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Abstract

We present a general gauge invariant formalism for defining cosmological averages that

are relevant for observations based on light-like signals. Such averages involve either null

hypersurfaces corresponding to a family of past light-cones or compact surfaces given by

their intersection with timelike hypersurfaces. Generalized Buchert-Ehlers commutation

rules for derivatives of these light-cone averages are given. After introducing some

adapted “geodesic light-cone” coordinates, we give explicit expressions for averaging the

redshift to luminosity-distance relation and the so-called “redshift drift” in a generic

inhomogeneous Universe.
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1 Introduction

It is by now well-known (see, for example, [1]) that averaging solutions of the full inho-

mogeneous Einstein equations leads, in general, to different results from those obtained

by solving the averaged (i.e. homogeneous) Einstein equations. In particular, the averag-

ing procedure does not commute with the non-linear differential operators appearing in the

Einstein equations and, as a result, the dynamics of the averaged geometry is affected by so-

called “backreaction” terms, originating from the inhomogeneities present in the geometry

and in the various components of the cosmic fluid.

Following the discovery of cosmic acceleration on large scales, interest in the possible

effects of inhomogeneities for interpreting the data themselves has considerably risen (see

[2, 3] for some recent review papers). It has even been suggested (see e.g. [4]) that the

dynamical effects of the backreaction could replace, at least in part, the dark-energy sources

as an explanation of such a cosmic acceleration, thereby providing an elegant solution to

the well-known “coincidence problem”.

As a consequence, much work has been done in these last few years on trying to formulate

a suitable “averaged” description of inhomogeneous cosmology. In most of these works,

following Buchert’s seminal papers [5], the effective geometry emerging after the smoothing-

out of local inhomogeneities has been determined by integrating over three-dimensional

spacelike hypersurfaces.

However, as pointed out long ago [6, 7], a phenomenological reconstruction of the space-

time metric and of its dynamic evolution on a cosmological scale is necessarily based on

past light-cone observations, since most of the relevant signals travel with the speed of light.

Hence, the averaging procedure should be possibly referred to a null hypersurface coinciding

with a past light-cone rather than to some fixed-time spacelike hypersurface. Nonetheless,

such a light-cone averaging procedure, whose importance has been repeatedly stressed in

the specialized literature (see e.g. [2, 8]), has never been implemented in practice.

The aim of this paper is to introduce a general (covariant and gauge invariant) prescrip-

tion for averaging scalar objects on null hypersurfaces, to apply it to the past light-cone of

a generic observer in the context of an inhomogeneous cosmological metric, and to provide

the analog of the Buchert-Ehlers commutation rules [9] for the derivatives of light-cone av-

eraged quantities. We will also introduce an adapted system of coordinates (defining what

we call a “geodesic light-cone frame”, which can be seen as a particular specification of the

“observational coordinates” introduced in [6, 10]) where the averaging prescription greatly

simplifies, while keeping all the required degrees of freedom for applications to general

inhomogeneous metric backgrounds.

1



In order to illustrate our light-cone averaging procedure we will propose, in particular,

two possible physical applications: the averaging of the luminosity-redshift relation and

that of the so-called “redshift drift” parameter [11] (see [12, 13] for recent discussions),

both evaluated for a generic inhomogeneous cosmological geometry. We will concentrate

our attention on the realistic case in which the reference observer is geodesic, having in

mind a model of light ray propagation based on the geometrical optics approximation (see

e.g. [14, 15]).

Finally, we stress that our intent, in the present paper, is not to give a detailed physical

discussion and interpretation of the many phenomenological effects of averaging, and to

bring arguments supporting (or disproving) plausible theoretical alternatives to the “stan-

dard” dark-energy/cosmic acceleration scenario. We simply present a first step towards such

an ambitious program, providing a formal procedure allowing an automatic implementation

of light-cone averaging, a procedure that – to the best of our knowledge – was missing in

the present literature, and that we believe to be of some utility because of its covariance

and model independence. A discussion of the possible phenomenological consequences of

its application to specific cosmological scenarios will be presented in a forthcoming paper.

The paper is organized as follows. In Sect.2 we recall the averaging prescription intro-

duced in [16, 17] and we generalize it to different kinds of averaging on null hypersurfaces.

In Sect.3 we give the covariant and gauge invariant version of the Buchert-Ehlers commu-

tation rules for light-cone averages. In Sect.4 we introduce a coordinate system in which

the light-cone averaging prescriptions and commutation rules take a much simpler form. In

Sect.5 we discuss a possible approach to the average of the luminosity-redshift relation and

of the redshift drift on the light-cone of a geodesic observer. Our conclusive remarks are

presented in Sect.6.

