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Abstract: The light cone OPE limit provides a significant amount of information regard-

ing the conformal field theory (CFT), like the high-low temperature limit of the partition

function. We started with the light cone bootstrap in the general CFT 2 with c > 1. For

this purpose, we needed an explicit asymptotic form of the Virasoro conformal blocks in

the limit z → 1, which was unknown until now. In this study, we computed it in general

by studying the pole structure of the fusion matrix (or the crossing kernel). Applying this

result to the light cone bootstrap, we obtained the universal total twist (or equivalently,

the universal binding energy) of two particles at a large angular momentum. In particular,

we found that the total twist is saturated by the value c−1
12 if the total Liouville momentum

exceeds beyond the BTZ threshold. This might be interpreted as a black hole formation

in AdS3.

As another application of our light cone singularity, we studied the dynamics of entan-

glement after a global quench and found a Renyi phase transition as the replica number was

varied. We also investigated the dynamics of the 2nd Renyi entropy after a local quench.

We also provide a universal form of the Regge limit of the Virasoro conformal blocks

from the analysis of the light cone singularity. This Regge limit is related to the general

n-th Renyi entropy after a local quench and out of time ordered correlators.
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1 Introduction & summary

Two-dimensional conformal field theories (2D CFTs) have an infinite dimensional symme-

try, the so-called Virasoro symmetry. This symmetry leads to the fact that 2D CFTs are

only specified by a central charge, spectrum of primary operators, and operator product

expansion (OPE) coefficients of the primary operators in the spectrum. Owing to this

simplification, 2D CFTs offer ideal avenues for exploring quantum field theories. They

are also investigated as the key to understanding quantum mechanics in AdS by using the

AdS/CFT correspondence. However, despite several decades of studies, no criterion has

been devised to classify CFTs and only a few models (for example, minimal models) are

classified; in other words, we do not know how to identify which CFT data are consistent

with the modular invariance.

One important tool to determine which CFT data are consistent is conformal bootstrap,

or equivalently, the crossing symmetry [1–4]. The conformal bootstrap equation originates
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from the OPE associativity.

1

x2∆1
12 x2∆2

34

∑

p

P 11,22
τp,lp

g11,22τp,lp
(u, v)=

1

(x14x23)
∆1+∆2

(

x24
x12

)∆12
(

x13
x12

)∆12
∑

p

P 12,12
τp,lp

g12,12τp,lp
(v, u),

(1.1)

where u, v are the cross ratios, and gij,klτ,l (u, v), P ij,kl
τ,l are the conformal blocks and their

coefficients. This equation relates different OPE coefficients, and therefore, nontrivial

requirements for CFT data can be obtained using the conformal bootstrap equation. In

particular, the limit u, 1−v → 0 (or equivalently, z, z̄ → 0) relates high-energy physics (i.e.

information about the spectrum at large conformal dimensions) to the vacuum contribution.

From this high-low temperature duality,1 we can evaluate, for example, the density of states

at large conformal dimensions, the so-called Cardy formula [5]. Apart from this famous

consequence, we also have several results from this duality [6–10].

Recently, another kinematic limit, light cone limit u ≪ v ≪ 1 (or equivalently z ≪
1− z̄ ≪ 1), has attracted considerable interests in higher-dimensional CFTs [11–19]. Unlike

the limit z, z̄ → 0, the light cone limit relates the vacuum blocks to the OPE at large spin.

Therefore, the light cone bootstrap reveals the structure of the OPE in the large spin limit.

In fact, the light cone bootstrap imposes a condition such that in the CFTd≥3 with two

scalar operators φA and φB, there must exist operators with twist [11, 12]

τ = ∆A +∆B + 2n+ γAB(n, l) for any n ∈ Z≥0, (1.2)

and in particular, the anomalous dimension γAB(n, l) → 0 as l → ∞. In this way, the light

cone limit provides substantial information about the spectrum.

In this paper, we give the following results:

Light cone singularity In 2D CFTs, the task of solving the light cone bootstrap is much

more difficult than that in CFT≥3, as pointed out in [20]. The most difficult point

is to evaluate the limit z → 1 of the Viraosoro conformal blocks (which we will

call light cone limit Virasoro blocks in the following). At present, there is no exact

asymptotic formula for the light cone limit of Virasoro blocks, let alone their explicit

form. However, in this study, we accomplished to provide the asymptotic form of

the light cone limit Virasoro blocks in any unitary CFT with c > 1. The method for

accomplishing this is to study the structure of poles in the fusion matrix Fαs,αt , which

are invertible fusion transformations between s and t-channel conformal blocks.

F21
34 (hαs |z) =

∫

S

dαtFαs,αt

[

α2 α1

α3 α4

]

F41
32 (hαt |1− z), (1.3)

where hi = αi(Q − αi) and c = 1 + 6Q2. Consequently, we can explicitly provide

the light cone singularity of the conformal blocks. We then summarize the results,

1The conformal bootstrap equation of a particular four-point function in the limit z, z̄ → 0 is related to

the modular bootstrap in the high-low temperature limit β → 0 through a map e−β = e
−π

K(1−z)
K(z) , where

K(z) is the elliptic integral of the first kind. For this reason, we will call the limit z, z̄ → 0 as the high-low

temperature limit.
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but before that, we will introduce some notations. In this paper, we consider two

types of Viraosoro conformal blocks. One is the Virasoro block for the correlator

〈OB(∞)OB(1)OA(z)OA(0)〉 in the OA(z)OA(0) OPE channel,

FAA
BB(hp|x) ≡ ,

which we call AABB blocks. The other type is ABBA blocks, which are defined as

FBA
BA (hp|x) ≡ .

The light cone singularities for the ABBA blocks is given by

FBA
BA (hαs |z) −−−→

z→1















(1− z)4hA−2hB−2QαA , if αA < Q
4 and αA < αB,

(1− z)2hB−2QαB , if αB < Q
4 and αB < αA,

(1− z)
c−1
24

−2hB , otherwise .

(1.4)

The asymptotics of the AABB blocks are given by

FAA
BB(hαs |z) −−−→

z→1

{

(1− z)−2αAαB , if αA + αB < Q
2 ,

(1− z)
c−1
24

−hA−hB , otherwise .
(1.5)

This is one of the main results presented in this paper. One interesting point is that

we can find a transition of the blocks. However, in general, we cannot observe this

transition in the behaviour of a four-point function because the approximation by

only one (or few) block contribution appears if considering the limit z, z̄ → 0 of the

t-channel expansion. If one wants to find this transition in a correlator, then one has

to find a quantity that can be evaluated by only one block contribution and in the

limit z → 1. In fact, it is given by the light cone limit

〈OB(∞)OB(1)OA(z, z̄)OA(0)〉 −−−−−−−−−→
light cone limit

FAA
BB(0|z → 0)FAA

BB(0|z̄ → 1). (1.6)

Therefore, we can detect the transition in the light cone limit. We want to emphasize

that the transition point of the AABB blocks is characterised by the BTZ threshold

αBTZ = Q
2 , where hBTZ = αBTZ(Q − αBTZ) = c

24 . Therefore, we expect that this

light cone transition captures some important properties of holographic CFTs. In

fact, one gravity interpretation of this transition can be obtained by the light cone

bootstrap as we will explain later.
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The detailed derivations of these singularities are provided in appendix A. In

fact, this conclusion is supported by numerical computations [21, 22] and proven in

large c CFTs [23]. We intend to emphasize that the fusion matrix approach does not

rely on the assumption c → ∞, unlike the Zamolodchikov monodromy method [23];

therefore, the conclusion (1.5), (1.4) holds true not only for large c CFTs but also for

any unitary CFT with c > 1. Note that our formula breaks down for the CFT data

(c < 1) of the minimal model, as explained in the final paragraph of appendix A.1.

In addition, we discuss the sub-leading terms of the blocks in the light cone

limit. In appendix A.2, we investigate the other poles (sub-leading poles) in the

fusion matrix and identify them as the sub-leading terms. In fact, the sub-leading

singularities perfectly match the HHLL Virasoro blocks’ singularities in the heavy-

light limit.

Light cone bootstrap In the main sections of this paper, we will apply this explicit form

of light cone singularity to study the light cone bootstrap. One of the main objec-

tives is to understand the AdS3/CFT2 duality (for example, one concrete question

is how Virasoro blocks can be derived from AdS gravity). Many recent develop-

ments pertaining to conformal blocks helps uncover information about holographic

CFTs [24–46]. Similarly, it is expected that the light cone singularities revealed in

this paper also lead to some interesting predictions in holographic CFTs. In fact, we

found that there must be a universal long-distance interaction between two objects

at large spin for any unitary CFT with c > 1 and without extra conserved current.

Particularly, we found that the total twist of two particles at large spin is saturated

by the BTZ threshold c−1
12 if the total Liouville momentum αA+αB increases beyond

the BTZ threshold αBTZ = Q
2 .

Entanglement Apart from the light cone bootstrap, the light cone limit Viraosoro blocks

also appear in many different situations. In the rest of this paper, we discuss entan-

glement using the explicit asymptotic form of the light cone limit Virasoro blocks.

In section 3.1, we first consider the Renyi entanglement entropy for a special setup

with a Lorentz boosted interval and an unboosted interval, as shown in figure 4.

In this case, the light cone limit naturally appears in the calculation. As a result,

we found a Renyi phase transition as the replica number was varied. This implies

that when we try to evaluate entanglement using the Renyi entropy, we must use

the limit n → 1 carefully. Note that the transition point n∗ is always above n = 1;

therefore, this Renyi phase transition does not contradict with the derivation of the

holographic entanglement entropy formula [47]. In section 3.2, we consider the Renyi

entanglement entropy for doubled CFTs, which was introduced by [48, 49]. In this

setup, the light cone limit non-trivially appears in the calculation, but is similar to

that in section 3.1. Therefore, the transition at n∗ can also be found in its Renyi

entanglement entropy. We also predict that maximal scrambling is characterized by

the lowest bound on the light cone singularity of a particular correlator; on the other

hand, the quasi particle picture comes from the upper bound. It means that the

light cone limit gives us information about scrambling. In section 3.4, we evaluate

– 4 –
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the dynamics of the 2nd Renyi entropy after a local quench. The result leads to the

prediction that in a unitary CFT with c > 1 and no extra currents, the heavier the

operator used to create a local quench, the larger the 2nd Renyi entropy becomes;

however, if its dimension exceeds the value c−1
32 , the 2nd Renyi entropy is saturated.

This might be related to instability and thermalisation. (See also [50–55], which

reveled the growth of the entanglement entropy after a local quench in other setups.)

Regge limit universality Using the Zamolodchikov recursion formula, we can obtain the

upper bound of the Regge limit singularity in the Virasoro blocks using the light cone

singularity. In particular, above the BTZ threshold αA+αB > αBTZ, the asymptotic

form of the Regge limit Virasoro blocks can be given by a universal formula. We

will explain this in section 4. From this result, we can predict, for example, the late

time behaviour of out of time ordered correlators (OTOCs)2 and general n-th Renyi

entropy after a local quench.

Besides these main contents, we give the light cone modular bootstrap in appendix B

and the details of the Zamolodchikov recursion relation in appendix C.

At the end of this section, we would like to emphasize the interesting points of our

results.

