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How fast can correlations spread in a quantum many-body system? Based on the seminal work
by Lieb and Robinson [1], it has recently been shown that several interacting many-body systems
exhibit an effective light cone that bounds the propagation speed of correlations [2–5]. The existence
of such a “speed of light” has profound implications for condensed matter physics and quantum
information, but has never been observed experimentally. Here we report on the time-resolved
detection of propagating correlations in an interacting quantum many-body system. By quenching
a one-dimensional quantum gas in an optical lattice, we reveal how quasiparticle pairs transport
correlations with a finite velocity across the system, resulting in an effective light cone for the
quantum dynamics. Our results open important perspectives for understanding relaxation of closed
quantum systems far from equilibrium [6] as well as for engineering efficient quantum channels
necessary for fast quantum computations [7].

In contrast to relativistic quantum field theory, no
“speed limit” exists in non-relativistic quantum mechan-
ics, allowing in principle for the propagation of informa-
tion over arbitrary distances in arbitrary short times [2].
However, one could naively expect that in real physi-
cal systems short-range interactions allow information to
propagate only with a finite velocity. The existence of a
maximal velocity, also called Lieb–Robinson bound, has
indeed been shown theoretically in some systems, e.g. in-
teracting spins on a lattice [2–5], but to which extent this
result can be generalised remains an open question [8–11].
Lieb–Robinson bounds have already found a number of
fundamental applications [12, 13]. For example, they al-
low for a rigorous proof of a long-standing conjecture that
linked the presence of a spectral gap in a lattice system
to the exponential decay of correlations in the ground
state [14, 15]. They also provide fundamental scaling
laws for the entanglement entropy, which is an indicator
of the computational cost for simulating strongly inter-
acting systems [16].

In the context of quantum many-body systems, the
existence of a Lieb–Robinson bound can be probed by
recording the dynamics following a sudden parameter
change (quench) in the Hamiltonian. In that case, a
simple picture has been suggested: quantum-entangled
quasiparticles emerge from the initially highly excited
state and propagate ballistically [3], carrying correla-
tions across the system. Ultracold atomic gases offer
an ideal testbed to explore such quantum dynamics due
to their almost perfect decoupling from the environment
and their fast tunability [17]. In addition, the recently
demonstrated technique of single-site imaging in an op-
tical lattice [18, 19] offers the resolution and sensitivity
necessary to reveal the dynamical evolution of a many-
body system at the single-particle level.

Our system consists of ultracold bosonic atoms in an
optical lattice and is well described by the Bose–Hubbard
model [20, 21]. This model is parameterised by two en-
ergy scales: the on-site interaction, U , and the tunnel
coupling between adjacent sites, J . Driven by the com-
petition of these two parameters, a quantum phase tran-
sition between a superfluid and a Mott-insulating phase
occurs in homogeneous systems with integer filling n̄. In
the one-dimensional (1d) geometry considered here, the
critical point of this transition is located at (U/J)c ≃ 3.4
[22]. We observed the time evolution of spatial corre-
lations after a fast decrease of the effective interaction
strength U/J from an initial value deep in the Mott-
insulating regime, with filling n̄ = 1, to a final value closer
to the critical point (Fig. 1a). After such a quench, the
initial many-body state |Ψ0〉 is highly excited and acts
as a source of quasiparticles. In order to elucidate the
nature and the dynamics of these quasiparticles, we have
developed an analytical model in which the occupancy
of each lattice site is restricted to n = 0, 1 or 2 (see
Appendix). For large interaction strengths, the quasi-
particles consist of either an excess particle (doublon)
or a hole (holon) on top of the unity-filling background.
Fermionizing these quasiparticles with a Jordan–Wigner
transformation allows us to partially eliminate the non-
physical states in which a lattice site would be occupied
by two quasiparticles. To first order in J/U , we then
find that the many-body state at time t after the quench
reads:

|Ψ(t)〉 ≃ |Ψ0〉+ i
√
8
J

U

∑

k

sin(kalat)

