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Abstract
In the literature different concepts of compatibility between a projective structure
P and a conformal structure C on a differentiable manifold are used. In particular
compatibility in the sense ofWeyl geometry is slightlymore general than compatibility
in the Riemannian sense. In an often cited paper (Ehlers et al. in: O’Raifertaigh (ed)
General Relativity, Papers in Honour of J.L. Synge, Clarendon Press, Oxford, 2012)
Ehlers/Pirani/Schild introduce still another criterionwhich is natural from the physical
point of view: every light like geodesics of C is a geodesics of P . Their claim that
this type of compatibility is sufficient for introducing a Weylian metric has recently
been questioned (Trautman in Gen Relativ Gravit 44:1581–1586, 2012); (Vladimir in
Commun Math Phys 329:821–825, 2014); as reported by Scholz (in: A scalar field
inducing a non-metrical contribution to gravitational acceleration and a compatible
add-on to light deflection, 2019). Here it is proved that the conjecture of EPS is correct.

Keywords EPS compatibility · Weyl geometric compatibility · Foundations of
gravity · Conformal structure · Projective structure
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Introduction

In a widely read paper [7] J. Ehlers, F. Pirani and A. Schild (EPS) argued that a
projective structure P and a conformal structure C on a differentiable manifold M
determine aWeylian metric on M , if only the geodesics ofP are light like geodesics
of C . This statement complements a proposal of H. Weyl for basing the geometrical
framework of gravity theory on the observable structures of particle trajectories and
light propagation, rather than on the chronogeometric behaviour of clocks or rods [22].
EPS claimed that the above mentioned light-cone condition forP and C is sufficient
for securing the existence of a Weylian metric which Weyl had assumed from the
outset; but the argument given to substantiate the statement remains vague and is far
from a mathematical proof [19]. The aim of the present paper is to fill in the gap and
to prove the central statement of EPS.

The paper is structured as follows. We start with short remarks on the history of
the problem (Sect. 1). After clarifying the central concepts involved in the question
(Sect. 2) we prove the EPS conjecture (Sect. 3). Finally we discuss why we think it
matters (Sect. 4).

1 Some historical remarks

In 1918 H. Weyl generalized the concept of a Riemannian metric in order to avoid the
possibility of direct metrical comparison of vectors or other fields at finitely distant
points [20,21]. He introduced a scale gauge connection in addition to a conformal
structure, thus defining what later would be called a Weylian metric on a differen-
tiable manifold (see below, Definition 1(ii)). In his book Space–Time–Matter and
lectures given at Barcelona in 1922 he argued that the geometry of special relativity,
i.e. the affine structure ofMinkowski space, can be establishedwithout rods and clocks
by projective geometry and the specification of a quadric at infinity in the sense of
Klein’s Erlangen program [23,24]. Generalizing this idea he argued that the geometri-
cal structure of the general theory of relativity (GTR) can be based on themathematical
description of the inertial motion of test particles and light rays, rather than on the
behaviour of rods and clock. He was able to underpin this view by showing that the
generalized metrical structure of gravity, which he had proposed, i.e. a Weylian metric
on M , is uniquely determined by its associated projective and and conformal structures
[22].1 He did not discuss, however, the conditions under which a projective structure
and a conformal structure determine a Weylian metric.

About half a century later, in 1972, J. Ehlers, F. Pirani and A. Schild, sketched an
even more ambitious program for establishing the fundamental conceptual framework
of general relativity. They wanted to base even the differentiable structure on the set
of spacetime events on more general, physically more or less plausible, assumptions

1 See also Weyl’s discussion with Einstein in 1918 [8, vol. 8B].
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(called “axioms”) on the relation between events, particle paths and light propagation
in spacetime [7]. This was considered as an attempt for a physically motivated “con-
structive axiomatics” of GTR and included the central claim that a projective structure
and a conformal structure which are compatible on the light cones (see below Defi-
nition 2(i)) determine a Weylian metric on the spacetime manifold.2 The EPS paper
led to a series of follow up investigations which in many cases concentrated on condi-
tions which would reduce the Weyl geometric structure to a Riemannian (Lorentzian)
one, often introducing additional information of quantum physics (Dirac field, com-
plex scalar field) [1–5].3 In these investigations the arguments of EPS were usually
accepted, although the authors had qualified their arguments as not necessarily math-
ematically satisfying.4

