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We present results on the mass of the nucleon and the � using two dynamical degenerate twisted mass

quarks and the tree-level Symanzik improved gauge action. The evaluation is performed at four quark

masses corresponding to a pion mass in the range of about 300–600 MeVon lattices of 2.1–2.7 fm at three

lattice spacings less than 0.1 fm. We check for cutoff effects by evaluating these baryon masses on lattices

of spatial size 2.1 fm at � ¼ 3:9 and � ¼ 4:05 and on a lattice of 2.4 fm at � ¼ 3:8. The values we find are

compatible within our statistical errors. Lattice results are extrapolated to the physical limit using

continuum chiral perturbation theory. Performing a combined fit to our lattice data at � ¼ 3:9 and � ¼
4:05 we find a nucleon mass of 963� 12ðstatÞ � 8ðsystÞ MeV where we used the lattice spacings

determined from the pion decay constant to convert to physical units. The systematic error due to the

chiral extrapolation is estimated by comparing results obtained at Oðp3Þ and Oðp4Þ heavy baryon chiral

perturbation theory. The nucleon mass at the physical point provides an independent determination of the

lattice spacing. Using heavy baryon chiral perturbation theory at Oðp3Þ we find a�¼3:9 ¼ 0:0889�
0:0012ðstatÞ � 0:0014ðsystÞ fm, and a�¼4:05 ¼ 0:0691� 0:0010ðstatÞ � 0:0010ðsystÞ fm, in good agree-

ment with the values determined from the pion decay constant. Using results from our two smaller lattices

spacings at constant r0m� we estimate the continuum limit and check consistency with results from the

coarser lattice. Results at the continuum limit are chirally extrapolated to the physical point. Isospin

violating lattice artifacts in the �-system are found to be compatible with zero for the values of the lattice

spacings used in this work. Performing a combined fit to our lattice data at � ¼ 3:9 and � ¼ 4:05 we find

for the masses of the �þþ;� and �þ;0 1315� 24ðstatÞ MeV and 1329� 30ðstatÞ MeV, respectively. We

confirm that in the continuum limit they are also degenerate.

DOI: 10.1103/PhysRevD.78.014509 PACS numbers: 11.15.Ha, 12.38.�t, 12.38.Aw, 12.38.Gc

I. INTRODUCTION

Twisted mass fermions provide an attractive formulation
of lattice QCD that allows for automatic OðaÞ improve-
ment, infrared regularization of small eigenvalues, and fast
dynamical simulations [1–5]. A particularly attractive fea-
ture is that automatic OðaÞ improvement is obtained by
tuning only one parameter requiring no further improve-
ments on the operator level. A tree-level analysis of cutoff
effects for twisted mass fermions has been presented in
Ref. [6], while a preliminary nonperturbative investigation
on scaling of several observables is carried out in Ref. [7].
Recent simulations with two degenerate flavors of dynami-
cal Wilson twisted mass fermions demonstrate that pion

masses of m� * 300 MeV can be reached using Hybrid
Monte Carlo methods [5,8,9]. The theoretical framework
to include the strange and charm quarks has been laid out
and practical simulations are being investigated [10–12].
Important physical results are emerging using gauge con-
figurations generated with two degenerate twisted quarks:
In the meson sector very precise results on the pion mass
and decay constant led to the determination of the low
energy constants �l3, �l4, F, and B0 [7,13,14] to an accuracy
that had an immediate impact on chiral perturbation theory
(�PT) predictions [15]. Accurate results on the pion form
factor are obtained [16] using the ‘‘one-end-trick’’ method
developed in Refs. [17,18]. The kaon system is studied in a
partially quenched approach by implementing nondegen-
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erate valence twisted mass quarks maintaining automatic
OðaÞ improvement [19–22]. After determining the average
up and down quark mass and the strange quark mass, the
kaon decay constant is extracted [23,24]. In a similar
approach first results on the charm quark mass and decay
constant are obtained [25]. Preliminary results on the first
moment of the pion quark distribution function were re-
ported in Ref. [26].

In this work we present a detailed analysis of results in
the light baryon sector, a subset of which was given in
Ref. [27]. Using two dynamical degenerate twisted mass
quarks we evaluate the mass of the nucleon and � for pion
masses down to about 300 MeV. We use the tree-level
Symanzik improved gauge action [28]. We perform the
calculation using three different lattice spacings corre-
sponding to � ¼ 3:8, � ¼ 3:9, and � ¼ 4:05 to check
cutoff effects, where � � 6=g2 with g being the bare
coupling constant. For each value of � we have configu-
rations at four different values of the bare quark mass
chosen so that the pion masses are in the range of about
300 MeV to 600 MeV. These gauge configurations belong
to the same ensembles as those analyzed for the evaluation
of the pion mass and decay constant. The values of the
lattice spacing extracted from the pion decay constant are
a�¼3:8 ¼ 0:0995ð7Þ fm, a�¼3:9 ¼ 0:0855ð5Þ fm, and

a�¼4:05 ¼ 0:0667ð5Þ fm [13,14] and will be used in this

work. At � ¼ 3:9, for the smallest pion mass, there are
gauge configurations at two different volumes enabling us
to assess finite volume effects.

Chiral perturbation theory has been successfully applied
in the extrapolation of lattice data obtained with twisted
mass fermions in the pion sector yielding an accurate
determination of the relevant low energy constants.
Applying �PT to the baryon sector is more involved and
several variants exist. However, to leading one-loop order,
the result is well established and the quality of our lattice
results allows for extrapolation to the physical point using
this lowest order result. Performing a combined fit to our
lattice data at� ¼ 3:9 and� ¼ 4:05 using the leading one-
loop order result we find a nucleon mass of 963�
12ðstatÞ MeV, where we convert to physical units using
the lattice spacing determined from f�. We would like to
point out that in most other chiral extrapolations of lattice
data the physical point is included in the fits and therefore
such a consistency check cannot be made. The nucleon
mass at the physical point provides an independent deter-
mination of the lattice spacing. We find that the lattice
spacing thus determined is in good agreement with the
value extracted in the pion sector. This is a nontrivial check
of our lattice formulation and of the smallness of the
systematic errors involved. To assess systematic errors
due to the chiral extrapolation we perform chiral fits to
the nucleon and � mass using higher order chiral pertur-
bation theory results, which also include explicitly the �
degree of freedom.

One of the drawbacks of twisted mass fermions is the
Oða2Þ breaking of isospin symmetry, which is only re-
stored in the continuum limit. In the baryon sector we
can study isospin breaking by evaluating the mass differ-
ence between �þþð��Þ and �þð�0Þ. Unlike in the pion
sector, where disconnected contributions enter in the evalu-
ation of the mass of the �0, here there are none. We can
therefore obtain an accurate evaluation of isospin splitting
and its dependence on the lattice spacing. We find no
isospin splitting within our statistical accuracy. This is in
agreement with a theoretical analysis [29,30] that shows
potentially large Oða2Þ flavor breaking effects to appear in
the �0-mass but to be suppressed in other quantities. Like
in the nucleon case, we perform a combined fit to our
lattice data at � ¼ 3:9 and � ¼ 4:05 for the mass of the
�þþ;� and �þ;0 using the lowest one-loop order chiral
perturbation result. We find for the mass of the �þþ;� and
�þ;0 1315� 24ðstatÞ MeV and 1329� 30ðstatÞ MeV, re-
spectively. We confirm that in the continuum limit they are
also degenerate.
This paper is organized as follows: In Sec. II we present

our lattice action and in Sec. III we explain our lattice
techniques. In Sec. IV we discuss lattice artifacts and in
Sec. V we give results on the nucleon and � mass and also
describe the chiral extrapolations. Finally, in Sec. VI we
provide a summary and conclusions.