[

1− e−i[ǫd(k)+ǫh(−k)]t/~
]

d̂†k ĥ
†
−k|Ψ0〉 , (1)

with alat the lattice period. Here d̂†k and ĥ†k are the
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FIG. 1. Spreading of correlations in a quenched atomic
Mott insulator. a, A 1d ultracold gas of bosonic atoms
(black balls) in an optical lattice is initially prepared deep
in the Mott-insulating phase with unity filling. The lattice
depth is then abruptly lowered, bringing the system out of
equilibrium. b, Following the quench, entangled quasiparticle
pairs emerge at all sites. Each of these pairs consists of a
doublon (red ball) and a holon (blue ball) on top of the unity-
filling background, which propagate ballistically in opposite
directions. It follows that a correlation in the parity of the
site occupancy builds up at time t between any pair of sites
separated by a distance d = vt, where v is the relative velocity
of the doublons and holons.

creation operators for a doublon and a holon with mo-
mentum k, respectively, and k belongs to the first Bril-
louin zone. Quasiparticles thus emerge at any site in the
form of entangled pairs, consisting of a doublon and a
holon with opposite momenta. Some of these pairs are
bound on nearest-neighbour sites while the others form
wave packets, due to their peaked momentum distribu-
tion. The wave packets propagate in opposite directions
with a relative group velocity v determined by the dis-
persion relation ǫd(k) + ǫh(−k) of doublons and holons
(Fig. 1b). The propagation of quasiparticle pairs is re-
flected in the two-point parity correlation functions [23]:

Cd(t) = 〈ŝj(t)ŝj+d(t)〉 − 〈ŝj(t)〉〈ŝj+d(t)〉 , (2)

where j labels the lattice sites. The operator ŝj(t) =
eiπ[n̂j(t)−n̄] measures the parity of the occupation number
n̂j(t). It yields +1 in the absence of quasiparticles (odd
occupancy) and -1 if a quasiparticle is present (even occu-
pancy). Because the initial state is close to a Fock state
with one atom per lattice site, we expect Cd(t = 0) ≃ 0.
After the quench, the propagation of quasiparticle pairs
with the relative velocity v results in a positive correla-
tion between any pair of sites separated by a distance
d = vt.

The experimental sequence started with the prepara-
tion of a two-dimensional (2d) degenerate gas of 87Rb
confined in a single antinode of a vertical optical lattice
[19, 23] (z-axis, alat = 532nm). The system was then

divided into about 10 decoupled 1d chains by adding a
second optical lattice along the y-axis and by setting both
lattice depths to 20.0(5)Er, where Er = (2π~)2/(8ma2lat)
is the recoil energy of the lattice and m the atomic mass
of 87Rb. The effective interaction strength along the
chains was tuned via a third optical lattice along the
x-axis. The number of atoms per chain ranged between
10 and 18, resulting in a lattice filling n̄ = 1 in the Mott-
insulating domain. The inital state was prepared by adi-
abatically increasing the x-lattice depth until the interac-
tion strength reached a value of (U/J)0 = 40(2). At this
point, we measured the temperature to be T ≃ 0.1U/kb
(kb is the Boltzmann constant) following the method de-
scribed in Ref. [19]. We then brought the system out of
equilibrium by lowering the lattice depth typically within
100 µs, which is fast compared to the inverse tunnel cou-
pling ~/J , but still adiabatic with respect to transitions
to higher Bloch bands. The final lattice depths were in
the Mott-insulating regime, close to the critical point.
After a variable evolution time, we “froze” the density
distribution of the many-body state by rapidly raising
the lattice depth in all directions to ∼ 80Er. Finally, the
atoms were detected by fluorescence imaging using a mi-
croscope objective with a resolution on the order of the
lattice spacing and a reconstruction algorithm extracted
the occupation number at each lattice site [19]. Because
inelastic light-assisted collisions during the imaging lead
to a rapid loss of atom pairs, we directly detected the
parity of the occupation number.