The EPS paper was republished in 2012 as a by then classical text (“Golden Oldie”)
with an editorial comment by A. Trautman [19]. In his comments the editor raised
doubts with regard to the status of the existence statement of EPS for aWeylian metric.
He made clear that the arguments given in the original paper were rather vague and
far from a mathematical proof. The existence statement ought thus to be considered
a conjecture rather than a theorem as which it had been treated in large parts of the
literature up to then. A first investigation of the case in a joint paper of Trautman with
one of the present authors draws the conclusion that the EPS statement is wrong [12].
This judgment is based, however, on the criterion of Riemann compatibility between
projective and conformal structures and thus on a too narrow understanding of the
Weyl geometric setting.5 In the following argument it will be shown that the EPS
conjecture is, in fact, true.

2 Definitions

We consider smooth manifolds and maps of class at leastC 2. All geometric objects on
an n ≥ 3-dimensional manifold are referred to local coordinates (xi ), i = 1, . . . , n.

A conformal structure on a manifold M is an equivalence class C of metric tensors
g with respect to the following equivalence relation

g ∼ g′ ⇐⇒ there is a functionϕ on M such that g′ = g exp 2ϕ.

If g ∈ C , then C can be denoted by [g]. We assume that the metric has indefinite
signature, since otherwise the compatibility condition (see below) is empty.

Two symmetric linear connections Γ = (Γ i
jk) and Γ ′ = (Γ ′i

jk) are said to be pro-
jectively equivalent if their geodesics coincide. Here and belowwe consider geodesics
without preferred parameterization (in literature they are sometimes called autopar-

2 More precisely EPS speak of a “Weyl space” if a light cone compatible pair of projective and conformal
structures is given. In the rest of the paper they suggest that a “Weyl space” can be endowed with a Weylian
metric.
3 For more details see [17].
4 “A fully rigorous formalization has not yet been achieved, but we nevertheless hope that the main line of
reasoning will be intelligible and convincing to the sympathetic reader” [7, p. 69f.].
5 This has been made clear in [14, rem. 2.2] and in the preprint version of [18].
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allel curves). Projective equivalence is clearly an equivalence relation on the set of
all symmetric linear connections on M . An equivalence class P with respect to this
relation is called a projective structure; it is denoted by [Γ ] if it contains Γ . It can be
formulated as the condition

Γ ∼ Γ ′ ∈ P ⇐⇒ there is a 1-formψ so thatΓ ′i
jk = Γ i

jk + δi
jψk + δi

kψ j .

We consider here a question of Weyl’s generalization of Riemannian geometry
proposed in [20,21,23]. In the more recent literature this type of generalization has
been formulated for various differential geometric structures [10,11,16],6 We use it in
the sense of semi-Riemannian Weyl structures (Definition 1(i)) which are close to the
Weylian manifolds (Definition 1(ii)) considered by Weyl himself.

Definition 1 (i) A (semi-Riemannian)Weyl structure is givenby triple (M,C ,∇)

where M is a differentiable manifold, C = [g] a conformal class of (semi-) Rie-
mannian metrics g on M , and ∇ = ∇(�) the covariant derivative of a torsion free
affine connection �, constrained by the compatibility condition that for any g ∈ C
there is a differential 1-form ϕg s.th. ∇g + 2ϕg ⊗ g = 0.

(ii) A Weylian manifold (M, [(g, ϕ)]) is a differentiable manifold M endowed
with a Weylian metric defined by an equivalence class of pairs (g, ϕ), where
g is a (semi-) Riemannian metric and ϕ a (real valued) differential 1-form on M .
Equivalence is defined by conformal rescaling g 
→ g̃ = �2g and the correspond-
ing gauge transformation for ϕ 
→ ϕ̃ = ϕ − d ln�.