2 Gauge invariant light-cone averaging

Let us first briefly recall the approach given in [16, 17] to gauge invariant averaging on a

three-dimensional spacelike hypersurface Σ(A), embedded in our four-dimensional space-

timeM4. Assuming the hypersurface (or a spacelike foliation) to be defined by an equation

involving a scalar field with timelike gradient A(x):

A(x)−A0 = 0, (2.1)

2



the gauge (and hypersurface-parametrization) invariant definition of the integral of an ar-

bitrary scalar S(x) and of its average on such hypersurface was given in [16, 17] as1:

I(S;A0) =

∫
M4

d4x
√
−g(x) δ(A(x)−A0)

√
−∂µA∂µA S(x);

〈S〉A0 =
I(S;A0)

I(1;A0)
(2.2)

(we are using the signature (−,+,+,+)). Here the spatial hypersurface has no bound-

ary. However, as shown in [16, 17], a possible spatial boundary can be added through the

following extension of the previous integral:

I(S;A0;B0) =

∫
M4

d4x
√
−g(x)δ(A(x)−A0)Θ(B0 −B(x))

√
−∂µA∂µA S(x) , (2.3)

and similarly for the corresponding average (Θ is the Heaviside step function, and B is a

positive function of the coordinates, with spacelike gradient). As discussed in [16, 19], this

is still a gauge invariant expression if B(x) transforms as a scalar, while it gives violations

of gauge invariance if B is not a scalar and keeps the same form in different coordinate

systems. Even in that case, however, gauge invariance violations go to zero when we choose

B0 in such a way that the size of the spatial region goes to infinity [16, 19].

The above procedure unfortunately fails if A(x) = A0 defines a null (lightlike) hyper-

surface, since in that case ∂µA∂
µA = 0. In order to circumvent this problem let us start

with a spacetime integral where the four-dimensional integration region is bounded by two

hypersurfaces, one spacelike and the other one null (corresponding e.g. to the past light-

cone of some observer). Let us choose, in particular, the region inside the past light-cone of

the observer bounded in the past by the hypersurface A(x) = A0: clearly a gauge invariant

definition of the integral of a scalar S(x) over such a hypervolume can be written (in a

useful notation generalizing the one used above) as

I(S;−;A0, V0) =

∫
M4

d4x
√
−g Θ(V0 − V )Θ(A−A0)S(x), (2.4)

where V (x) is a (generalized advanced-time) scalar satisfying ∂µV ∂
µV = 0, where V0 specify

the past light cone of a given observer, and where the “−” symbol on the l.h.s. denotes the

absence of delta-like window functions.

Starting with this hypervolume integral we can construct gauge invariant hypersurface

and surface integrals by applying to it appropriate differential operators – or, equivalently,

by applying Gauss’s theorem to the volume integral of a covariant divergence. An example

1In [17] the prescription introduced in [16] is used to give a covariant and gauge invariant generalization

of the effective equations presented in [5]. Such a generalization has been recently used to deal with the

backreaction of quantum fluctuations in an inflationary model [18].
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of the latter, if we are interested into the variations of the volume averages along the flow

lines normal to the reference hypersurface Σ(A), is obtained by replacing the scalar S with

the divergence of the unit normal to Σ,

nµ = − ∂µA√
−∂νA∂νA

, nµn
µ = −1, (2.5)

and leads to the identity:∫
M4

d4x
√
−g Θ(V0 − V )Θ(A−A0)∇µnµ =

= −
∫
M4

d4x
√
−gΘ(V0 − V )δ(A−A0)

√
−∂µA∂µA

+

∫
M4

d4x
√
−g δ(V0 − V )Θ(A−A0)

−∂µV ∂µA√
−∂νA∂νA

. (2.6)

Hence, if we start from Eq. (2.4), and we consider the variation of the average integral by

shifting the light-cone V = V0 along the flow lines defined by nµ, we are led to define the

hypersurface integral (with positive measure):

I(1;V0;A0) =

∫
M4

d4x
√
−g δ(V0 − V )Θ(A−A0)

|∂µV ∂µA|√
−∂νA∂νA

. (2.7)

Similarly, if we consider the variation of the average integral by shifting the hypersurface

A = A0 (along the same flow lines defined by nµ), we are led to another hypersurface

integral:

I(1;A0;V0) =

∫
M4

d4x
√
−gΘ(V0 − V )δ(A−A0)

√
−∂µA∂µA. (2.8)

In the first case, Eq. (2.7), the integration region is on the light-cone itself, and it is spanned

by the variation of Σ(A0) along its normal, at fixed light-cone V0 (see Fig. 1, (a)). In the

second case of Eq. (2.8) – which gives exactly the same integral as in Eq. (2.3) with V

replacing B – the hypersurface Σ(A0) is kept fixed, and the integration region describes the

causally connected section of Σ spanned by the variation of the light-cone hypersurface (see

Fig. 1, (b)).