Our experimental results for the time evolution of the
two-point parity correlations after a quench to U/J =
9.0(3) show a clear positive signal propagating with in-
creasing time to larger distances d (Fig. 2). In addition,
the propagation velocity of the correlation signal is con-
stant over the range 2 ≤ d ≤ 6 (inset of Fig. 2). We found
similar dynamics also for quenches to U/J = 5.0(2) and
7.0(3) (Fig. 4). We note that the observed signal can-
not be attributed to a simple density wave because such
an excitation would result in 〈ŝj ŝj+d〉 = 〈ŝj〉〈ŝj+d〉. We
compared the experimental results to numerical simula-
tions of an infinite, homogeneous system at T = 0 using
the adaptive time-dependent density matrix renormal-
ization group [24, 25] (t-DMRG). In the simulation, the
initial and final interaction strengths were fixed at the
experimentally determined values and the quench was
considered instantaneous, at t = 0. We found remark-
able agreement between the experiment and theory over
all explored distances and times, despite the finite tem-
perature and the harmonic confinement with frequency
ν = 68(1)Hz that characterise the experimental system.
The observed dynamics is also qualitatively reproduced
by our analytical model for U/J = 9.0. For lower val-
ues of U/J , however, the model breaks down due to the
increasing number of quasiparticles.

We extracted the propagation velocity v from the time
of the correlation peak as a function of the distance
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FIG. 2. Time evolution of the two-point parity cor-
relations. After the quench, a positive correlation signal
propagates with increasing time to larger distances. The ex-
perimental values for a quench from U/J = 40 to U/J = 9.0
(circles) are in good agreement with the corresponding numer-
ical simulation for an infinite, homogeneous system at zero
temperature (continuous line). Our analytical model (dashed
line) also qualitatively reproduces the observed dynamics. In-
set: Experimental data displayed as a colormap, revealing the
propagation of the correlation signal with a well defined ve-
locity. The experimental values result from the average over
the central N sites of more than 1000 chains, where N equals
80% of the length of each chain. Error bars represent the
standard deviation.

d (Fig. 3a). A linear fit restricted to 2 ≤ d ≤ 6
yields v × ~/(Jalat) = 5.0(2), 5.6(5) and 5.0(2) for U/J =
5.0(2), 7.0(3) and 9.0(3), respectively. The points for
d = 1 were excluded from the fit, as they result from
the interference between propagating and bound quasi-
particle pairs (see Eq. 1). A comparison of the exper-
imental velocities with the ones obtained from numer-
ical simulations (Fig. 3b) shows agreement within the
error bars. The measured velocities can also be com-
pared with two limiting cases: On the one hand, they
are significantly larger than the spreading velocity of
non-interacting particles, v = 4 Jalat/~, and twice the

FIG. 3. Propagation velocity. a, Determination of the
propagation velocity for the quenches to U/J = 5.0 (trian-
gles), 7.0 (squares) and 9.0 (circles). The time of the max-
imum of the correlation signal is obtained from fits to the
traces Cd(t). Error bars represent the 68 % confidence inter-
val of these fits. We then extract the propagation velocities
from weigthed linear fits restricted to 2 ≤ d ≤ 6 (lines). The
data for U/J = 5.0 and 7.0 have been offset horizontally for
clarity. b, Comparison of the experimental velocities (circles)
to the ones obtained from numerical simulations for an infi-
nite, homogeneous system at zero temperature (shaded area).
The shaded area and the vertical error bars denote the 68 %
confidence interval of the fit. The horizontal error bars rep-
resent the uncertainty due to the calibration of the lattice
depth. The black line corresponds to the bound vmax pre-
dicted by our effective model (the fading indicates the break
down of this model). The arrows mark the maximum velocity
expected in the non-interacting case (left) and the asymptotic
value derived from our model when U/J → ∞ (right).

velocity of sound in the superfluid phase [26]; on the
other hand, they remain below the maximum velocity
vmax ≈ (6Jalat/~)

[

1− 16J2/(9U2)
]

predicted by our
analytical model, that can be interpreted as a Lieb–
Robinson bound (Fig. 3b). In the limit U/J → ∞, this
bound corresponds to doublons and holons propagat-
ing with the respective group velocities 4 Jalat/~ and
2 Jalat/~. The higher velocity of doublons simply reflects
their Bose-enhanced tunnel coupling.