Beyond test mass limit In the light cone limit, we can calculate Virasoro conformal

blocks beyond the test mass limit hL

c ≪ 1. It might give a key to understanding

dynamics of multiple deficit angle in AdS3.

BTZ thershold The light cone singularity undergoes a transition at the BTZ thershold.

This suggests that this light cone transition captures information about holographic

CFTs in some sense, like the Hawking-Page transition. (One interpretation is ob-

tained by the light cone bootstrap.)

Liouville CFT & 2+1 gravity Interestingly, our result from the bootstrap equation

suggests that in a particular regime, 2+1 gravity is non-trivially related to Liou-

ville CFT (see figure 3), which cannot be observed in the test mass limit. We expect

that this gives new insights into the relation between Liouville CFT and 2+1 gravity.

2 Light cone bootstrap

Let us consider a unitary CFT with two primary operators OA and OB in the following.

In general, the operators appearing in the OPE between OA and OB have large anomalous

dimensions originating from its interactions. However, the crossing symmetry implies that

the large spin limit simplifies the structure of the OPE. In d ≥ 3 unitary CFTs, the large

l primary operators in the OPE have a twist

τn = τA + τB + 2n for any n ∈ Z≥0. (2.1)

This is proved in [11, 12, 61] using the light cone bootstrap.

2The time evolution of OTOCs at late time is also discussed in [56–60].
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The key point is the existence of a twist gap between the vacuum and minimal twist.

The unitarity imposes the following bounds on a twist spectrum (except for vacuum):

τ ≥
{

d−2
2 , if l = 0,

d− 2, otherwise .
(2.2)

This leads to the separation of the identity conformal block from the other contributions in

the bootstrap equation as the global blocks gij,klτ,l (u, v) have the singularity u
τ
2 v

1
2
∆ij with

∆ij = ∆i −∆j at u, v → 0. In particular, in the light cone limit, the identity provides the

dominant contributions to one hand side (t-channel expansion) in the bootstrap equation

as follows:

u−
1
2
(∆A+∆B) ∼

u≪v≪1
v−

1
2
(∆A+∆B)u−

1
2
∆12
∑

τ,l

Pτ,lgτ,l(v, u), (2.3)

where the sum is taken over the primary operators of twist τ = ∆ − l and spin l in the

OPE between OA and OB, and parameters u, v are the cross ratios defined by

u =

(

x12x34
x24x13

)2

, v =

(

x14x23
x24x13

)2

, (2.4)

with xij = xi − xj . In this equation, it can be observed that, to match the v-dependence

of both sides, there must exist the operators with twist (2.1).

However, in 2D CFTs, the twist bound is given by τ ≥ 0, which means that the

identity contribution cannot be separated from the other contributions. Therefore, the

above process does not work in 2D CFTs. Even though there are many contributions

to the zero-twist part, we can incorporate the contributions into the Virasoro conformal

blocks; thus, using the Virasoro algebra, we can investigate the large spin structure even

in 2D CFTs. From this background, it is interesting to investigate what is predicted from

the light cone bootstrap in 2D CFTs. We will discuss it in this section.3

Before moving on to the light cone bootstrap, we will interpret this statement in terms

of AdS. The operators at large l correspond to states with large angular momentum in AdS,

and thus two-particle states at large l are orbiting a common centre with a large angular

momentum. At this stage, it is naturally expected that at large l, these two particles are

well separated, as the interactions between two objects become negligible at large angular

momentum. It means that the anomalous dimension of the two-object state should vanish

(see figure 2).

2.1 Lowest twist operator at large l

In 2D CFTs, the conformal bootstrap equation can be given in terms of Virasoro conformal

blocks as

∑

p

C12pC34pF21
34 (hp|z)F21

34 (h̄p|z̄) =
∑

p

C14pC23pF41
32 (hp|1− z)F41

32 (h̄p|1− z̄), (2.5)

3In fact, the light cone bootstrap in 2D CFTs has been studied in [20]; however, this study focused on

only the semiclassical limit as the study relied on using HHLL Virasoro blocks. Now that we have the most

general blocks in the light cone limit, we will consider more general unitary CFTs and external operators.
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where Cijk are OPE coefficients and F ij
kl(hp|z) are conformal blocks, which are usually

expressed using the Feynman diagram as follows:

F ji
kl(hp|z) ≡ .

We are interested in the light cone limit z ≪ 1−z̄ ≪ 1 of this equation. In the following, we

assume that there are no additional continuous global symmetries apart from the Virasoro

symmetry. Under this assumption, the light cone limit of the left hand side of (2.5) can

be approximated using the vacuum Virasoro block. As the global block expansion is more

useful to illustrate the asymptotics of the right hand side in the light cone limit, we re-

express the right hand side using global blocks. As a result, the bootstrap equation in the

light cone limit reduces to

FAA
BB(0|z)FAA

BB (0|z̄) ≃ (1− z)−hA−hB (1− z̄)−h̄A−h̄B
∑

τ,l

Pτ,lgτ,l(z, z̄), (2.6)

where gτ,l(z, z̄) is the global block and Pτ,l is the conformal block coefficient. In this limit,

we are interested in the large l global blocks, which are given by a simple approximated

form as

gτ,l(z, z̄) ∼ 2τ+2l(1− z̄)
τ
2 z

1
2
∆AB

√

l

π
K∆AB

(2l
√
z), (2.7)

where ∆ = h + h̄, ∆ij = ∆i − ∆j , and K∆(x) are modified Bessel functions (see more

details in [11]).

To proceed further, we have to determine the behaviour of the Virasoro blocks in the

limit z̄ → 1. Although no exact closed form of the Virasoro blocks is available, if we restrict

ourselves to the heavy-light limit, the HHLL Virasoro blocks make it possible to study the

bootstrap equation discussed in [20]. The HHLL Virasoro blocks in the limit z̄ → 1 lead to

FLL
HH(0|z)FLL

HH(0|z̄) = (1−z)hL(δ−1)

(

1−(1−z)δ

δ

)−2hL

(1−z̄)h̄L(δ̄−1)

(

1−(1−z̄)δ̄

δ̄

)−2h̄L

−−−−−−→
z≪1−z̄≪1

z−2hL (1−z̄)h̄L(δ̄−1) ,

(2.8)

where δ =
√

1− 24
c hH and δ̄ =

√

1− 24
c h̄H . For simplicity, we assume the external

operators to be hi ≥ h̄i, and therefore τi = 2h̄i. When comparing the z dependence of the

left- and right-hand sides, one can find that there must be an infinite number of large l

contributions on the right-hand side to reproduce the singularity z−2hL on the left-hand

side. Moreover, to reproduce the singularity (1 − z̄)h̄L(δ̄−1) on the left-hand side, there

must be a contribution from an infinite number of operators having increasing spin with

τ → δτL + τH . This is discussed in [20].
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In the above, we restricted our investigation to the HHLL limit because it is extremely

difficult to study the Virasoro blocks in general. Nevertheless, the light cone limit interest-

ingly simplifies the structure of the Virasoro blocks. We can find the simplification in the

large c limit achieved using the recursion relation [21, 22] and monodromy method [23]. In

fact, we can also evaluate the light cone limit of general Virasoro conformal blocks using

the fusion matrix. Here, we will only present the results from the fusion matrix and present

the detailed calculation in appendix A, as the calculation is complicated.

In the following, we introduce notations usually found in Liouville CFTs.

c = 1 + 6Q2, Q = b+
1

b
, hi = αi(Q− αi). (2.9)

We denote αi as Liouville momenta. We have to mention that although we use the notations

in Liouville CFTs, we never use relations that only hold in Liouville CFTs. The Liouville

parameters are introduced for convenience. According to the result (A.17) in appendix A,

the light cone singularity is given by

FAA
BB(0|z)FAA

BB (0|z̄) −−−−−−→
z≪1−z̄≪1

{

z−2hA (1− z̄)−2ᾱAᾱB , if ᾱA + ᾱB < Q
2 ,

z−2hA (1− z̄)
c−1
24

−h̄A−h̄B , otherwise,
(2.10)

where αi = Q
1−

√

1− 24
c−1

hi

2 and ᾱi = Q
1−

√

1− 24
c−1

h̄i

2 . To reproduce this light cone singularity

from the right-hand side of the bootstrap equation, we must always have the operator in

the OPE with twist.

τlowest =

{

τA + τB − 4ᾱAᾱB, if ᾱA + ᾱB < Q
2 ,

c−1
12 , otherwise ,

(2.11)

where we can re-express the Liouville momenta ᾱi using the twist τi as ᾱi = Q
1−

√

1− 12
c−1

τi

2 .

In particular, if we expand αA in τlowest at small hA

c , the result exactly matches τlowest →
δτA+τB. This twist τlowest gives the lower bound for the twist in the OPE at large l because

if there exists an operator with twist lower than τlowest, the singularity arising from that

twist is never reproduced by the left-hand side of the bootstrap equation.

An interesting point is that if the total Liouville momentum τA + τB increases beyond

the BTZ momentum threshold αBTZ = Q
2 ,

4 the lowest twist in the OPE is given by a

universal value c−1
12 . Moreover, this universal twist equals the BTZ mass threshold. In other

words, the total twist gradually increases unless the total Liouville momentum exceeds the

BTZ mass threshold, and the total twist is saturated by the value of that threshold if

the total Liouville momentum increases beyond it. This behaviour of the total twist is

shown in figure 1. Here, one might face a contradiction to the thermalisation of the HHLL

Virasoro blocks. It is well known that the HHLL vacuum block can be interpreted as a

two-point function on a thermal background if the mass of the heavy particle exceeds the

BTZ threshold hH > c
24 . To explore this, let us consider the expression (2.10). Considering

4The Liouville momentum αBTZ = Q

2
leads to the conformal dimension h = Q2

4
= c−1

24
. This is just the

BTZ mass threshold.

– 8 –
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32

c - 1
hB

0.2

0.4

0.6

total twist

hB vs. total twist with c=10 and hA=hB

0.2 0.4 0.6 0.8 1.0 1.2 1.4

24

c - 1
hB

0.2

0.4

0.6

total twist

hB vs. total twist with c=10 and hA<<hB

Figure 1. The left figure shows the hA = hB dependence of the total twist in the OPE between

OA and OB , and the right figure shows the hB dependence with hA ≪ hB . From both figures, we

can find saturation above αA + αB = Q
2 . In particular, for hA ≪ hB , the transition (saturation)

occurs at the BTZ mass threshold c−1
24 . A similar phenomenon can be seen in the HHLL Virasoro

blocks, known as thermalisation.

the test mass limit hA

c → 0, the threshold ᾱA + ᾱB < Q
2 can be approximated using an

inequality hB < c
24 . It means that the saturation of the singularity occurs exactly at

the BTZ threshold hB = c
24 , as expected from the analysis of the HHLL Virasoro blocks.

However, the singularity of the thermal correlator is considerably different from (2.10).

