroplast-to-nucleus sig-

nalling components such as ROS or the redox state of the plastoqui-

none (PQ) pool (Figure 7). A similar light priming effect, independent

of the above-mentioned one, was also observed by Han et al. (2019a).

They found that light primes the HEAT SHOCK FACTOR A1 (HSFA1)-

mediated thermal induction of ASCORBATE PEROXIDASE2 (APX2)

gene expression under high temperatures in a phyB-dependent, but

PIF-independent manner, resulting in ROS detoxification necessary

for the induction of thermotolerance (Han et al., 2019a; Han, Park, &

Park, 2019b). phyB also acts as a molecular switch to turn on/off sev-

eral heat stress response genes under different light conditions

F IGURE 7 Crosstalk between the light signalling pathway and the signalling pathways involved in thermotolerance and

thermomorphogenesis. High temperature causes the induction of heat shock transcription factors (HSFs) which establish thermotolerance. Under

the influence of light, a chloroplast-to-nucleus signal contributes to the induction of HSFs. Independent of this chloroplast signal, the increase in

HSFA1 upon heat stress causes a phyB-dependent increase in APX2 expression resulting in ROS detoxification. Under shade conditions, phyB-

dependent repression of PIFs is lost thereby affecting FAD expression and fatty acid desaturation causing increased thermotolerance. In

thermomorphogenesis, different photoreceptors are involved. Especially phyB, which is a thermosensor, and PIF4/PIF7 play a central role.

Thermal reversion and low R:FR ratios result in an inactivation of phyB, thereby resolving its inhibitory effect on PIF7 and PIF4. As a

consequence, PIF7 protein levels accumulate under higher temperatures due to increased translation which is additionally enhanced by an RNA

hairpin within its 50untranslated region resulting in increased auxin biosynthesis. This PIF7 RNA hairpin also improves the translation of heat

shock transcription factors thereby increasing thermotolerance. Just like PIF7, PIF4 stimulates the expression of auxin biosynthesis genes to

regulate morphological adaptations like hyponasty or petiole elongation as part of thermomorphogenesis. PIF4 is additionally inhibited by UVR8

and CRY1 as well. phyB also influences ELF3 abundance which blocks PIF4 activity in an evening clock (EC)-independent and -dependent

pathway involving also LUX and ELF4, other components of the EC. Blue light perceived by phototropins results in stomatal opening and

increased leaf cooling. For more information concerning the different pathways, please refer to Sections 3.2 and 3.3. The thermometer indicates

processes which are induced/improved by increased ambient temperatures. Abbreviations: R, red light; FR, far-red light; B, blue light; UV,

ultraviolet light; TFs, transcription factors; HSFA1, HEAT SHOCK FACTOR PROTEINA1, FAD, FATTY ACID DESATURASE [Colour figure can be

viewed at wileyonlinelibrary.com]
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resulting in thermotolerance (Song, Liu, Hu, & Wu, 2017). Low red to

far-red ratios (R:FR) reduce the activity of phyB, thereby increasing

the abundance of PIFs resulting in a higher tolerance to heat (Arico

et al., 2019). In addition, these shade conditions decrease the tran-

script levels of FATTY ACID DESATURASES(FADs) resulting in a shift in

fatty acid composition towards more saturated fatty acids. During

heat stress, the produced ROS promote peroxidation of unsaturated

fatty acids (Anjum, Khan, Sofo, Baier, & Kizek, 2016). By reducing the

targets of oxidative damage, thermotolerance increases (Arico

et al., 2019). An overview of the crosstalk between light and

thermotolerance is given in Figure 7.

3.3 | Light and thermomorphogenesis

Thermomorphogenesis is induced by mild temperature elevation

below the heat stress range and involves morphological changes such

as a faster flowering, hypocotyl and petiole elongation and a reduction

of the stomatal index and leaf hyponasty (Quint et al., 2016; Casal &

Balasubramanian, ). During thermomorphogenesis, phyB was found to

function as a thermosensor and at warmer temperatures, the far-red

light-activated reversion of Pfr is accelerated (Jung et al., 2016; Legris

et al., 2016).