In conclusion, we have presented the first experimen-
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tal observation of an effective light cone for the spread-
ing of correlations in an interacting quantum many-body
system. Although the observed dynamics can be under-
stood within a fermionic quasiparticle picture valid deep
in the Mott insulating regime, we note that our exper-
imental data cover a region close to the critical point,
for which only ab-initio numerical simulations are avail-
able so far [8]. Our work opens interesting perspectives,
such as revealing the entanglement carried by the quasi-
particle pairs or investigating the quantum dynamics in
higher dimensions, where little is known about Lieb–
Robinson bounds and the scaling of entanglement. For
example, the experiment can be extended to study cor-
relation propagation in two dimensions, where existing
numerical and analytical approaches suffer from severe
limitations. Furthermore, the production rate of excita-
tions and the domain formation when tuning the effective
interaction strength slowly across the critical point can
be investigated, thereby exploring a quantum analog to
the Kibble–Zurek mechanism [6, 27, 28].

ACKNOWLEDGEMENTS

We thank C. Weitenberg and J. F. Sherson for their
contribution to the design and construction of the appa-
ratus. We also thank D. Baeriswyl, T. Giamarchi, V.
Gritsev and S. Huber for discussions. C.K. acknowl-
edges previous collaboration on a related subject with
A. Läuchli. We acknowledge funding by MPG, DFG,
EU (NAMEQUAM, AQUTE, Marie Curie Fellowship
to M.C.), JSPS (Postdoctoral Fellowship for Research
Abroad to T.F.), “Triangle de la physique”, ANR (FA-
MOUS) and SNSF (under division II). Financial support
for the computer cluster on which the calculations were
performed has been provided by the “Fondation Ernst et
Lucie Schmidheiny”.

∗ Electronic address: marc.cheneau@mpq.mpg.de
[1] E. H. Lieb and D. W. Robinson, Commun. Math. Phys.,

28, 251 (1972).
[2] S. Bravyi, M. B. Hastings, and F. Verstraete, Phys. Rev.

Lett., 97, 050401 (2006).
[3] P. Calabrese and J. Cardy, Phys. Rev. Lett., 96, 136801

(2006).
[4] J. Eisert and T. J. Osborne, Phys. Rev. Lett., 97, 150404

(2006).
[5] B. Nachtergaele, Y. Ogata, and R. Sims, J. Stat. Phys.,

124, 1 (2006).
[6] A. Polkovnikov, K. Sengupta, A. Silva, and M. Vengalat-

tore, Rev. Mod. Phys., 83, 863 (2011).
[7] S. Bose, Contemp. Phys., 48, 13 (2007).
[8] A. M. Läuchli and C. Kollath, J. Stat. Mech., P05018

(2008).

[9] B. Nachtergaele, H. Raz, B. Schlein, and R. Sims, Com-
mun. Math. Phys., 286, 1073 (2009).

[10] M. Cramer, A. Serafini, and J. Eisert, in Quantum Infor-
mation and Many Body Quantum Systems, CRM, Vol. 8,
Publications of the Scuola Normale Superiore (Edizioni
della Normale, Pisa, 2008) pp. 51–72.

[11] J. Eisert and D. Gross, Phys. Rev. Lett., 102, 240501
(2009).

[12] M. B. Hastings, Phys. Rev. B, 69, 104431 (2004).
[13] B. Nachtergaele and R. Sims, (2011), arXiv:1102.0835.
[14] B. Nachtergaele and R. Sims, Commun. Math. Phys.,

265, 119 (2006).
[15] M. B. Hastings and T. Koma, Commun. Math. Phys.,

265, 781 (2006).
[16] J. Eisert, M. Cramer, and M. B. Plenio, Rev. Mod.