II. LATTICE ACTION

For the gauge fields we use the tree-level Symanzik
improved gauge action [28], which includes besides the
plaquette termU1�1

x;�;� also rectangular (1� 2) Wilson loops

U1�2
x;�;�

Sg ¼ �

3

X
x

�
b0

X4
�;�¼1
1��<�

f1� ReTrðU1�1
x;�;�Þg

þ b1
X4
�;�¼1
���

f1� ReTrðU1�2
x;�;�Þg

�
(1)

with b1 ¼ �1=12 and the (proper) normalization condi-
tion b0 ¼ 1� 8b1. Note that at b1 ¼ 0 this action becomes
the usual Wilson plaquette gauge action.
The fermionic action for two degenerate flavors of

quarks in twisted mass QCD is given by

SF ¼ a4
X
x

��ðxÞðDW½U� þm0 þ i��5�
3Þ�ðxÞ (2)

with �3 the Pauli matrix acting in the isospin space, � the
bare twisted mass and the massless Wilson-Dirac operator
given by

DW½U� ¼ 1

2
��ðr� þr�

�Þ � ar

2
r�r�

�; (3)

where
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r� ðxÞ ¼ 1

a
½Uy

�ðxÞ ðxþ a�̂Þ �  ðxÞ� and

r�
� ðxÞ ¼ � 1

a
½U�ðx� a�̂Þ ðx� a�̂Þ �  ðxÞ�:

(4)

Maximally twisted Wilson quarks are obtained by setting
the untwisted quark mass m0 to its critical value mcr, while
the twisted quark mass parameter � is kept nonvanishing
in order to work away from the chiral limit. In Eq. (2) the
quark fields � are in the so-called ‘‘twisted basis.’’ The
‘‘physical basis’’ is obtained for maximal twist by the
simple transformation

 ðxÞ ¼ exp

�
i�

4
�5�

3

�
�ðxÞ;

� ðxÞ ¼ ��ðxÞ exp
�
i�

4
�5�

3

�
:

(5)

In terms of the physical fields the action is given by

S F ¼ a4
X
x

� ðxÞ
�
1

2
��½r� þr�

��

� i�5�
3

�
�ar

2
r�r�

� þmcr

�
þ�

�
 ðxÞ: (6)

In this paper, unless otherwise stated, the quark fields will
be understood as ‘‘physical fields,’’  , in particular, when
we define the baryonic interpolating fields.

A crucial advantage of the twisted mass formulation is
the fact that, by tuning the bare untwisted quark massm0 to
its critical valuemcr, all physical observables are automati-
cally OðaÞ improved. In practice, we implement maximal
twist of Wilson quarks by tuning to zero the bare untwisted
current quark mass, commonly called PCAC mass, mPCAC,
which is proportional to m0 �mcr up to OðaÞ corrections.
As detailed in Ref. [31], mPCAC is conveniently evaluated
through

mPCAC ¼ lim
t=a�1

P
x
h@4 ~Ab4ðx; tÞ ~Pbð0Þi

2
P
x
h ~Pbðx; tÞ ~Pbð0Þi ; b ¼ 1; 2; (7)

where ~Ab� ¼ �����5
�b

2 � is the axial vector current and
~Pb ¼ ���5

�b

2 � the pseudoscalar density in the twisted

basis. The large t=a limit is required in order to isolate
the contribution of the lowest-lying charged pseudoscalar
meson state in the correlators of Eq. (7). This way of
determining mPCAC is equivalent to imposing on the lattice

the validity of the axial Ward identity @� ~Ab� ¼ 2mPCAC
~Pb,

b ¼ 1, 2, between the vacuum and the charged zero three-
momentum one-pion state. When m0 is taken such that
mPCAC vanishes, this Ward identity expresses isospin con-
servation, as it becomes clear by rewriting it in the physical
quark basis. The value ofmcr is determined at each � value

at the lowest twisted mass, a procedure that preservesOðaÞ
improvement and keeps Oða2Þ small [31,32].
The twisted mass fermionic action breaks parity and

isospin at finite lattice spacing, as it is apparent from the
form of theWilson term in Eq. (6). In particular, the isospin
breaking in physical observables is a cutoff effect ofOða2Þ
[2]. However the up- and down-propagators satisfy

Guðx; yÞ ¼ �5G
y
d ðy; xÞ�5, which means that two-point cor-

relators are equal with their Hermitian conjugate with u-
and d-quarks interchanged. Using in addition that the
masses are computed from real correlators, it leads to the
following pairs being degenerate: �þ and ��, proton and
neutron, and �þþð�þÞ and ��ð�0Þ. A theoretical analysis
[29] shows that potentially large Oða2Þ effects that appear
in the �0-mass are suppressed in other quantities.
Calculation of the mass of �0, which requires the evalu-
ation of disconnected diagrams, has been carried out con-
firming large Oða2Þ-effects. In the baryon sector we study
isospin breaking by evaluating the mass difference be-
tween �þþð��Þ and �þð�0Þ. Since no disconnected con-
tributions enter, the mass splitting can be evaluated using
fixed source propagators. An accurate evaluation of the
isospin splitting and its dependence on the lattice spacing is
an important component of this work. Examining the size
of isospin breaking is a crucial aspect, in particular, regard-
ing future applications of twisted mass fermions to study
baryon structure. We find that the isospin breaking for the
values of the lattice spacing considered in this work is
consistent with zero within our statistical accuracy.
Taking the continuum limit of our lattice results we con-
firm that �þþ;� and �þ;0 are indeed degenerate leading to
the same mass at the physical point.

III. LATTICE TECHNIQUES

The simulation parameters were chosen such that the
pion mass ranges from about 300–600 MeV. The lattice
volumes and masses used in this calculation are collected
in Table I. Finite size effects are examined using the small-
est pion mass at � ¼ 3:9 as finite volume effects are
largest. At this mass we have simulations on lattices of
spatial size, Ls 	 2:1 fm and Ls 	 2:7 fm.
In order to estimate finite a-effects and the continuum

limit we use two sets of results at � ¼ 3:9 and � ¼ 4:05.
Although a further set of gauge configurations at � ¼ 3:8
is analyzed this set is not used to extrapolate to the con-
tinuum limit. The reason is that the performance of the
HMC algorithm that we use for the simulations deterio-
rates when we go to small � values on this coarser lattice.
The long autocorrelation times of the plaquette and the
PCAC mass that we observe [13] make the tuning to
maximal twist less reliable than for the finer lattices. An
analysis aimed at quantifying the impact of possible nu-
merical errors from the tuning procedure on observables
[7] is still in progress. Therefore the set at � ¼ 3:8 is used
only as a cross-check and to estimate cutoff errors.
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A. Interpolating fields

The masses of the nucleon and the �’s are extracted
from two-point correlators using the standard interpolating
fields, which for the proton, the �þþ and �þ, are given by

Jp ¼ �abcðuTaC�5dbÞuc; J�
�þþ ¼ �abcðuTaC��ubÞuc;

J
�

�þ ¼ 1ffiffiffi
3

p �abc

�
2ðuTaC��dbÞuc þ ðuTaC��ubÞdc

�
; (8)

where C ¼ �4�2.
Local interpolating fields are not optimal for suppressing

excited state contributions. We apply Gaussian smearing to
each quark field, qðx; tÞ [33,34]. The smeared quark field is
given by qsmearðx; tÞ ¼ P

yFðx; y;UðtÞÞqðy; tÞ using the

gauge invariant smearing function

Fðx; y;UðtÞÞ ¼ ð1þ 	HÞnðx; y;UðtÞÞ; (9)

constructed from the hopping matrix understood as a ma-
trix in coordinate, color, and spin space,

Hðx; y;UðtÞÞ ¼ X3
i¼1

ðUiðx; tÞ
x;y�aî

þUy
i ðx� aî; tÞ
x;yþaîÞ: (10)

The parameters 	 and n are varied so that the root mean
square (r.m.s.) radius obtained using the proton interpolat-
ing field is in the range of 0.3–0.4 fm. In Fig. 1 we show
lines of constant r.m.s. radius as we vary 	 and n. The
larger the n the more time consuming is the smearing
procedure. On the other hand, for	 * 1, increasing further
	 does not reduce n significantly. Therefore, we choose a
value of 	 large enough so that the weak 	-dependence
sets in, and we adjust n to obtain the required value of the
r.m.s. radius. We consider two sets for these parameters
giving r.m.s. radius 0.32 fm and 0.41 fm, as shown in Fig. 1.
For each set of parameters we evaluate the effective mass
as

mP
eff ¼ � logðCPðtÞ=CPðt� 1ÞÞ; (11)

where CPðtÞ is the zero-momentum two-point correlator of

the particle P given by

CPðtÞ ¼ 1

2
Trð1� �4Þ

X
xsink

hJPðxsink; tsinkÞ �JPðxsource; tsourceÞi;

t ¼ tsink � tsource: (12)

In Fig. 2, we show the nucleon effective mass, mN
eff in

lattice units for 10 configurations at � ¼ 3:9 and a� ¼
0:0085. For the optimization of the parameters we apply
Gaussian smearing at the sink, whereas for the source we
use local interpolating fields so that no additional inver-
sions are needed when we change 	 and n. As can be seen,
for both sets of smearing parameters, the excited state
contributions are suppressed with the set 	 ¼ 4, n ¼ 50
producing a plateau a couple of time slices earlier. If, in
addition, we apply APE smearing [35] to the spatial links
that enter the hopping matrix in the smearing function, then
gauge noise is reduced resulting in a better identification of
the plateau. Therefore for all computations at � ¼ 3:9 we
use Gaussian smearing with 	 ¼ 4 and n ¼ 50. Having
chosen the smearing parameters, for the results that follow,
we apply smearing at the source and compute the mass

0 1 2 3 4 5
0

20

40

60

80

α

n

FIG. 1 (color online). Lines of constant r.m.s. radius as a
function of the smearing parameters 	 and n. The asterisk
shows the values 	 ¼ 2:9, n ¼ 30 and the cross 	 ¼ 4:0, n ¼
50.

