
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 9, 2018

Light but Effective Encryption Technique based on

Dynamic Substitution and Effective Masking

Muhammed Jassem Al-Muhammed

Faculty of Information Technology

American University of Madaba

Madaba, Jordan

Abstract—Cryptography and cryptanalysis are in ever-lasting

struggle. As the encryption techniques advance, the cryptanalysis

techniques advance as well. To properly face the great danger

of the cryptanalysis techniques, we should diligently look for

more effective encryption techniques. These techniques must

properly handle any weaknesses that may be exploited by hacking

tools. We address this problem by proposing an innovative

encryption technique. Our technique has unique features that

make it different from the other standard encryption methods.

Our method advocates the use of dynamic substitution and tricky

manipulation operations that introduce tremendous confusion

and diffusion to ciphertext. All this is augmented with an effective

key expansion that not only allows for implicit embedment of

the key in all of the encryption steps but also produces very

different versions of this key. Experiments with our proof-of-

concept prototype showed that our method is effective and passes

very important security tests.

Keywords—Encryption techniques; dynamic substitution; key
expansion; directive based manipulation; block masking

I. INTRODUCTION

In the digital era, almost all of our sensitive infor-
mation is either transmitted over the network or digitally
stored on machines. This information will inevitably be in
a great risk if we do not properly secure them. Encryp-
tion is the de-facto means for keeping the security of the
transmitted or stored information. Many encryption tech-
niques have been proposed (e.g. [1][2][3][4][5][6][7][8][9][10]
[11][12][13][14][15][16][17][18]). Although these methods are
effective and purport to provide high levels of security, there
is always a truly pressing need for new techniques that can
effectively face the formidably ever-advancing hacking tools.

This paper proposes an effective encryption technique.
This technique consists of three effective encryption operations
along with a novel key expansion operation. First, the proposed
substitution operation adopts dynamic behavior. Unlike all
other encryption techniques (noticeably [3]), which use a
static substitution operation, our technique uses a dynamic
substitution operation whose state depends on the key and
greatly sensitive to its changes. Second, the diffuse operation
is highly sensitive to changes of the key or the plaintext block
and is capable of greatly magnifying and then propagating
these changes to all of the block’s symbols. Third, the masking
operation uses a novel technique that makes sharp changes to
both the individual symbols of the plaintext block and to its
structure. Finally, the key expansion technique proposes an in-
novative model that combines the lookback-based substitution
with the random manipulations.

The paper makes the following contributions. First, it pro-
poses a full-fledged encryption technique. Second, it proposes
an effective dynamic substitution operation whose functionally
highly depends on the key. Third, it proposes a novel key
expansion technique. Forth, it proposes an effective masking
operation that impacts both the block’s individual symbols and
the structure of the block.

We present our contribution as follows. Section II describes
the technical details of the dynamic substitution operation.
Sections III through VI present the details of the operations
that comprise our proposed cipher. Section VII presents the
technical details of the proposed cipher. Section VIII presents
the related work. Section IX presents the performance analysis
of our technique. We conclude and give directions for future
work in Section X.

II. DYNAMIC BOX SUBSTITUTION

The purpose of the substitution is to move from the
actual block symbols to new symbols. It uses a data structure
superficially similar to S–Box of AES encryption method [3],
but is fundamentally different in its dependency on the key.
This section describes the D–Box and discusses how it is used
in substituting symbols.

A. The D-Box and its Inverse D-Box−1

The D-Box is conceptually K × K array. The D-Box is
populated with the unicode symbols from 0 to K2-1. Each
symbol in the D-Box can be accessed by its column and row
indexes. The positions of the unicode symbols in the D-Box are
never static. Their locations depend on the encryption key. To
do this, we utilize a sequence of integers I1I2...Im, which are
generated in a process that involves the key. (The process for
generating these integers is discussed in Appendix A.) These
integers are used to reposition the symbols in the D-Box. The
repositioning of the symbols is performed by swapping the
symbol at the index i in the D-Box with the symbol at the
index Ii.

In order to use the D-Box for encryption, it is necessary
to define the inverse substitution so that the original block
can be recovered. Fig. 1 illustrates the process of creating D-
Box−1 from the D-Box. Given a 16×16 D-Box, the D-Box−1

is created as follows. For each symbol s in D-Box[r, c], we
create an entry in the D-Box−1 by dividing the 8 bits of s

www.ijacsa.thesai.org 614 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 9, 2018

1

 0 1 … 9 … 15 0 1 … 6 … 15

0 T ¥ 0 u

1 i 1

2 2 T

.

.

 .

‘

6 v 7 i

.

.

 .

.

15 u 15 ¥

0111 0110

0110 1001=i

7

6

Fig. 1. the creation of D-Box−1 (right) from D-Box (left).

into two halves.1 The left half bits create an index x for the
row of D-Box−1 and the right half bits create an index y for
the column of D-Box−1. On the other hand, the 4 bits that
represent r and the 4 bits that represent c are concatenated rc
to create a unicode symbols t. The unicode symbol t is placed
in the index (x, y) of D-Box−1.

Referring to Fig. 1, the symbol v is at the index r = 6, c =
9. The 8 bits that represent v are “01110110” (118 in decimal).
The left half of the bits “0111” (7 in decimal) index the row of
the D-Box−1 and the right 4 bits “0110” (6 in decimal) index
its column. On the other hand, the row index of v in D-Box
is r = 6 (“0110”) and the column index of v in D-Box is c
=9 (“1001”). The binaries of the row index and the column
index are concatenated “01101001” to create the entry i (105
in decimal). The symbol i is placed in the D-Box−1 [7, 6] as
shown in Fig. 1.

B. Symbol-Substitution using D-Box / D-Box−1

We define two substitution operations. The first operation
is called Substitute, which uses the D-Box for replacing a
symbol p with a new one. The second operation is called
Inverse Substitute, which replaces a symbol q using D-
Box−1. Substituting a symbol using the D-Box and D-Box−1 is
straightforward. It is a table lookup operation. Given a symbol
p, the left half bits of p’s binary representation index the row
of the D-Box and the right half bits index its column. Indexing
D-Box−1 is done in an identical way.

Fig. 2 shows an example of D-Box and its Inverse D-
Box−1 (right). For the sake of the simplicity, we use only
the hexadecimal numbers. Since we have only 16 symbols,
our D-Box is 4×4. Therefore, we need two bits to index its
rows and two bits to index its columns. The two bits at the
top index the column and the two bits on the leftmost index
the rows.

To illustrate the substitution operation, consider a block of
four symbols “9C06”. The Substitute operation reads the first
symbol “9” whose binary representation is “1001”. The left
two bits “10” index the row of the D-Box and the right two
bits “01” index the column. The symbol at row 2 (“10”) and

1We assume, without losing the generality, K=16. The D-Box is therefore
16×16. Since we use 16×16 D-Box, the rows are indexed by 4 bits and the
columns by 4 bits. Additionally each symbol in the D-Box is represented by
8 bits.

2

 D-Box D-Box−1

 00 01 10 11 00 01 10 11

00 4 A 6 3 00 D E 4 3
01 2 9 B C 01 0 8 2 9
10 5 7 E 8 10 B 5 1 6
11 F 0 1 D 11 7 F A C

 Fig. 2. D-Box and its inverse D-Box−1.

Input Key: k1k2…kn

Output: manipulated key �

��= Substitute (k1)

� = � + ��

FOR i = 2 to n DO

 ��
� = ���� ⊕ Ki

 �� = Substitute(��
�)

 � = � + ��

RETURN �

Fig. 3. the substitution operation for a key’s symbols.

column 1 (“01”) in the D-Box is retrieved as a substitute for
the symbol “9”. Thus, the symbol “9” is substituted with “7”.
Continuing likewise, the entire block is substituted yielding
the new block “7F4B”.

To recover the original block from “7F4B”, we use the
Inverse Substitute operation. The binary of the symbol “7”
is “0111”. The left half bits “01” index the row of the D-
Box−1 and the right half bits “11” index its column. As a
result, the symbol at row 1 and column 3, which is “9”, is
retrieved from the D-Box−1. The next symbol is “F” whose
binary representation is “1111”. Thus, the symbol at row “11”
and column “11”, which is “C”, is retrieved from the D-Box−1.
Using the same process, we recover the original block “9C06”.