Phys., 82, 277 (2010).
[17] I. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys.,

80, 885 (2008).
[18] W. S. Bakr, J. I. Gillen, A. Peng, S. Folling, and

M. Greiner, Nature, 462, 74 (2009).
[19] J. F. Sherson, C. Weitenberg, M. Endres, M. Cheneau,

I. Bloch, and S. Kuhr, Nature, 467, 68 (2010).
[20] M. P. A. Fisher, P. B. Weichman, G. Grinstein, and D. S.

Fisher, Phys. Rev. B, 40, 546 (1989).
[21] D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner, and

P. Zoller, Phys. Rev. Lett., 81, 3108 (1998).
[22] T. D. Kühner, S. R. White, and H. Monien, Phys. Rev.

B, 61, 12474 (2000).
[23] M. Endres, M. Cheneau, T. Fukuhara, C. Weitenberg,

P. Schauß, C. Gross, L. Mazza, M. C. Bañuls, L. Pollet,
I. Bloch, and S. Kuhr, Science, 334, 200 (2011).

[24] A. J. Daley, C. Kollath, U. Schollwöck, and G. Vidal, J.
Stat. Mech., 2004, P04005 (2004).

[25] S. R. White and A. E. Feiguin, Phys. Rev. Lett., 93,
076401 (2004).

[26] C. Kollath, U. Schollwöck, J. von Delft, and W. Zwerger,
Phys. Rev. A, 71, 053606 (2005).

[27] T. W. B. Kibble, J. Phys. A-Math. Gen., 9, 1387 (1976).
[28] W. H. Zurek, Nature, 317, 505 (1985).
[29] C. D. Batista and G. Ortiz, Phys. Rev. Lett., 86, 1082

(2001).
[30] S. D. Huber, E. Altman, H. P. Büchler, and G. Blatter,

Phys. Rev. B, 75, 085106 (2007).
[31] E. Altman and A. Auerbach, Phys. Rev. Lett., 89, 250404

(2002).
[32] U. Schollwöck, Ann. Phys. (N.Y.), 326, 96 (2011).
[33] G. Vidal, Phys. Rev. Lett., 98, 070201 (2007).
[34] I. P. McCulloch, (2008), arXiv:0804.2509.
[35] S. R. White, Phys. Rev. Lett., 69, 2863 (1992).

mailto:marc.cheneau@mpq.mpg.de
http://dx.doi.org/10.1007/BF01645779
http://dx.doi.org/10.1007/BF01645779
http://dx.doi.org/10.1103/PhysRevLett.97.050401
http://dx.doi.org/10.1103/PhysRevLett.97.050401
http://dx.doi.org/10.1103/PhysRevLett.96.136801
http://dx.doi.org/10.1103/PhysRevLett.96.136801
http://dx.doi.org/10.1103/PhysRevLett.97.150404
http://dx.doi.org/10.1103/PhysRevLett.97.150404
http://dx.doi.org/10.1007/s10955-006-9143-6
http://dx.doi.org/10.1007/s10955-006-9143-6
http://dx.doi.org/10.1103/RevModPhys.83.863
http://dx.doi.org/10.1080/00107510701342313
http://dx.doi.org/10.1088/1742-5468/2008/05/P05018
http://dx.doi.org/10.1088/1742-5468/2008/05/P05018
http://dx.doi.org/10.1007/s00220-008-0630-2
http://dx.doi.org/10.1007/s00220-008-0630-2
http://dx.doi.org/10.1103/PhysRevLett.102.240501
http://dx.doi.org/10.1103/PhysRevLett.102.240501
http://dx.doi.org/10.1103/PhysRevB.69.104431
http://arxiv.org/abs/arXiv:1102.0835
http://dx.doi.org/10.1007/s00220-006-1556-1
http://dx.doi.org/10.1007/s00220-006-1556-1
http://dx.doi.org/10.1007/s00220-006-0030-4
http://dx.doi.org/10.1007/s00220-006-0030-4
http://dx.doi.org/10.1103/RevModPhys.82.277
http://dx.doi.org/10.1103/RevModPhys.82.277
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1038/nature08482
http://dx.doi.org/10.1038/nature09378
http://dx.doi.org/10.1103/PhysRevB.40.546
http://dx.doi.org/10.1103/PhysRevLett.81.3108
http://dx.doi.org/10.1103/PhysRevB.61.12474
http://dx.doi.org/10.1103/PhysRevB.61.12474
http://dx.doi.org/10.1126/science.1209284
http://dx.doi.org/10.1088/1742-5468/2004/04/P04005
http://dx.doi.org/10.1088/1742-5468/2004/04/P04005
http://dx.doi.org/10.1103/PhysRevLett.93.076401
http://dx.doi.org/10.1103/PhysRevLett.93.076401
http://dx.doi.org/10.1103/PhysRevA.71.053606
http://dx.doi.org/10.1088/0305-4470/9/8/029
http://dx.doi.org/10.1038/317505a0
http://dx.doi.org/10.1103/PhysRevLett.86.1082
http://dx.doi.org/10.1103/PhysRevLett.86.1082
http://dx.doi.org/10.1103/PhysRevB.75.085106
http://dx.doi.org/10.1103/PhysRevLett.89.250404
http://dx.doi.org/10.1103/PhysRevLett.89.250404
http://dx.doi.org/10.1016/j.aop.2010.09.012
http://dx.doi.org/10.1103/PhysRevLett.98.070201
http://arxiv.org/abs/arXiv:0804.2509
http://dx.doi.org/10.1103/PhysRevLett.69.2863