Downstream of phyB, the PIFs, especially PIF4 and PIF7, are key

transcriptional regulators promoting plant responses to elevated tem-

peratures (Figure 7). At higher temperatures, the inhibitory function of

phyB on PIF4 is lost due to the acceleration of the far-red light-

activated reversion of Pfr (Jung et al., 2016; Legris et al., 2016). This

results in a stabilization of PIF4 causing the induction of auxin-

responsive genes such as INDOLE ACETIC ACID-INDUCIBLE19 (IAA19)

resulting in morphological changes including leaf hyponasty and peti-

ole elongation (Jung et al., 2016; Koini et al., 2009). Likewise, CRY1

and UVR8 repress high temperature-induced plant responses through

respectively, direct physical interaction with PIF4 thereby reducing its

transcription (Ma et al., 2016) or by inhibiting PIF4 via a

COP1-dependent manner (Hayes et al., 2017; Yin, 2017). Independent

of the CRY1-PIF4 regulon, blue light perceived by phototropins acti-

vates H+-ATPases and 14-3-3 proteins which results in stomatal

opening causing leaf cooling and so improves thermotolerance

(Kostaki et al., 2020).

PIF4 is also transcriptionally and posttranscriptionally regulated

by ELF3 via two separate pathways (Figure 7). In light, phyB promotes

ELF3 accumulation which binds to PIF4 in an evening complex-

independent manner thus reducing PIF4 activity (Nieto, Lopez-Sal-

meron, Daviere, & Prat, 2015). Under high temperatures, BBX18 and

BBX23 interact with ELF3 and negatively control ELF3 protein accu-

mulation resulting in a release of the ELF3-mediated repression of

PIF4 causing a thermomorphogenesis response (Ding et al., 2018).

Together with ELF4 and LUX, ELF3 forms an evening complex and

this repressive complex binds to the PIF4 promotor early during the

night (Nieto et al., 2015). This action of the evening complex is

temperature-dependent suggesting that it might also act as a thermo-

sensor (Ezer et al., 2017). Recently, ELF4 was identified as a key

modulator of the thermosensitive evening complex activity (Silva

et al., 2020).

In addition to PIF4, also PIF7 is a central player of the-

rmomorphogenesis (Figure 7). Both transcription factors are similarly

important to promote auxin responsiveness and depend on each other

possibly by forming heterodimers (Fiorucci et al., 2019). Recently, it

was shown that PIF7 is necessary for thermomorphogenesis under

cycling temperatures in long day conditions and controls the expression

of the auxin biosynthesis gene YUCCA8 (Chung et al., 2020). Further-

more, the translation of PIF7mRNA is enhanced under warmer temper-

atures by the formation of an RNA hairpin within its 50 untranslated

region resulting in increased protein synthesis. This RNA thermoswitch

was also found to control the translation of HSFA2 which is important

during thermotolerance (Chung et al., 2020). An overview of the

crosstalk between light and thermomorphogenesis is given in Figure 7.

4 | LIGHT AND DROUGHT STRESS

Drought resistance is an important trait to overcome detrimental

effects on plant performance and productivity. Drought activates spe-

cific signalling pathways resulting in physiological and developmental

adaptations to optimize water use (Fahad et al., 2017; Nakashima,

Yamaguchi-Shinozaki, & Shinozaki, 2014). The plant hormone abscisic

acid (ABA) is essential for the response to drought stress, but both

ABA-dependent and -independent signalling cascades are involved in

the transcriptional regulation of target genes to increase the plant's

resistance to drought stress (Joshi et al., 2016; Kim et al., 2012;

Mahmood et al., 2019).