III. KEY EXPANSION

The key expansion process expands encryption keys to an
arbitrary length. The process defines two operations. The first
one is the substitution operation whose logic is fully described
by Fig. 3. The input to this operation is a key, which consists of
n unicode symbols k1k2...kn. The output is a new (substituted)
key W whose length is also n symbols. As the logic clearly
shows, the first symbol k1 in the key is substituted with a new
one using the D-Box. For all the symbols ki (i=2, 3, ..., n), the
operation uses the outcome of substituting ki−1 (or Ti−1) to
substitute the symbol ki. Therefore, to create a new symbol in
the output key W , the operation XORes the current symbol of
the input key ki and the result of the previous substitution Ti−1

to create a new symbol K⋆
i . The symbol K⋆

i is substituted to
produce the new symbol Ti in the output key.

The second operation, called Manipulate, creates sharp
modifications to its input string. The modifications include
changes to both individual symbols and the structure of the
input string. Suppose t1t2...tn be an input string. The manip-

www.ijacsa.thesai.org 615 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 9, 2018

>

≤
=

+

+

1

1

)(

)(

)(

iii

RH

iii

LH

i

ttiftSwapFlip

ttiftFlip

tManipulate

Fig. 4. the manipulation operation.

5

 Manipulate (ti)

1. Generate a random γi ∈ (0, 1)
2. If (γi ≤ LTE) THEN execute Flip action.
3. Else execute FlipSwap action.

γi ← uniform Random

(0, 1)
γi ≤ LTE

execute Flip (ti)

execute FlipSwap (ti)

yes

no

Fig. 5. the dynamic random model for action selection.

ulate operation handles each symbol ti using the two actions
defined in Fig. 4.

The manipulate operation (Fig. 4) handles each symbol ti
based on the lookahead symbol ti+1. If symbol ti lexically
comes before or equal to the lookahead symbol ti+1, the left
half bits of ti are flipped using the action LH

Flip(ti). If otherwise,
the right half bits of ti are flipped and the resulting symbol
is moved to a position determined by the lookahead symbol
ti+1. Consider for instance the input string “pqetreeloopc”.
If the current symbol is “p”, then the left half bits of “p”
(01110000) are flipped because “p” lexically comes before the
lookahead symbol “q” yielding “e” (10000000). Assume that
the current symbol is “q”. The lookahead symbol is thus “e”.
Since “q” lexically comes after “e”, the right half bits of “q”
(01110001) are flipped (01111110) yielding “∼”. Additionally
and based on Fig. 4, the resulting symbol “∼” is moved to the
position 101 % 12 = 5 in the string. (101 is the unicode index
of the lookahead symbol “e” and 12 is the length of the input
string.) This operation results in “e...∼.......”.

Although selecting and applying one of the two actions of
the Manipulate operation based on the lexical order of input
symbols may be effective by itself, we prefer to add more
randomness to the action selection. As such, instead of using
the plain lexical order of the input symbols, we introduce a
random noise to the action selection. In particular, we define
a dynamic random model that guides the selection process
(Fig. 5). Let T be the number of the so-far processed symbols
and P be the number of times in which ti ≤ ti+1. Based on
this, we define two dynamically updated variables LTE and
GT as follows.

LTE =
P

T
and GT = 1−

P

T

Where LTE means “less than or equal” and represents
the ratio in which the condition ti ≤ ti+1 holds. GT means
“greater than” and represents the ratio in which the condition
ti ≤ ti+1 is false. Using these two variables, we redefine our
Manipulate operation (Fig. 4) in Fig. 5.

Although neither LTE nor GT is random, their values

6

Input: Key=k1k2 ...kn

Output: Expanded-Key = Key

1. Let L = Key, T = 1, P =0
/*T=total number of processed symbols and P = number of times in
which the current input symbol lexically comes before the lookahead
symbol*/

2. x1x2 ... xn←Substitute (L)

3. For i=1 to n Do

4. If (xi ≤ xi+1) P ++ //increment P
5. T ++
6. LTE = P/T
7. S = S+ Manipulate (xi)
8. Expanded-Key = Expanded-Key + S
9. If desired length not reached yet, L = S, GOTO 2

10. Return Expanded-Key

Fig. 6. the key expansion process.

change (increase or decrease) based on the lexical order
of the current symbols bi and the lookahead symbols bi+1.
The amount of the bias toward either action therefore does
change. When LTE increases (GT decreases), the likelihood of
executing the Flip action becomes larger than the likelihood of
executing FlipSwap action. Likewise, when GT increases (LTE
decreases), the likelihood of executing the FlipSwap action
becomes larger than that of executing Flip action. As such,
LTE increases (or decreases) the likelihood of the executing
an action over the other, but the choice of the action to be
executed happens randomly since it depends on the random
value γi. For instance, if LTE is 0.8, the likelihood of executing
Flip is much higher than that of executing FlipSwap, but the
actual choice whether to execute Flip or FlipSwap depends on
the current random value γi.

After introducing the two operations that constitute the
key expansion process, we delineate this process in Fig. 6.
The logic is straightforward. We start with the input key
k1k2...kn. The process creates a new version of the input
key using the steps 1 through 7. The symbols of the input
key are first substituted with new symbols xi’s. Next, the new
symbols xi’s are manipulated using the manipulation operation
(Fig. 5). To define the amount of the bias LTE (line 6), we
always increment the number of processed symbols T while
incrementing P only when the currently processed symbols
xi lexically equals to or comes before the lookahead symbols
xi+1. Therefore, the ratio LTE is always in the interval [0, 1]
and represents a likelihood of executing Flip action.

The new version of the key S is concatenated with the
original key. If the desired length has not been reached yet
(step 9), the process uses the latest version S of the key to
create a new version.

IV. DIFFUSE AND INVERSE DIFFUSE OPERATIONS

The diffuse operation detects changes in the input block
and propagates this change to affect every symbol in the cor-
responding output block. To be effective, the diffuse operation
must be highly sensitive to the input’s change regardless of its
magnitude and amplify it so that this change causes tremen-
dous changes to the output. The inverse diffuse operation
reverses the effect of the diffuse operation and recovers the
original input.

Fig. 7 shows the algorithmic steps for the diffuse operation.
As the figure shows, it performs double substitutions for the

www.ijacsa.thesai.org 616 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 9, 2018

7

Forward substitution

C1= Substitute(b1)

For i =2 to n DO

 ti = bi ⊕ ci-1
 ci = Substitute(ti)

Sn= Substitute (cn)

For i =n-1 to 1 DO

 ti = ci ⊕ Si+1
 Si = Substitute(ti)

b1 b2 … bn

S1 S2 … Sn

c
1
c
2
…

c
n

Backward substitution

Fig. 7. the algorithmic steps of the diffuse operation.

block’s symbols: forward and backward substitutions. When
operates on an input block b1b2...bn, the forward substitution
effectively propagates the change in a symbol bi to all the
following symbols bj (j > i). First, the operation substitutes b1
to yield a new symbol c1. For every subsequent input symbol
bi (i > 1), the operation first XORes bi with the result of the
previous substitution ci−1 and substitutes the outcome of the
XOR. That is, the symbol ti is calculated as ti = bi

⊕
ci−1

and then substituted to yield a new symbol ci.

As Fig. 7 shows, the output of the forward substitution
c1c2...cn is passed to the backward substitution. The backward
substitution uses similar logic as the forward except that
it starts from the end of the input block. The backward
substitution substitutes cn to yield the output symbol Sn. For
the input symbols ci (i=n-1, n-2, ..., 1), ci is first XORed with
Si+1 and the result of the XOR operation is substituted to
yield Si.

With this feedback-based forward substitution, the result of
substituting a symbol bi is impacted not only by the symbol bi
per se, but also by the symbol bi−1. That is because if a symbol
bi changes so does its substitution outcome. This change also
impacts the substitution of the following symbol bi+1 due to
the XORing operation, which in turn impacts the substitution
of bi+2, and so on. In other words, the change in symbol bi
collectively creeps to affect all the successive symbols bj (j >
i). Similarly, the backward substitution propagates the change
in the symbol bi back to the symbols bk (k < i). In this case,
no matter where the change occurs, the forward and backward
substitutions always guarantee that this change impacts every
symbol of the input.

The diffuse operation can be reversed. Fig. 8 shows the
algorithmic steps of the inverse diffuse operation. As the figure
shows, the operation starts from the backward substitution to
recover the original block b1b2...bn. The input to backward
substitution is S1S2...Sn. The backward operation yields the
block c1c2...cn. This block is passed as an input to the forward
substitution operation, which recovers the original block.

Table I shows an example of the diffuse operations output.
The input blocks in the first three rows differ in only a single
bit. This minor change causes a very remarkable difference in
the corresponding output blocks. Additionally, the position of

8

.