Further differentiation also lead to the following invariant surface integral

I(1;V0, A0;−) =

∫
M4

d4x
√
−g δ(V0 − V )δ(A−A0)|∂µV ∂µA| , (2.9)

with a compact, two-dimensional integration region defined by the intersection of Σ(A0) with

the light-cone V0 (Fig. 1, (c)). This integral, as well as the integrals of Eqs. (2.7), (2.8), is

not only covariant and gauge invariant but also invariant under separate reparametrizations

of the scalar fields A → Ã(A) and V → Ṽ (V ). Eq. (2.9), in addition, is a particular case

of an invariant integration over an arbitrary codimension-2 hypersurface defined by the
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Figure 1: Three different light-cone averaging prescriptions. (a): the average of Eq. (2.7)

on the light-cone itself starting from a given hypersurface in the past; (b): the average of

Eq. (2.8) on the section of the hypersurface A(x) = A0 which is causally connected with

us; (c): the average of Eq. (2.9) on a 2-sphere embedded in the light-cone.

conditions A(n)(x) = 0, n = 1, 2. In general, and in D spacetime dimensions, such an

integral can be written as∫
MD

dDx
√
−g

∏
n

δ(A(n)(x))
√
| det ḡpm| ; ḡpm ≡ ∂µA(p)∂νA

(m)gµν , (2.10)

(as can be shown by considering the induced metric on the (D − 2)-hypersurface), and is

invariant under the more general reparametrizations A(1) → Ã(1)
(
A(1), A(2)

)
and A(2) →

Ã(2)
(
A(1), A(2)

)
. It can be easily checked that Eq. (2.10) reduces to (2.9) if D = 4 and

if A(1) = A − A0 and A(2) = V − V0 are scalar functions with timelike and null gradient,

respectively.

In order to make contact with Eqs. (2.7), (2.8), it may be useful to remark that the
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integral (2.9) can be also obtained starting from the hypervolume integral (2.4) by consid-

ering the variation of the volume average along the flow lines normal to Σ(A) for both Θ(A)

and Θ(V ), namely by using the following window function:

−nµ∇µΘ(A(x)−A0)n
µ∇µΘ(V0 − V (x)) =

=
√
−∂µA∂µAδ(A(x)−A0)

−∂µV ∂µA√
−∂µA∂µA

δ(V0 − V (x)) . (2.11)

We note, finally, that averages of a scalar S over different (hyper)surfaces are trivially

defined – with self explanatory notation – by:

〈S〉V0,A0 =
I(S;V0, A0;−)

I(1;V0, A0;−)
; (2.12)

〈S〉A0
V0

=
I(S;V0;A0)

I(1;V0;A0)
; (2.13)

〈S〉V0A0
=

I(S;A0;V0)

I(1;A0;V0)
. (2.14)

3 Buchert-Ehlers commutation rules on the light-cone

For the phenomenological applications of the following sections we are interested, in partic-

ular, in the derivatives of the averages defined in (2.12) and (2.13). To this purpose, let us

first consider the derivatives of I(S;V0, A0;−) and I(S;V0;A0) with respect to A0 and V0

(quantities that, like the starting integrals themselves, are covariant and gauge invariant).

We will use the identities (here kµ ≡ ∂µV ):

δ′(A−A0) =
kµ∂µδ(A−A0)

kν∂νA
, δ(A−A0) =

kµ∂µΘ(A−A0)

kν∂νA
, (3.1)

δ′(V − V0) =
∂µA∂µδ(V − V0)

kν∂νA
, δ(V − V0) =

∂µA∂µΘ(V − V0)
kν∂νA

, (3.2)

and the relation kµ∂µδ(V −V0) = kµkµδ
′(V −V0) = 0. Integrating by parts, we then obtain

∂

∂A0
I(S;V0, A0;−) = I

(
k · ∂S
k · ∂A

;V0, A0;−
)

+ I

( ∇ · k
k · ∂A

S;V0, A0;−
)
,

∂

∂A0
I(S;V0;A0) = I

(
k · ∂S
k · ∂A

;V0;A0

)
+ I

([
∇ · k − 1

2

kµ∂µ
(
(∂A)2

)
(∂A)2

]
S

k · ∂A
;V0;A0

)
,

(3.3)

where, to simplify notations, we have introduced the following definitions: kµ∂µS = k · ∂S,

kµ∂µA = k · ∂A, ∂µA∂
µS = ∂A · ∂S, ∂µA∂

µA = (∂A)2 , ∇µkµ = ∇ · k and 2 = ∇µ∇µ.
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Using these results we can write a generalized version of the Buchert-Ehlers commutation

rule [9] for light-cone average. In the case of averages defined over the integration domain

(2.9) we find

∂

∂A0
〈S〉V0,A0 =

〈
k · ∂S
k · ∂A

〉
V0,A0

+

〈 ∇ · k
k · ∂A

S

〉
V0,A0

−
〈 ∇ · k
k · ∂A

〉
V0,A0

〈S〉V0,A0 , (3.4)

while for 3-dimensional averages over the domain (2.7) we obtain:

∂

∂A0
〈S〉A0

V0
=

〈
k · ∂S
k · ∂A

〉A0

V0

+

〈[
∇ · k − 1

2

kµ∂µ
(
(∂A)2

)
(∂A)2

]
S

k · ∂A

〉A0

V0

−
〈[
∇ · k − 1

2

kµ∂µ
(
(∂A)2

)
(∂A)2

]
1

k · ∂A

〉A0

V0

〈S〉A0
V0
. (3.5)

Following a similar procedure we can also evaluate the generalization of the Buchert-