Upon drought, the plant stomata close to reduce water loss via

transpiration upon perception of ABA, whose biosynthesis is pro-

moted under drought stress (Daszkowska-Golec & Szarejko, 2013;

Outlaw, 2003). Besides ABA, stomatal opening is also diurnally regu-

lated and influenced by temperature (Tallman, 2004) and light

(Matthews, Vialet-Chabrand, & Lawson, 2020). Stomatal aperture is

driven by two distinct pathways: the “red” or photosynthetic

response and the guard cell-specific “blue” response involving

phototropins. CRY1 has been shown to work additively to the

phototropins in a COP1-dependent way to regulate stomatal opening

in response to blue light (Mao, Zhang, Sang, Li, & Yang, 2005)

(Figure 8). In response to red light, phyB mediates stomatal opening in

a COP1- or PIF3/PIF4-dependent way (Wang, Lian, Kang, &

Yang, 2010). Although the regulation of stomatal opening is essential

for the drought stress response and is strongly influenced by light,

only few studies have described a mechanism connecting light and

light signalling components to drought tolerance (Figure 8). Over-

expression of DEHYDRATION-RESPONSIVE ELEMENT BINDING 1A

(DREB1A) and OsPIL1, a rice homologue of PIF4, in Arabidopsis

resulted in increased drought tolerance by the activation of cell wall-

regulated genes (Kudo et al., 2017). While Arabidopsis cry1 cry2

mutants are more drought-tolerant than wild type,

CRY1-overexpression plants show excessive water loss which is asso-

ciated with the repressor function of COP1 on stomatal opening (Mao
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et al., 2005). Gonzalez, Ibarra, Piccoli, Botto, and Boccalandro (2012)

revealed that transcription levels of ABA-induced genes are strongly

reduced in phyB mutants after ABA treatment and that phyB mutants

wilt earlier than wild type due to the maintenance of open stomata. It

was concluded that phyB increases drought tolerance in Arabidopsis

by enhancing ABA sensitivity. Previously, it was already shown that

phyB increases stomatal density, the stomatal index and influences

the presence of stomata on both sides of the leaf in high red to far-

red ratios (Boccalandro et al., 2009). This would imply that under

these conditions, plants have a higher water usage; however, in

response to drought, stomata are rapidly closed through an increased

sensitivity to ABA (Gonzalez et al., 2012). Under shade conditions, the

survival of Ghanaian trees is higher than in high light suggesting that

shade enhances plant performance under drought stress conditions

(Amissah, Mohren, Kyereh, & Poorter, 2015). The activity of

osmoprotectants and antioxidants was also increased under shade

conditions suggesting that pre-treatment with shade might help to

overcome the drastic effects of drought in soybeans in dense

cropping systems (Asghar et al., 2020).

5 | LIGHT AND BIOTIC STRESS

Plants are also exposed to numerous biotic environmental factors

such as pathogens or herbivores, affecting their performance. The

responses to these biotic stresses are influenced by light

(Ballaré, 2014). In particular, shade conditions have a strong influence

on plant responses to pathogen and herbivore attacks (Ballaré, 2014;

Fernandez-Milmanda et al., 2020). In the following sections, we will

discuss in more detail the role of light in plant responses to pathogen

and herbivore attack, and to neighbouring plants. An overview of the

mechanisms involved is shown in Figure 9.