Weyl showed that any Weylian metric has a uniquely determined compatible affine
(i.e. symmetric linear) connection �(g, ϕ),

Γ (g, ϕ)i
jk = �

i
jk + δi

jϕk + δi
kϕ j − g jkϕ

i , (1)

where � denotes the Levi-Civita connection of g and we raised the index of φi by
g. It is independent of the representative (g, ϕ) of the Weylian metric [21]. Metric
compatibility in the sense of Weyl geometry means that the the lengths of vectors
parallel transported by Γ (g, ϕ) and measured in g change infinitesimally with ϕ. In
streamlined form this means that for the covariant derivative ∇ = ∇(g, ϕ) defined by
�(g, ϕ) the following holds:

∇g + 2ϕ g = 0 (2)

Taking into account the gauge transformation for ϕ the definitions (i) and (ii) above
turn out to be equivalent.

The compatibility of a projective structure with a conformal structure can now be
considered from different perspectives. We use the following terminology:

Definition 2 We say that a projective structure P = [Γ ] and a conformal structure
C = [g] are
6 For a concept of Weyl structures in the context of Cartan geometries modeled after a pair (G; P) with P
a parbolic subroup of the Lie group G see [6, chap. 5].
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(i) light cone compatible if any light-like geodesic of g ∈ C is an auto-parallel
for some and hence for all Γ ∈ P;

(ii) Riemann compatible if there is g ∈ C such that its Levi-Civita connection
�(g) ∈ P;

(iii) Weyl compatible if for some g ∈ C a differential 1-form ϕ can be found
such that the affine connection Γ (g, ϕ) of the Weylian metric [(g, ϕ)] satisfies
Γ (g, ϕ) ∈ P .7

Remark 1 (i) Is independent of the choice of the connection from the projective class
of Γ and of the choice of the metric from the conformal class of g; it is used in [7].
We also use the abbreviation compatibility without further specification for (i). In the
context of Riemannian geometry (ii) appears most natural; it is used also in [12].
(iii) Is a straight forward generalization of Riemann compatibility to the context of
Weyl geometry and was implicitly considered by Weyl in [22]. A modern study of
(iii) is given in [14, sec. 2.4] and [13] for the two-dimensional case; here it is called
compatibility sans phrase (of a conformal and a projective structure).

Weyl compatibility implies (light cone) compatibility [21], similarly so forRiemann
compatibility. On the other hand, light cone compatibility does not imply Riemann
compatibility. The question remains whether light cone compatibility is strong enough
to imply Weyl compatibility (assuming that the metric has indefinite signature so the
light cone exists).

A trivial example of (light cone) compatible projective and conformal structures is
as follows: take any two 1-forms ϕ = ϕi and η = ηi , denote by �

i
jk the Levi-Civita

connection of any g ∈ C and consider P = [Γ ] with

Γ i
jk = �

i
jk + η jδ

i
k + ηkδ

i
j − ϕi g jk, (3)

where we again used g to raise the index of ϕ. Connections Γ and � are obviously
projectively equivalent on the light cones of C ; and this property does not depend on
the choice of the representative of P .

In our paper we prove that any pair (P,C ) of compatible projective and conformal
structures are related by the formula (3), see Theorem 1. This implies that compatible
P and C are also Weyl compatible, because (1) shows that in this case also the
invariant affine connection of the Weylian metric [(g, ϕ)] is projectively equivalent to
Γ .

3 Proof of the EPS conjecture

Theorem 1 Let g be a metric of indefinite signature on R
n with n ≥ 3. If [Γ i

jk] is
compatible with [g], then (3) holds.

Proof For any light-like geodesic γ we have

∇g
γ̇ γ̇ = 0 and ∇Γ

γ̇ γ̇ = β(γ, γ̇ )γ̇

7 If this holds for some g ∈ C , then for any g ∈ C .
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(for some function β). Subtracting one equation from the other, we obtain

Di
jk γ̇

j γ̇ k = β(γ, γ̇ )γ̇ i , (4)

where the “difference” D is given by Ds
jk = Γ s

jk − �
s
jk ; it is a tensor.