Ehlers commutation rule for the derivative of I(S;V0, A0;−) and I(S;V0;A0) with respect

to V0. As we shall see in Sect. 5, such derivatives, together with the previous ones, may

be useful in evaluating an averaged version of the “redshift drift” parameter. After some

calculations we are led to

∂

∂V0
〈S〉V0,A0 =

〈
∂A · ∂S
k · ∂A

〉
V0,A0

−
〈
k · ∂S (∂A)2

(k · ∂A)2

〉
V0,A0

+

〈[
2A−∇µ

(
kµ

(∂A)2

k · ∂A

)]
S

k · ∂A

〉
V0,A0

−
〈[

2A−∇µ

(
kµ

(∂A)2

k · ∂A

)]
1

k · ∂A

〉
V0,A0

〈S〉V0,A0 , (3.6)

and

∂

∂V0
〈S〉A0

V0
=

〈
∂A · ∂S
k · ∂A

〉A0

V0

−
〈
k · ∂S (∂A)2

(k · ∂A)2

〉A0

V0

+

〈[
2A− ∂µA∂µ ln

(
(∂A)2

)] S

k · ∂A

〉A0

V0

−
〈[
∇ · k (∂A)2

(k · ∂A)2
+

1

2
kµ∂µ

(
(∂A)2

(k · ∂A)2

)]
S

〉A0

V0

−
〈[

2A− ∂µA∂µ ln
(
(∂A)2

)] 1

k · ∂A

〉A0

V0

〈S〉A0
V0

+

〈[
∇ · k (∂A)2

(k · ∂A)2
+

1

2
kµ∂µ

(
(∂A)2

(k · ∂A)2

)]〉A0

V0

〈S〉A0
V0

. (3.7)

In a similar way one could also derive equations for the derivatives of the average 〈S〉V0A0
.

However, since we will not discuss applications of those, we will not give their explicit form

here.
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4 Geodesic light-cone coordinates

4.1 Definition of geodesic light-cone gauge

We now turn to a special (adapted) coordinate system, xµ = (w, τ, θa), a = 1, 2, in which

the previous equations take a simpler form. In this sense they will play a role similar to the

one played by synchronous gauge coordinates for spatial averages with respect to geodesic

observers [19]. We are interested in coordinates such that the level sets of one of them define

the past light-cones, while those of another coordinate define a set of geodesic observers.

We claim that such coordinates, that we will call geodesic light-cone (GLC) coordinates,

are defined by the metric:

ds2 = Υ2dw2 − 2Υdwdτ + γab(dθ
a − Uadw)(dθb − U bdw) ; a, b = 1, 2 . (4.1)

This metric depends on six arbitrary functions (Υ, the two-dimensional vector Ua and the

symmetric tensor γab) and corresponds to a complete gauge fixing (modulo residual transfor-

mations involving non-generic functions of all the coordinates) of the so-called observational

coordinates2 discussed in detail in [6, 10]. In matrix form, the metric and its inverse are

given by:

gµν =


Υ2 + U2 −Υ −Ub
−Υ 0 ~0

−Ua ~0 γab

 , gµν =


0 −1/Υ ~0

−1/Υ −1 −U b/Υ
~0 −Ua/Υ γab

 , (4.2)

where γab is the inverse of γab. Clearly w is a null coordinate (i.e. ∂µw∂
µw = 0). More

interestingly, one can check that ∂µτ defines a geodesic flow, i.e. that

(∂ντ)∇ν (∂µτ) ≡ 0, (4.3)

as a consequence of gττ = −1. Thus an observer defined by constant τ spacelike hypersur-

faces is in geodesic motion. Also note that
√
−g = Υ

√
|γ|, with γ = det γab.

In order to understand the geometric meaning of these variables, it is useful to consider

the limiting case of a spatially flat Friedmann-Lemâıtre-Robertson-Walker (FLRW) Uni-

verse, in the cosmic time gauge, with scale factor a(t). Such a limit is easily reproduced by

Eq. (4.1) by setting

w = r + η, τ = t, Υ = a(t), Ua = 0,

γabdθ
adθb = a2(t)r2(dθ2 + sin2 θdφ2), (4.4)

2Note that our coordinates θa are not necessarily “observational”, in general, but they can be reduced

to such form (e.g. to standard spherical coordinates, parallelly propagated along the observer world-line)

through an appropriate relabelling of null generators [10].
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where η is the conformal time of the homogeneous metric: dη = dt/a.

In these coordinates a past light-cone hypersurface is specified by the condition w =

w0, and the momentum of a photon traveling on it, being proportional to kµ = ∂µw, is

orthogonal both to itself (kµk
µ = 0) and to the 2-surface generated by ∂θa (∂µθ

akµ = 0).