That is, above the BTZ threshold, the HHLL vacuum Virasoro block leads to the singularity

FLL
HH(0|z) = (1− z)hL(δ−1)

(

1− (1− z)δ

δ

)−2hL

−−−→
z→1

(1− z)−hL ,

(2.12)

which is obviously different from the singularity in (2.10). This is perhaps due to the test

mass limit hA

c → 0; here, the light cone limit could not commute with the test mass limit

hL/c → 0. It means that the back reaction of a probe actually results in a non-negligible

universal interaction with a heavy particle in AdS3. Note that one can find the agreement

of the transition points between HHLL blocks and light cone limit singularity, which might

imply that the transition of the light cone singularity is also related to thermalisation,

instability, or black hole formation. In fact, the assumptions c → ∞ and no extra conserved

current cause a CFT to be irrational, which is expected to be chaotic. Therefore, the

assumptions might be appropriate for thermalisation to occur. It would be interesting to

explore this issue further.

We want to emphasize that our result (2.11) holds not only for large c CFTs but also

for any unitary CFT with c > 1 and no extra conserved currents. Note that the absence

of the first condition c > 1 destroys the light cone OPE structure (see the final paragraph

of appendix A.1), and the second condition is used to approximate the light cone limit of

a correlator using the vacuum Virasoro block. Therefore, rational CFTs are an exception

in our statement.

Finally, we would like to mention that the fact that the lowest twist is saturated by c−1
12

is consistent with the result from the light cone modular bootstrap. By using the modular
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symmetry, it is easy to show that there must be an infinite number of large spin primaries

with twist accumulating to c−1
12 in any unitary CFT with c > 1 and without extra currents

(see appendix B or [62]). However, our statement (2.11) is a little different because our

result implies that there must be an infinite number of operators with twist c−1
12 at l → ∞

not only in the CFT, but also in the OPE. In this sense, our conclusion is more interesting

than the result from the light cone modular bootstrap on a torus. Possibly, we could show

that the operator with twist c−1
12 predicted from the modular bootstrap actually comes from

the OPE between two operators with heavy total Liouville momentum (ᾱA + ᾱB > Q
2 ).

2.2 Large l spectrum of twist

In the previous section, we derived the lowest twist at large l, but we would also like to

determine the twist spectrum. For this purpose, we need not only the leading confor-

mal blocks but also the sub-leading contributions to the blocks. We omit the details of

the calculation and only present the results; interested readers can refer to appendix A,

particularly A.2.

As the simplest example, we first consider the heavy-light limit. In the limit c → ∞
with hH

c , hL fixed, the light cone asymptotics of the conformal blocks is given as (A.21)

FLL
HH(hp|z) −−−→

z→1

∑

n∈Z≥0

Pn(1− z)δ(hL+n)−hL , (2.13)

where Pn are some constants. Therefore, the left-hand side of the bootstrap equation is

FLL
HH(0|z)FLL

HH(0|z̄) −−−−−−→
z≪1−z̄≪1

z−2hL





∑

n∈Z≥0

Pn(1− z̄)δ(h̄L+n)−h̄L



 . (2.14)

To reproduce the z̄ dependence of each term on the left-hand side, there must be at least

one primary operator with twist.

τn = δ(τL + 2n) + τH for any n ∈ Z≥0. (2.15)

Let us consider the case when the condition hL

c ≪ 1 is relaxed. In this case, the light cone

limit of a four-point function is given as follows. If ᾱAᾱB < Q
2 ,

FAA
BB(0|z)FAA

BB (0|z̄) −−−−−−→
z≪1−z̄≪1

z−2hA





∑

n∈Z≥0

Pn(1− z̄)
−2ᾱAᾱB+n

(

1− 2
Q
(ᾱA+ᾱB)

)



 ; (2.16)

otherwise,

FAA
BB(0|z)FAA

BB (0|z̄) −−−−−−→
z≪1−z̄≪1

z−2hA(1− z̄)
c−1
24

−h̄A−h̄B . (2.17)

As a result, the light cone bootstrap imposes a condition that there must exist operators

with twist.5

τn =

{

τA + τB − 4ᾱAᾱB + 2n
(

1− 2
Q(ᾱA + ᾱB)

)

(any n ∈ Z≥0), if ᾱA + ᾱB < Q
2 ,

c−1
12 , otherwise .

(2.18)

5After our work appeared, similar work was done in [63]. In [63], this spectrum is called Virasoro Mean

Fiald Theory. (More higher corrections are given by (2.21).)
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Note that an infinite tower comes from an infinite number of particular poles in the fusion

matrix (see appendix A.2). This infiniteness relies on the assumption c → ∞; therefore,

when we exceed the semiclassical limit, there is only a finite tower of operators in the OPE,

unlike (2.18) in large c CFTs.

In fact, for general unitary CFTs with c > 1, the light cone limit of a four- point

function can be approximated as follows:

FAA
BB(0|z)FAA

BB (0|z̄) −−−−−−→
z≪1−z̄≪1

z−2hA















∑

m,n∈Z≥0

where
ᾱA+ᾱB+Qm,n<

Q
2

Pm,n(1−z̄)−2ᾱAᾱB+µm,n















, if ᾱA+ᾱB <
Q

2
,

(2.19)

where the correction µm,n to the highest singular power law is defined using the Liouville

notation (2.9) and the notations ωm,n ≡ 2
Q(ᾱA + ᾱB +Qm,n) < 1, Qm,n = mb+ n

b as

µm,n =
(

mb+
n

b

)

(

(1− ωm,n +m)b+
1− ωm,n + n

b

)

. (2.20)

On the other hand, if ᾱA + ᾱB > Q
2 , the light cone asymptotics for a correlator in general

unitary CFTs are the same as those in (2.17). The details of the calculation are given

before equation (A.25). We can thus conclude that in any 2D CFT with c > 1 and no

extra conserved currents, there must be operators with twist

τm,n =

{

τA+τB−4ᾱAᾱB+2µm,n (any m,n ∈ Z≥0 s.t. ᾱA+ᾱB+Qm,n < Q
2 ), if ᾱA+ᾱB < Q

2 ,
c−1
12 , otherwise .

(2.21)

One can find that µm,n differ by non-integer from one another, which means that each

twist belongs to a different conformal family.

This twist spectrum is considerably different from the prediction using the AdS inter-

pretation, τn = τA + τB + 2n. It means that the interactions between OA and OB never

vanish even at large l. In other words, there is a universal anomalous dimension only in

2D CFTs. The reason is that gravitational interactions in AdS3 create a deficit angle, and

their effect can be detected even at infinite separation. When focusing on the test mass

limit hA

c → 0, this long-distance effect can be interpreted clearly in AdS [20]. That is, the

existence of a deficit angle in AdS3 leads to an energy shift

∆A → ∆A

√

1− 8GNM = α∆A, (2.22)

where we used the dictionary, ∆B = M and c = 3
2GN

. This energy shift is universal

and never vanishes even at large angular momentum; therefore, it is natural that the

corresponding twist in CFT2 is also shifted by

τtotal = τA + τB → ατA + τB. (2.23)
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Figure 2. This figure shows the implications of the light cone bootstrap on the nature of AdS. In

AdSd≥4, the interactions between two objects become negligible at large angular momentum. On

the other hand, in AdS3, there exists a universal binding energy −4ᾱAᾱB even at large angular

momentum. If the total Liouville momentum is above the BTZ threshold αBTZ, the binding energy

is given by c−1
12 − τA − τB .

For general unitary CFTs with c > 1, we can conclude that there is a universal binding

energy between two objects at large l.

Ebinding −−−→
l→∞

{

−4ᾱAᾱB, if ᾱA + ᾱB < Q
2 ,

c−1
12 − τA − τB, otherwise .

(2.24)

This universal binding energy only exists in AdS3 and vanishes in AdSd≥4, as shown in

figure 2. This form of the binding energy below the BTZ threshold could be natural to

some extent because similar to the gravity theory or electromagnetic theory, this form

is characterized by the product of two Liouville momenta, where the Liouville momentum

behaves like a charge (see figure 3). It would be interesting to see how this binding energy is

obtained from the calculation in AdS3, determine why the Liouville momentum essentially

appears in the expression of the binding energy and understand the physical meaning of

this binding energy in general unitary CFTs with c > 1. Further, we intend to understand

what leads to saturation of the binding energy. We expect that this saturation is related

to thermalisation and black hole formation.

3 Entanglement and light cone limit

The light cone limit is useful in understanding entanglement, which is discussed in this

section.

– 12 –

A Self-archived copy inKyoto University Research Information Repositoryhttps://repository.kulib.kyoto-u.ac.jp



J
H
E
P
0
1
(
2
0
1
9
)
0
2
5

similar

Potential in at large Coulomb potential

Figure 3. Potential form in AdS3 between two particles is similar to the form of Coulomb potential.

Moreover, this form with Liouville momenta implies that the dynamics of the multiple deficit angle

at large angular momentum is completely captured by Liouville CFT.

One useful measure of entanglement is entanglement entropy, which is defined as

SA = −trρA log ρA, (3.1)

where ρA is a reduced density matrix for a subsystem A, obtained by tracing out its

complement. We will also discuss its generalization, called the Renyi entropy, which is

defined as

S
(n)
A =

1

1− n
log trρnA, (3.2)

and the limit n → 1 of the Renyi entropy defines the entanglement entropy SA. Here, to

characterize entanglement precisely, we measure the Renyi entropy for two disconnected

intervals A ∪ B. In particular, we consider the Renyi entropy in the light cone limit in

section 3.1. This has not been extensively studied as the explicit form of a four-point

function in the light cone limit was unknown until our earlier studies [21–23].6

The entanglement entropy for two disconnected intervals, or equivalently, the mutual

information, is also useful to probe how entanglement spreads. The entanglement entropy

for two disconnected intervals SA∪B does not measure the entanglement of A with B but

measures the entanglement of A∪B with its complement. Nevertheless, we can determine

the entanglement of A with B from SA∪B because a strong entanglement between A and

B means that A ∪ B cannot be entangled with the rest; thus, one can find that SA∪B is

small if A is highly entangled with B.

For example, Calabrese and Cardy studied the entanglement entropy for disconnected

intervals to conclude that, after a global quench, entanglement spreads as if correlations

were carried by free quasiparticles [65, 66]; this finding was refined in [49] as the quasipar-

ticle picture is only valid under some assumptions.

Interestingly, the light cone limit also appears in the study on the dynamics of entan-

glement as in [49]. Based on this fact, we will discuss the dynamics of entanglement after

a global quench in section 3.2, 3.3 and after a local quench in section 3.4.

3.1 Mutual information in light cone limit

In this section, we consider the light cone limit of the Renyi entanglement entropy S
(n)
A∪B

for two intervals A and B, or the Renyi mutual information, which is given by

I(n)(A : B) = S
(n)
A + S

(n)
B − S

(n)
A∪B. (3.3)

6This setup is holographically studied in [64].
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Figure 4. Setup of mutual information I(A,B) between two intervals A and B when A is infinitely

boosted.

Let us choose A and B to be [x1, x2] and [x3, x4] in the 2D Lorentzian spacetime R1,1.