We view (4) as a system of linear equations on the components of D (assumed to be
symmetric in the lower indices); the system contains infinitely many equations since
as γ̇ we can take any light-like vector. Our goal is to show that the general solution of
this system is the one coming from (3).

For any vector v = vi we consider

Di
jkv

jvkvs − Ds
jkv

jvkvi . (5)

This polynomial in v of degree 3 expression vanishes for any v such that g(v, v) = 0;
since the set v ∈ R

n such that g(v, v) = 0 is an irreducible quadric, the expression
(5) is divisible by g(v, v), so it is equal to

g(v, v)ωis
pv

p (6)

for some ωis
p skew-symmetric with respect to i, s. On the other side, (5) has the

following property: for any two 1-forms σi , ζi such that σiv
i = ζiv

i = 0, if we
contract (5) with σiζs we obtain zero. Thus, at any v and for any such σ and ζ we
have

σiζsω
is

pv
p = 0.

Then, for any point v the contravariant 2-form ωis
pv

p has rank two so it is given
by ϕsvi − vsϕi for some ϕ. Let us show that this implies that

Di
jk = δi

jηk + δi
kη j − ϕi g jk (7)

as we want.
In order to do this, we consider the equation

Di
jkv

jvkvs − Ds
jkv

jvkvi = (ϕsvi − vsϕi )g jkv
jvk . (8)

We view it as an equation on D (and assume ϕ is known). It should be fulfilled for
all vectors v. It is a system of linear inhomogeneous equations. The corresponding
homogeneous system is Di

jkv
jvkvs − Ds

jkv
jvkvi = 0. It is equivalent to the condition

that for every v we have that Di
jkv

jvk is proportional to vi . Then, its solution space

is the space of pure trace tensors (i.e., of the form Di
jk = δi

jηk + δi
kη j ). Now, the

general solution of an inhomogeneous system is one solution plus all solutions of the
corresponding homogeneous system; since Di

jk = −ϕi g jk is a solution of the system
(8), the general solution is (7) as we claimed. �
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Remark 2 Arguing as in [12, §2], one can extract from Di
jk := Γ i

jk − �
i
jk = η jδ

i
k +

ηkδ
i
j − ϕi g jk a formula for ϕi :

(

2

n + 1
− n

)

ϕi =
(

Di
jk − 1

n + 1
Ds

skδ
i
j − 1

n + 1
Ds

s jδ
i
k

)

g jk .

The Weyl structure corresponding to this ϕi is integrable if the 1-form ϕi = ϕs gsi is
closed.

Remark 3 An alternative equivalent way to solve the system (4) is as follows: the
system is invariant with respect to the natural action of the group O(g). Then, the
solution space is also invariant and so is the direct sum of irreducible subspaces.
Considering all irreducible subspaces and substituting them as ansatz in (4) (which is
a standard exercise) shows that only the subspaces of tensors of the form η jδ

i
k + ηkδ

i
j

and of the form ϕi g jk are solution spaces for the system.
Our proof is more elementary and works in all dimensions and all signatures (recall

that decomposition in irreducible subspaces w.r.t. to the action of O(g) depends on
the dimension).

4 Discussion

Theorem 1 and discussion at the end of Sect. 2 show that EPS were right in assuming
that the light cone compatibility of (P,C ) is equivalent to the existence of a Weylian
metric with the given projective and conformal structures. The Weylian metric is,
moreover, well determined because of Weyl’s uniqeness theorem, see Sect. 1. In this
sense the central claim of EPS has been vindicated.8 In principle, a Weylian metric
on spacetime can thus be read off from sufficiently detailed knowledge of the free
fall trajectories of test particles and of the gravitational bending of light. This fact
may give support for a modified gravity approach to the problem of dark matter at the
astrophysical level (galaxies and galaxy clusters) [9,18]. The central physical question
for such an approach is then whether a theoretical coherent and empirically confirmed
dynamics of the underlying field content can be found.
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