The velocity of a generic observer defined by a scalar A as in Eq. (2.5) satisfies:

kµn
µ =

1

Υ

∂τA√
−(∂A)2

. (4.5)

For a geodesic observer A depends only on τ and we can always set A = τ , so the above

relation simplifies to:

kµn
µ = Υ−1 . (4.6)

These equations will be used in Sect. 5 in connection with the redshift and luminosity

distance. We also note for later use that, in these coordinates, the covariant divergence of

kµ takes the simple form:

∇µkµ = − 1

Υ
∂τ

(
ln
√
|γ|
)
. (4.7)

4.2 Average equations in the GLC gauge

In the GLC gauge the averaging integrals introduced in Sect. 2 greatly simplify, especially

in the case where the reference hypersurface Σ(A) defines a geodesic observer. We will

concentrate on the integrals (2.9) and (2.7) which, setting V = w, V0 = w0, are now given

by:

I(S;w0, A0;−) =

∫
d2θdwdτ

√
|γ| |∂τA| δ(w − w0)δ(A−A0)S , (4.8)

I(S;w0;A0) =

∫
d2θdwdτ

√
|γ| |∂τA|√

−(∂A)2
δ(w − w0)Θ(A−A0)S. (4.9)

For a geodesic reference observer, with A = τ (and A0 = τ0), we obtain:

I(S;w0, τ0;−) =

∫
d2θ

√
|γ(w0, τ0, θa)| S(w0, τ0, θ

a), (4.10)

I(S;w0; τ0) =

∫
d2θdτ

√
|γ(w0, τ, θa)| Θ(τ − τ0)S(w0, τ, θ

a). (4.11)

The generalized Buchert-Elhers commutation rules introduced in Sect. 3 also simplify as

illustrated below.

Average on the 2-sphere embedded in the light-cone
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Let us consider separately, as before, derivatives with respect to A0 and to V0 = w0.

Starting with A0, Eq. (3.4) can now be written as

∂A0 〈S〉w0,A0
=

〈
∂τS

∂τA

〉
w0,A0

+

〈
S
∂τ ln

√
|γ|

∂τA

〉
w0,A0

−
〈
∂τ ln

√
|γ|

∂τA

〉
w0,A0

〈S〉w0,A0
, (4.12)

and for the special case where Σ(A) defines a geodesic observer (with A = τ and A0 = τ0),

it reduces to

∂τ0 〈S〉w0,τ0
= 〈∂τS〉w0,τ0

+

〈
S∂τ ln

√
|γ|
〉
w0,τ0

−
〈
∂τ ln

√
|γ|
〉
w0,τ0

〈S〉w0,τ0
. (4.13)

Note that, in this last case with A = τ , the partial derivative with respect to A0 reduces to

a standard derivative with respect to the proper (cosmic) time if we consider the limit of a

homogeneous FLRW Universe (see Eq. (4.4)).

In the geodesic case we have also the following simplification for the derivative with

respect to w0 as given in Eq. (3.6):

∂w0 〈S〉w0,τ0
= 〈∂wS + Ua∂aS〉w0,τ0

+

〈
S∂w ln

√
|γ|
〉
w0,τ0

+

〈
S

[
∂aU

a + Ua∂a ln
√
|γ|
]〉

w0,τ0

−
〈
∂w ln

√
|γ|
〉
w0,τ0

〈S〉w0,τ0

−
〈
∂aU

a + Ua∂a ln
√
|γ|
〉
w0,τ0

〈S〉w0,τ0
. (4.14)

Average on the truncated light-cone

For a generic hypersurface we cannot specify (∂A)2, and Eq. (3.5) just simplifies as

∂A0 〈S〉
A0
w0

=

〈
∂τS

∂τA

〉A0

w0

+

〈
S
∂τ ln

√
|γ| − ∂w(∂A · ∂A)

∂τA

〉A0

w0

−
〈
∂τ ln

√
|γ| − ∂w(∂A · ∂A)

∂τA

〉A0

w0

〈S〉A0
w0
. (4.15)

However, in the case where Σ(A) defines a geodesic observer (with A = τ and A0 = τ0) one

obtains:

∂τ0 〈S〉
τ0
w0

= 〈∂τS〉τ0w0
+

〈
S∂τ ln

√
|γ|
〉τ0
w0

−
〈
∂τ ln

√
|γ|
〉τ0
w0

〈S〉τ0w0
. (4.16)

Comparing with Eq. (4.13) we find, for this last case, the same commutation rule indepen-

dently of the averaging prescription used.

Finally, for a hypersurface Σ(A) associated to a geodesic observer, we also have the

following simplification of Eq. (3.7):

∂w0 〈S〉
τ0
w0

= 〈∂wS + Ua∂aS〉τ0w0
+

〈
S∂w ln

√
|γ|
〉τ0
w0
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+

〈
S

[
∂aU

a + Ua∂a ln
√
|γ|
]〉τ0

w0

−
〈
∂w ln

√
|γ|
〉τ0
w0

〈S〉τ0w0

−
〈
∂aU

a + Ua∂a ln
√
|γ|
〉τ0
w0

〈S〉τ0w0
. (4.17)

Hence, we obtain the same commutation rule (see Eq. (4.14)) even for derivatives with

respect to w0.

5 Some physical applications

Information about the large scale structure of our Universe reaches us travelling along the

null geodesics of a possibly inhomogeneous spacetime. Hence, an averaged description of the

cosmological geometry should unavoidably make use of some light-cone averaging procedure,

like those illustrated in the previous sections. In this section we will suggest two possible

applications of the previous formalism: we will consider, in particular, the averaging of the

luminosity-distance redshift relation and the averaging of the redshift drift parameter for a

generic inhomogeneous cosmology. Note that in this section we will be dealing with the τ

coordinate both at the source and at the observer’s position. They play the same role as

A0 ≡ τ0 of the previous sections, and will be denoted by τs and τ0 respectively.