5.1 | Light and pathogen attack

Plants possess a multi-layered immune system that enables them to

recognize pathogen attacks and subsequently initiate defence

responses (reviewed in De Wit, 2007). After breaking through the

plant's cell wall, pathogens are confronted with an active plant immu-

nity, consisting of the primary innate immunity and a host-specific,

secondary innate immune response (for review, see Chisholm, Coaker,

Day, & Staskawicz, 2006; Delprato, Krapp, & Carrillo, 2015; Jones &

Dangl, 2006). During the primary innate immune response, pathogen-

associated molecular patterns (PAMPs) are detected by pattern recog-

nition receptors resulting in PAMP-triggered immunity which includes

the activation of several defence responses such as induction of

pathogen-responsive genes, ROS production or alterations in hor-

mone signalling pathways involving salicylic acid and jasmonic acid. In

order to inhibit innate plant immunity, certain pathogens produce

effector proteins that are encoded by avirulence genes (De Wit, 1997,

2007; Shamrai, 2014). The secondary immune response enables plants

to recognize and counteract the pathogen-derived effectors through

resistance proteins encoded by R genes (De Wit, 2007) which results

in effector-triggered immunity in the affected plants (Jones &

Dangl, 2006). PAMP- and effector-triggered immunity lead to equal

plant responses and have similar signalling pathways but these are dif-

ferently used (for review, see Tsuda & Katagiri, 2010). During

effector-triggered immunity, programmed cell death is considered as a

component of the hypersensitive response of plants (Chisholm

et al., 2006) which is affected by intracellular ROS (Torres, 2010). ROS

contribute to the establishment of systemic acquired resistance that

ensures defence in distant plant parts following effector-triggered

immunity (Karpinski, Gabrys, Mateo, Karpinska, & Mullineaux, 2003;

Zhang et al., 2018).

Light is crucial for activating full resistance responses in plant–

pathogen interactions (Ballaré, 2014; Delprato et al., 2015; Roberts &

Paul, 2006; Roden & Ingle, 2009; Trotta, Rahikainen, Konert, Finazzi, &

Kangasjärvi, 2014) (Figure 9). Already in 1970, researchers showed that

the hypersensitive response is dependent on light (Lozano and Sequira,

1970). For instance, light affects local defence responses such as the

accumulation of salicylic acid (SA), salicylic acid glucoside, but also SA-

responsive PATHOGENESIS-RELATED PROTEIN1 1 (PR1). Light can

induce key genes of the phenylpropanoid pathway in Arabidopsis after

F IGURE 8 Signalling pathways involved in the crosstalk between

light and the response to drought stress. Drought stress results in

biosynthesis of abscisic acid (ABA) leading to ABA-dependent gene

regulation causing drought tolerance. In addition, stomata close

preventing water loss via transpiration. Under shade conditions (low

R:FR), ABA biosynthesis is stimulated which results in the induction of

ABA-induced gene expression causing drought tolerance. In addition,

low R:FR increases the sensitivity to ABA resulting in improved

drought tolerance. Besides, phyB regulates stomatal opening in a

COP1- or PIF3/PIF4-dependent way. Blue light perceived by CRY1

and PHOT1/PHOT2 represses the inhibitory function of COP1 on

stomatal opening resulting in closed stomata thereby increasing

drought tolerance. For more information concerning the different

pathways, please refer to Section 4. Abbreviations: R, red light; FR,

far-red light; B, blue light [Colour figure can be viewed at

wileyonlinelibrary.com]
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F IGURE 9 Signalling pathways involved in the crosstalk between light and biotic stress defence. Plant responses to pathogen or herbivore

attack are affected by light. During biotic stress defence, plants perceive and mediate light signals via chloroplasts or photoreceptors. The

chloroplast redox status, especially the redox status of the plastoquinone (PQ) pool, influences the plant defence to pathogens. The functionality

of chloroplasts plays an important role in mediating the plant hypersensitive response. The chloroplast-located calcium-sensing receptor CAS

mediates calcium signals affecting biotic stress defence. In addition, CAS controls the accumulation of salicylic acid (SA). In Arabidopsis plants, SA

levels are regulated by blue light via a CRY2/PHOT2-mediated and by red light via phytochrome-regulated pathways. CRY2 and PHOT2

negatively regulate COP1 which in turn regulates the stability of the R protein HRT (Hypersensitive Response to Turnip Crinkle Virus), thereby

influencing pathogen resistance. The homologous, phytochrome-regulated TFs FHY3 and FAR1 influence SA-induced defence by controlling

HEMB1 expression. The plant SA content influences the protein kinase NPR1 which regulates the transcription of SA-induced defence genes,

such as PR1, representing a marker for systemic acquired resistance (SAR). CRY1 promotes PR1 gene expression. During shade (low R:FR),

phosphorylation of NPR1 is inhibited which affects SA-induced defence. Shade environments attenuate jasmonic acid (JA)-induced defence. The

Arabidopsis sulphotransferase ST2a which is regulated by PIFs and responsible for the formation of HSO4-JA, thereby decreasing levels of active

JA, is upregulated under FR light conditions. The stability of JAZ proteins is enhanced during low R:FR in a phyB-dependent manner leading to

attenuated defence responses. In addition, gibberellin (GA) activity is enhanced during shade resulting in decreased DELLA protein functionality.