Note that the Lorentzian time t and space x are related to the complex coordinate as

z = x+ itE = x− t. In terms of the complex coordinate, the intervals are specified by the

twist operators at

z1 = z̄1 = x1, z3 = z̄3 = x3, z4 = z̄4 = x4,

z2 = x2 − (−t), z̄2 = x2 + (−t), (3.4)

where x1 < x2 < x3 < x4 and t > 0. Here, we consider a simple case where only x2 goes

away from the t = 0 slice. The cross ratios are given by

z =
z12z34
z13z24

=
(x21 − t)x43
x31(x42 + t)

=
x−21x

−
43

x−31x
−
42

,

z̄ =
z̄12z̄34
z̄13z̄24

=
(x21 + t)x43
x31(x42 − t)

= 1− x+41x
+
32

x+31x
+
42

, (3.5)

where the light-cone coordinate x±j = tj±xj . In this setup, the light cone limit z ≪ 1−z̄ ≪
1 can be interpreted physically as the limit where the interval A is infinitely boosted; the

Cauchy surface containing the intervals becomes singular (see figure 4). That is, the light

cone limit corresponds to

x−21 ≪ x+32 ≪ 1. (3.6)

For simplicity, we assume the interval B to be large (x4 → ∞ or x4 ≫ x3). In this

case, the cross ratios z, z̄ are quite simple.

z =
x−21
x31

, z̄ = 1− x+32
x31

. (3.7)

– 14 –

A Self-archived copy inKyoto University Research Information Repositoryhttps://repository.kulib.kyoto-u.ac.jp



J
H
E
P
0
1
(
2
0
1
9
)
0
2
5

Thus, if we boost A to become almost null, the n-th Renyi mutual information (3.3) can

be computed using the four-point function of twist operators

I(n)(A : B) =
1

n− 1
log

[ 〈σn(x4)σ̄n(x3)σn(x2)σ̄n(x1)〉
〈σn(x4)σ̄n(x3)〉 〈σn(x2)σ̄n(x1)〉

]

=
1

n− 1
log
[

|z|4hnG(z, z̄)
]

,

(3.8)

where G(z, z̄) = 〈σn(∞)σ̄n(1)σn(z, z̄)σ̄n(0)〉. The conformal dimension of the twist oper-

ator can be written as hn = c
24

(

n− 1
n

)

; therefore, the n-th Renyi mutual information is

represented as

I(n)(A : B) =
c

12

(

1 +
1

n

)

log
x31

x+32
+

1

n− 1
log

[

|z|4hn |1− z|4hn G(z, z̄)

]

. (3.9)

The n-th Renyi mutual information in CFTs defined by a complex scalar boson com-

pactified on a torus is calculated in [53]. When the radius of a torus η = p
q is rational,

I(n)(A,B) =
c

12

(

1 +
1

n

)

log

(

x31

x+32

)

− log(2pq). (3.10)

We expect that, in any rational CFT, this could be generalized into the following form:

I(n)(A,B) =
c

12

(

1 +
1

n

)

log

(

x31

x+32

)

− log dtot, (3.11)

where dtot = 1/s00 is the total quantum dimension of the (seed) CFT. When η is irrational,

we obtain the double logarithmic divergent term.

I(n)(A : B) =
c

12

(

1 +
1

n

)

log

(

x31

x+32

)

− log

(

log

(

x31

x+32

))

− log n

n− 1
+ log(2π). (3.12)

In general, the function G(z, z̄) is nontrivial, but we can approximate it in the light

cone limit as7

G(z, z̄) −−−−−−→
z≪1−z̄≪1

Fσnσ̄n
σ̄nσn

(0|z)Fσnσ̄n
σ̄nσn

(0|z̄), (3.13)

where the conformal blocks are defined in a CFT with central charge nc. (not c !) Therefore,

we can apply our light cone limit conformal blocks for calculating the n-th Renyi mutual

information. For simplicity, we first assume a large c limit.8 The vacuum block with twist

operators is given as

Fσnσ̄n
σ̄nσn

(0|z)Fσnσ̄n
σ̄nσn

(0|z̄) −−−−−−→
z≪1−z̄≪1







z−2hn (1− z̄)−
c

12n
(1−n)2 , if hn < nc

32 ,

z−2hn (1− z̄)
c

24n(2−n2) , otherwise.
(3.14)

7Here, we assume that there are no extra currents, which is expected in generic holographic CFTs. We

also assume that orbifoldisation does not change the essential features of the CFTs. It is nontrivial, but

actually we can reproduce the holographic results under this assumption; therefore, we expect that this

assumption is valid. We will discuss this topic in detail in sections 3.3.
8The twist operator has a conformal dimension of the form c × const. . On the other hand, the c

dependence of the conformal blocks in the light cone limit appears as (c−1)×const. . Therefore, the blocks

with the twist operators have a complicated factor c
c−1

, which is only simplified in the large c limit.
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Inserting this vacuum block into the function G(z, z̄) in (3.9) leads to the following result:

I(n)(A : B) −−−−−−→
z≪1−z̄≪1











c
12

(

1− 1
n

)

log
(

x31

x+
32

)

, if n < n∗ ≡ 2,

c
12

(

1− 1
n

)

log
(

x31

x+
32

)

− c
24

(n−2)2

n(n−1) log
(

x31

x+
32

)

, otherwise.
(3.15)

In particular, the mutual information is given by taking the limit n → 1 as

I(A : B) −−−→
n→1

0. (3.16)

This result is consistent with the holographic calculation as in [64]. We intend to em-

phasize that the additional logarithmic divergent term appears in the n-th Renyi mutual

information for n > n∗. In many cases, to calculate the entanglement entropy (for ex-

ample, the replica method), we implicitly assume that the Renyi entropy is analytic in n.

However, we find an exception of this assumption in the light cone limit. Therefore, we

have to consider this exception if we use the replica method to evaluate the entanglement

entropy. We emphasize that this assumption does not contradict with the derivation of

the Ryu-Takayanagi formula in [47], as our result for the Renyi entropy is analytic in the

vicinity of n = 1.

We expect that this phase transition arises from only the light cone limit z ≪ 1− z̄ ≪ 1

(and c > 1) and not the large c limit. Following (A.16) (or (A.17)) in appendix A.1, we

can immediately obtain the Renyi mutual information for CFTs with finite c as

I(n)(A : B) −−−−−−→
z≪1−z̄≪1

c

12

((

1 +
1

n

)

− sn
n− 1

)

log

(

x31

x+32

)

, (3.17)

and the function sn is given by

sn =

{

2αn(Q− 2αn), if 2αn < Q
2 ,

Q2

4 , otherwise ,
(3.18)

where nc = 1+6Q2 and αn = Q
2

(

1−
√

1− c
nc−1

(

n− 1
n

)

)

, which satisfies hn = αn(Q−αn).

The transition point for general c is given by a more complicated form than n∗ = 2 in (3.34)

as follows:

n∗ =
3

2c

(

√

1 +
16

9
c2 − 1

)

, (3.19)

which satisfies n∗ −−−→
c→∞

2 as expected. The c dependence of n∗ is shown in figure 5. This

shows that the transition point is located between 1 < n∗ < 2. Therefore, deduction of

entanglement from the Renyi mutual information has to be done carefully.

In particular, we obtain the limit n → 1 of the Renyi mutual information as

I(n)(A : B) −−−→
n→1

c2

12

n− 1

c− 1
. (3.20)

This suggests that in CFTs with c > 1 (and no conserved primary currents), the mutual

information in the light cone limit vanishes as in holographic CFTs. On the other hand,
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Figure 5. c dependence of n∗. The classical limit c → ∞ matches n∗ = 2.

10 15 20 25 30
n

0.038

0.040

0.042

0.044

0.046

0.048

coef. of I
(n)(A:B)

n vs. coef. of I
(n)(A:B) with c=1

1.5 2.0 2.5 3.0
n

0.05

0.10

0.15

coef. of -∂n2 I(n)(A:B)
n vs. coef. of -∂n2I(n)(A:B) with c=1

Figure 6. The left figure shows the n dependence of the coefficient of the Renyi mutual informa-

tion (3.15). It can be observed that the n → ∞ limit of the Renyi mutual information approaches

I(2)(A : B). The right figure shows the n dependence of the coefficient of ∂2
nI

(n)(A : B). One can

see that ∂2
nI

(n)(A : B) becomes discontinuous at n = n∗.

if we consider a CFT with c = 1, the mutual information becomes ill-defined. This is

natural because the equation (A.16) (or (A.17)) is valid only if c > 1, as mentioned in

appendix A.1. We attribute this to the same reason why the quasiparticle picture breaks

down if we assume no extended symmetry algebra and c > 1, as explained in [49] (see also

section 3.2, 3.3). We can also find similar Renyi phase transitions as the replica number n

varies in other situations [67–71].

It would be interesting to point out that (3.15) leads to the fact that the (n > 2)-th

Renyi mutual information in the light cone limit is bounded by the 2nd Renyi mutual

information as follows:

I(2)(A : B) < I(n)(A : B) if n > 2, (3.21)

and in particular,9

lim
n→∞

I(n)(A : B) = I(2)(A : B). (3.22)

These properties are depicted in figure 6.

9S(2) and S(∞) are respectively known as collision entropy and min-entropy.
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3.2 Dynamics of Renyi mutual information in large c CFTs

The dynamics of quantum information has attracted the attention of many research com-

munities. In this sense, we are also interested in the propagation of entanglement. Fortu-

nately, as discussed in [49], entanglement memory could be characterised using light cone

singularity; therefore, we might be able to study entanglement memory using our confor-

mal blocks in the light cone limit. In this section, we explain this in detail and apply our

conformal blocks to the calculation of the entanglement entropy.

For realizing the objective stated above, we consider the Renyi entropy in a doubled

CFT. That is, we will consider the thermofield double state in the doubled system,

|TFD〉 =
∑

n

e−
β
2
H |n〉1 |n〉2 , (3.23)

as an entangled state. Two states |n〉1 and |n〉2 respectively exist in CFT1 and CFT2. We

label the coordinates of each CFT as (t1, x1) and (t2, x2) and consider two disconnected

intervals (see the left of figure 7)

A = [0, L]1 ∪ [D + L,D + 2L]2. (3.24)

Let us choose the total Hamiltonian acting on the doubled CFT as

Htot = H1 +H2. (3.25)

Thus, the thermofield-double state (TFD) has a non-trivial time dependence.

The Renyi entropy in a doubled CFT can be given by a four-point function with

twist operators on a thermal cylinder of periodicity β. The twist operators are put on the

endpoints of A with a shift iβ2 for operators in two different copies of the CFT. The time

dependence is obtained by considering the analytic continuation t → it of the insertion

points of the twist operators (see the right of figure 7),

(

2π

β

)8hn

|w1w2w3w4|2hn 〈σn(w1, w̄1)σ̄n(w2, w̄2)σn(w3, w̄3)σ̄n(w4, w̄4)〉 , (3.26)

where the insertion points are given by

w1 = e
2π
β
(−t+iβ/4)

, w̄1 = e
2π
β
(t−iβ/4)

,

w2 = e
2π
β
(L−t+iβ/4)

, w̄2 = e
2π
β
(L+t−iβ/4)

, (3.27)

w3 = e
2π
β
(D+2L+t−iβ/4)

, w̄3 = e
2π
β
(D+2L−t+iβ/4)

,

w4 = e
2π
β
(D+L+t−iβ/4)

, w̄4 = e
2π
β
(D+L−t+iβ/4)

.