TABLE I. The parameters of our calculation.

� ¼ 4:05, a ¼ 0:0667ð5Þ fm
323 � 64, Ls ¼ 2:1 fm a� 0.0030 0.0060 0.0080 0.0120

m� (GeV) 0.3070(18) 0.4236(18) 0.4884(15) 0.5981(18)

� ¼ 3:9, a ¼ 0:0855ð5Þ fm
243 � 48, Ls ¼ 2:1 fm a� 0.0040 0.0064 0.0085 0.010

m� (GeV) 0.3131(16) 0.3903(9) 0.4470(12) 0.4839(12)

323 � 64, Ls ¼ 2:7 fm a� 0.0040

m� (GeV) 0.3082(55)

� ¼ 3:8, a ¼ 0:0995ð7Þ fm
243 � 48, Ls ¼ 2:4 fm a� 0.0060 0.0080 0.0110 0.0165

m� (GeV) 0.3667(17) 0.4128(16) 0.4799(9) 0.5855(10)
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using both local (LS) and smeared sink (SS). For � ¼ 4:05
we readjust the parameters so that the nucleon r.m.s. radius
is still about 0.4 fm, obtaining 	 ¼ 4 and n ¼ 70. For � ¼
3:8 we use 	 ¼ 4 and 30 to keep the r.m.s. radius at the
same value. Also for these two values of � we apply APE
smearing to the gauge links that are used in Fðx; y;UðtÞÞ.

There are other methods to enhance ground state domi-
nance besides Gaussian smearing. Smearing based on link
fuzzing has been effectively used in the pion sector. In this
work, having optimized our parameters for Gaussian
smearing we use only local and Gaussian-smeared inter-
polating fields.

B. Two-point correlators

The lowest energy state with which the nucleon inter-
polating field given in Eq. (8) has a nonvanishing overlap is
the proton state jpðp; sÞi

h0jJpjpðp; sÞi ¼ Zpuðp; sÞ: (13)

Zp is a constant overlap factor and uðp; sÞ, with s 2
f�1=2;þ1=2g, is a solution of the Dirac equation

ð6p�mNÞu ¼ 0: (14)

Averaging over the nucleon spins and choosing the nucleon
rest frame, we are led to the two-point correlator

C�
N ðtÞ ¼

1

2
Trð1� �4Þ

X
xsink

hJNðxsink; tsinkÞ

� �JNðxsource; tsourceÞi;
t ¼ tsink � tsource: (15)

Space-time reflection symmetries of the action and the
antiperiodic boundary conditions in the temporal direction

for the quark fields imply, for zero three-momentum cor-
relators, that Cþ

N ðtÞ ¼ �C�
N ðT � tÞ. The nucleon mass is

extracted from the exponential decay of the correlator

CNðtÞ ¼ Cþ
N ðtÞ � C�

N ðT � tÞ: (16)

To increase the precision we also average over the proton
and neutron correlators since these are degenerate in mass.
In analogy to Eq. (13), the overlap of the �þ interpolat-

ing field with the �þ state is given by

h0jJ�
�þj�þðp; sÞi ¼ Z�þu�ðp; sÞ: (17)

Every vector component of the Rarita-Schwinger spinor
u� satisfies the Dirac equation

ð6p�m�Þu� ¼ 0; � ¼ 1 . . . 4; (18)

and in addition the auxiliary conditions

p�u
� ¼ 0 and ��u

� ¼ 0 (19)

are fulfilled. The four independent solutions are labeled by
s 2 f�3=2;�1=2; 1=2; 3=2g. The � interpolating fields as
defined in Eq. (8) have overlap also with the heavier
spin-1=2 excitations. These overlaps can be removed
when the conditions in Eq. (19) are enforced on the inter-
polating fields. This can be achieved by the incorporation
of a spin-3=2 projector in the definitions of the interpolat-
ing fields

J
�
3=2 ¼ P

��
3=2J��; (20)

P��3=2 ¼ 
�� � 1

3
���� � 1

3p2
ð6p��p� þ p��� 6pÞ: (21)

Similarly the spin-1=2-interpolating field, J
�
1=2, that has

only overlap with the 1=2 state, is obtained by acting
with the spin-1=2 projector P

��
1=2 ¼ g�� � P

��
3=2 on J

�
� .

Using any of the three interpolating fields, the � masses
are extracted from the two-point functions

C�
� ðtÞ ¼

1

6
Trð1� �4Þ

X
xsink

X3
i¼1

hJi�ðxsink; tsinkÞ

� �Ji�ðxsource; tsourceÞi;
t ¼ tsink � tsource: (22)

Figure 3 compares effective masses extracted from corre-
lation functions with and without the spin-3=2 projection at
� ¼ 3:9. For this comparison we use 90 configurations, a
number sufficient for the purpose of this check. The results
for the effective mass are hardly affected by including the
spin-3=2 projector even at very short time separations. This
is because the overlap of the interpolating field J�� with the

spin-1=2 state is small, a property that holds at all values of
�. This is clearly seen in Fig. 4 at � ¼ 3:8 where the
effective mass obtained using the spin-1=2 projected inter-
polating field J�1=2 is much more noisy than with J�3=2 due to

FIG. 2 (color online). mN
eff versus time separation both in

lattice units. Crosses show results using local sink and source
(LL), circles (asterisks) using Gaussian smearing at the sink (SL)
with 	 ¼ 2:9 and n ¼ 30 (	 ¼ 4 and n ¼ 50), and filled
triangles with 	 ¼ 4 and n ¼ 50 and APE smearing. The
dashed line is the plateau value extracted by fitting results when
APE smearing is used.
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the small overlap with the spin-1=2 state. This behavior is
in agreement with the results of Ref. [36] where the same
spin projections were implemented. Since the impact on
the plateau value is negligible compared to the statistical
uncertainty, we use only the nonprojected interpolating
fields from here on. We average the correlators of �þþ
with �� as well as �þ with �0. We do not average the
�þþ and �þ correlators as they differ by an Oða2Þ isospin
breaking effect.

C. Effective masses

In Fig. 5 we show the nucleon effective masses at � ¼
3:9 on a volume 243 � 48 for all the values of � consid-
ered. We smeared the source as described in the previous
section and either use a local sink or smear the sink with
the same smearing used for the source. As expected, the

effective masses are consistent for both smeared and local
sink yielding asymptotically the same constant. We fit the
effective mass to a constant in the region where meffðtÞ
becomes time independent (plateau region) and vary the
lower t-range of the fit so that �2 per degree of freedom
(d.o.f.) becomes less than one. We take this value for the
mass of the nucleon. In Fig. 6 we show, for the same
�-values, effective masses for the �þþ;� and �þ;0 using
smeared source and sink. We fit in the same way as in the
nucleon case to extract the mass of the �. As can be seen,
the quality of the plateaus in the nucleon case is better than
in the case of the �. This explains why results on the �
mass have larger errors. The errors are evaluated using
jackknife and the �-method [37] to check consistency.
The integrated autocorrelation times for our baryonic ob-
servables are very small for our configuration ensembles.
Since for our computation we use gauge configurations that
are separated by 8–20 trajectory lengths, autocorrelations
are negligible.
The resulting masses using local and smeared interpo-

lating fields are summarized in Table II for � ¼ 3:9 using
lattice sizes of 243 � 48 and 323 � 64, while those ob-
tained for � ¼ 4:05 on a lattice volume of 323 � 64 are
reported in Table III. Results obtained at � ¼ 3:8 are given
in Table IV. The mass of the pion listed in Table II is taken
from Ref. [13] and was evaluated using a larger set of

FIG. 4 (color online). Comparison of effective masses for �þ
for a� ¼ 0:011 at � ¼ 3:8 on the lattice volume 243 � 48,
obtained with 3=2-spin (filled triangles) or with 1=2-spin
projection, using a sample of 50 configurations.