Forward substitution

b1= Substitute(c1)

For i =2 to n DO

 ti = ci ⊕ bi-1
 bi = Substitute(ti)

cn= Substitute (Sn)

For i =n-1 to 1 DO

 ti = Si ⊕ ci+1
 ci = Substitute(ti)

b1 b2 … bn

S1 S2 … Sn

c
1

c
2

…

c
n

Backward substitution

Fig. 8. the algorithmic steps of the inverse diffuse operation.

TABLE I. A SAMPLE OF THE DIFFUSE OPERATION’S OUTPUT

Input Block Output Block

aaaaaaaaaaaaaaaa A8 9B 32 81 D1 91 B9 EE E5 60 1F A6 50 0E 2B 36

aaaaaaaaaaaaaaab 59 2D B9 BE AB 44 0A 88 35 7A 01 B4 D7 8A 08 CD

aabaaaaaaaaaaaaa F3 3D 00 42 80 EF D9 0F D8 93 E3 55 DC FA 0A 2A

To be or not to be 2A 0F 5B 51 EA E9 0B 41 DC D1 1C 30 58 1C 31 9B 10 76

To Be or not to be B5 71 C4 1F A3 4F D9 27 D9 45 E0 36 86 FE 6C 08 E8 19

.

Horizontal Dimension

V
e
rt

ic
a
l
D

im
e
n
s
io

n
 A z a s … W

a

W P2 P1 P3

s

.

A

z

Fig. 9. the mesh.

the change does play a major role. As an example, compare
between the output in row 1 and the second and third rows.

V. DIRECTIVE GENERATOR

This section describes the directives generator. Subsec-
tion V-A discusses the mesh and Subsection V-B shows how
to use the mesh to produce directives.

A. The Mesh

Conceptually the mesh is a two dimensional array. The
horizontal and vertical dimensions are populated with the
unicode symbols from 0 to some integer N. Fig. 9 provides
an example of a mesh.

Each cell in the mesh is accessed by its row and column
indexes. Each move within the mesh whether along the vertical
or horizontal dimension has a distance and a direction with
respect to the current position. The distance of the move d
is the number of cells passed. The direction of the move is
either toward a lower or a higher index. We capture the move
toward the lower indexes by the flag “–” and toward the higher
indexes by the flag “+” regardless whether this move is along
the horizontal or vertical dimension. For example, if we move
from the current point, say P1, to P2, the distance of the move

www.ijacsa.thesai.org 617 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 9, 2018

10

T
h
e

M
es

h
 (h, v) Mapping

bi

b 1 b 2 …b n
bi, di

s 1 s 2 … s n

±�� ± ��…

si Dimension

Selection

di

U
p
d
a
te

Fig. 10. mapping using the mesh.

is 3 and the direction is captured by “–” because we moved
three cells to the lower indexes. As another example, the move
from the current point P1 to P3 has a distance of 2 and the
direction is “+” because we moved two cells to the higher
indexes.

We can now formally define a directive as a signed integer
± x, where x ≥ 0 represents the distance of the move and ±
represents its direction. Accordingly, moving from the current
point P1 to P2 is captured by the directive “–3” and from P1

to P3 is captured by the directive “+2”.

B. Mesh-Based Mapping

Based on the mesh and directive definition, the proposed
mesh-based mapping consists of two operations: Mapping and
Dimension Selection (see Fig. 10). The mapping operation uti-
lizes three inputs: a block of symbols to be mapped b1b2...bn,
a mapping dimension di (could be the horizontal or the vertical
dimension of the mesh), and a starting point (h, v). The starting
point (h, v) is a point within the boundary of the mesh and
from which the mapping is started; where h represents the
index on the horizontal dimension and v represents the index
on the vertical dimension.

Initially, the starting point is created from the first symbol
of the input bi’s and the first symbol of the input si’s. That
is, the starting point is defined as (s1, b1). The mapping
operation updates the starting point as the mapping proceeds
(after producing each directive). Additionally, for mapping
any subsequent block, the latest starting point is used for the
mapping.

The dimension selection operation utilizes a sequence of
symbols s1s2...sn and produces a dimension di, which can
be either one of the two mesh’s dimensions. The logic of the
dimension selection operation must be based on the sequence
si’s. For the purpose of this paper, the dimension selection
operation uses the following simple functionality: the mapping
dimension di is the horizontal if the unicode index of si is odd;
otherwise the mapping dimension is the vertical.

Based on this, we can formally define our mapping for a
symbol bi as follows. First, the dimension selection operation
uses its input symbol si to determine the mapping dimension
di. The mapping operation uses the current value of the starting
point and the mapping dimension di to map the symbol bi and
produce a directive ± xi. Specifically, the mapping begins from
the starting point and moves along the mapping dimension
toward the index of bi in this dimension. Both the number
of cells passed and the direction with respect to the reference

11

 b e c d a n t g k m

a

n

k

b

c

d

m

t

g

e

Starting point (7, 3)

hi = 7, vi = 3

4

3

Fig. 11. example of mapping the symbol m.

point (starting point) are compiled into a directive –x or +x,
where x is the distance. The mapping operation updates the
starting point to the new position before mapping any new
symbol bj .

Fig. 11 provides an example. Suppose that we want to map
the symbol “m” to the mesh. Suppose that the current value
of the starting point is (h = 7, v = 3) and the input symbol
for the dimension selection operation is “a”. Since the value
of the symbol “a” in the unicode coding is 97, which is odd,
the mapping dimension is the horizontal dimension. Therefore,
the mapping operation starts from the starting point (7, 3) and
moves along the horizontal dimension to the index of “m”.
Since the number of passed cells is 3 and the direction of the
move is to the higher indexes, the mapping yields the directive
“+3” as a mapping value for “m”. The mapping operation
updates the starting point to the new value (10, 3). To further
illustrate the mapping operation, assume now that the symbol
to be mapped is “m”, the starting point is (7, 3), and the
input symbol to the dimension selection is “b” (instead of
“a”). Since the value of “b” in the unicode is 98, which is
even, the mapping dimension is the vertical. Therefore, the
mapping starts from the starting point (7, 3) and moves along
the vertical dimension toward the index of “m”. The number
of passed cells is 4 and the direction of the move is toward the
higher indexes. The mapping operation produces accordingly
the directive “+4” as a result. The starting point is updated to
(7, 7). As a final illustration, suppose that we want to map the
symbol “e”, where the input of the dimension selection is “a”
and the starting point is (7, 3). Since the value of “a” is 97,
which is odd, the mapping dimension is the horizontal. The
mapping operation hence starts from the starting point (7, 3)
and moves along the horizontal dimension to the position of
“e”. Since the distance of the move is 5 and is toward the
lower indexes, the mapping operation produces the directive
”–5” as a result of the mapping. The starting point is updated
to (2, 3).

VI. MASK PROCESS

This mask process deeply alters its input block. The
alteration includes (1) masking the symbols and (2) altering
both the symbols and the block’s structure. Fig. 12 shows the
main operations of the mask process.

First, the mask process executes the Manipulate operation.
This operation uses a sequence of the directives “+d1 +

www.ijacsa.thesai.org 618 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 9, 2018

1

Uses

Applies Mask

Process

Manipulation

Plain values

Signs
Flip action

LR crossover action

Scatter action

RL crossover action

Triggers

Uses
Directive-based

masking
Uses

2

Fig. 12. the main actions of the mask operation.

Current sign Lookahead sign
 Action Performed on the block

�� ����

� �

LR Crossover: left half bits of the symbol ��

is exchanged with the left half bits of ����

� �
Flip: flip the bits of the current input symbol

��

� �

RL Crossover: right half bits of the symbol

�� is exchanged with the right half bits of

����

�
�

Scatter: move the symbol bi ahead di

positions, where di is the plain directive.

�

�

F

L

R

S

�

�

�

�

�

�

Flip: flips the bits of the

current symbol bi

LR Crossover: the current symbol

bi exchanges its left half bits with

the right half bits of the next bi+1.

RL Crossover: the current symbol

bi exchanges its right half bits with

the left half bits of the next bi+1.