The Renyi mutual information can be obtained in a simpler manner as follows:

I
(n)
A =

1

n− 1
log

[ 〈σn(w1, w̄1)σ̄n(w2, w̄2)σn(w3, w̄3)σ̄n(w4, w̄4)〉
〈σn(w1, w̄1)σ̄n(w2, w̄2)〉 〈σn(w3, w̄3)σ̄n(w4, w̄4)〉

]

=
1

n− 1
log
[

|z|4hnG(z, z̄)
]

,

(3.28)

where G(z, z̄) = 〈σn(∞)σ̄n(1)σn(z, z̄)σ̄n(0)〉 and z = w12w34
w13w24

.
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Figure 7. The left figure shows two intervals in the doubled CFT. The entanglement entropy

in this setup can be given by a four-point function with twist operators on a thermal cylinder of

periodicity β, as sketched in the right figure.

In general, a four-point function non-trivially depends on the CFT data, and its explicit

form is not known, except for a few CFTs. Therefore, to proceed further, we focus on the

high-temperature limit β → 0 in the following, which simplifies the four-point function as

it corresponds to some OPE limits. That is, the cross ratio is given by

z ≃ e
− 2π

β
(D+2t) −−−→

β→0
0,

z̄ ≃ e
− 2π

β
(D+2L+t−max(D+2L−t,t)−max(D,2t)) −−−→

β→0
0 or 1.

(3.29)

Outside the range D
2 < t < D+2L

2 , the anti-holomorphic cross ratio approaches 0; thus, the

function G(z, z̄) becomes

G(z, z̄) −−−→
β→0

|z|−4hn . (3.30)

As a result, we obtain the Renyi mutual information as

IA −−−→
β→0

0. (3.31)

On the other hand, in the range D
2 < t < D+2L

2 , the anti-holomorphic cross ratio is given by

1− z̄ ≃ e
− 2π

β
min(D+2L−2t,2t−D) −−−→

β→0
0. (3.32)

In particular, this cross ratio satisfies z ≪ 1− z̄ ≪ 1, and therefore, this limit corresponds

to the light cone limit. Thus, the calculation of the Renyi mutual information in the

doubled CFT reduces to the same form as given in section 3.1. The function G(z, z̄) is

approximated as

G(z, z̄) −−−−−−→
z≪1−z̄≪1







z−2hn (1− z̄)−
c

12n
(1−n)2 , if hn < nc

32 ,

z−2hn (1− z̄)
c

24n(2−n2) , otherwise,
(3.33)

and, therefore, the Renyi mutual information is

I
(n)
A −−−−−−→

z≪1−z̄≪1















c
12

(

1− 1
n

)

2π
β min(D + 2L− 2t, 2t−D), if n < n∗ ≡ 2,

[

c
12

(

1− 1
n

)

− c
24

(n−2)2

n(n−1)

]

2π
β min(D + 2L− 2t, 2t−D), otherwise.

(3.34)
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As a result, one can again see the Renyi phase transition as the replica number is varied.

Therefore, one has to take care when trying to predict the behaviour of the entanglement

entropy using the Renyi entropy.

We have to mention that from (3.34), the mutual information is obtained by taking

the limit n → 1 as

IA = 0. (3.35)

Here, the mutual information vanishes for all times. It means that entanglement scram-

bles maximally, which contradicts with the quasiparticle behaviour shown in, for example,

rational CFTs.

3.3 Renyi mutual information beyond large c

As mentioned in section 3.1, we can generalize the calculation of the Renyi mutual infor-

mation to general c under some assumptions. This is extensively discussed in this section.

For simplicity, we again assume that there are no extra currents. Even in such a case,

orbifoldisation leads to the Zn current; therefore, we should approximate a correlator with

twist operators, instead of (3.13), as follows:

G(z, z̄) −−−−−−→
z≪1−z̄≪1

Fσnσ̄n
σ̄nσn

(0|z)FVirn/Zn
σnσ̄n

σ̄nσn
(0|z̄), (3.36)

where FVirn/Zn is the conformal block defined by current algebra Virn/Zn and not just

Virasoro algebra.

From the crossing symmetry, we can obtain

G(z, z̄) = G(1− z, 1− z̄) −−−→
z̄→1

(1− z̄)−2hn . (3.37)

Therefore, we have the upper bound of the singularity of FVirn/Zn as

lim
z̄→1

FVirn/Zn
σnσ̄n

σ̄nσn
(0|z̄) . (1− z̄)−2hn , (3.38)

In addition, we can also deduce the lower bound as

lim
z̄→1

FVirn/Zn
σnσ̄n

σ̄nσn
(0|z̄) & lim

z̄→1
Fσnσ̄n
σ̄nσn

(0|z̄). (3.39)

The light cone singularity of the Virasoro block with any c > 1 is given in appendix A.1,

FAA
BB(hαs |z) −−−→

z→1
(1− z̄)sn−2hn , (3.40)

where the function sn is defined as

sn =

{

2αn(Q− 2αn), if 2αn < Q
2 ,

Q2

4 , otherwise .
(3.41)

Here, nc = 1+6Q2 and αn = Q
2

(

1−
√

1− c
nc−1

(

n− 1
n

)

)

, which satisfies hn = αn(Q−αn).

In conclusion, the light cone limit of a correlator G(z, z̄) is bounded by

z−2hn(1− z̄)sn−2hn . G(z, z̄) . z−2hn(1− z̄)−2hn . (3.42)

– 20 –

A Self-archived copy inKyoto University Research Information Repositoryhttps://repository.kulib.kyoto-u.ac.jp



J
H
E
P
0
1
(
2
0
1
9
)
0
2
5

As a result, the Renyi mutual information in the doubled CFTs satisfies the following

inequalities:

(

c

12

(

1+
1

n

)

− sn
n−1

)

2π

β
min(D+2L−2t, 2t−D) ≤ I(n)(A : B)

≤ c

12

(

1+
1

n

)

2π

β
min(D+2L−2t, 2t−D).

(3.43)

In fact, rational CFTs saturate the upper bound (3.43), and hence, their mutual infor-

mation is universal. This shows that entanglement does not scramble and quasiparticle

behaviour can be observed in rational CFTs. On the other hand, holographic CFTs ap-

pear to saturate the lower bound. In this context, we can state that if the Renyi mutual

information, in theory, saturates the lower bound, then it shows maximal scrambling. This

is the main conclusion of this section.

3.4 2nd Renyi entropy after local quench

At the end of this section, we discuss another application of light cone singularity. In fact,

the light cone limit also appears if one investigates the dynamics of the Renyi entanglement

entropy after a local quench. The process is as follows: we consider the locally excited state

|Ψ〉, which is defined by acting with a local operator O(x) on the CFT vacuum |0〉 in the

following manner,10

|Ψ(t)〉 = N e−ǫH−iHtO(x) |0〉 , (3.44)

whereN is the normalization factor. The infinitesimally small parameter ǫ > 0 provides UV

regularization as the truly localized operator has infinite energy. We choose the subsystem

A to be the half-space and induce excitation in its complement, thus creating additional

entanglements between them. The main quantity of interest is the growth of entanglement

entropy compared to the vacuum:

∆S
(n)
A (t) = S

(n)
A (|Ψ(t)〉)− S

(n)
A (|0〉). (3.45)

In fact, this quantity can also be calculated analytically using twist operators [72] as

∆S
(n)
A =

1

1− n
log

〈O⊗nO⊗nσnσ̄n〉
〈O⊗nO⊗n〉〈σnσ̄n〉

, (3.46)

where the operator O⊗n is defined on the cyclic orbifold CFT Mn/Zn, using the operators

in the seed CFT M as

O⊗n = O ⊗O ⊗ · · · ⊗O. (3.47)

The local excitation O is separated by a distance l from the boundary of A, as shown in

the left of figure 8. For simplicity, we move the framework from (a) to (c) (through (b)) as

10We would like to stress that ǫ in (3.44) is the ultraviolet (UV) cut off of the local excitations and should

be distinguished from the UV cut off (i.e. the lattice spacing) of the CFT itself.
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Figure 8. (Left) The positions of operators in the replica computation (3.46). (Right) The equiv-

alence between (a) and (b) explains the relation between a correlator with twist operators in an

orbifold theory and a replica manifold. The equivalence between (b) and (c) can be obtained using

a conformal map w = zn.

shown in the right of figure 8 using a conformal map w = zn. We focus on n = 2 in the

following. In the late-time limit t ≫ l, we can approximate the cross ratio as

z ≃ 1− ǫ2

4t2
, z̄ ≃ ǫ2

4t2
, (3.48)

which is just the light cone limit.11

Using this cross ratio, we can re-express the correlator as

〈O⊗nO⊗nσnσ̄n〉
〈O⊗nO⊗n〉〈σnσ̄n〉

= |z|4hO |1− z|4hO G(z, z̄). (3.49)

The light cone limit of the four-point function can be approximated as12

G(z, z̄) −−−−−→
1−z,z̄≪1

(1− z)sO−2hO z̄−2hO , (3.50)

where the function sO is defined as

sO =

{

2αO(Q− 2αO), if hO < c−1
32 ,

Q2

4 , otherwise .
(3.51)

Therefore, the growth of the 2nd Renyi entropy after a light local quench (hO ≤ c−1
32 ) is

given by

∆S
(2)
A (t) −−−→

t
ǫ
→∞

4αO(Q− 2αO) log
t

ǫ
. (3.52)

11Actually, this limit is the double light cone limit, which is defined by the limit 1 − z, z̄ ≪ 1 with z̄
1−z

fixed.
12In this case, the function G(z, z̄) is NOT defined in an orbifold theory, but just in an ordinal theory.

Therefore, we do not need to consider the difficulty explained in section 3.3. We can approximate the light

cone limit of a correlator using just the Virasoro conformal block.
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0.2 0.4 0.6 0.8 1.0 1.2 1.4

32

c - 1
hO

0.2

0.4

0.6

coef. of ΔSA(2)(t)
hO vs. coef. of ΔSA(2)(t) with c=10

Figure 9. The hO dependence of the coefficient of the growth of the 2nd Renyi entropy after a

local quench. This dependence might imply that in a CFT with c > 1 and no extra currents, the

heavier the operator used to create a local quench, the larger is the entropy growth; however, if its

dimension exceeds the value c−1
32 , then the entropy is saturated by (3.54).

In particular, if expanding this at small hO

c , the result reduces to

∆S
(2)
A −−−−→

hO
c

≪1

4hO log
t

ǫ
. (3.53)

This result in the light limit is consistent with the result in [73]. The growth for a heavy

local quench (hO ≥ c−1
32 ) is more interesting, that is, it has the following universal form:

∆S
(2)
A (t) −−−→

t
ǫ
→∞

Q2

2
log

t

ǫ
. (3.54)

These results are consistent with the numerical results in [21].

We can, therefore, conclude that the 2nd Renyi entropy after a local quench undergoes

a phase transition as the conformal dimension of the local quench is varied, if we restrict

ourselves to a unitary (compact) CFT with c > 1 and no extra conserved currents. That is,

in one of the phases, the entropy is monotonically increasing in hO, and in the other phase,

it is saturated by the universal form (3.54), as shown in figure 9. We intend to emphasize

that at least when n = 2, the Renyi entropy after a local quench can be explicitly given

without other assumptions except that c > 1 and there are no extra currents (and discrete

spectra or, equivalently, compactness). Unfortunately, we did not find this saturation

when studying the entanglement entropy (n = 1 Renyi entropy); therefore, we could not

determine how to relate this saturation to the dynamics of the entanglement. Note that,

in fact, we can generalize this result to any replica number n, as explained in the next

section.