FIG. 5 (color online). Nucleon effective mass (LS: asterisks,
SS: open triangles) for � ¼ 3:9 versus time separation in lattice
units, for a� ¼ 0:010 (upper left), 0.0085 (upper right), 0.0064
(lower left), and 0.0040 (lower right). The constant lines are the
best fits to the data over the range spanned by the lines.

FIG. 3 (color online). Comparison of effective masses for
�þþ;� for a� ¼ 0:0085 at � ¼ 3:9 on the lattice volume
243 � 48, obtained with (filled triangles) or without (open
squares shifted to the left for clarity) spin projection, using a
sample of 90 configurations. The mass difference with projection
and without projection is much smaller than the statistical error.
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configurations applying a different smearing than the one
used in this work. A detailed description of this evaluation
as well as the error analysis is presented in Ref. [31]. The
pion masses given in Tables III and IVare again obtained in
a separate evaluation [38].

IV. LATTICE ARTIFACTS

A. Finite volume effects

At � ¼ 3:9 and for a� ¼ 0:004 we have gauge configu-
rations on two lattices of different volume. This is the
smallest �-value considered at � ¼ 3:9 and it is the one
that potentially can have the largest finite volume effects.
On the lattice of spatial extension Ls ¼ 24 the other three
larger �-values satisfy the condition m�Ls 
 4, whereas
for a� ¼ 0:004 we have m�Ls 	 3:2. On the 323 lattice at
a� ¼ 0:004 we have m�Ls > 4. Applying the resummed
Lüscher formula to the nucleon mass and using the knowl-
edge of the �N scattering amplitude to Oðp2Þ and Oðp4Þ,
the volume corrections are estimated to be about 3% to 5%
[39] for Ls 	 2 fm and m� 	 300 MeV. In Table II we
give the results for the nucleon mass using our two lattice
volumes. The smaller lattice volume has spatial length very
close to the 2 fm length of Ref. [39] namely Ls 	 2:1 fm.
The results for mN do not change within our statistical
accuracy when we use the larger lattice size of Ls 	
2:7 fm. We make the assumption that for the larger lattice
finite volume corrections have become negligible and take
them to be a good approximation to the infinite volume
results. In other words we take mNðLs ¼ 1Þ ’ mNðLs ¼
2:7 fmÞ. This assumption was shown to be valid in the pion
sector where a finite size analysis was carried out [31]. We

TABLE II. Results for the nucleon and � mass at � ¼ 3:9 for lattices of size 243 � 48 and 323 � 64. LL stands for local sink and
local source, LS for local sink and smeared source, and SS for smeared sink and smeared source. The results for the pion mass are
taken from Table 2 of Ref. [13] computed using more gauge configurations than we used for the evaluation of the baryon masses as
well as a different smearing and therefore are the same for LL, LS, and SS. With an asterisk we mark results for which the effective
mass does not show a good plateau.

a� Interpolating field Number of confs. am� amN am�þþ;� am�þ;0

243 � 48
0.0040 LL 471 0.135 87(68) 0.511(11) 0.699(15) 0.708(25)

0.0040 LS 419 0.135 87(68) 0.521(6) 0.694(11) 0.717(13)

0.0040 SS 419 0.135 87(68) 0.515(5) 0.682(12) 0.697(17)

0.0064 LL 199 0.169 37(36) 0.565(11) 0.727(15) 0.763(15)

0.0064 LS 235 0.169 37(36) 0.565(6) 0.715(13) 0.742(7)

0.0064 SS 235 0.169 37(36) 0.561(4) 0.710(11) 0.711(10)

0.0085 LL 153 0.194 03(50) 0.568(8) 0.754(12) 0.776(22)

0.0085 LS 186 0.194 03(50) 0.581(6) 0.746(9) 0.751(12)

0.0085 SS 186 0.194 03(50) 0.580(6) 0.738(11) 0.742(9)

0.0100 LL 173 0.210 04(52) 0.613(6) 0:823ð7Þ� 0.767(12)

0.0100 LS 213 0.210 04(52) 0.595(7) 0.742(7) 0.760(7)

0.0100 SS 213 0.210 04(52) 0.589(9) 0.750(10) 0.755(10)

323 � 64
0.0040 LS 201 0.133 77(24) 0.518(5) 0.672(9) 0.670(14)

0.0040 SS 201 0.133 77(24) 0.510(5) 0.660(9) 0.660(14)

FIG. 6 (color online). �þþ;� (asterisks) and �þ;0 (open
triangles) effective masses using smeared-smeared (SS) correla-
tors for � ¼ 3:9 versus time separation in lattice units, for
a� ¼ 0:010 (upper left), 0.0085 (upper right), 0.0064 (lower
left), and 0.0040 (lower right). The straight lines are the best fits
to the data over the range spanned by the lines. The solid line is
for �þþ;� and the dashed for �þ;0 and they coincide.
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define the ratio RN � �mN=mNðLs ¼ 1Þ, where �mN �
mNðLs ¼ 2:1 fmÞ �mNðLs ¼ 1Þ and estimate RN with
results obtained on our two volumes for the smallest pion
mass. This gives us an estimate for our finite volume errors.
Using the results tabulated in Table II at a� ¼ 0:004 we
conclude that�mN is positive as expected. This is also true
for the corresponding difference for the masses of �þþ;�
and �þ;0. In Table V we give the ratios RN , R�þþ;� , and
R�þ;0 . For the nucleon this ratio is compatible with zero and
within our accuracy it can be at the most 2%. For the
�þþ;� where the statistical errors are smaller than for

the �þ;0, the volume corrections range from 1% to 5%.
From this study we conclude that finite volume effects on
the nucleon mass are negligible whereas for the � we can
at most have corrections on the few percent level.

B. Isospin breaking

One of the main goals of this work is to examine isospin
breaking in the baryon sector due to lattice artifacts. As
already explained the proton and the neutron are degener-
ate. Isospin breaking in the light baryon sector can be

TABLE IV. Results for the nucleon and � mass at � ¼ 3:8 for the 243 � 48 lattice. The notation is the same as that of Table III
with SL being a smeared sink and local source.

a� Interpolating field Number of confs. am� amN am�þþ;� am�þ;0

0.0060 LL 211 0.1852(10) 0.623(20) 0.792(25) 0.815(28)

0.0060 SL 211 0.1852(10) 0.637(9) 0.818(11) 0.824(13)

0.0080 LL 283 0.2085(8) 0.676(11) 0.859(11) 0.847(30)

0.0080 SL 283 0.2085(8) 0.665(9) 0.827(17) 0.856(24)

0.0110 LL 251 0.2424(5) 0.700(9) 0.861(13) 0.893(22)

0.0110 SL 251 0.2424(5) 0.699(8) 0.854(14) 0.875(16)

0.0165 LL 249 0.2957(5) 0.759(7) 0.948(12) 0.886(25)

0.0165 SL 249 0.2957(5) 0.744(8) 0.942(13) 0.946(12)

TABLE III. Results for the nucleon and � mass at � ¼ 4:05 for the 323 � 64 lattice. LL stands for local sink and local source, LS
for local sink and smeared source, and SS for smeared sink and smeared source. The results for the pion mass are computed using more
gauge configurations than we used for the evaluation of the baryon masses as well as a different smearing [38] and therefore are the
same for LL, LS, and SS. With an asterisk we mark results for which the effective mass does not show a good plateau. Empty entries
are due to the absence of a sufficient plateau region.