DELLAs are negative regulators of the shade avoidance syndrome (SAS) and are involved in preventing interaction of JAZ proteins with its

targets. UV-B light perceived by the UVR8 receptor enhances sinapate production involved in biotic stress defence. For more information

concerning the different pathways, please refer to Section 5. Abbreviations: R, red light; FR, far-red light; B, blue light; UV, ultraviolet light; TFs,

transcription factors [Colour figure can be viewed at wileyonlinelibrary.com]
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inoculation with avirulent Pseudomonas syringae pv. maculicola bacteria

(Psm) (Zeier, Pink, Mueller, & Berger, 2004). Systemic acquired resis-

tance in response to the avirulent bacteria was completely lost when

the primary infection process occurred in the absence of light. Not only

SA biosynthesis, but also SA perception is influenced by light perceived

by phyA and phyB (Genoud, Buchala, Chua, & Metraux, 2002).

Chandra-Shekara et al. (2006) demonstrated that exposure to prolonged

darkness prior to inoculation with the Turnip Crinkle Virus compromised

the development of the hypersensitive response and that the virus can

spread systemically. The absence of light, however, does not influence

the Turnip Crinkle Virus-induced elevation of the SA levels resulting in

systemic acquired resistance signalling to enhance resistance to future

pathogen attacks and a hypersensitive response (Conrath, 2006). These

results indicate that light or a light-derived signal is required together

with the SA-dependent pathway to positively modulate the early resis-

tance to Turnip Crinkle Virus.

Plant immune responses to pathogen attacks are also affected by

the length of the light period. SA, PR1 accumulation and the magnitude

of the hypersensitive response correlated with the length of the light

period and depended not on the circadian clock in Arabidopsis plants

inoculated with the avirulent bacterium Psm ES4326 avrRpm1

(Griebel & Zeier, 2008). However, the involvement of circadian-

regulated stomata closure in the defence was not considered by the

inoculation method (Roden & Ingle, 2009). A comparable effect was also

described in Arabidopsis plants (ecotype Ler-0) infected with Cauliflower

Mosaic Virus. Disease symptoms were stronger in short day-grown

plants than in plants grown under long day conditions, although the

virus replication was even higher in long day-grown Arabidopsis

(Cecchini et al., 2002). On the transcriptional level, the interaction of the

Arabidopsis hexameric promoter element FORCA with its targets is

influenced by the length of the light period (Evrard et al., 2009). Ara-

bidopsis FORCA is especially conserved in the promoters of genes regu-

lated by both pathogens and light, thereby connecting light signalling

and pathogen resistance (Evrard et al., 2009; Roden & Ingle, 2009).

Light intensity also affects plant pathogen resistance (Roden &

Ingle, 2009). Arabidopsis plants are less susceptible to the virulent

Pseudomonas bacteria, when plants were subjected prior to infection

to a high light treatment (Mühlenbock et al., 2008). The improved

resistance in acclimated plants was observed in both leaves treated

with excess light and distant ones. This indicates that excess excita-

tion energy promotes local resistance and systemic acquired resis-

tance to virulent pathogens in Arabidopsis (Mühlenbock et al., 2008).

The authors also showed that excess excitation energy stimulates sev-

eral genes necessary for resistance to pathogens in addition to their

importance in light acclimation (Mühlenbock et al., 2008).

During biotic stress defence, light signals are mediated through

photoreceptors or chloroplasts (Ballaré, 2014; Delprato et al., 2015;

Roden & Ingle, 2009). Especially plant phytochromes and red light

have been connected to light-dependent defence responses

(Figure 9). Nightly red light treatment significantly enhanced the resis-

tance of tomato plants against Pseudomonas syringae pv. tomato (Pst)