Scatter the block

symbols

Lookahead sign

Current sign

Swap

Swap

MANIPULATION OPERATION

Fig. 13. the logic of the manipulate operation. The figure demonstrates how the sequences of signs trigger the manipulation actions.

d2 − d3...” to make two large effects on the block’s symbols:
breaking the structure of the block by reordering its symbols
and altering the individual symbols by modifying or mixing
some of their bits. To perform these effects, the Manipulate
operation uses the signs of the directives to execute four
different actions on the block. Fig. 12 shows these four actions:
Flip, LR Crossover, RL Crossover, and Scatter. Flip action
negates the bits of the symbol. LR Crossover action causes the

current symbol bi to exchange the left half of its bits with the
right half bits of the next symbol bi+1. RL Crossover action
causes the current symbol bi to exchange the right half of its
bits with the left half bits of the next symbol bi+1. The Scatter
action repositions the symbol bi in the place specified by the
directive di.

Fig. 13 shows the conditions under which these actions

www.ijacsa.thesai.org 619 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 9, 2018

are triggered. In particular, an action X is triggered based
on a specific pattern of the current sign and the lookahead
sign. Referring to Fig. 13, when the current sign is “+” and
lookahead sign is also “+”, the Flip action is triggered and flips
all the bits of the current input symbol bi. When the current
sign is “+” and the lookahead symbol is “–”, the LR crossover
action is triggered causing the left half bits of the current
symbol bi to exchange with the right half bits of the next
symbol bi+1. When the current sign is “–” and the lookahead
sign is “+”, the RL crossover action is triggered causing the
right half bits of the current symbol bi to exchange with the
left half bits of the next symbol bi+1. Finally, when the current
sign is “–” and the lookahead sign is “–”, the Scatter action is
triggered causing the current symbol bi to move to the index
specified by di.

It is clear that the former three actions (Flip and LR/RL
Crossover) alter the individual symbols. While the latter action
(Scatter) changes the structural relation between the symbols
of the input block.

Second, the mask process introduces further masking to
the block’s symbols by executing the directive-based masking
operation. This operation does the masking by embedding the
effects of the plain directives. In particular, the plain directives
di’s (without the sign) are XORed with the corresponding
block symbols to yield a masked block c1c2...cn. That is ci =
bi ⊕ di for i = 1, 2, ..., n.

We illustrate the mask process using an example. Suppose
for the sake of simplicity the following 4–byte block “77,
61, 6C, 6C”. Suppose further that the sequence of directives
is “+30–7–18+3”. Fig. 14 shows the steps of masking this
block. The leftmost column represents the index of the current
input symbol–where “0” represents is the index of the leftmost
symbol in the input block. The second column shows the
sequence of signs, where the currently considered sign pattern
is shaded, and shows also the action performed (LR, S, etc.)
based on the shaded sign pattern. The third column shows
the input string (in Hex) and the input symbols which the
corresponding action operates on. The rightmost column shows
the sequence of directives. The manipulation process starts
with the input symbol at index 0 (“77”) and the first sign
pattern “+ –”. According to the logic in Fig. 13, this pattern
triggers the LR Crossover action. The LR action therefore
exchanges the left half bits of the current input symbol “77”
with the right half bits of the next input symbol “61”, yielding
the new block “17, 67, 6C, 6C”. Now, the second input symbol
(at index 1) is “67” and the second sign pattern is “– –”.
This sign pattern triggers the Scatter action, which moves the
second input symbol “67” to the position specified by the plain
directive of the second directive “–7”. That is, Scatter action
moves “67” to the position 7 % 4 = 3. (We take the module
% because the length of the input block is only four symbols.)
Continuing likewise, the Manipulate operation produces the
manipulated block “17, 6C, 66, 38”. The manipulated block is
further masked by XORing the symbols with the plain part of
the directives sequence. (Note the plain directives 30, 7, 18, 3
are transformed to Hex: 1E, 07, 12, 03.) The final output of
the masking operation is “09, 6B, 74, 3B”.

The effect of the mask process is reversible provided that
we have the directives sequence. To recover the original block,
we define the inverse mask process. This process performs

14

 Sign Sequence Block (Hex) Directives

Index + − − + 77 61 6C 6C +30−7−18+3

0

 LR

0111 0111

 0110 0001

1

 + − − +

 S

 17 67 6C 6C

 Scatter to position 3

 7 % 4 = 3
Compute the position to

which the symbol at index

1 is moved.

2

 + − − +

 RL

 17 6C 6C 67
Exchange the right half bits of
the symbol at index 2 (6C)

with the left half bits of the

symbol at index 3 (67).

3 + − − +

 F

 17 6C 66 C7
Flip the bits of the symbol at
index 3 (C7)

- Directive-based masking

09 6B 74 3B

The output of the mask

process.

 17 6C 66 38

 1E 07 12 03 ⊕

 30 7 18 3

 Hex: 1E 07 12 03
Transform the plain

directives to Hex to XOR

them with the output of the
manipulation operation.

Fig. 14. an example of the mask process.

the same operations as the mask process, but in a reverse
order. That is, the inverse mask process applies first the
directive-based masking operation and then the Manipulate
operation. The directive-based masking operation applies the
XOR operation to the block and the plain directives di’s. The
manipulation operation starts from the rightmost of the sign
sequence and moves backwards (instead of starting from the
leftmost). For instance, if the signs sequence is “+ – – + – –”,
the reverse operation starts from the rightmost pattern “– +”,
– –”, “+ –”, “– +”, “– –”, and “+ –”. The Flip, LR Crossover,
and RL Crossover actions do not change. The Scatter action
functionality is changed. Instead of moving the symbol bi to
the position di % n, the action moves the symbol at the psition
di % n, to the current index i.

Fig. 15 shows an example of recovering the original block
“77, 61, 6C, 6C” from the masked block “09, 6B, 74, 3B”. The
sequence of directives is “+30–7–18+3” (“+1E–07–12+03” in
Hex.) As the figure shows, the masking process applies first the
directive-based masking operation to the input block “09, 6B,
74, 3B”, yielding “17, 6C, 66, 38”. The manipulation operation
is then applied starting from the last sign pattern “++” and
from the end of the input block. The pattern “++” triggers
the Flip action, which flips all of the bits of the last symbol
“38”, yielding the new block “17, 6C, 66, C7”. The current
symbol now is “66” (at index 2) and the sign pattern is “– +”.
This pattern triggers the RL crossover action, which causes the
right half bits of the current input symbol “66” to be swapped
with the left half bits of the following symbol “C7”, yielding
the new block “17, 6C, 6C, 67”. The current symbol now is
“6C” (at index 1). The sign pattern is “– –”, which triggers
the Scatter action. The symbol at the index 7 % 4 = 3, which
is “67”, is moved to the current index (position 1), yielding
“17, 67, 6C, 6C”. Finally, the sign pattern “+ –” triggers the
LR crossover action, which causes the symbol at the current
index 0 (“17”) to exchange the left half of its bits with the
right half bits of the next symbol at index 1 (“67”), yielding
“77, 61, 6C, 6C”—the original block.

www.ijacsa.thesai.org 620 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 9, 2018

 09 6B 74 3B

1E 07 12 03

17 6C 66 38

⊕

+ − − +

F

RL

LR

S

F

17 6C 66 C7

F

RL

LR

S

+ − − +
RL

17 6C 6C 67

F

RL

LR

S 17 67 6C 6C

+ − − + S

+ − − +
F

RL

LR

S

LR

77 61 6C 6C

XOR with the

plain directives

Flip the bits of

symbol at index 3

Echange the left half bits of the

current symbol at index 2 with the

right half bits of the symbol at

index 3

Move the symbol at index 7%4

=3 to the current index 1

Echange the right half bits of the

current symbol at index 0 with the

right half bits of the symbol at

index 1

Fig. 15. example of recovering the plaintext block from the masked block.

VII. THE CIPHER TECHNIQUE

This section presents the technical details of the proposed
block cipher. Subsection VII-A presents how to use the op-
erations defined in the previous sections to encrypt blocks
of plaintext. Subsection VII-B presents how to decrypt the
resulting ciphertext.

A. The Encryption Process

Let Bi be plaintext block of size n and Key be a key of
size m, where m is not necessarily equal to n. We impose no
constraints on the size of the block. We also impose no specific
constraints on the size of the key except those required for the
key security. Therefore, a key size of 16 symbols or larger is
highly recommended.

Initially, the encryption process prepares the D-Box and
its inverse D-Box−1 as described in section II. This step is
necessary for the functionality of the encryption operations
and the key expansion.

After the D-Box is created, the encryption process executes
as Fig. 16 shows. The process encrypts the block Bi using
the Key in t rounds. It first expands the Key to size of t × n
symbols, where n is the size of the plaintext block Bi and
t is the number of rounds. Each round applies the diffuse
and substitute operations to the input block Bi as described
in sections II and IV. The outcome is passed to the mask
operation. The mask operation receives also as an input a
sequence of n directives obtained from the directive generator.
In order for the directive generator to produce these directives,
it receives two inputs: the previous plaintext block Bi−1 and
sub-key of size n symbols. The sub-key symbols are obtained
from the expanded key (EK[x: y]). The directive generator

maps the symbols of the previous block Bi−1 to the mesh
using the sub-key as described in Section V.