a� Interpolating field Number of confs. am� amN am�þþ;� am�þ;0

0.0030 LL 70 0.1038(6) 0.403(15) 0.633(30)

0.0030 LS 201 0.1038(6) 0.396(7) 0.536(18) 0.546(12)

0.0030 SS 201 0.1038(6) 0.402(8) 0.538(19) 0.536(15)

0.0060 LL 216 0.1432(6) 0.453(5) 0.597(8) 0.575(9)

0.0060 LS 160 0.1432(6) 0.448(5) 0.564(7) 0.566(7)

0.0060 SS 160 0.1432(6) 0.446(6) 0.562(6) 0.566(7)

0.0080 LL 240 0.1651(5) 0.465(6) 0.627(6) 0.637(7)

0.0080 LS 256 0.1651(5) 0.469(4) 0.590(7) 0.585(9)

0.0080 SS 256 0.1651(5) 0.465(5) 0.594(7) 0.594(8)

0.0120 LL 157 0.2025(6) 0.520(5) 0:670ð4Þ� 0.677(5)

0.0120 LS 162 0.2025(6) 0.509(4) 0:616ð7Þ� 0.623(7)

0.0120 SS 162 0.2025(6) 0.515(3) 0:616ð7Þ� 0.620(7)

TABLE V. Finite volume dependence at � ¼ 3:9 for a� ¼ 0:004. Results with a lattice of
size 243 � 48 are compared to those obtained with a lattice size of 323 � 64. For a hadron state
P we define RP � ðmPðLs ¼ 2:1 fmÞ �mPðLs ¼ 2:7 fmÞÞ=mPðLs ¼ 2:7 fmÞ ’ ðmPðLs ¼
2:1 fmÞ �mPð1ÞÞ=mPð1Þ assuming the masses at 2.7 fm to be close enough to the infinite
volume limit.

a� Interpolating field RN R�þþ;� R�þ;0

0.0040 LS 0.006(15) 0.033(22) 0.070(26)

0.0040 SS 0.010(14) 0.033(23) 0.056(33)
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examined for the �. In Fig. 7 we show results for the mass
of �þþ;� as well as for the mass of �þ;0. Results at � ¼
3:9 and � ¼ 4:05 fall on the same curve pointing to small
cutoff effects. Small finite volume effects are visible at the
smallest pion mass at � ¼ 3:9 as discussed in the previous

subsection. To check for isospin breaking we plot the mass
difference between the pairs �þþ;, �� and �þ, �0 nor-
malized by the mean value of their mass in Fig. 8 for � ¼
3:8, � ¼ 3:9, and � ¼ 4:05. As can be seen, the splitting is
consistent with zero for these values of �, indicating that
isospin breaking in the � system is small.

V. CHIRAL EXTRAPOLATION

A. Nucleon mass

We show our results for the nucleon mass as a function
ofm2

� in Fig. 9. The masses are extracted in lattice units. To
convert to physical units we need to know the value of the
lattice spacing. A standard procedure is to match the
experimental value of f� to the one obtained on the lattice
extrapolated to the physical pion mass. This gives a ¼
0:0855 fm at � ¼ 3:9 and a ¼ 0:0667 fm at � ¼ 4:05
[14]. We use these values to convert lattice results to
physical units. The results at these two �-values fall on a
common curve indicating that cutoff effects are small for
these values of the lattice spacing. In Fig. 9 we include, for
comparison, results obtained with dynamical staggered
fermions from Refs. [40,41]. Results using these two for-
mulations are consistent with each other. As we already
discussed, results obtained on lattices of spatial length
Ls ¼ 2:1 fm and Ls ¼ 2:7 fm at � ¼ 3:9 for the lowest
pion mass are consistent indicating that finite volume
effects are small for the pion masses used in this work.
Therefore as a first analysis of our lattice results, we use
continuum chiral perturbation theory in an infinite volume
to perform the chiral extrapolation to the physical point.
An analysis carried out after taking the continuum limit
will serve as a check of cutoff effects. The leading one-loop

FIG. 7 (color online). The �þþ;� (upper graph) and �þ;0
(lower graph) mass as a function of m2

� for � ¼ 3:9 on a lattice
of size 243 � 48 (filled triangles) and on a lattice of size 323 �
64 (open triangles). Results at � ¼ 4:05 are shown with the
filled squares. The physical � mass is shown with the asterisk.

FIG. 8 (color online). The mass splitting between �þ;0 and
�þþ;� normalized with the mean value of their mass m� as a
function of m2

� in lattice units. Results at � ¼ 3:8 are shown
with the asterisks. The rest of the notation is the same as in
Fig. 7.

FIG. 9 (color online). The nucleon mass as a function of m2
�

for � ¼ 3:9 on a lattice of size 243 � 48 (filled triangles) and
on a lattice of size 323 � 64 (open triangle). Results at � ¼
4:05 are shown with the filled squares. The physical nucleon
mass is shown with the asterisk. Results with dynamical stag-
gered fermions for NF ¼ 2þ 1 (filled circles) and NF ¼ 2
(open circle) on a lattice of size 203 � 64 with a ¼ 0:125 fm
are from Refs. [40,41].
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result in heavy baryon chiral perturbation theory (HB�PT)
[42] is well known:

mN ¼ m0
N � 4c1m

2
� � 3g2A

32�f2�
m3
� (23)

with m0
N , the nucleon mass in the chiral limit, and c1

treated as fit parameters. This lowest order result is the
same in HB�PT with dimensional and infrared regulariza-
tion as well as when the � degree of freedom is explicitly
included. It is also the same in manifestly Lorenz-invariant
formulation with infrared regularization. Therefore we will
use this well-established result to predict the nucleon mass
at the physical point as well as fix the lattice spacing using
the experimental nucleon mass as input. The higher order
results will only be used to estimate the systematic error
associated with the chiral extrapolation. We take for f� and
gA their physical values, namely f� ¼ 0:092 419ð7Þ�
ð25Þ GeV and gA ¼ 1:2695ð29Þ, which is what is custom-
arily done in chiral fits to lattice data on the nucleon mass
[43–45]. We will take the experimental values for f� and
gA also when using higher order results. In higher orders
new low energy constants enter, and we also fix their values
from experimental data. In order to determine the errors on
the fit parameters we allow for a variation in the parameters
that increases the minimal value of �2 by one. In Fig. 10 we
show the boundary of the allowed variation of the parame-
ters. As expected when the number of available lattice
results increases the error decreases. In Fig. 11 we show
fits to the Oðp3Þ result with the error band determined by
the maximum allowed variation in the parameters that
increase the minimal �2 by one. As can be seen, this
Oðp3Þ result provides a very good fit to our lattice data
both at � ¼ 3:9 and � ¼ 4:05. Since finite volume effects
are small we use in the fit data on both volumes at� ¼ 3:9.

In Table VI we give the values of the parameters m0
N and

c1. In this determination we use the lattice spacing deter-
mined from f�. In the case of � ¼ 3:9 we include the
result obtained using the larger volume. We would like to
stress that, despite the fact that the physical point is not
included in the fit as customarily done in other chiral
extrapolations of lattice data. The value of the nucleon
mass that we find at the physical pion mass using data at
both � ¼ 3:9 and � ¼ 4:05 to fit to the Oðp3Þ HB�PT of
Eq. (23) is 963(12) MeV, where the error is only statistical.
The nucleon sigma term is defined by

�N ¼ X
q¼u;d

�q

dMN

d�q

; (24)

where we have neglected contributions from other quarks.
Following Ref. [46] we use the relation m2

� 	� to evalu-

ate �N by computing m2
�
dMN

dm2
�
. Using the value of c1

FIG. 10 (color online). The variation of the fit parameters m0
N

and c1. The elliptical boundary is determined by changing these
parameters so that the minimal value of �2 changes by one. The
most elongated ellipse is for � ¼ 4:05 using the nucleon mass at
the three lighter pion masses, the intermediate is for � ¼ 3:9
using all five points and the smallest is for a combined fit to both
�-values using a total of eight points.

FIG. 11 (color online). On the left set of graphs we show chiral
fits to the nucleon mass for � ¼ 3:9 using a�¼3:9 ¼ 0:0855 fm

to convert to physical units. On the right set of graphs we show
the corresponding chiral fits for � ¼ 4:05 using a�¼4:05 ¼
0:0667 fm. The uppermost graph shows the fit to Oðp3Þ
HB�PT where we use our results at the three lowest values of
the pion mass. For the higher order fits we perform a simulta-
neous fit to both � ¼ 3:9 and � ¼ 4:05 always excluding at
� ¼ 4:05 the result at the largest pion mass. The physical point,
shown by the asterisk, is not included in the fits.
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determined from the nucleon fit we find at the physical
point �N ¼ 66:7� 1:3 MeV, where the error is statistical.
This value is larger than the prevailing value of 45�
8 MeV [47] but in agreement with a new analysis [48]
that includes additional data. Our current calculation does
not include a dynamical strange quark and a better under-
standing of this term could come when simulations with
dynamical strange quarks are available [49]. Note that
given the role of the sigma term for what concerns the
chiral extrapolation as well as its implication in dark matter
detection [50] it is clear that a serious effort to better fix its
experimental value is highly desirable.