DC3000. This effect correlated with increased SA accumulation and

defence-related gene transcription indicating that SA-mediated

signalling pathways are involved in red light-induced resistance to

pathogens (Yang et al., 2015). Two homologous transcription factors

essential for phyA signalling, FAR-RED ELONGATED3 (FHY3) and

FAR-RED IMPAIRED RESPONSE1 (FAR1), negatively impact signalling

and plant immunity by promoting HEMB1 expression essential for

chlorophyll biosynthesis and plant growth (Wang et al., 2016). Ara-

bidopsis phyA and phyB mutants are more susceptible to Pst DC3000

avrRpt2 in light which might be connected to a reduced SA perception

causing a decreased expression of PR1 (Genoud et al., 2002). In con-

trast, the pathogen resistance in Turnip Crinkle Virus-infected Ara-

bidopsis Dijon-17 plants is independent of phyA or phyB (Chandra-

Shekara et al., 2006). Similarly, Griebel and Zeier (2008) showed that

the hypersensitive response in Arabidopsis phyA and phyB mutants fol-

lowing Psm ES4326 avrRpm1 inoculation was similar to the response

observed in wild-type Arabidopsis plants suggesting no functional role

for phytochromes in plant effector-triggered immunity. However,

phytochromes are necessary for systemic acquired resistance, as phyA

phyB double mutants did not improve their resistance in systemic

leaves following a first infection with virulent Psm ES4326 bacteria.

Together these studies indicate that phytochromes mediate plant

resistance to pathogen attacks, but this might be dependent on the

specific plant response to the pathogen and the pathogen itself. Sev-

eral studies suggested that systemic acquired resistance is indepen-

dent of cryptochromes or phototropins (Delprato et al., 2015;

Griebel & Zeier, 2008). In contrast, Wu and Yang (2010 showed that

CRY1 enhances plant resistance in response to Pst DC3000 avrRpt2

in both local and systemic leaves. They also revealed that PR1 expres-

sion decreased in cry1 mutants under continuous light following SA

treatment, while an increase was observed in CRY1-overexpressing

plants under the same conditions. Although the hypersensitive

response occurs independently of CRY1, the authors concluded that

CRY1 positively regulates R protein-mediated resistance to Pst

DC3000 in incompatible plant-pathogen interactions. Moreover,

CRY2 and PHOT2 are, via a COP1-dependent signalling pathway,

required for the stability of an R protein-providing resistance to Tur-

nip Crinkle Virus (Jeong et al., 2010; Jeong, Kachroo, &

Kachroo, 2010). Besides blue and red light, also UV-B enhances plant

resistance to pathogen attacks. It activates SA-associated defence

mechanisms in a jasmonate-deficient Arabidopsis mutant (Escobar-

Bravo et al., 2019) and enhances sinapate production in an

UVR8-dependent manner upon infection with the fungus Botrytis cin-

erea (Demkura & Ballaré, 2012). An overview of the signalling path-

ways involved in the crosstalk between light and biotic stress defence

can be found in Figure 9.

In addition to photoreceptors also chloroplasts are crucial for patho-

gen defence responses (for reviews see Kangasjärvi, Neukermans, Li,

Aro, and Noctor (2012), Trotta et al. (2014), Serrano, Audran, and

Rivas (2016) and Delprato et al. (2015)) (Figure 9). Genoud et al. (2002)

showed that chloroplasts are important for the hypersensitive response

during incompatible plant-pathogen interactions. However, the expres-

sion of PR genes does not require chloroplasts, and SA-induced defence

responses do not rely on chloroplast-mediated production of carbohy-

drates. The chloroplast redox status, in particular alterations in the redox
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status of the plastoquinone (PQ) pool, impacts both, acclimation to

excess light as well as pathogen resistance (Mühlenbock et al., 2008;

Roden & Ingle, 2009). The calcium-sensing receptor CAS which is

located in chloroplast thylakoid membranes and mediates stromal cal-

cium signals is required for PAMP-triggered immunity as well as R gene-

regulated effector-triggered immunity. CAS not only controls SA accu-

mulation but also mediates defence gene expression in response to

PAMPs (Nomura et al., 2012). Chloroplasts themselves can also be tar-

get of pathogen-derived effector proteins (Kangasjärvi et al., 2012). For

instance, the bacterial effector HopI1 secreted by P. syringae pathogens

remodels chloroplast thylakoid structures and inhibits SA increase

(Jelenska et al., 2007). The cysteine protease HopN1 representing

another effector of Pseudomonas bacteria inhibits ROS production in

chloroplasts and negatively affects PSII activity (Rodriguez-Herva

et al., 2012).