4 Regge limit universality

In 2D CFTs, the Regge limit is defined by the limit z, z̄ → 0 after picking up a monodromy

around z = 1 as (1 − z) → e−2πi(1 − z). This limit is obviously different from the light
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Regge limit

unit circle

light cone limit

Figure 10. The relation between cross ratio z and elliptic nome q.

cone limit; nevertheless, we can contribute to studies on the Regge limit using our light

cone limit conformal blocks.

For this purpose, we introduce the elliptic form of the Virasoro blocks as follows:

F21
34 (hp|z) = Λ21

34(hp|q)H21
34 (hp|q), q(z) = e

−π
K(1−z)
K(z) , (4.1)

where K(z) is the elliptic integral of the first kind and the function Λ21
34(hp|q) is a universal

prefactor given by

Λ21
34(hp|q) = (16q)hp− c−1

24 z
c−1
24

−h1−h2(1− z)
c−1
24

−h2−h3(θ3(q))
c−1
2

−4(h1+h2+h3+h4). (4.2)

The function H21
34 (hp|q) can be calculated recursively (see appendix C). For simplicity, we

express the function H21
34 (hp|q) using a series expansion form as

H21
34 (hp|q) =

∑

n∈Z≥0

cnq
n, (4.3)

where c0 = 1. In our recent studies [21, 22], we determined that the series coefficients could

be expressed as

cn ∼ ξnnαeA
√
n for large n ≫ c, (4.4)

where

ξ =











δn,even × sgn

[

(

hA − c−1
32

) (

hB − c−1
32

)

]

, for AABB blocks ,

1, for ABBA blocks .

(4.5)

The values of A and α are constants in n, depending on hA, hB, and c (whose explicit forms

are given in [21–23] or (C.10) (C.11), (C.12), (C.13) in appendix C). Note that the series

coefficients for the AABB blocks vanish if n is odd, which is described by δn,even in (4.5).

The key point is that the Regge limit corresponds to the limit q → i, q̄ → 0 in terms of

the elliptic nome (see figure 10). Considering that the series coefficients for hA,B > c−1
32 are
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always non-negative and z → 1 corresponds to q → 1 and z → 0 with (1−z) → e−2πi(1−z)

corresponds to q → i, we obtain the relationship between the light cone singularity and

Regge singularity as follows:

lim
z→1

∣

∣H21
34 (hp|q)

∣

∣ & lim
z→0
with

(1−z)→e−2πi(1−z)

∣

∣H21
34 (hp|q)

∣

∣ , (4.6)

where we only focus on the cases (h1, h2, h3, h4) = (hA, hA, hB, hB) or (hA, hB, hB, hA);

however, we expect that this relationship can be generalized for any pairs with h1,2,3,4 >
c−1
32 . Comparing (4.2) with (1.5), one can find that the main singularity in the light cone

limit only comes from the prefactor (4.2), and, therefore, the function H21
34 (hp|q) does not

contribute to the singularity. Therefore, we can conclude that

H21
34 (hp|q) −−−−−−−−−−−−→

z→0
with

(1−z)→e−2πi(1−z)

O(log z). (4.7)

This conclusion leads to the Regge singularity of a four-point function as follows:

G(z, z̄) −−−−−−−−−−−−→
z→0
with

(1−z)→e−2πi(1−z)

z
c−1
24

−h1−h2 z̄−h1−h2 , if h1,2,3,4 >
c− 1

32
. (4.8)

One application of this result is the evaluation of the Renyi entropy after a local quench.

As explained in section 3.4, its growth can be analytically calculated using a four-point

correlator with twist operators (3.46). In section 3.4, we moved the framework from an

orbifold CFT to a seed CFT using a conformal map to evaluate the growth; however, we can

also calculate the growth using just (3.46) itself. In this calculation, we have to calculate

the Regge limit of a four-point function, instead of the light cone limit. This result (4.8)

leads to the conclusion that the Renyi entropy after a local quench shows universality if

n > n∗ and hO > c−1
32 . This aspect is discussed in detail elsewhere [21]. Note that the

Regge limit also appears in the evaluation of OTOCs.

5 Discussion

The light cone structure of Virasoro conformal blocks allows us to access information

about 2D CFTs. For example, the large-spin spectrum can be derived from only the

vacuum Virasoro conformal block through the light cone bootstrap equation. Based on this

background, an important task was to examine the light cone singularity of the Virasoro

blocks in general. In this paper, we reveal the light cone structure of general Virasoro

blocks by investigating the fusion matrix (or the crossing kernel). Interestingly, light cone

singularity undergoes a phase transition as the external operator dimensions are varied.

This fact leads to a richer structure of the spectrum at large spin; however, the physical

interpretation of the transition is presently unclear.

At this stage, the most important future works are to understand the bulk interpreta-

tion of universality of twist and transition at the BTZ threshold. For this purpose, it might

need to resolve the following problems:
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i) poor understanding of the relationship between Liouville CFT and 2+1 dimensional

gravity (see [74–77]),

ii) dynamics of multiple deficit angles.

The reason for considering (i) is because the transition point is characterised by the total

Liouville momentum, instead of the total mass.

We expect that this transition would be related to thermalisation or black-hole forma-

tion. There are two reasons for this:

i) The transition point is characterised by the BTZ threshold, similar to the thermali-

sation of the HHLL Virasoro blocks.

ii) The transition can only be found in a CFT with c > 1 and no conserved extra

currents, which is expected to be chaotic.

In the first place, there is limited information as to why the BTZ threshold appears as the

transition point. We intend to examine if the BTZ threshold is related to the creation of

black hole. It is interesting to explore the relationships between the transition, creation of

a black hole, and thermalisation.

The light cone bootstrap equation suggests that there must be a universal binding

energy even at large angular momentum. Moreover, this binding energy becomes larger

if the total Liouville momentum increases beyond the BTZ threshold and the total twist

is saturated by c−1
12 owing to the strong interaction above the BTZ threshold. It would

be interesting to reproduce this binding energy at large spin from the calculation in AdS

gravity.

The light cone singularity also reveals the entanglement structure. From our studies

on entanglement in various setups, we found that the transition of the light cone singularity

often caused discontinuousness of the derivative of the Renyi entropy in n. It is not possible

to physically explain why the light cone limit destroys the assumption that the Renyi

entropy is analytic in n. Apart from the transition in n, when considering the Renyi

entropy after a local quench, we found that the Renyi entropy became large on increasing

the conformal dimension of the operator used to create a quench, unless the dimension

exceeded c
32 . Above the threshold, the Renyi entropy is saturated. We expect that it is

related to the saturation of entanglement in some way. It would be interesting to explore

this topic in future.

One interesting future work is to generalize the analytic bootstrap program [16, 17]

to two-dimensional CFTs. We believe that our result may contribute to this progress. It

would be interesting to explore this issue further.
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A Light cone limit from fusion matrix

A.1 Leading term in light cone limit

In the following, we introduce the notations usually found in Liouville CFTs.

c = 1 + 6Q2, Q = b+
1

b
, hi = αi(Q− αi). (A.1)

Note that we can relate the parameter ηi appearing in [23] to αi as αi = Qηi.

In this appendix, we show the asymptotic form of the conformal blocks in the limit

z → 1. The key point is that there are invertible fusion transformations between s and t-

channel conformal blocks [78] as follows:13

F21
34 (hαs |z) =

∫

S

dαtFαs,αt

[

α2 α1

α3 α4

]

F41
32 (hαt |1− z), (A.2)

where the contour S runs from Q
2 to Q

2 +i∞. The kernel Fαs,αt is called the crossing matrix

or fusion matrix. The explicit form of the fusion matrix is given in [78, 82]as follows:

Fαs,αt

[

α2 α1

α3 α4

]

=
N(α4, α3, αs)N(αs, α2, α1)

N(α4, αt, α1)N(αt, α3, α2)

{

α1 α2 αs

α3 α4 αt

}

b

, (A.3)

where the function N(α3, α2, α1) is

N(α3, α2, α1) =
Γb(2α1)Γb(2α2)Γb(2Q−2α3)

Γb(2Q−α1−α2−α3)Γb(Q−α1−α2+α3)Γb(α1+α3−α2)Γb(α2+α3−α1)
,

(A.4)

and
{

α1 α2 αs

α3 α4 αt

}

b

is the Racah-Wigner coefficient for the quantum group Uq(sl(2,R)), which

is given by14

{

α1 α2 αs

α3 ᾱ4 αt

}

b

=
Sb(α1+α4+αt−Q)Sb(α2+α3+αt−Q)Sb(α3−α2−αt+Q)Sb(α2−α3−αt+Q)

Sb(α1+α2−αs)Sb(α3+αs−α4)Sb(α3+α4−αs)

×|Sb(2αt)|2
∫ 2Q+i∞

2Q−i∞
du

Sb(u−α12s)Sb(u−αs34)Sb(u−α23t)Sb(u−α1t4)

Sb(u−α1234+Q)Sb(u−αst13+Q)Sb(u−αst24+Q)Sb(u+Q)
,

(A.5)

13A similar structure for a 1-pt function on a torus can be found in [79] (see also [6, 80, 81]). It would

be interesting to parallel our discussion for a 1-pt function on a torus.
14Ponsot-Teschner have derived a more symmetric form of the Racah-Wigner coefficient [83] than the

traditional expression found in [78, 82]. In this study, we used the new expression derived in [83].
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where we have used the notations ᾱ = Q−α, αijk = αi+αj+αk and αijkl = αi+αj+αk+αl.

The functions Γb(x) and Sb(x) are defined as

Γb(x) =
Γ2(x|b, b−1)

Γ2

(

Q
2 |b, b−1

) , Sb(x) =
Γb(x)

Γb(Q− x)
, (A.6)

Γ2(x|ω1, ω2) is the double gamma function,

log Γ2(x|ω1, ω2) =





∂

∂t

∞
∑

n1,n2=0

(x+ n1ω1 + n2ω2)
−t





t=0

. (A.7)

Note that the function Γb(x) is introduced such that Γb(x) = Γb−1(x) and satisfies the

following relationship:

Γb(x+ b) =

√
2πbbx−

1
2

Γ(bx)
Γb(x). (A.8)

By substituting the explicit form of the Racah-Wigner coefficients (A.5) into (A.3), we can

simplify the expression for the fusion matrix into

Fαs,αt

[

α2 α1

α3 α4

]

=
Γb(Q+ α2 − α3 − αt)Γb(Q− α2 + α3 − αt)Γb(2Q− α1 − α4 − αt)Γb(α1 + α4 − αt)

Γb(2Q− α1 − α2 − αs)Γb(α1 + α2 − αs)Γb(Q+ α3 − α4 − αs)Γb(Q− α3 + α4 − αs)

× Γb(Q− α2 − α3 + αt)Γ(−Q+ α2 + α3 + αt)Γb(α1 − α4 + αt)Γb(−α1 + α4 + αt)

Γb(α1 − α2 + αs)Γb(−α1 + α2 + αs)Γb(Q− α3 − α4 + αs)Γb(−Q+ α3 + α4 + αs)

× |Sb(2αt)|2
Γb(2Q− 2αs)Γb(2αs)

Γb(2Q− 2αt)Γb(2αt)

×
∫ 2Q+i∞

2Q−i∞
du

Sb(u− α12s)Sb(u− αs34)Sb(u− α23t)Sb(u− α1t4)

Sb(u− α1234 +Q)Sb(u− αst13 +Q)Sb(u− αst24 +Q)Sb(u+Q)
.