Chiral corrections to the nucleon mass are known to
Oðp4Þ within several expansion schemes. In HB�PT to
Oðp4Þ with dimensional regularization [43,51,52] the re-
sult is given by

mN ¼ m0
N � 4c1m

2
� � 3g2A

32�f2�
m3
� � 4E1ð�Þm4

�

þ 3m4
�

32�2f2�

�
1

4

�
c2 � 2g2A

m0
N

�

�
�
c2 � 8c1 þ 4c3 þ g2A

m0
N

�
log

�
m�

�

��
: (25)

We take the cutoff scale � ¼ 1 GeV and fix the dimension
two low energy constants c2 ¼ 3:2 GeV�1 [53] and c3 ¼
�3:45 GeV�1 [45,52]. This value is consistent with em-
pirical nucleon-nucleon phase shifts [54,55]. The counter-
term E1 is taken as an additional fit parameter. HB�PT
with dimensional regularization is in agreement with co-
variant baryon �PT with infrared regularization up to a

recoil term given by
3g2

A
m5
�

256�f2�m
0
N

that is of no numerical

significance [45]. We have included this term in our fits.
In the so-called small scale expansion (SSE) [45], the

�-degrees of freedom are explicitly included in covariant
baryon �PT by introducing as an additional counting
parameter the �-nucleon mass splitting, � � m� �mN,
taking Oð�=mNÞ 	Oðm�=mNÞ. In SSE the nucleon mass
is given by

mN ¼ m0
N � 4c1m

2
� � 3g2A

32�f2�
m3
� � 4E1ð�Þm4

�

� 3ðg2A þ 3c2AÞ
64�2f2�m

0
N

m4
� � ð3g2A þ 10c2AÞ

32�2f2�m
0
N

m4
� log

�
m�

�

�

� c2A
3�2f2�

�
1þ �

2m0
N

��
�

4
m2
� þ

�
�3 � 3

2
m2
��

�

� log

�
m�

2�

�
þ ð�2 �m2

�ÞRðm�Þ
�
; (26)

where Rðm�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2
� � �2

p
cos�1ð �m�

Þ if m� >� and

Rðm�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 �m2

�

p
logð �m�

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

m2
�
� 1

q
Þ for m� � �. We

take cA ¼ 1:127 [45], � ¼ 1 GeV and fit the counterterm
E1. A different counting scheme, known as the 
-scheme,
takes �=mN 	Oð
Þ and m�=mN 	Oð
2Þ [44]. Using the

-scheme in a covariant chiral expansion to order p4=�
one obtains an expansion that has a similar form for the
nucleon and � mass. The nucleon mass is given by

mN ¼ m0
N � 4c1m

2
� � 1

2

m0
N

ð8�f�Þ2
�
9g2AVloop

�
m�

m0
N

; 0

�

þ 4h2A
ð1þ �

m0
N

Þ2 Vloop

�
m�

m0
N

;
�

m0
N

��
þ c2m

4
�: (27)

The �N and �� loop function Vloop is given in Ref. [44]

and, following the same reference, we take the value of
hA ¼ 2:85. Here we use the variant of the 
-scheme that
includes the ��-loop and adds the fourth order term c2m

4
�

TABLE VI. Fit parameters m0
N and m0

� in GeV and c1 in GeV�1. Results with an asterisk have �2=d:o:f: larger than 1. All fits to
the continuum results excluded the largest value of r0m� with the exception of the �þ;0 in the 
-scheme where to obtain a good fit we
use all six points. For � ¼ 3:9 we use all masses including the results at the larger volume whereas for � ¼ 4:05 we use results at the
three smaller pion masses. For the fits to continuum results we give two sets of results: the first set is obtained when using linear
interpolation to the reference pion masses and the second using Oðp3Þ HB�PT for interpolation.

� ¼ 3:9 � ¼ 4:05 � ¼ 3:9 and � ¼ 4:05 Continuum linear Continuum with

Oðp3Þ HB�PT

m0
N c1 m0

N c1 m0
N c1 m0

N c1 m0
N c1

Nucleon

Oðp3Þ HB�PT 0.886(14) �1:21ð2Þ 0.901(37) �1:18ð4Þ 0.889(13) �1:20ð2Þ 0.904(14) �1:19ð2Þ 0.898(9) �1:19ð1Þ
Oðp4Þ HB�PT 0.875(50) �1:23ð17Þ 0.929 �1:10 0.881(42) �1:22ð12Þ 0.893(47) �1:21ð12Þ 0.889(25) �1:21ð7Þ
Oðp4Þ SSE 0.884(51) �1:19ð14Þ 0.944 �1:02 0.891(47) �1:17ð15Þ 0.903(52) �1:16ð15Þ 0.901(30) �1:15ð9Þ
Oðp4=�Þ
-scheme 0.867(54) �1:29ð18Þ 0.927 �1:13 0.873(46) �1:28ð15Þ 0.886(51) �1:27ð16Þ 0.883(29) �1:26ð9Þ

m0
� c1 m0

� c1 m0
� c1 m0

� c1 m0
� c1

�þþ;�

Oðp3Þ HB�PT 1.248(31) �1:19ð4Þ 1:222ð68Þ� �1:20ð5Þ� 1.241(27) �1:21ð4Þ 1.274(33) �1:17ð4Þ 1.251(16) �1:20ð2Þ
Oðp4=�Þ
-scheme 1.258(126) �1:15ð43Þ 1.347(90) �0:85ð30Þ 1.267(80) �1:16ð20Þ 1.261(54) �1:16ð17Þ
�þ;0

Oðp3Þ HB�PT 1.255(40) �1:20ð5Þ 1:261ð6Þ� �1:19ð8Þ� 1.256(33) �1:20ð4Þ 1.264(32) �1:18ð4Þ 1.262(19) �1:19ð3Þ
Oðp4=�Þ
-scheme 1:302ð43Þ� �1:03ð7Þ� 1.372(104) �0:81ð32Þ 1.373(65) �0:85ð17Þ 1.267(42) �1:16ð12Þ
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as an estimate of higher order effects, since the complete
fourth order result is not available. The parameter c2 is to
be determined from the lattice data. The fits using these
different formulations are shown in Fig. 11. At � ¼ 3:9
shown in the left panel we used a�¼3:9 ¼ 0:0855 fm to

convert to physical units. We have four values for the
243 � 48 lattice and one for the larger lattice. At � ¼
4:05 we only use results at the three smallest pion masses
since including the result at the largest pion mass yields fits
with unacceptably large �2=d:o:f: Therefore only at lowest
order �PT where we have only two fitting parameters we
can perform a fit. For the higher order we give the values of
m0
N and c1 of the curves that pass through all the lattice

points. Since cutoff effects are consistent with zero for
these two values of � we can use these two sets of results
in a combined fit. For the lattice data at � ¼ 4:05 we use
a�¼4:0 ¼ 0:0667 fm determined from f�, to convert to

physical units. The experimental value of the nucleon is
shown with the asterisk. In Table VI we give the values of
m0
N and c1 when simultaneous fits to both � ¼ 3:9 and

� ¼ 4:05 data are done. We use the lattice spacings deter-
mined from the pion decay constant to convert to physical
units [14]. These fits are shown in Fig. 11 when using
higher order �PT. All formulations provide a good de-
scription of the lattice results and yield a nucleon mass at
the physical point consistent with the experimental value.
As already discussed, the value of the nucleon mass that we
find using Eq. (23) is 963(12) MeV. The corresponding
value using Oðp4Þ HB�PT is 955(33) MeV. We take the
difference between these two mean values as an estimate of
the systematic error due to the chiral extrapolation and
quote 963� 12ðstatÞ � 8ðsystÞ MeV as our prediction of
the nucleon mass. Within the statistical and estimated
systematical uncertainty this value is close to the experi-
mental one. Furthermore the values extracted for the nu-
cleon at the chiral limit m0

N as well as c1 are in agreement

in all formulations. In addition the value of nucleon �N
term defined in Eq. (24) can be evaluated using HB�PT to
Oðp4Þ of Eq. (25). If we use the next to leading order
relation between m2

� and the quark mass �q [13,14,17]

instead of the leading order relation m2
� / �q we find a

value of 67� 8:0 MeV at the physical point, which is
consistent with the value obtained to Oðp3Þ albeit with a
larger error. We note that the impact on �N of using
Eq. (24) with the next to leading order result, rather than
the lowest order relation, between m2

� and �q is small and

yields a relative decrease of its value at the physical point
of about 2% only.