5.2 | Light and insect herbivory

As insects feed, they damage plants. Insect herbivores can be detected

by plants through the perception of damage-associated molecular pat-

terns (DAMPs) or herbivore-associated molecular patterns (HAMPs)

which include fatty acid-amino conjugates (Heil, 2009). Fatty acid-amino

conjugates are present in the oral secretion of most lepidopteran larvae

(Yoshinaga et al., 2010). Only few molecular mechanisms connecting

light with herbivore attack are known. Observations have been made

indicating that especially UV-B light has a positive effect on the plant

responses to insect herbivores (Escobar-Bravo, Klinkhamer, &

Leiss, 2017). For example, Caputo, Rutitzky, and Ballare(2006) showed

that UV-B influences the attractiveness of Arabidopsis plants to dia-

mondback moths (Plutella xylostella). They described that the beneficial

effect of UV-B light on the reduction of egg number was compromised

in the jar1 mutant suggesting that jasmonic acid (JA) biosynthesis is

required for the defence response. A similar beneficial effect of UV light

was observed in the defenseless1 tomato mutant, which is deficient in

JA biosynthesis. Here, a strong activation of salicylic acid-associated

defence responses by UV light after thrips infestation was observed

(Escobar-Bravo et al., 2019). UV-B treatment also enhanced the resis-

tance of Arabidopsis to Spodoptera litura herbivores through a JA-

dependent mechanism (Qi et al., 2018). Radhika, Kost, Mithofer, and

Boland (2010) demonstrated that in lima bean (Phaseolus lunatus) the

JA-regulated secretion of extrafloral nectar attracting ants which protect

plants against herbivores depends on light (Kazan & Manners, 2011).

These examples illustrate that a close connection between herbivore

resistance and UV-B signalling acting through jasmonic acid biosynthesis

and signalling pathways exists.

5.3 | Shade and biotic stress responses

Low R:FR ratios are characteristic for shade and environments with

densely standing plants resulting in a partial inactivation of PfrB. This

causes the shade avoidance syndrome which is characterized by leaf

hyponasty, an increase in hypocotyl and internode elongation and

extended petioles to gain as much light as possible (Sessa, Carabelli,

Possenti, Morelli, & Ruberti, 2018; Yang & Li, 2017).

Under shade conditions, plant defence against pathogens and

insects is weakened (Ballaré, 2014; Courbier & Pierik, 2019;

Fernandez-Milmanda et al., 2020; McGuire & Agrawal, 2005). An

overview of the signalling pathways involved in plant immunity under

shade conditions is given in Figure 9. For instance, tobacco plants

(Nicotiana longiflora) exposed to increased reflected far-red light,

which occurs in crowded plant populations, result in an altered

expression of defence-related genes, a decreased accumulation of

herbivore-induced phenolic compounds and an improved perfor-

mance of the specialist herbivore Manduca sexta (Izaguirre, Mazza,

Biondini, Baldwin, & Ballaré, 2006). In addition, Arabidopsis resistance

to Botrytis cinerea and P. syringae decreased after exposure to low red

to far-red (R:FR) mimicking shade conditions (Cerrudo et al., 2012; De

Wit et al., 2013). Consistently, it was found that phyB Arabidopsis

mutants are more susceptible to the fungal pathogen Fusarium

oxysporum than wild-type plants (Kazan & Manners, 2011) and tomato

plants mutated in phyB are less resistant to Spodoptera eridania cater-

pillars or the thrips Caliothrips phaseoli (Izaguirre et al., 2006).

Under low R:FR, salicylic acid (SA)- and jasmonic acid (JA)-

mediated pathogen defence responses are compromised. The

decreased SA-induced resistance in low R:FR is associated with an

inhibition of SA-responsive kinases. Especially NPR1 representing an

important transcriptional regulator positively affecting SA-induced

defence genes is not phosphorylated during low R:FR, thereby

inhibiting transcription of target genes (De Wit et al., 2013) (Figure 9).