5.1 The redshift to luminosity-distance relation

It is well known that the scalar redshift parameter z, for a photon with momentum kµ

emitted by a source S and received by the observer O, depends on the scalar product

between kµ and the four-velocity nµ of a local reference observer, and is given in general

(with self-explanatory notation) by:

1 + z =
(kµn

µ)s
(kνnν)0

. (5.1)

Note that this object may be regarded as a bi-scalar, as it depends on the ratio of the same

scalar quantity calculated in two different spacetime points. In the GLC gauge of Sect. 4,

and in the physically interesting case of a geodesic observer (that we will consider hereafter),

we can use Eq. (4.6) and we thus obtain:

1 + z =
Υ0

Υs
, (5.2)

where Υ0 = Υ(w0, τ0, θ
a
0) and Υs = Υ(w0, τs, θ

a
s ).

In a cosmological context we can define at least three different distances of physical

interest (see e.g. [20]): ds, namely the angular distance of the source as seen from the

11



observer (in the FLRW limit of Eq. (4.4) we have ds = ra(ts), where r is the comoving radial

distance of the source); do, namely the angular distance of the observer “as seen from” the

source (in the FLRW limit we have do = ra(t0)); and dL, the so-called luminosity distance.

These three observational distances are always related to each other, independently of the

given cosmological model, by redshift factors [15, 21]:

dL = (1 + z)do = (1 + z)2ds, (5.3)

as a consequence of the Etherington reciprocity law [22].

On the other hand, in a general spacetime, we can also identify (point-by-point on the

2-sphere) the square of the angular distance of the source with the ratio of the intrinsic

cross-sectional area element to the subtended solid angle element, according to d2s = dA/dΩ

(see e.g. [14]). In our GLC gauge we have kµ = (0,−1/Υ, 0, 0), and, as already mentioned,

the 2-sphere embedded in the light-cone (corresponding to the integration region of Eq.

(2.9)) is orthogonal to the photon momentum, so that the cross-sectional area element is

proportional to
√
|γ|dθ1dθ2. Therefore, d2s can be written as

d2s(w = w0, τs, θ
a) = lim

ρ→0
ρ2

√
|γs|√
|γ(ρ)|

, (5.4)

where ρ is the proper radius of an infinitesimal sphere centered around the observer, w = w0

defines the past light-cone connecting source and observer, and τ = τs defines the spacelike

hypersurface normal to nµ at the source position. Eq. (5.4) easily reduces to ds = ra(ts) in

the FLRW case of Eq. (4.4).

It is appropriate to mention that in the present discussion we are neglecting the possible

occurrence of caustics in the past light cone of our observer, which would affect the assumed

relation between area distance and angular size distance. The possible relevance of this

interesting effect, and its dependence on gravitational lensing and on the distribution of

inhomogeneities has been addressed in detail in [23].

The relevant variables related to supernovae observations are the luminosity distance dL

and the redshift z. Their relation has been studied within a gauge invariant approach, for a

linearly perturbed FLRW metric, in [24]. Averaging their values on the two-sphere embed-

ded in the light-cone, and using the above results, we obtain, for a general inhomogeneous

metric background,

〈dL〉w0,τs =

∫
d2θ

√
|γ(w0, τs, θa)|

[
Υ2(w0, τ0, θ

a)/Υ2(w0, τs, θ
a)
]
ds(w0, τs, θ

a)∫
d2θ

√
|γ(w0, τs, θa)|

, (5.5)

where ds is given by Eq.(5.4), and

〈1 + z〉w0,τs =

∫
d2θ

√
|γ(w0, τs, θa)| [Υ(w0, τ0, θ

a)/Υ(w0, τs, θ
a)]∫

d2θ
√
|γ(w0, τs, θa)|

. (5.6)
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Since our coordinates should not be pathological near w = w0 and τ = τ0 we should have

limτ→τ0 Υ(w = w0, τ, θ
a) = Υ(w = w0, τ0) ≡ Υ0 indepent of θa. Hence, in Eq. (5.5) and

(5.6), the factor Υ(w0, τ0, θ
a) = Υ0 behaves like a constant, leaving a well defined integral

of a scalar object over the 2-sphere.

The above expressions can be used to see how the usual redshift to luminosity-distance

relation gets affected by the inhomogeneities of the cosmological geometry. To this purpose

it is also possible (and probably more convenient) to consider averages of the luminosity

distance on constant redshift surfaces3. In that case the geodesic observers measuring the

redshift do not coincide any longer with the “observers” associated to the flow lines of

the reference hypersurface Σ(A), chosen to specify the averaging region. Even in such a

case, however, our general formalism provides a rather simple averaging prescription by

identifying the scalar A in Eq. (2.12) with kµu
µ (where now uµ is the velocity of a geodesic

observer), and the quantity to be averaged with dL (or with some convenient observable

related to it).