The consistency between theOðp3Þ result and the higher
order expansions allows for an extrapolation to the physi-
cal point and a determination of the lattice spacing using
the nucleon mass. Fixing the lattice spacing from the
nucleon mass allows for a comparison with the value
obtained from the pion sector and provides a nontrivial
check of our lattice formulation. We consider a�¼3:9 and

a�¼4:05 as independent fit parameters in a combined fit of

data at � ¼ 3:9 and � ¼ 4:05 where the physical nucleon
mass is included with no error. In this way the lattice
spacings can be determined solely by using as input the
nucleon mass at the physical point. Using the leading one-
loop result we find a�¼3:9 ¼ 0:0889ð12Þ fm and a�¼4:05 ¼
0:0691ð10Þ fm. The quality of these fits are shown in
Fig. 12. The values of the lattice spacing obtained to
Oðp4Þ using Eq. (25) are given in Table VII. Both SSE
and the 
-scheme defined by Eqs. (26) and (27), which
include explicitly �-degrees of freedom, yield values that
are consistent with those obtained in HB�PT. The varia-
tion in the value of a in the different chiral extrapolation
schemes gives an estimate of the systematic error involved
in the chiral extrapolation. We take the difference between
the mean values obtained using Oðp3Þ and Oðp4Þ HB�PT
as an estimate of the systematic error. Our lattice spacings
fixed using the nucleon mass are therefore a�¼3:9 ¼
0:0889� 0:0012ðstatÞ � 0:0014ðsystÞ fm and a�¼4:05 ¼
0:0691� 0:0010ðstatÞ � 0:0010ðsystÞ fm and are on the
upper bound of the values obtained using f�.

FIG. 12 (color online). Simultaneous chiral fits to the nucleon
mass using results at � ¼ 3:9 and � ¼ 4:05 excluding the
heaviest pion value. The fits are done so that the physical point
shown by the asterisk is reproduced thereby fixing the lattice
spacings. The rest of the notation is the same as that of Fig. 11.
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The physical spatial volumes of the 243 lattice at � ¼
3:9 and that of the 323 lattice at � ¼ 4:05 are about
ð2:1Þ3 fm3. Bearing in mind that volume corrections for
this lattice size are shown to be small we use results
obtained on these two almost equal volumes to estimate
our masses at the continuum limit. In order to take the
continuum limit we interpolate data, expressed in units of
r0, at the same value of r0m�, where the Sommer parame-
ter r0 is determined from the force between two static

quarks. We use r0=a ¼ 4:46ð3Þ, r0=a ¼ 5:22ð2Þ, and
r0=a ¼ 6:61ð3Þ for � ¼ 3:8, � ¼ 3:9 and � ¼ 4:05, re-
spectively [7]. The values of r0m� that we choose are close
to the pion mass values where our computation is done and
are given in Table VIII. We use a linear interpolation or the
fit curves determined using chiral effective theories to
obtain the nucleon mass at these reference values of
r0m�. This procedure is done for our three �-values. We
use the results at constant r0m� at � ¼ 3:9 and � ¼ 4:05

TABLE VII. Determination of the lattice spacing in fm and m0
N in GeV using the nucleon mass. Fitting to the nucleon continuum

results obtained by linear interpolation at the five lighter reference pion masses we extract the continuum value of r0 in fm by
constraining the fits to reproduce the physical nucleon mass.

� ¼ 3:9 � ¼ 4:05 � ¼ 3:9 and � ¼ 4:05 Continuum

m0
N a�¼3:9 m0

N a�¼4:05 m0
N a�¼3:9 a�¼4:05 m0

N r0
Oðp3Þ HB�PT 0.865(2) 0.0886(18) 0.868(5) 0.0708(37) 0.866(1) 0.0889(12) 0.0691(10) 0.868(2) 0.473(9)

Oðp4Þ HB�PT 0.862(9) 0.0869(46) 0.871 0.0717 0.863(4), 0.0875(26) 0.0681(24) 0.863(8) 0.461(23)

Oðp4Þ SSE 0.865(10) 0.0876(47) 0.876 0.0724 0.866(9) 0.0884(40) 0.0687(31) 0.866(9) 0.464(24)

Oðp4=�Þ
-scheme 0.859(11) 0.0865(65) 0.870 0.0717 0.861(9) 0.0873(39) 0.0678(31) 0.861(10) 0.458(25)

TABLE VIII. Results for the nucleon, �þþ;� and �þ;0 mass interpolated at the same value of r0m� for the three � values. The
continuum limit is then taken at constant r0m� using the results at � ¼ 3:9 and � ¼ 4:05. We give results using linear interpolation
in the second, fourth, and sixth columns whereas in the third, fifth, and seventh columns we give the results using lowest order
HB�PT.

r0m� r0mN r0m�þþ;� r0m�þ;0

� ¼ 3:8
0.70 2.654(95) 2.668(55) 3.596(119) 3.511(69) 3.502(161) 3.528(79)

0.80 2.804(45) 2.807(41) 3.637(54) 3.614(47) 3.641(65) 3.652(53)

0.90 2.935(40) 2.933(27) 3.667(75) 3.701(28) 3.790(111) 3.760(30)

1.00 3.044(45) 3.043(21) 3.731(83) 3.767(31) 3.885(120) 3.850(33)

1.10 3.133(34) 3.129(31) 3.831(63) 3.804(57) 3.918(72) 3.915(64)

1.25 3.256(28) 3.201(63) 4.086(62) 3.793(111) 4.127(64) 3.950(127)

� ¼ 3:9
0.70 2.666(27) 2.672(17) 3.548(60) 3.481(35) 3.632(88) 3.498(46)

0.80 2.840(27) 2.809(13) 3.621(65) 3.614(25) 3.641(61) 3.633(32)

0.90 2.947(22) 2.933(12) 3.720(56) 3.734(16) 3.725(52) 3.754(20)

1.00 3.013(31) 3.041(14) 3.841(60) 3.837(18) 3.861(46) 3.859(17)

1.10 3.132(24) 3.125(20) 3.917(50) 3.916(30) 3.943(50) 3.938(31)

1.25 3.313(76) 3.194(33) 4.028(66) 3.976(56) 4.061(105) 4.000(62)

� ¼ 4:05
0.70 2.676(56) 2.665(47) 3.565(124) 3.428(81) 3.550(97) 3.477(71)

0.80 2.843(71) 2.795(36) 3.627(137) 3.571(59) 3.627(107) 3.609(51)

0.90 2.903(40) 2.910(24) 3.669(45) 3.701(35) 3.690(45) 3.727(30)

1.00 3.003(40) 3.007(16) 3.771(45) 3.815(18) 3.793(46) 3.827(18)

1.10 3.086(24) 3.079(19) 3.932(43) 3.905(35) 3.936(50) 3.902(37)

1.25 3.287(24) 3.126(42) 4.017(48) 3.982(85) 4.038(49) 3.953(84)

Continuum

0.70 2.667(24) 2.671(16) 3.551(54) 3.472(32) 3.595(65) 3.492(38)

0.80 2.840(25) 2.807(12) 3.622(59) 3.608(23) 3.638(53) 3.626(27)

0.90 2.936(19) 2.929(11) 3.687(35) 3.728(15) 3.705(34) 3.746(16)

1.00 3.009(25) 3.025(11) 3.794(36) 3.826(13) 3.827(33) 3.844(12)

1.10 3.109(17) 3.101(14) 3.926(33) 3.916(23) 3.939(35) 3.924(24)

1.25 3.289(23) 3.168(26) 4.021(39) 3.978(47) 4.042(44) 3.984(50)
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to estimate the continuum limit by fitting to a constant
under the assumption that residual cutoff effects on the
pion and nucleon masses as well as on r0 at � ¼ 3:9 and
� ¼ 4:05 are negligible. This assumption is corroborated
by our lattice data shown in Fig. 9. Results at � ¼ 3:8 at
the same value of r0m� serve as a check for the consistency
of this procedure. This is illustrated in Fig. 13 where results
at � ¼ 3:8 are consistent with the constant fit. The results
at the continuum limit are then chirally extrapolated. The
parameters obtained are given in Table VI and the fits are
shown in Fig. 14 where we excluded the heaviest pion mass
from these fits. The values of m0

N and c1 obtained from the

fits to continuum results are consistent with the values
obtained using results at finite a. This demonstrates that
cutoff effects are small.