(A.9)

The conformal blocks have the following simple asymptotic form:

F21
34 (hαs |z) −−−→

z→0
zhs−h1−h2(1 +O(z)). (A.10)

Naively substituting this asymptotics into the fusion transformation (A.2) leads to

F21
34 (hαs |z) −−−→

z→1
(1− z)

c−1
24

−h2−h3 . (A.11)

Interestingly, this reproduces a part of the asymptotic formulas (1.5) and (1.4). However,

we cannot straightforwardly understand how the transition seen in (1.5) and (1.4) can be

reproduced using the transformation (A.2).

The key to understanding how the transition is derived from the expression of the

fusion matrix is that the function Γb(x) has poles at x = −
(

mb+ n
b

)

for n,m ∈ Z≥0, and

therefore, the fusion matrix also has poles. The following shows the poles in the first and

second lines of the expression (A.9):
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Figure 11. The domain of ℜα(i)
t . From this figure, we can find that only α

(5)
t and α

(6)
t can cross

the contour S of the integral over αt.

Poles of the numerator

α
(1)
t = ±(α2 − α3) +Q+Qm,n

α
(2)
t = ±(α1 − α4)−Qm,n

α
(3)
t = −(α1 + α4) + 2Q+Qm,n

α
(4)
t = (α2 + α3)−Q−Qm,n

α
(5)
t = α1 + α4 +Qm,n

α
(6)
t = −(α2 + α3) +Q−Qm,n

(A.12)

where we define Qm,n = mb + n
b for n,m ∈ Z≥0. The real values of αi always satisfy

0 ≤ ℜαi ≤ Q
2 for the operators in unitary CFTs, and the value Qm,n is always positive by

definition. Therefore, each value of ℜα(i)
t exists only in a particular domain as shown in

figure 11. One can find that only α
(5)
t and α

(6)
t can cross the contour S of the integral over

αt when α1 + α4 < Q
2 . As a result of this crossing, the contour S is deformed as shown in

figure 12.15

This deformation leads to another possibility that the conformal block has the asymp-

totics as follows:

F21
34 (hαs |z) −−−→

z→1

{

(1− z)h1+h4−h2−h3−2α1α4 , if α1 + α4 <
Q
2 ,

(1− z)−2α2α3 , if α2 + α3 <
Q
2 .

(A.13)

If we set three parameters as

κ1 = h1 + h4 − h2 − h3 − 2α1α4, κ2 = −2α2α3, κ3 =

(

c− 1

24
− h1 − h4

)

, (A.14)

15This deformation of the contour in a particular case was described in [84] and we are very much grateful

to Henry Maxfield for pointing out this.
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Figure 12. The contour S deformed by the pole α
(5)
t .

then we can show the following inequalities:

κ3 − κ1 =

(

α1 + α4 −
Q

2

)2

> 0, if α1 + α4 <
Q

2
,

κ3 − κ2 =

(

α2 + α3 −
Q

2

)2

> 0, if α2 + α3 <
Q

2
,

κ1 − κ2 = (α1 + α4 − α2 − α3)(1− α1 − α2 − α3 − α4), if α1 + α4 <
Q

2
, α2 + α3 <

Q

2
.

(A.15)

Therefore, the leading contribution of the ABBA blocks in the limit z → 1 is given by

FBA
BA (hαs |z) −−−→

z→1















(1− z)4hA−2hB−2QαA , if αA < Q
4 and αA < αB,

(1− z)2hB−2QαB , if αB < Q
4 and αB < αA,

(1− z)
c−1
24

−2hB , otherwise .

(A.16)

Further, the asymptotics of the AABB blocks is given by

FAA
BB(hαs |z) −−−→

z→1

{

(1− z)−2αAαB , if αA + αB < Q
2 ,

(1− z)
c−1
24

−hA−hB , otherwise .
(A.17)

Interestingly, these results exactly match our previous results obtained using the mon-

odromy method in [23] and numerical results in [21, 22]. We intend to emphasize that the

above calculation based on the fusion matrix does not rely on the large c limit. Therefore,

we expect that the asymptotic form derived from the monodromy method with c → ∞
in [23] can be generalized to any unitary CFTs with c > 1 by replacing the factor c by c−1.

One might doubt this result because it contradicts with the singularities appearing in

the minimal models. In the first place, when one of the external operators corresponds
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to a degenerate operator, the decomposition of the s-channel in terms of the t-channel is

not a continuum, but is discrete. That is, in such a case, the crossing kernel needs to

be written as a linear combination of delta functions. In fact, if the external operator is

degenerate, Sb or Γb in the denominator of the expression (A.9) diverges, and therefore, the

crossing kernel vanishes for general αt; however, these divergences can be cancelled only if

αt takes particular values. As a result, the s-channel is decomposed as a discrete sum of the

t-channels, instead of an integral over the continuum spectrum. This concept is explained

in greater detail in [85, 86]. We have to mention that this never happens for unitary CFTs

with c > 1 because if the central charge is larger than one, then the conformal dimensions

of degenerate operators are negative.

A.2 Sub-leading terms in light cone limit

In section 2.2, we tried to derive the spectrum of twist. For this, we need the sub-leading

contributions of the conformal blocks in the light cone limit. In this appendix, we first

give the sub-leading terms in the semiclassical limit using the fusion matrix and then

generalize it.

We expect that the sub-leading terms come from the poles (A.12) with non-zero n,m.

As an example, let us consider the contributions from the poles α
(5)
t with non-zero n,m

in the semiclassical limit. If α1 + α4 + Qm,n < Q
2 is satisfied, the corresponding term

labelled m,n also contributes to the conformal blocks as sub-leading terms. Its singularity

is given by

(1− z)h1+h4−h2−h3−2α1α4+µm,n , (A.18)

where µm,n is a positive constant defined by

µm,n =
(

mb+
n

b

)

(

(1− ωm,n +m)b+
1− ωm,n + n

b

)

, (A.19)

and ωm,n ≡ 2
Q(α1 + α4 + Qm,n) < 1. If taking the limit b → 0 with h1, h4/c fixed, the

sub-leading terms are given by µm,0 as µm,n>0 ≫ µm,0, and ω can be approximated as

ωm,0 ≃ 1− δ with δ =
√

1− 24
c h4. Thus, we can approximate µm,0 as

µm,0 −−→
b→0

mδ. (A.20)

This leads to the sub-leading contributions to the conformal blocks as follows:

FLL
HH(hp|z) −−−→

z→1

∑

m∈Z≥0

Pm(1− z)δ(hL+m)−hL , (A.21)

where Pm are some constants. In fact, the HHLL Virasoto blocks have the same form.

FLL
HH(hp|z) = (1− z)hL(δ−1)

(

1− (1− z)δ

δ

)hp−2hL

2F1(hp, hp, 2hp|1− (1− z)δ)

−−−→
z→1

∑

m∈Z≥0

Pm(1− z)δ(hL+m)−hL ,
(A.22)
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Figure 13. This figure shows from where the sub-leading contributions to the blocks are obtained.

which can be easily checked using the series expansion of (1 − x)−2hL . Therefore, we can

conclude that the sub-leading contributions come from the poles with non-zero m,n, as

shown in figure 13. Note that now we take the limit b → 0; therefore, an infinite number

of poles α1 + α4 +Qm,0 for any m ∈ Z≥0 satisfy the inequality

α1 + α4 +Qm,0 <
Q

2
, (A.23)

when the inequality α1 + α4 <
Q
2 is satisfied. Thus, an infinite number of poles contribute

to the conformal blocks as shown in (A.22) in the semiclassical limit. The condition h1
c ≪ 1

can immediately be relaxed to non-perturbative h1
c as

FAA
BB(hp|z) −−−→

z→1







∑

m∈Z≥0
Pm(1− z)

−2αAαB+m
(

1− 2
Q
(αA+αB)

)

, if αA + αB < Q
2 ,

(1− z)
c−1
24

−hA−hB , otherwise.

(A.24)

For general unitary CFTs with finite c > 1, there are only finite poles satisfying the

inequality α1 + α4 +Qm,n < Q
2 . Therefore, the conformal blocks can be expressed using a

finite sum as

FAA
BB(hp|z) −−−→

z→1

∑

m,n∈Z≥0

where
αA+αB+Qm,n<

Q
2

Pm,n(1− z)−2αAαB+µm,n , if αA + αB <
Q

2
, (A.25)

and

FAA
BB(hp|z) −−−→

z→1
(1− z)

c−1
24

−hA−hB , otherwise , (A.26)

where Pm,n are some constants. Note that the above process can straightforwardly be

applied to the ABBA blocks. That is, the result can be obtained by just adding µm,n to

the power of its singularity.

Many studies on the fusion matrix approach remain to be carried out. The most impor-

tant one is identifying the logarithmic corrections to the light cone limit of the conformal
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blocks. This correction is related to the other anomalous dimension different from (2.24),

which also appears in higher dimensions.

B Light cone modular bootstrap

The modular invariance imposes the following condition on the torus partition function,

Z(τ, τ̄) = Z

(

−1

τ
,−1

τ̄

)

, (B.1)

where the torus partition function has the Virasoro character decomposition in CFTs,

Z(τ, τ̄) =
∑

h,h̄>0

ρ(h, h̄)χh(τ)χ̄h̄(τ̄). (B.2)

Here, the function ρ(h, h̄) is the degeneracy of primary operators of weight (h, h̄). If we

limit ourselves to CFTs with c > 1, the Virasoro character has the following simple form,

χ0(τ) =
q−

c−1
24

η(τ)
(1− q), χh(τ) =

qh−
c−1
24

η(τ)
, (B.3)

where q = e2πiτ and η(τ) is the Dedekind eta function.

In the light cone limit q ≪ 1 − q̄ ≪ 1 (or equivalently i
τ ≪ τ̄ i ≪ 1 with τ, τ̄ ∈ R>0),

the modular bootstrap equation (B.1) is approximated by

q−
c
24 q̄−

1
24 ≃

∑

h,h̄>0

ρ(h, h̄)e−2πi( 1
24

τ+(h− c−1
24 ) 1

τ )q̄h̄−
c
24 , (B.4)

where we assume that there are no extra currents apart from the Virasoro current. To

reproduce the τ dependence on the left-hand side, there must be an infinite number of

terms in the sum on the right-hand side. Moreover, to match the τ̄ dependence, the sum

on the right hand side must be dominated by h̄ = c−1
24 , which means that we must have

the large-spin spectrum with twist accumulating to c−1
12 . To my knowledge, there are no

physical explanations for this result. It would be interesting to explore it, particularly, the

gravity aspect.