The straightforward calculation simplifies considerably in our gauge giving, for instance,

〈dL〉w0,z = (1 + z)2
∫
d2θ

√
|γ(w0, τ(z, w0, θa), θa)|ds(w0, τ(z, w0, θ

a), θa)∫
d2θ

√
|γ(w0, τ(z, w0, θa), θa)|

, (5.7)

where τ(z, w0, θ
a) is the solution of:

Υ(w0, τ, θ
a)

Υ0
=

1

1 + z
. (5.8)

We plan to come back to an explicit application of our formalism to this problem in the

near future.

5.2 Redshift drift

The redshift drift (RSD) is defined as the rate of change of the redshift of a given source with

respect to the observer’s proper time. Since both the observer and the source simultaneously

evolve in time, the relevant hypersurfaces for the RSD effect will consist of two light-cones

with two different bases (see Fig. 2). Assuming that source and observer are in geodesic

motion and have negligible peculiar velocity, the RSD in a FLRW Universe, and in the

proper-time interval ∆t0, can be simply expressed as (see e.g. [13]):

∆z

∆t0
= (1 + z)H0 −Hs =

ȧ0 − ȧs
as

, (5.9)

where H0 is the present value of the Hubble parameter while Hs is its value at the emission

time. Clearly the RSD effect is a good indicator of cosmic acceleration as a function of z

which does not use hypothetical standard candles.

3We would like to thank Misao Sasaki for stressing this point with us.
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Figure 2: A graphic illustration of the redshift drift effect. A possible variation of the cos-

mological expansion rate is detected by comparing observations performed on two different

past light-cones.

In order to generalize this expression to a general inhomogeneous Universe (and attempt

some averaging of it) let us consider again the geodesic observer of the GLC gauge, with

coordinates xµ = (w, τ, θa). As shown in Eq. (5.2), z is in principle a function of seven

independent variables, namely of w0, τ0, θ
a
0 , τs and θas (note that, since we are assuming

that source and observer are on the same light-cone w = w0 at τ = τ0, they will be both

on the light-cone w = w0 + ∆w0 at τ = τ0 + ∆τ0, see Fig. 2). We can also note that Υ0

is independent of θa0 (see the comment after Eq.(5.6)). As a consequence we have only five

independent contributions to the variation of 1 + z, and we can write, in general:

∆(1 + z) =
∂(1 + z)

∂w0
∆w0 +

∂(1 + z)

∂τ0
∆τ0 +

∂(1 + z)

∂τs
∆τs +

∂(1 + z)

∂θas
∆θas . (5.10)

As shown in Eq.(4.4), in the homogeneous limit the coordinate τ goes to the proper (cos-

mic) time t of the synchronous gauge. So, locally around our geodesic observer, we choose

to evaluate the redshift drift ∆z with respect to his/her time parameter τ , and we need,

to this purpose, an explicit relation between ∆τ0 and the variation of the other coordinates
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involved. For a geodesic observer with nµ = −∂µτ we have ẋµ ∼ nµ = (1/Υ, 1, Ua/Υ), so

that we can express ∆xµ in terms of ∆w, at all times, as:

∆τ = Υ∆w , ∆θa = Ua∆w. (5.11)

Using Eq. (5.11) we find ∆w0 = ∆τ0/Υ0 = ∆τs/Υs, and the final result for the RSD can

be written in terms of z and its derivatives as:

∆z

∆τ0
= (1 + z)H̃0 +

1

Υ0

∂

∂w0
(1 + z) +

∂

∂τs
ln(1 + z) +

Uas
Υ0

∂

∂θas
(1 + z), (5.12)

where:

H̃0 ≡
1

Υ0

∂Υ0

∂τ0
(5.13)

(let us note again that ∂w0 acts on both metric factors Υ contained in (1 + z)). This result

is valid for a general inhomogeneous metric, and can be compared, as a useful consistency

check, with a similar result previously obtained in the particular case of a spherically sym-

metric geometry [12]. If we move from our coordinates to the adapted coordinates used

in [12] we find that our expression (5.12) exactly reduces to the expression for the RSD

reported in Eq. (5) of Ref. [12].

The quantities appearing in Eq. (5.12) can now be averaged over the 2-sphere embedded,

at τ = τs, in the light-cone w = w0. Using our prescription based on Eq. (4.10) we find

that both Υ0 and H̃0 can be taken out from the averaging integrals (which are performed

over the variables θa), and we obtain:

〈∆z〉w0,τs

∆τ0
= 〈1+z〉w0,τsH̃0+

1

Υ0
〈∂w(1+z)〉w0,τs +〈∂τ ln(1+z)〉w0,τs +

1

Υ0
〈Ua∂a(1+z)〉w0,τs .