5

APPENDIX

Quenches to U/J = 5.0 and 7.0

We also recorded the time evolution of the two-point
parity correlations (2) after quenches to U/J = 5.0(2)
and 7.0(3), and compared the experimental results to
DMRG simulations of an infinite, homogeneous system
at zero temperature (Fig. 4). The experimental se-
quence was identical to the one we used for the quench
to U/J = 9.0(3), apart from the different end point of
the quench. The data presented here are those used in
Fig. 3.

Quasiparticle model

In the Bose–Hubbard model, bosonic atoms in an op-
tical lattice are confined to a single Bloch band and obey
the Hamiltonian

Ĥ =
∑

j

{

− J
(

â†j âj+1 + h. c.
)

+
U

2
n̂j(n̂j − 1)

}

, (3)

where âj and â†j represent the annihilation and creation

operator of an atom at site j and n̂j = â†j âj counts the

U/J = 5.0 U/J = 7.0

FIG. 4. Time evolution of the two-point parity corre-
lations. Left panel: quench to U/J = 5.0(2). Right panel:
quench to U/J = 7.0(3). The circles indicate the correlations
measured experimentally and the line is derived from the nu-
merical simulations for an infinite, homogeneous system at
zero temperature. The experimental and numerical values
were obtained in the same way as described in the legend of
Fig. 2 and in the Methods Summary section.

number of atoms at that site. The model is entirely
parametrised by the effective interaction strength U/J .

In order to analytically treat the time evolution of cor-
relations after a sudden decrease of U/J , we developed
a novel approach based on fermionized quasiparticles.
The initial state being close to a Fock state with one
atom per lattice site, an effective description of the evo-
lution at sufficiently large final interaction strengths can
be obtained within a local basis formed by empty states,
| ◦◦ 〉j , singly occupied states, | ◦• 〉j , and doubly occupied
states, | •• 〉j . Using generalised Jordan–Wigner transfor-
mations [29], we then introduced fermionic creation op-

erators for the excess particles, d̂†j | ◦• 〉j → | •• 〉j , and the

holes, ĥ†j | ◦• 〉j → | ◦◦ 〉j , as well as the corresponding anni-
hilation operators. Within the truncated Hilbert space,
the original Hamiltonian (3) can be exactly written in
terms of these operators:

Ĥ =
∑

j

P̂
{

− 2J d̂†j d̂j+1 − J ĥ†j+1 ĥj

− J
√
2
(

d̂†j ĥ
†
j+1 − ĥj d̂j+1

)