The encryption of the first block is handled slightly differ-
ently. That is because the first block B1 has no predecessor
block Bi−1. In this case, we use the n symbols of the Key
instead of the block Bi−1. Therefore, the same n symbols of
the Key are used as an input for both the Mapping and the
Dimension selection operations.

B. The Decryption Process

The decryption process takes ciphertext and a key as an
input and uses the key to produce the corresponding plaintext
as an output. In order to accomplish this, the decryption
process uses the inverse of the operations that are used
during the encryption. The order in which the operations are
applied is also reversed. Therefore, the decryption operations
are executed in the following order: Inverse Mask, Inverse
Substitute, and Inverse Diffuse. Fig. 17 shows the detailed
steps of the decryption process. As the figure shows, the
first operation to be applied to the input is the inverse mask
operation instead of diffusion operation. The inverse substitute
uses the D-Box−1 to reverse the effect of the substitution
operation. Finally, the inverse diffuse operation is applied to
reverse the effect of the diffuse operation.

In addition as Fig. 17 shows, the expanded key is used
backwards. That is, the decryption process starts from the end
of the expanded key (with t × n symbols) instead of starting
from the beginning. Therefore, the decryption process uses the
first n key symbols from the right then the second n symbols,
and so on until the last left n symbols. The sequences of
directives are also used backwards. As Fig. 17 shows, the last

www.ijacsa.thesai.org 621 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 9, 2018

1

¥

1. Diffuse

2. Substitute

3. Mask ro
u

n
d
 1

1. Diffuse

2. Substitute

3. Mask ro
u
n

d
 2

1. Diffuse

2. Substitute

3. Mask ro
u
n
d

 t

Bi

Directive

Generator

Bi-1 EK (n*t)

Directive

Generator

Directive

Generator

EK [1: n]

EK [n+1:2n+1]

-x1+x2…-xn

Bi-1

Bi-1

+y1-y2…-yn

-z1+z2…+zn

EK [(t-1)n+1: t*n+1]

ê

ÿ

Ciphertext

Expand Key

Key

Fig. 16. the encryption process.

1. Inverse Mask

2. Inverse Substitute

3. Inverse Diffuse ro
u

n
d
 t

2. Inverse Substitute

1. Inverse Mask

3. Inverse Diffuse

ê

1. Inverse Mask

2. Inverse Substitute

5. Inverse Diffuse ro
u
n
d

 1

ro
u
n

d
 2

Ciphertext

Directive

Generator

Bi-1 EK (n*t)

Directive

Generato

r

Directive

Generator

EK [1 : n]

-x1+x2…-xn

Bi-1

Bi-1

+y1-y2…-yn

-z1+z2…+zn

EK [(t-1)n+1 : t*n]

¥

ÿ

Plaintext: Bi

EK [(t-2)n+1 : (t-1)*n]

Expand Key

Key

Fig. 17. the decryption process.

directive sequence in the encryption process “−z1+z2...+zn”
is used first.

VIII. RELATED WORK

The most related encryption technique to ours is the
advanced encryption standard (AES) [3]. The AES encrypts
a block of plaintext in many rounds. The number of rounds
depends on the size of the key. In each round, AES applies
different operations: key round, substitution using S-Box, row
shifting, column mixing, and so on. The AES technique is
NIST’s standard [24]. Many researchers, however, reported
major weaknesses. Specifically, the AES suffers from the weak-
ness in the S-Box, making it more susceptible to computational
attacks [5][19]. Several proposals have been suggested to
improve the S-Box [6][20][21].These proposals claimed to
improve the effectiveness of the S-Box. The effectiveness of
the S-Box is further enhanced in [22]. As claimed in [22], the
new enhancement increases the algebraic complexity of the S-
Box and therefore it becomes more immune against differential
and algebraic attacks. These extensions, however, have their
inherent drawbacks as pointed out in [5].

Despite the importance of these improvements and the
work around methods, we believe that strengthening the
substitution part of the encryption algorithms (Mainly AES)
cannot be properly done by merely adding more mathematical
transformations. We think the strength of the substitution must
be based on the key as proposed by the technique herein.
In other words, instead of having static substitution table (S-
Box), it is more effective to have a more dynamic substitution
operation whose state must depend on the key and change
according to the changes of the this key (D-Box).

Data encryption standard (DES) and its successive im-
provements such as Triple DES [9][10] are symmetric block
ciphers that follow Feistel cipher structure [30]. Their en-
cryption model depends on applying a set of substitutions
and manipulation operations augmented with key evolution.
Although this algorithm is used to be a standard, its security
challenged [23][25]. Even with fundamental improvement such
as using two keys, the algorithm still suffers and its security
in question [23].

MARS, Blowfish, and Serpent [14][11][13] are symmetric
block ciphers. Their encryption model depends like [9] on
a set of substitutions and manipulation operations. Although
their authors purport that these methods provide high levels of
security, they failed to pass important randomness tests [27].

LEX encryption technique [16] is a stream cipher that
is inspired by the one-pad encryption method (called also
Vernam cipher). Although LEX claimed to have strong security
properties, it uses the same round key repeatedly. This repeated
use of the key makes it vulnerable to key-recovery attacks [28].
Our technique never uses the same key; each round uses a
different version of the key and thus each block is encrypted
using different keys.

Camellia encryption method [17] is a symmetric encryption
technique, supporting128-bit block size and 128, 192, 256-
bit key. Efficiency on both software and hardware platforms
is a remarkable characteristic of Camellia in addition to its
high level of security. The main important difference between
our technique and Camellia is that ours has more effective
diffusion operation along with a dynamic substitution box.

To conclude this section, it is worth mentioning that

www.ijacsa.thesai.org 622 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 9, 2018

our proposed encryption method possesses several important
characteristics that make it unique. First, in contrast to all
encryption methods, our technique implicitly uses the key in
every encryption operation. Second, our technique uses the
plaintext to introduce further confusion to the encryption. In
particular, it embeds the effect of the previous plaintext block
in the encryption of the next block. As such, changes in the
previous block impact not only the encryption of the previous
block itself but the encryption of the next block as well; a
feature that–to the best of our knowledge–is unique to our
cipher. Third, our technique triggers the manipulation actions
(these actions belong to the masking process) based on the
signs of the directives. Since the signs of the directives depend
on both the key and the plaintext blocks, the sequence of the
triggering highly relies on the plaintext blocks and keys and
greatly sensitive to their changes. This makes predicting the
triggering order is infeasible. Finally, the functionality of our
substitution operation changes with the changes of the key.
This adds additional confusion layer, making the substitution
step much more effective than the static substitution used by
other encryption techniques.

IX. PERFORMANCE ANALYSIS

We present our performance analysis in this section. We
first present an example that demonstrates some of our tech-
nique’s features and then analytically discuss its security prop-
erties in Subsection IX-B. We present the empirical evaluation
in Subsection IX-C.

A. Encryption Example

We start our analysis by presenting examples of the tech-
nique’s output (ciphertext). The examples are meant to be
simple but indicative. For the sake of simplicity, we assume
that the plaintext blocks and the keys are of length 16 symbols.
Fig. 18 shows the ciphertexts for the corresponding plaintexts,
keys, and previous blocks. Referring to the figure, one can
see that the output changes drastically when the input slightly
changes. Consider for instance the first five rows, which are
encrypted using the same key. Although these plaintexts differ
in a single bit, their respective ciphertexts are greatly different.
Changing a single bit in the key causes the ciphertexts for the
same plaintexts to be really different (e.g. compare between
the ciphertexts in rows 6 and 7). Finally, changing the previous
block highly impacts the resulting ciphertexts. For instance, a
quick look at rows 1 and 9 shows that changing a single bit
in the previous block causes large changes to the ciphertexts
of the same plaintext block.

This property of the proposed technique is very important.
From one hand, a tiny change to any of the input (plaintext,
key) results in extremely large changes to the respective
ciphertexts. From the other hand, a tiny change to the previous
plaintext block also largely impacts the ciphertext of the
following plaintext block. From the security prospective, the
proposed technique causes the relationship between plaintext
and ciphertext to be so complicated and untraceable.