(5.14)

For the derivatives performed with respect to the hypersurface parameters w and τ we can

now apply the Buchert-Ehlers commutation rules in the simplified form of Sect. 4.2. Using

in particular Eqs. (4.13) and (4.14) we are lead to:

〈∆z〉w0,τs

∆τ0
= 〈1 + z〉w0,τsH̃0 +

1

Υ0
∂w0〈1 + z〉w0,τs + ∂τs〈ln(1 + z)〉w0,τs

+Qw(z) +Qτ (z), (5.15)

where

Qτ (z) = −
〈

ln(1 + z)∂τ ln
√
|γ|
〉
w0,τs

+ 〈ln(1 + z)〉w0,τs

〈
∂τ ln

√
|γ|
〉
w0,τs

, (5.16)

Qw(z) =
1

Υ0

{
−
〈

(1 + z)∂w ln
√
|γ|
〉
w0,τs

−
〈

(1 + z)

[
∂aU

a + Ua∂a ln
√
|γ|
]〉

w0,τs

+〈1 + z〉w0,τs

[〈
∂w ln

√
|γ|
〉
w0,τs

+

〈
∂aU

a + Ua∂a ln
√
|γ|
〉
w0,τs

]}
. (5.17)
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These last terms, together with the other terms of Eq. (5.15) control the difference be-

tween the averaged redshift drift and the drift for the averaged redshift and represent a

light-cone analog of the backreaction terms due to the geometric inhomogeneities, first

computed by Buchert [5] in the context of three-dimensional spacelike averages. Unlike in

that case, however, our backreaction is physically controlled by the geometric dynamics of

a two-dimensional surface, with metric γab. Also, the possible physical meaning of these

backreaction terms is in principle strongly model-dependent, and their physical effects are

to be explicitly computed for any given model chosen to parametrize deviations from FLRW

geometry.

For a homogeneous FLRW metric the averages disappear, and the backreaction terms

Qτ and Qw are identically vanishing. In that case H̃0 = H0 and, using the homogeneous

limit of Eq.(4.4), one also finds ∂w(1 + z) = 0 and ∂τ ln(1 + z)s = −Hs, so that Eq.

(5.15) gives back the result (5.9). For a general inhomogeneous model, however, several

new contributions appear. It would be very interesting to see whether such backreaction

effects are relevant for determining the kinematics of the Universe (and the equation of state

of its energy components as a function of z) from the forthcoming RSD experiments (see

e.g. [25]). We plan to come back to this question elsewhere [26], at least within specific

inhomogeneous models such as the Lemâıtre-Tolman-Bondi (LTB) Universe [27].

6 Conclusions

In this paper we have made a first step towards defining suitable covariant and gauge

invariant light-cone averages that should be relevant to analyze the effects of inhomogeneities

on astrophysical observables related to light-like (massless) signals. We were able to define

such averages both on light-like hypersurfaces and on ordinary 2-surfaces embedded on a

specific light-cone (e.g. our past one). We have also written down the generalized version

of the Buchert-Ehlers commutation rules (between averaging and differentiation) that hold

for all such light-cone averages.

One obvious problem to which we would like to apply our technique is that of cosmic ac-

celeration. This is actually nothing but a measured relation between redshift and luminosity

distance which can only be explained in a FLRW cosmology if the Universe underwent a

late-time accelerated expansion. Within General Relativity it implies, in turn, the existence

of a large dark energy component in the cosmic fluid. Our formalism allows in principle to

study directly the luminosity-redshift relation for a given non homogeneous Universe (e.g

of the LTB type [27]) or, even more interestingly, for a Universe containing a stochastic

spectrum of inhomogeneities like those that originate from inflationary cosmology.
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In order to prepare the ground for such investigations we have introduced some adapted

“geodesic null” coordinates that allow to express in a simple way redshift and luminosity

distance in terms of local metric components (i.e. calculated at the source’s position). Fur-

thermore, our expressions for both the averages and for their derivatives take a considerably

simpler form in these coordinates.

We have also applied our formalism to the case of the so-called redshift drift, a quantity

which, without any need of using standard candles, should be sensitive to a possible ac-

celeration of the scale factor at different redshift values, and thus could distinguish among

different forms of dark energy. Once more, however, one should address the question of

how inhomogeneities could modify the FLRW relation between redshift drift and expansion

rate. By using the geodesic light-cone gauge we were able to find the formal modification

of the relation and show that it contains, among others, Buchert-Ehlers-like commutator

terms. The physical interpretation of such terms is, however, model-dependent, and their

possible effect are to be extracted for any given model with an explicit computation.

Unlike in the case of spacelike hypersurfaces we have found that the most useful averages

for physical applications are related to surface averages. However, it is easy to see that the

quantities to be averaged are themselves sensitive to inhomogeneities over the whole past

light-cone hypersurface even when they can be expressed in terms of quantities living on

the surface. So far we have not found physical examples in which a true average over the

full light-cone is involved, and we strongly suspect that there isn’t one.

In order to find out whether the formalism we have introduced is actually useful one will

have to perform detailed calculations within realistic and explicit models for the relevant

inhomogeneities. These can be either abstract mathematical ones, like LTB, swiss-cheese, or

fractal models, or realistic ones based on our present knowledge of the large scale structure.

Another interesting exercise would be to compute the magnitude of several effects to

second order in a perturbed FLRW Universe. Even if, as most people suspect, the effect

of inhomogeneities will turn out to be small and not to change the conclusions that follow

from simple FLRW consideration, the result of such an investigation will be important in

that it will sharpen considerably the conclusion that dark energy is indeed unavoidable.
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