The value of the parameter r0 can be determined from
our results in the continuum limit using the value of the
physical nucleon mass. We give the extracted values in
Table VII where we used linear interpolation to obtain the
nucleon mass at the reference values of r0m�. The values
extracted for r0 in the continuum limit using these fits are
consistent. Had we used chiral fits at Oðp3Þ to interpolate
the value extracted would change by 0.004 fm and atOðp4Þ
by 0.002 fm. These changes are smaller than the statistical

errors. We again take the variation in the value of r0 at
Oðp3Þ and Oðp4Þ HB�PT as an estimate of the systematic
error due to the chiral extrapolation. Using the values given
in Table VII this difference is 0.012 fm.We add to this error
the variation in the values obtained using a linear interpo-
lation scheme and the Oðp3Þ fit, which is 0.004 fm.
Therefore the value that we find is r0 ¼ 0:473�
0:09ðstatÞ � 0:016ðsystÞ fm. This value of r0, like for the
lattice spacing, is at the upper bound of the value r0 ¼
0:444ð3Þ fm [14] determined using f�. The validation of
these consistency checks suggests that lattice artifacts that
can affect the value of the lattice spacing when using
different observables are small.

B. � mass

We perform a similar analysis as for the nucleon mass in
the case of the �.
The leading one-loop HB�PT result in the case of the �

mass has the same form as that for the nucleon mass and is

FIG. 13 (color online). Continuum limit of the nucleon mass
using the lowest order HB�PT to interpolate except for the
heaviest pion mass where we used linear interpolation. For r0
and a we use the values determined in the pion sector, namely
r0=a ¼ 4:46ð3Þ, (r0 ¼ 0:444ð4Þ fm), r0=a ¼ 5:22ð2Þ, (r0 ¼
0:446ð3Þ fm) and r0=a ¼ 6:61ð3Þ, (r0 ¼ 0:441ð4Þ fm) at � ¼
3:8, � ¼ 3:9, and � ¼ 4:05, respectively [7].

FIG. 14 (color online). Chiral fits to the nucleon mass after
extrapolating to the continuum limit at fixed r0m� using linear
interpolation, i.e. the data given in the second column of
Table VIII. The fits were done excluding the heaviest pion
mass. The asterisk shows the physical point using the estimated
continuum value of r0 ¼ 0:444 fm.
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given by

m� ¼ m0
� � 4c1m

2
� � 25

81

3H2
A

32�f2�
m3
�; (28)

where m0
� is the � mass at the chiral limit and c1 now

denotes the coefficient of the m2
�-term for the � mass. For

the � axial coupling, HA, we use the SU(6) relation HA ¼
ð9=5ÞgA and therefore the one-loop contribution takes the
same numerical value as in the nucleon case. We also
consider the 
-scheme to order Oðp4=�Þ which yields an
expression that is similar to the nucleon case:

m� ¼ m0
� � 4c1m

2
� � 1

2

m0
�

ð8�f�Þ2
�
g2AVloop

�
m�

m0
�

; 0

�

þ 4h2AVloop

�
m�

m0
�

;
�

m0
�

��
þ c2m

4
�: (29)

The fits using the Oðp3Þ HB�PT result at � ¼ 3:9 and
� ¼ 4:05 are shown in Fig. 15 for the �þþ;� and �þ;0
masses using the lattice spacings determined from f�. It is
useful to chirally extrapolate the � mass to see how close
current results are to �ð1232Þ taking the lattice spacings as
determined from the nucleon mass. The fits in this case are
shown in Fig. 16 again using the Oðp3Þ HB�PT result.
Agreement with the experimental value of the � mass is
better when one uses the lattice spacing determined from
the nucleon mass. This indicates that for baryonic observ-
ables it is favorable to use the lattice spacing determined
from the nucleon mass. We give the values of the parame-
ters that we extract in Table VI.

The continuum extrapolation is carried out as in the
nucleon case. We show in Fig. 17 the results for the three
different lattice spacings. As in the case of the nucleon, the
continuum limit found by averaging results from � ¼ 3:9

and � ¼ 4:05 is consistent with results at � ¼ 3:8.
Furthermore, we find that in the continuum limit �þþ;�
and �þ;0 are degenerate within errors, a result that corrob-
orates the absence of isospin breaking. We therefore per-
form simultaneous fits to both �þþ;� and �þ;0 mass using
our continuum limit results at the five smallest pion refer-
ence masses. These fits using leading chiral perturbation

FIG. 16 (color online). Chiral fits to the �þþ;� and �þ;0 mass
using Eq. (28) with the lattice spacing determined from the
nucleon mass. The physical point shown by the asterisk is not
included in the fits.

FIG. 15 (color online). Chiral fits to the �þþ;� and �þ;0 mass
using Eq. (28) taking a�¼3:9 ¼ 0:0855 fm and a�¼4:05 ¼
0:0667 fm determined from f�. Filled triangles show results
on a Ls ¼ 2:1 fm. The result on the 2.7 fm volume at � ¼ 3:9 is
shown with the filled circle.

FIG. 17 (color online). Continuum limit of the �þ;0 mass
using the lowest order HB�PT to interpolate except for the
heaviest pion mass where we use linear interpolation.
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theory and the 
-scheme are shown in Fig. 18. The physical
point is again not included in the fits. We find a � mass at
the physical point that is very close to experiment. Again,
this agreement improves when we use the value of r0 fixed
from the nucleon mass. The values that we find for m0

� and

c1 from these simultaneous fits using the continuum results
are in good agreement with the values extracted for �þþ;�
and�þ;0 at finite lattice spacing. This points to small cutoff
effects and to isospin breaking effects that are smaller than
statistical errors.

VI. CONCLUSIONS

Using dynamical twisted mass fermions we obtain ac-
curate results on the nucleon mass for pion masses in the
range of 300–500 MeV. The quality of these results allows
a chiral extrapolation using heavy baryon chiral perturba-
tion theory to Oðp3Þ. There is agreement among all ap-
proaches for this lowest order result. Performing a
simultaneous fit to our results at the two finer lattice spac-
ings we find a value of the nucleon mass of 0:963�
0:012ðstatÞ � 0:008ðsystÞ GeV where the systematic error
is the difference between the mean values obtained at

Oðp3Þ and Oðp4Þ HB�PT. Comparing results at our three
�-values and at the continuum limit we confirm that cutoff
effects are small. Given that this leading one-loop result in
HB�PT yields good fits to our lattice data we use it to
extract the lattice spacing from the nucleon mass at the
physical point. We find a�¼3:9 ¼ 0:0889� 0:0012ðstatÞ �
0:0014ðsystÞ fm and a�¼4:05 ¼ 0:0691� 0:0010ðstatÞ �
0:0010ðsystÞ fm. Again the systematic errors are estimated
by comparing the value obtained at lowest order to the
results obtained using the Oðp4Þ in HB�PT. Within this
estimated uncertainty of the chiral extrapolation, the value
we find for the lattice spacings a�¼3:9 and a�¼4:05 is con-

sistent with the value determined from f�. A combined
analysis of data in the pion and nucleon sector is a prom-
ising option that will be considered in the future. We use
continuum extrapolated results to determine also the value
of r0 using the nucleon mass at the physical point. We find
a value of r0 ¼ 0:473� 0:09ðstatÞ � 0:016ðsystÞ fmwhich
is, within errors, consistent with the value determined from
f�. The confirmation that isospin breaking in the � is
consistent with zero is a very important conclusion of
this work. This is demonstrated by evaluating the mass
splitting in the � isospin multiplets for three lattice spac-
ings on two volumes. Consequently the mass of the �þþ;�
and �þ;0 obtained in the continuum limit are the same
within statistical uncertainties.
The reliable determination of the lattice spacing from

the nucleon mass as well as the fact that isospin breaking is
consistent with zero for these lattices paves the way for
further applications of twisted mass fermions in the baryon
sector.
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