B. Analytical Performance Evaluation

The proposed technique has high confusion. The key is
never explicitly used in the encryption; it is implicitly used via

the directives. The key “trace” in the ciphertext is therefore so
small to help predicting the used key. As such, the relationship
between the key and the ciphertext is untraceable.

The proposed technique is highly sensitive to the changes
of the input (see Fig. 18). This sensitivity provides an addi-
tional strong security guard. It makes the relationship between
a key, ciphertext, and plaintext so complicated in a sense that if
any of them changes, the respective ciphertext greatly changes.
We attribute this high sensitivity to the changes of the input
(plaintext or a key) to all the encryption operations (especially
the diffuse and key expansion operations).

The state of the substitution box (D-Box) highly depends
on the encryption key. Each different key results in a largely
different new state and consequently results in different substi-
tution outcomes. This means that changes of the key cause the
same plaintext block to be substituted differently. This is in
contract to the other encryption algorithms (especially AES),
where the substitution of a block is independent of the key.
That is, the outcome of substituting a block remains the same
regardless of the used key.

The key expansion operation adopts a highly complicated
computational model. From one hand, the substitution sub-
operation relates the process of substituting the current symbol
to the outcome of substituting the proceeding symbols. This
means that the outcome of the substitution for the current
symbol ki is impacted by all the previous symbols kj (j=1,
2, ..., i-1). On the other hand, the key expansion manipula-
tion sub-operation is highly complicated process. It partially
depends on the order of the key’s symbols. For each new key,
we have a new state (symbol order). In addition, the selection
of the key’s manipulation operations depends on a random
process. In other words, although the order of the symbols
may bias the selection toward the operation with the higher
ratio, the selection of the operation to be applied is nevertheless
random. Even more, the random process is always seeded with
latest version of the key. These properties assure that the key
manipulation operations have a greatly complicated functional
behavior in a sense that the number of states is tremendously
large.

The mask process has perhaps the highest impact on
its input block. It makes deep changes to both individual
symbols and to the structure of the block, largely diverging
the resulting block from the input block. The functionality
of this operation fully depends on directive sequences. The
manipulation operation, which modifies the individual symbols
and the structure of the block, depends on the pattern of the
signs (of the directives). Since, this pattern depends on both
the key and the previous block, changes to either the key
or the previous block certainly results in a different pattern
(regardless of the magnitude of the change) and consequently
in a different functional behavior. Further the directive-based
masking operation, which embeds the effect of the plain
directive (value without the sign), depends also on the key and
the previous block and changes according to their changes. As
such, a change to the key or the previous block creates different
modifications to the output of the masking operation.

www.ijacsa.thesai.org 623 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 9, 2018

Previous block: 0000000000000000

Key Plaintext Ciphertext

0000000000000000 0000000000000000 59 e0 5a 42 96 f4 13 6d 46 c9 c3 c7 5d 27 70 57

0000000000000000 1000000000000000 a6 9d c4 12 55 c2 57 da 04 ba b5 62 f4 49 b0 cb

0000000000000000 0000000000000001 8e a2 13 87 55 d7 8f dc 13 ab 66 c1 97 76 65 4a

0000000000000000 0000000001000000 67 44 cc ec e5 e4 3f 2b f8 84 9f ac 11 30 25 8a

0000000000000000 1000000001000000 f8 29 21 d8 33 49 2f f0 3b 57 74 e1 20 08 a3 32

1000000000000000 0000000000000000 44 28 e3 80 4e 0b fb 20 98 70 1b d2 59 4b 57 fe

0000000000000001 0000000000000000 6d 42 3a aa ae c0 d8 91 4c 48 d6 65 d3 31 cb 22

Previous block: 1000000000000000

0000000000000000 0000000000000000 9f 66 a2 3e 34 f5 d4 96 ee 40 5d 92 89 ca c3 5c

Previous block: 0000000000000001

0000000000000000 0000000000000000 71 32 c7 77 84 96 19 9f 12 3e 82 5b 55 77 fe 76

Previous block: 0000000000000001

ACF98IFTRmk90AGT To beornotto be! 5b 8c 80 61 77 cc 3a 81 b7 41 3c 39 6a 60 35 d8

ACF98IFSRmk90AGT To beornotto be! f3 99 d0 49 68 b8 4e 4c 7a 88 a8 e8 d2 7d 25 ae

ACF98IFSRmk90AGT To beornotto be. 1b db 47 a4 3f 76 03 50 b3 7 95 0e 19 1b d0 9f

Fig. 18. The proposed technique output examples.

C. Empirical Evaluation

We tested the performance our encryption technique ac-
cording to the testing rules specified by the national institute
for standards and technology–NIST [27]. We specifically pre-
pared the testing data as specified in [26].

1) Randomness Statistical Tests: We used the following
tests to evaluate the randomness properties of our tech-
nique [27].

• Runs test: determines whether the number of runs of
ones and zeros of various lengths is as expected for a
random sequence.

• Frequency Test (Monobit): determines whether the
number of ones and zeros in a sequence are approx-
imately the same as would be expected for a truly
random sequence.

• Discrete Fourier Transform Test (Spectral): detects
periodic features (i.e. repetitive patterns that are near
each other) in the tested sequence that would indicate
a deviation from the assumption of randomness.

2) Randomness Hypotheses: We have two hypotheses to
test:

• H0 (Null): the output of the encryption technique is
random.

• H1 (Alternative): the output of the encryption tech-
nique is not random.

Accepting H0 or H1 depends on a computed value called
p-value and a specified value called the significance level α.
The p-value is computed by the applied statistical test based
on an input sequence. The significance level α is specified by
the tester (e.g. 0.00001, 0.001, 0.01, 0.05 are typical values
for α). In particular if p-value ≥ α, H0 is accepted (H1 is
rejected); otherwise H0 is rejected (H1 is accepted).

3) Test Data: The testing data were prepared according
to [26]. Without losing the generality, we confine the D-Box
to be 16×16. This allows for representing each symbol by 8
bits. We used the following sets of data to test our encryption
technique.

1) Key Avalanche Test. The objective of this data set is
to examine the sensitivity of our algorithm to changes
in the key.

2) Plaintext Avalanche Test. The objective of this data
set is to examine the sensitivity of our algorithm to
changes in the plaintext.

3) Plaintext/Ciphertext Correlation. The objective of
this data set is to study the correlation between
plaintext–ciphertext pairs.

Firstly, to study the sensitively of our algorithm to the
key change, we created and analyzed 456 sequences of size
32,768 bits each. We used a 256-bit (32 bytes) plaintext of all
zeros and 456 random keys each of size 128 bits (16 bytes).
Each sequence was created by concatenating 128 derived
blocks constructed as follows. Each derived block is created
by XORing the ciphertext created using the fixed plaintext
and the 128-bit key with the ciphertext created using the fixed
plaintext and the perturbed random 128-bit key with the ith

bit changed, for 1 ≤ i ≤ 128.

Secondly, to analyze the sensitivity to the plaintext changes,
we created and analyzed 456 sequences of size 32,768 bits
each. We used 456 random plaintexts of size 256 bits (32 bytes)
and a fixed 128-bit key of all zeros. Each sequence was created
by concatenating 128 derived blocks constructed as follows.
Each derived block is created by XORing the ciphertext created
using the 128-bit key and the 256-bit plaintext with the cipher-
text created using the 128-bit key and the perturbed random
256-bit plaintext with the ith bit changed, for 1 ≤ i ≤ 256.

Thirdly, to study the correlation of plaintext–ciphertext
pairs, we constructed 456 sequences of size 115,712 bits per
a sequence. Each sequence is created as follows. Given a
random 128-bit key and 452 random plaintext blocks (the

www.ijacsa.thesai.org 624 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 9, 2018

TABLE II. KEY AVALANCHE TEST RESULTS

Randomness Test Successes Failures Success Rate Upper limit of CI (0.05)

Runs test 452 4 99.1% 36.76

Monobit test 445 11 97.6% 36.76

Spectral test 424 32 93.0% 36.76

TABLE III. PLAINTEXT AVALANCHE TEST RESULTS

Randomness Test Successes Failures Success Rate Upper limit of CI (0.05)

Runs test 448 9 98.2% 36.76

Monobit test 442 14 96.9% 36.766

Spectral test 418 38 91.7% 36.76

TABLE IV. PLAINTEXT/CIPHERTEXT CORRELATION TEST RESULTS

Randomness Test Successes Failures Success Rate Upper limit of CI (0.05)

Runs test 447 9 98.0% 36.76

Monobit test 443 13 97.1% 36.76

Spectral test 421 35 92.3% 36.76

block’s size is 256 bits), a binary sequence was constructed by
concatenating 452 derived blocks. A derived block is created
by XORing the plaintext block and its corresponding ciphertext
block. Using the 452 (previously selected) plaintext blocks, the
process is repeated 455 times (one time for every additional
128-bit key).