+ h. c

+
U

2

(

n̂d,j + n̂h,j

)

}

P̂ , (4)

with n̂d,j = d̂†j d̂j and n̂h,j = ĥ†j ĥj . The complexity of the

model is hidden in the projector P̂ =
∏

j(Î − n̂d,j n̂h,j)
that eliminates the unphysical situation of having an ex-
cess particle and a hole at the same site (Î is the identity
operator). As multiple occupancies of equal species are
naturally avoided due to their statistics, one still obtains
a good description of the system when setting P̂ → Î,
provided the density of excitations 〈n̂d,j(t) + n̂h,j(t)〉 re-
mains low. This is in contrast to the usual bosonic rep-
resentations [30, 31].

The Hamiltonian (4) with P̂ → Î is quadratic and can
be diagonalised by a Bogolyubov transformation. The
eigenmodes are doublons and holons with well defined
momentum k:

γ̂†d,k = u(k) d̂†k + v(k) ĥ−k , (5)

γ̂†h,−k = u(k) ĥ†−k − v(k) d̂k , (6)

with

u(k) = cos[θ(k)/2] , v(k) = i sin[θ(k)/2]

and θ(k) = atan

[ √
32J sin(kalat)

U − 6J cos(kalat)

]

. (7)

Their respective eigenenergies are given by

ǫd(k) = −J cos(kalat)

+
1

2

√

[U − 6J cos(kalat)]2 + 32J2 sin2(kalat) , (8)

ǫh(k) = J cos(kalat)

+
1

2

√

[U − 6J cos(kalat)]2 + 32J2 sin2(kalat) . (9)
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Within this model, the initial state |ψ0〉 evolves in time
according to:

|ψ(t)〉 = e−iĤt/~ |ψ0〉 (10)

=
∏

k

{

ū(k)− v̄(k) e−i[ǫd(k)+ǫh(−k)]t/~

· γ̂†d,k γ̂
†
h,−k

}

|vac〉 , (11)

with

ū(k) = u(k)u0(k)− v(k)v0(k) , (12)

v̄(k) = v(k)u0(k)− u(k)v0(k) . (13)

Here the subscript “0” denotes quantities correspond-
ing to the initial interaction strength, whereas no la-
bel is used for the quantities corresponding to the fi-
nal interaction strength. Further, |vac〉 represents the
quasiparticle vacuum at the final interaction strength
(γ̂d,k|vac〉 = γ̂h,k|vac〉 = 0). Equation (10) describes
wave packets of entangled quasiparticle pairs that travel
in opposite directions with different velocities. One can
extract a maximal velocity for the spreading of the cor-
relations from the dispersion relation of a quasiparticle
pair (black line in Fig. 3b):

vmax =
1

~
max

k

{

d

dk

∣

∣ǫd(k) + ǫh(k)
∣

∣

}

. (14)

Additionally, we derived from equation (10) the time
evolution of the two-point parity correlations. In agree-
ment with DMRG simulations, it displays a clear pos-
itive signal, the position of which increases with time
(Fig. 2). We extracted the instantaneous propagation ve-
locity v(d0) from a linear fit through the signal positions
d0 ≤ d ≤ d0 +4 (Fig. 5). The case d0 = 2 corresponds to
the data shown in Fig. 3. At short distances, we find ve-
locities about 10% smaller than vmax, in good agreement
with the velocities measured experimentally. At large dis-
tances, the velocity converges algebraically to vmax. This
latter behaviour can be understood from the expansion
of the correlation functions to first order in J/U , which
can be expressed in terms of the Airy function Ai(x):

Cd(t)
d≫1

≃
[

27/3d2/3~

3Ut
Ai

[

(2/d)1/3(d− 6Jt/~)
]

]2

.