Recently, it was shown that far-red light affects JA content directly by

diminishing the level of JA-isoleucine derivates in Arabidopsis sub-

jected to Spodoptera littoralis caterpillars (Fernandez-Milmanda

et al., 2020). The authors identified a sulphotransferase (ST2a), whose

activity is strongly upregulated by far-red light in a phyB/PIF-

dependent manner, to be responsible for the reduction of the active

JA pool and thus causing an attenuation of JA response upon far-red

illumination. Shade conditions also lower plant sensitivity to JA

(Moreno, Tao, Chory, & Ballaré, 2009), resembling the repressive

effect of SA on JA responses on the expression of defence genes such

as ERF1 and PDF1.2 (Kazan & Manners, 2012; Pieterse, Leon-Reyes,

Van der Ent, & Van Wees, 2009; Verhage, van Wees, &

Pieterse, 2010). JA-regulated defence genes are induced by transcrip-

tion factors like MYC2 which is repressed by jasmonate zim domain10

(JAZ10). Under low R:FR, or in phyB mutants, the stability of JAZ10 is

enhanced resulting in weakened defence responses (Ballaré, 2014;

Leone, Keller, Cerrudo, & Ballaré, 2014). In addition, Cerrudo

et al. (2012) revealed that functional JAZ10 is necessary for a reduced

defence of Arabidopsis plants against B. cinerea infection under shade

conditions. In low R:FR, not only JAZ stability is higher, but also gib-

berellin activity is enhanced resulting in a reduction of DELLA func-

tionality. As a consequence, JAZ proteins can interact with MYCs

thereby preventing the transcription of target genes — a process

which is normally prevented by DELLAs (Ballaré, 2014; Hou, Lee, Xia,

Yan, & Yu, 2010; Navarro et al., 2008). This indicates that not only JA
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and SA, but also gibberellin responds to shade and impacts defence

responses in plants (Figure 9).

The emission of volatile organic compounds and extrafloral nectar

is another plant defence against herbivory which is attenuated by

shade conditions. In passionfruit (Passiflora edulis), the extrafloral nec-

tar production triggered by herbivores is strongly repressed upon per-

ception of low R:FR thereby reducing the attractiveness of

passionfruit for herbivore predators (Izaguirre, Lazza, Astigueta, Cia-

rla, & Ballaré, 2013). Furthermore, far-red light negatively affects the

JA-controlled extra floral nectar secretion in lima bean (Phaseolus

lunatus) (Radhika et al., 2010) and attenuates the JA burst and latex

content in common milkweed (Asclepias syriaca) following herbivore

attack of Danaus plexippus caterpillars (Agrawal, Kearney, Hastings, &

Ramsey, 2012). The volatile blend of both non-induced and methyl

jasmonate-induced plants is altered (Kegge et al., 2013) in response to

low R:FR. Inactivation of phyB in tomato resulted in the repression of

direct anti-herbivoral defences. In addition, it altered the pattern of

volatile organic compounds emitted by methyl jasmonate-treated

tomato plants making them more attractive for Macrolophus pygmaeus

which feeds on herbivores of tomato (Cortés, Weldegegris,

Boccalandro, Dicke, & Ballaré, 2016). Thus, the quest for light through

shade-avoidance responses might attract predators to diminish the

disastrous effects of herbivores.

6 | CONCLUSIONS

In this review, we have described that light acts itself as a stressor and

in addition regulates the outcome of numerous other abiotic and

biotic stress responses. Plants have evolved complex crosstalk

between light signalling and the different stress response pathways to

survive and be prepared for future stress events. The increasing num-

ber of experimental work addressing this crosstalk suggests that this

is a growing area of research, which will lead to many more insights in

the role of light during plant responses to abiotic and biotic stresses in

the future. Transfer of this knowledge to crop plants might enable us

to boost plant resilience and immunity by simply adjusting the light

environment in which plants grow.
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