During the encryption, we set the number of rounds t to 8
rounds for each block because this number gives high perfor-
mance. (Please see appendix A for more detailed discussion
on the number of rounds t.)

Tables II, III, and IV show the results of the applied
randomness test to the above data sets. The tables show
the applied tests, the number of sequences that passed the
respective test, the number of failed sequences, and the rate
of success. For each test, the significance level was fixed at
0.05, which implies that, ideally, no more than five out of
hundred binary sequences may fail the corresponding test.
However, in all likelihood, any given data set will deviate
from this ideal case. A more realistic interpretation is to use a
confidence interval (CI) for the proportion of binary sequences
that may fail at the 0.05. The rightmost column shows the
maximum number of binary sequences that are expected to
fail the corresponding test. For instance, a maximum of 36.76
(or 36) binary sequences are expected to fail each of the three
tests.2

All the three tables show that the success rate is remarkably
high. In fact, 99.1% of the sequences for testing the key
avalanche (Table II) passed the Runs test, 97.6% passed the
Monobit test, and 93.0% of the sequences passed the Spectral
test. Tables III and IV lead to the same conclusions. Addition-
ally, the rightmost column, which specifies the highest number
of sequences that are expected to fail the test, shows that
number of sequences that failed the corresponding randomness
tests is fewer than the expected number at significance level
of 0.05. Table III shows, however, that the number of the
sequences that failed Spectral test is actually greater than
the highest number of sequences that are expected to fail

2The maximum number of binary sequences that are expected to fail at
the level of significance α is computed using the following formula [29]:

S(α+3×
√

α×(1−α)
S

), where S is the total number of sequences and α is

the level of significance.

(actual 38, expected 36). Also, in Table IV, the number of the
sequences that failed Spectral test is 35, which is very close
the maximum number of the sequences that are expected to
fail.

X. CONCLUSIONS AND FUTURE WORK

We proposed a full-fledged encryption technique. This
technique uses effective operations to manipulate blocks of
plaintext and create deep changes to both the structure of
the block and the individual symbols. By virtue of these
operations, the technique ensures high diffusion, confusion,
and avalanche effect. The performance numbers in subsection
9.3 clearly indicate the high avalanche effect. The technique
has passed three NIST–recommended randomness tests for
evaluating the effeteness of encryption technique. In fact, the
least percentage of the sequences that passed these tests was
91.7%.

We have two main objectives for future work. First, we
want to replace the built-in random generator, which is used
in the key expansion operation, with a more effective random
generator. Second, we plan also to apply more randomness
tests on a larger set of plaintexts and keys.

REFERENCES

[1] M. J. Al-Muhammed and R. Abuzitar, κ–Lookback Random-Based Text
Encryption Technique, Journal of King Saud University-Computer and
Information Sciences, 2017. https://doi.org/10.1016/j.jksuci.2017.10.002

[2] M. J. Al-Muhammed and R. Abuzitar, Dynamic Text Encryption, Inter-
national Journal of Security and its Applications (IJSIA), Vol. 11, No.
11, pp. 13–30, November 2017.

[3] J. Daemen and V. Rijmen, The Design of RIJNDAEL: AESThe Advanced
Encryption Standard, Springer, Berlin, Germany, 2002.

[4] A. Abusukhon, Z. Mohammad, and M.Talib, A Novel Network Security
Algorithm based on Encryption Text into a White-Page Image, Proceed-
ings of the World Congress on Engineering and Computer Science, Vol.
I WCECS 2016, October 19-21, 2016, San Francisco, USA.

[5] N. A. Azam, A Novel Fuzzy Encryption Technique Based on
Multiple Right Translated AES Gray S-Boxes and Phase Embed-
ding, Security and Communication Networks, Vol. 2017, 9 pages.
https://doi.org/10.1155/2017/5790189

[6] J. Liu, B. Wei, X. Cheng, and X. Wang, An AES S-box to Increase
Complexity and Cryptographic Analysis. In Proceedings of the 19th

International Conference on Advanced Information Networking and
Applications (AINA’05), pp. 724–728, Taipei, Taiwan, March 2005.

www.ijacsa.thesai.org 625 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 9, 2018

[7] D. Nilesh and M/ Nagle, The New Cryptography Algorithm with High
Throughput, 2014 International Conference on Computer Communica-
tion and Informatics (2014), October 2014.

[8] B. Modi and V. Gupta, A Novel Security Mechanism in Symmetric
Cryptography Using MRGA. In: Sa P., Sahoo M., Murugappan M.,
Wu Y., Majhi B. (eds) Progress in Intelligent Computing Techniques:
Theory, Practice, and Applications. Advances in Intelligent Systems and
Computing, vol 719. Springer, Singapore, 2018

[9] S.-J. Han, the Improved Data Encryption Standard (DES) Algorithm. In
Proceedings of IEEE 4th International Symposium on Spread Spectrum
Techniques and Applications, pp. 1310–1314, Germany, 1996.

[10] J. Verma and S. Prasad, Security Enhancement in Data Encryption Stan-
dard. In: Prasad S.K., Routray S., Khurana R., Sahni S. (eds) Information
Systems, Technology and Management (ICISTM) 2009. Communications
in Computer and Information Science, Vol. 31. Springer, Berlin, Heidel-
berg, 2009.

[11] T. Nie and T. Zhang, A Study of DES and Blowfish Encryption
Algorithm, In Proceedings of IEEE Region 10th Conference, Singapore,
Jan. 2009.

[12] P. Patil, P. Narayankar, D.G Narayan, S. M. Meena, A Comprehensive
Evaluation of Cryptographic Algorithms: DES, 3DES, AES, RSA and
Blowfish, Procedia Computer Science, Vol. 78, pp. 617-624, 2016.

[13] R. Anderson, E. Biham and L. Knudsen: Serpent: A
Proposal for the Advanced Encryption Standard. Available at
http://www.cl.cam.ac.uk/ rja14/Papers/serpent.pdf

[14] C. Burwick, D. Coppersmith, E. D’Avignon, R. Gennaro, S. Halevi, C.
Jutla, and N. Zunic, The MARS Encryption Algorithm, IBM, August
1999.

[15] S. A. Y. Hunn, S. Z. binti . Naziri, and N. B. Idris, The Development
of Tiny Encryption Algorithm (TEA) Crypto-core for Mobile Systems,
2012 IEEE International Conference on Electronics Design, Systems and
Applications (ICEDSA), Kuala Lumpur, Malaysia, Nov. 2012.

[16] A. Biryukov. Design of a new stream cipherLEX. In M. Robshaw and
O. Billet (Eds.): New Stream Cipher Designs, LNCS 4986, Springer–
Verlag Berlin Heidelberg, pp. 48–56, 2008.

[17] K. Aoki, T. Ichikawa , M. Kanda , M. Matsui , S. Moriai , J. Nakajima
, T. Tokita, Camellia: A 128–Bit Block Cipher Suitable for Multiple
Platforms-Design and Analysis, In Proceedings of the 7th Annual
International Workshop on Selected Areas in Cryptography, pp.39–56,
August 14–15, 2000.

[18] M. F. Mushtaq, S. Jamel, A. H. Disina, Z. A. Pindar, N. S. A. Shakir,
and M. M. Deris, A Survey on the Cryptographic Encryption Algorithms,
International Journal of Advanced Computer Science and Applications
(IJACSA) , Vol. 8, No. 11, pp. 333–344, 2017.

[19] J. Rosenthal, A Polynomial Description of the Rijndael Advanced
Encryption Standard, Journal of Algebra and Its Applications, Vol. 2,
No. 2, pp. 223–236, 2003.

[20] L. Jingmei, W. Baodian, and W. Xinmei, One AES S-box to Increase
Complexity and its Cryptanalysis, Journal of Systems Engineering and
Electronics, Vol. 18, No. 2, pp. 427–433, 2007.

[21] L.Cui and Y. Cao, A New S-box Structure Named Affine-Power Affine,
International Journal of Innovative Computing, Information and Control,
Vol. 3, No. 3, pp. 751–759, 2007.

[22] M. Khan and N. A. Azam, Right Translated AES Gray S-boxes, Security
and Communication Networks, Vol. 8, No. 9, pp. 1627–1635, 2015.