C Zamolodchikov recursion relation

The Zamolodchikov recursion relation [87, 88] is one of the tools used to calculate the con-

formal blocks numerically and has been recently receiving much attention [37, 89] because

it effectively encompasses the conformal blocks beyond the known regimes or limits. We

provide a brief explanation herein.16

For simplicity, we will decompose the conformal blocks into two parts as

F21
34 (hp|z) = Λ21

34(hp|q)H21
34 (hp|q), q(z) = e

−π
K(1−z)
K(z) , (C.1)

16The Zamolodchikov recursion relation is also used in the conformal bootstrap [86, 90–92]. An earlier

study [93] presents a good review of this concept and discusses the connections between various recursion

relations. A generalization of the recursion relation to more general Riemann surfaces is given in [94].
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where K(x) is the elliptic integral of the first kind and the function Λ21
34(hp|q) is a universal

prefactor given by

Λ21
34(hp|q) = (16q)hp− c−1

24 z
c−1
24

−h1−h2(1− z)
c−1
24

−h2−h3(θ3(q))
c−1
2

−4(h1+h2+h3+h4). (C.2)

The function H21
34 (hp|q) can be calculated recursively using the following relation:

H21
34 (hp|q) = 1 +

∞
∑

m=1,n=1

qmnRm,n

hp − hm,n
H21

34 (hm,n +mn|q), (C.3)

where Rm,n is a constant in q, which is defined by

Rm,n = 2

m−1
∏

p=−m+1
p+m=1(mod 2)

n−1
∏

q=−n+1
q+n=1(mod 2)

(λ2+λ1−λp,q) (λ2−λ1−λp,q) (λ3+λ4−λp,q) (λ3−λ4−λp,q)

m
∏

k=−m+1

n
∏

l=−n+1
(k,l) 6=(0,0),(m,n)

λk,l

.

(C.4)

In the above expressions, we used the notations

c = 1 + 6

(

b+
1

b

)2

, hi =
c− 1

24
− λ2

i ,

hm,n =
1

4

(

b+
1

b

)2

− λ2
m,n, λm,n =

1

2

(m

b
+ nb

)

.

(C.5)

Unfortunately, this recursion process is too complicated for calculating the Virasoro blocks

analytically; however, from the viewpoint of numerical computations, this recursion rela-

tion is much more useful than the BPZ method [1]. One of the recent results involving the

recursion relation is presented in our previous papers [21, 22]. It reveals the general solu-

tions to this recursion relation via numerical computations. For simplicity, we re-express

the function H21
34 (hp|q) as

H21
34 (hp|q) = 1 +

∞
∑

k=1

ck(hp)q
k, (C.6)

and the corresponding recursion relation as

ck(hp) =

k
∑

i=1

∑

m=1,n=1
mn=i

Rm,n

hp − hm,n
ck−i(hm,n +mn). (C.7)

For this series expansion form, our previous numerical computations suggest that the so-

lution cn for large n takes the simple Cardy-like form of

cn ∼ ξnnαeA
√
n for large n ≫ c, (C.8)

where

ξ =











δn,even × sgn

[

(

hA − c−1
32

) (

hB − c−1
32

)

]

, for AABB blocks ,

1, for ABBA blocks .

(C.9)
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The parameters A and α are non-trivial, depending on the external conformal dimensions

and the central charge.

AABB blocks :

A =



















2π
√

c−1
24 − hA − hB + 2αAαB, if hA.hB > c−1

32 ,

π
√

c−1
24 − 2hA, if hB > c−1

32 > hA,

0, if c−1
32 > hA.hB,

(C.10)

α =

{

2(hA + hB)− c+5
8 , if hA.hB > c−1

32 ,

4(hA + hB)− c+9
4 , otherwise .

(C.11)

ABBA blocks :

(For simplicity, we assume hB > hA, but it does not matter.)

A =

{

2π
√

c−1
24 − 4hA + 2QαA, if hB > c−1

32 ,

0, if hB < c−1
32 ,

(C.12)

α =

{

2(hA + hB)− c+5
8 , if hB > c−1

32 ,

4(hA + hB)− c+9
4 , if hB < c−1

32 .
(C.13)

These expressions are numerically conjectured in [21, 22] and partly proven in a particular

case in [23].

In the limit z → 1, the summation can be approximated using

∑

n

nαeA
√
nqn ∼ (1− z)−

A2

4π2 (log(1− z))2α+
3
2 . (C.14)

Inserting the expression for A (C.10), (C.12) into this approximation form, we can repro-

duce the conclusions (A.16), (A.17) in appendix A.1. In other words, our conclusions in

appendix A are supported by numerical verifications and analytic calculations in a par-

ticular case. However, we have not attempted to reproduce the logarithmic dependence

in (C.14) using the fusion matrix approach. We plan to take it up as our future work.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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[54] S. He, Conformal Bootstrap to Rényi Entropy in 2D Liouville and Super-Liouville CFTs,

arXiv:1711.00624 [INSPIRE].

[55] W.-z. Guo, S. He and Z.-X. Luo, Entanglement entropy in (1 + 1)D CFTs with multiple local

excitations, JHEP 05 (2018) 154 [arXiv:1802.08815] [INSPIRE].

[56] P. Caputa, T. Numasawa and A. Veliz-Osorio, Out-of-time-ordered correlators and purity in

rational conformal field theories, Prog. Theor. Exp. Phys. 2016 (2016) 113B06

[arXiv:1602.06542] [INSPIRE].

[57] P. Caputa, Y. Kusuki, T. Takayanagi and K. Watanabe, Out-of-Time-Ordered Correlators in

(T 2)n/Zn, Phys. Rev. D 96 (2017) 046020 [arXiv:1703.09939] [INSPIRE].

[58] E. Perlmutter, Bounding the Space of Holographic CFTs with Chaos, JHEP 10 (2016) 069

[arXiv:1602.08272] [INSPIRE].

[59] Y. Gu and X.-L. Qi, Fractional Statistics and the Butterfly Effect, JHEP 08 (2016) 129

[arXiv:1602.06543] [INSPIRE].

[60] R. Fan, Out-of-Time-Order Correlation Functions for Unitary Minimal Models,

arXiv:1809.07228 [INSPIRE].

– 38 –

A Self-archived copy inKyoto University Research Information Repositoryhttps://repository.kulib.kyoto-u.ac.jp

https://doi.org/10.1007/JHEP08(2018)047
https://arxiv.org/abs/1805.06464
https://inspirehep.net/search?p=find+EPRINT+arXiv:1805.06464
https://doi.org/10.1007/JHEP08(2018)101
https://arxiv.org/abs/1806.05836
https://inspirehep.net/search?p=find+EPRINT+arXiv:1806.05836
https://doi.org/10.1007/JHEP08(2018)112
https://arxiv.org/abs/1806.09563
https://inspirehep.net/search?p=find+EPRINT+arXiv:1806.09563
https://doi.org/10.1007/JHEP11(2018)101
https://arxiv.org/abs/1809.01387
https://inspirehep.net/search?p=find+EPRINT+arXiv:1809.01387
https://arxiv.org/abs/1810.02436
https://inspirehep.net/search?p=find+EPRINT+arXiv:1810.02436
https://doi.org/10.1007/JHEP08(2013)090
https://arxiv.org/abs/1304.4926
https://inspirehep.net/search?p=find+J+%22JHEP,1308,090%22
https://doi.org/10.1007/JHEP05(2013)014
https://arxiv.org/abs/1303.1080
https://inspirehep.net/search?p=find+EPRINT+arXiv:1303.1080
https://doi.org/10.1007/JHEP09(2015)110
https://arxiv.org/abs/1506.03772
https://inspirehep.net/search?p=find+EPRINT+arXiv:1506.03772
https://doi.org/10.1093/ptep/ptu122
https://arxiv.org/abs/1405.5946
https://inspirehep.net/search?p=find+EPRINT+arXiv:1405.5946
https://doi.org/10.1103/PhysRevD.90.041701
https://arxiv.org/abs/1403.0702
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D90,041701%22
https://doi.org/10.1007/JHEP12(2016)061
https://doi.org/10.1007/JHEP12(2016)061
https://arxiv.org/abs/1610.06181v2
https://inspirehep.net/search?p=find+EPRINT+arXiv:1610.06181
https://doi.org/10.1088/1751-8121/aa6e08
https://arxiv.org/abs/1701.03110
https://inspirehep.net/search?p=find+EPRINT+arXiv:1701.03110
https://arxiv.org/abs/1711.00624
https://inspirehep.net/search?p=find+EPRINT+arXiv:1711.00624
https://doi.org/10.1007/JHEP05(2018)154
https://arxiv.org/abs/1802.08815
https://inspirehep.net/search?p=find+EPRINT+arXiv:1802.08815
https://doi.org/10.1093/ptep/ptw157
https://arxiv.org/abs/1602.06542
https://inspirehep.net/search?p=find+EPRINT+arXiv:1602.06542
https://doi.org/10.1103/PhysRevD.96.046020
https://arxiv.org/abs/1703.09939
https://inspirehep.net/search?p=find+EPRINT+arXiv:1703.09939
https://doi.org/10.1007/JHEP10(2016)069
https://arxiv.org/abs/1602.08272
https://inspirehep.net/search?p=find+EPRINT+arXiv:1602.08272
https://doi.org/10.1007/JHEP08(2016)129
https://arxiv.org/abs/1602.06543
https://inspirehep.net/search?p=find+EPRINT+arXiv:1602.06543
https://arxiv.org/abs/1809.07228
https://inspirehep.net/search?p=find+EPRINT+arXiv:1809.07228


J
H
E
P
0
1
(
2
0
1
9
)
0
2
5

[61] L.F. Alday and J.M. Maldacena, Comments on operators with large spin, JHEP 11 (2007)

019 [arXiv:0708.0672] [INSPIRE].

[62] S. Collier, Y.-H. Lin and X. Yin, Modular Bootstrap Revisited, JHEP 09 (2018) 061

[arXiv:1608.06241v1] [INSPIRE].

[63] S. Collier, Y. Gobeil, H. Maxfield and E. Perlmutter, Quantum Regge Trajectories and the

Virasoro Analytic Bootstrap, arXiv:1811.05710 [INSPIRE].

[64] Y. Kusuki, T. Takayanagi and K. Umemoto, Holographic Entanglement Entropy on Generic

Time Slices, JHEP 06 (2017) 021 [arXiv:1703.00915] [INSPIRE].

[65] P. Calabrese and J.L. Cardy, Evolution of entanglement entropy in one-dimensional systems,

J. Stat. Mech. 0504 (2005) P04010 [cond-mat/0503393] [INSPIRE].

[66] P. Calabrese and J.L. Cardy, Entanglement entropy and conformal field theory, J. Phys. A

42 (2009) 504005 [arXiv:0905.4013] [INSPIRE].

[67] M.A. Metlitski, C.A. Fuertes and S. Sachdev, Entanglement Entropy in the O(N) model,

Phys. Rev. B 80 (2009) 115122 [arXiv:0904.4477] [INSPIRE].

[68] A. Belin, A. Maloney and S. Matsuura, Holographic Phases of Renyi Entropies, JHEP 12

(2013) 050 [arXiv:1306.2640] [INSPIRE].

[69] A. Belin, L.-Y. Hung, A. Maloney and S. Matsuura, Charged Renyi entropies and holographic

superconductors, JHEP 01 (2015) 059 [arXiv:1407.5630] [INSPIRE].

[70] A. Belin, C.A. Keller and I.G. Zadeh, Genus two partition functions and Rényi entropies of
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