[23] C. J. Mitchell, On the Security of 2–Key Triple DES, IEEE Transactions
on Information Theory, Vol. 62, No. 11, pp. 6260–6267, Nov. 2016.

[24] NIST Special Publication 800–67 Recommendation for the Triple Data
Encryption Algorithm (TDEA) Block Cipher Revision 1, Gaithersburg,
MD, USA, Jan. 2012.

[25] S. Lucks, Attacking Triple Encryption, In Proceedings of the 5th

International Workshop Fast Software Encryption (FSE), pp. 239–253,
Mar. 1998.

[26] Jr. Juan Soto. Randomness Testing of the AES Candidate Algorithms.
http://csrc.nist.gov/archive/aes/round1/r1-rand.pdf, Accessed December
2017.

[27] Rukhin, A., Soto, J., Nechvatal, J., Smid, M., Barker, E., Leigh, S.,
Levenson, M., Vangel, M., Banks, D., Heckert, A., Dray, J., and Vo, S.
A Statistical Test Suite for Random and Pseudorandom Number Gener-
ators for Cryptographic Applications. NIST special publication 800–22,

National Institute of Standards and Technology (NIST), Gaithersburg,
MD, 2001.

[28] A. Bogdanov, F. Mendel, F. Regazzoni, V. Rijmen, and E. Tischhauser,
ALE: AES-Based Lightweight Authenticated Encryption. In: S. Moriai
(ed.) FSE 2013. LNCS, Vol. 8424, pp. 447–466. Springer, Heidelberg,
2014.

[29] J. Soto, Randomness Testing of the Advanced Encryption Standard
Candidate Algorithms, NIST IR 6390, September 1999.

[30] W. Stallings, Cryptography and Network Security: Principles and
Practice, 7th edition, Pearson, 2016.

APPENDIX A
ADDITIONAL DATA

A. Key-Based Numbers

We describe in this section how we generate the integers
Ii for reordering the content of D-Box. The process involves
two steps.

1) STEP I: In this step, the encryption key is processed
using the key handling procedure proposed by AES (advanced
encryption standard). The AES key handling algorithm takes
as input a 4-word (16-byte) key and produces a linear array
of 44 words (176 bytes). The key is copied into the first four
words of the expanded key. The remainder of the expanded
key is filled in four words at a time. Each added word w[i]
depends on the immediately preceding word, w[i-1], and the
word four positions back, w[i-4]. In three out of four cases,
a simple XOR is used. For a word whose position in the w
array is a multiple of 4, a more complex function is used.
Fig. 19 illustrates the generation of the first eight words of the
expanded key, using the symbol g to represent the complex
function.

The function g consists of the following sub-functions:

1) RotWord performs a one-byte circular left shift on
a word. This means that an input word [b0, b1, b2, b3]
is transformed into [b1, b2, b3, b0].

2) SubWord performs a byte substitution on each byte
of its input word, using the static substitution box (or
Sbox)—See Fig. 20.

3) The result of steps 1 and 2 is XORed with a round
constant, Rcon [j].

The round constant is a word in which the three rightmost
bytes are always 0. Thus the effect of an XOR of a word with
Rcon is to only perform an XOR on the leftmost byte of the
word. The round constant is different for each round and is
defined as:

Rcon[j] = (RC[j],0,0,0),

where RC[j] = 2 . RC[j-1] and RC[1] = 1

The multiplication is defined over the field GF(28). The
values of RC[j] in hexadecimal are defined in Table V.

2) STEP II: In this step, the last 32 bytes (out of 176) of
the sequence generated by Step I are used as a seed for the
key-based number generator, which is described in [1]. Fig. 21
shows the algorithmic steps of the generator.

The key-based numbers are generated using the steps (2)–
(5). As the figure shows, the symbols of the seed are summed

www.ijacsa.thesai.org 626 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 9, 2018

TABLE V. THE VALUES OF RC[J]

j 1 2 3 4 5 6 7 8 9 10

RC[j] 01 02 04 08 10 20 40 80 1B 36

16

Fig. 19. the AES key handling procedure.

by multiplying the integer value of each seed’s symbol ki by
its position in the seed (step 2). The sum is then circularly left
shifted n positions to yield Sh (n is the value of the first two
symbols in the seed) in step 3 and Sh is XORed with the Sum
in step 4 to yield Ls.

Assuming the number of symbols in the D-Box is N, the
number Ls is therefore adjusted by taking the module N. The
seed is updated in step (5) by concatenating the seed with
the current sum. The seed hence grows after each iteration.
If, at any iteration, step (2) results in overflow in the sum,
the procedure reduces the seed to 32 symbols by using the
middle 32 unicode symbols as a new value for the seed. Steps
(2) through (5) repeat until the condition no longer holds.
(The condition determines the desired number of values to
be generated.)

It is worth mentioning that the numbers created by the
generator in Fig. 21 are random. The proof of the randomness
properties of the generator in Fig. 21 is beyond the scope of
this paper and can be found elsewhere [1].

B. Number of Rounds (t)

The number of the encryption rounds t, applied to each
plaintext block, is very important and has a really large
impact on the randomness properties of the output (ciphertext).
More rounds (large values of t) result in higher diffusion and
confusion (random output). More rounds, however, increase
the time for encrypting a block. Thus, we look for a value
for t that achieves two objectives: (1) high randomness in the
output and (2) short execution time.

17

Fig. 20. the AES SBox.

(1) Seed = key

 Repeat

(2) Sum = ∑ � × ��
|���	|

�
�

(3) Sh = LShift (sum, n)

(4) Ls = (Sum ⨁ Sh) % �

(5) Seed = concatenate (Seed, Sum)

 Until condition

Fig. 21. the algorithmic steps for generating key-based numbers.

To find the best number of rounds, we conducted many
experiments, where we gradually increased the number of
rounds from 1 to 10. We used in our experiments the same
plaintexts in Section IX. For each value of t, we applied
our encryption technique to 200 sequences each is of size
32,768 bits. We then subjected the resulting ciphertexts to three
randomness tests (Runs, Monobit, and Spectral tests).

Table VI shows the results of the experiments. The results
are presented in terms number of rounds t, the number of the
sequences that passed the corresponding randomness test, and
the rate of success. As the numbers show, there is a significant
improvement in the success rate as t increases from 1 to 8.
When t is greater than 8, the improvement in the success rate
becomes slightly small. For instance, increasing the number
of rounds from 8 to 9 slightly improves the rate of success
(especially for Spectral), but this slight improvement causes
really large increase in the time (see Fig. 22).

Fig. 22 plots the time in milliseconds as a function of the
number of rounds. The time linearly increases as the number
of rounds increases. This increase in the time appears to be
significant. Considering both Table VI and Fig. 22, one can
conclude that the amount of the improvement in the rate of
success justifies the time increase up to t= 8. When t is larger
than 8, the improvement in the success rate does not really
justify the incurred time overhead.3

3The purpose of presenting the time required for encrypting each sequence
is not to show the time performance of our technique. The implementation
is only a proof of concept and we did not optimize for time performance.
We only mention the time to assert that increasing the number of the rounds
increases the success rate, but this increase also entails larger time overhead.

www.ijacsa.thesai.org 627 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 9, 2018

TABLE VI. CHANGES IN THE RANDOMNESS RATE AS THE NUMBER

ROUNDS INCREASES

No. of Sequences Rounds (t) Test Successes Success Rate (%)

200 1

Runs Test 100 50%

Monobit 25 22.5%

Spectral 0 0%

200 2

Runs Test 119 59.5%

Monobit 97 48.5%

Spectral 1 0.5%

200 3

Runs Test 122 61%

Monobit 96 48%

Spectral 3 1.5%

200 4

Runs Test 156 78%

Monobit 133 66.5%

Spectral 3 1.5%

200 5

Runs Test 183 91.5%

Monobit 167 83.5%

Spectral 58 29%

200 6

Runs Test 188 94%

Monobit 171 85.5%

Spectral 103 51.5%

200 7

Runs Test 192 96%

Monobit 182 91%

Spectral 147 73.5%

200 8

Runs Test 199 99.5%

Monobit 195 97.5%

Spectral 186 93%

200 9

Runs Test 200 100%

Monobit 195 97.5%

Spectral 189 94.5%

200 10

Runs Test 200 100%

Monobit 197 98.5%

Spectral 188 94%

0

200

400

600

800

1000

1 2 3 4 5 6 7 8 9 10

T
im

e
 (

M
il

li
se

c
o

n
d

s)

Number of Rounds (t)

Fig. 22. The time increase as a function of the number of rounds.

www.ijacsa.thesai.org 628 | P a g e