(15)
We checked the validity of our model of freely prop-

agating fermionic quasiparticles by comparing it with
DMRG simulations. The propagation velocity of the two-
point parity correlations is very accurate in the strongly
interacting limit (e.g. U/J = 20), and remains in fairly
good agreement down to U/J = 9, where the quasiparti-
cle density is about 0.1 per site (Fig. 5). At lower inter-
action strengths, we found that the Gutzwiller approxi-
mation breaks down. Nevertheless, the experiment and
the simulations show that the spreading of correlations
is still characterised by a well defined velocity, for which

FIG. 5. Instantaneous propagation velocity. We com-
pare the instantaneous velocity v(d0) predicted by our ana-
lytical model (points) with the one derived from numerical
simulations (circles). The agreement is excellent at U/J = 20
(left panel) and qualitatively good at U/J = 9 (right panel).
Error bars denote the 68 % confidence interval of the fit. The
dashed line represents the asymptotic expression (15). Ar-
rows point to the maximum velocity vmax at the given inter-
action strength. The signal position was obtained using the
procedure described in the Methods Summary section for the
numerical simulations.

vmax remains a relevant upper bound. We verified nu-
merically that the truncation of the local Hilbert space
to three states is reasonable down to U/J ≃ 6.

Calibration of the lattice depth

We calibrated the lattice depths by performing ampli-
tude modulation spectroscopy of the transition between
the zeroth and second Bloch band on a 1d degenerate
gas for the x- and y-axes, and on a 2d degenerate gas for
the z-axis. We estimate the calibration uncertainty to be
1–2%.

Bose–Hubbard parameters

For a given lattice depth V , we calculated the tunnel
coupling and the on-site interaction of the Bose–Hubard
model (3) in the single-particle picture using their ex-
pressions as overlap integrals of the Wannier functions.
In Table I, we provide the values of V , J and U for the ef-
fective interaction strengths mentioned in the main text.

Ramp of the lattice depth for the quench

The ramp of the lattice depth for the quench follows
the functional form:

V (t) = V0 + (V − V0)
e−t/τ − 1

e−T/τ − 1
. (16)
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U/J V (Er) J/~ (s−1) U/h (Hz)

40(2) 13.5(2) 113(5) 724(4)

9.0(3) 7.70(11) 422(11) 607(3)

7.0(3) 6.85(11) 522(14) 584(3)

5.0(2) 5.75(13) 691(23) 550(4)

TABLE I. Lattice depth and Bose–Hubbard parameters for
the data reported in the main text. The lattice depth in the
perpendicular axes is 20.0(5)Er. The uncertainties on J , U
and U/J follow from the calibration uncertainty on the lattice
depth (see Methods Summary).

U/J T (µs) τ (µs)

9.0 100 130

7.0 100 120

5.0 150 160

TABLE II. Lattice depth ramp parameters used for the
quenches reported in the main text, as defined in equation
(16).

Here V0 = 13.5Er is the initial lattice depth, T is the
duration of the ramp and τ determines the rate at which
the lattice depth is decreased. These parameters have
to be chosen such that the ramp is fast compared to the
time scale of the dynamics following the quench, which
is given by ~/J , but adiabatic with regard to transitions
to higher Bloch bands. The latter condition requires the
parameter Γ = (~/∆2)|d∆/dt| to be much smaller than 1,
where ∆ is the energy gap between the two Bloch bands
considered. For each quench, we have chosen the ramp
parameters such that T is the shortest ramp duration

compatible with Γ < 0.3 (Table II).

Numerical simulations showed that the origin t = 0
of the time evolution can be defined as the moment
when the effective interaction strength reaches the value
U/J ≃ 17. We used the same phenomenological criterion
to locate the moment at which the dynamics stops when
raising the lattice depth to ∼ 80Er.

Determination of the time of the correlation peak

We extracted the time of the maximum of the corre-
lation signal as a function of the distance, for both the
experiment and the theory, by fitting an offset-free gaus-
sian profile to the traces Cd(t). For the numerical data,
we filtered out frequency components above 3 J/~ prior
to the fit in order to isolate the envelope of the signal. For
the experimental data, we fixed the width of the gaussian
profile to the value obtained from the numerical data,
keeping only the amplitude and time as free parameters.

Numerical simulations

The numerical simulations relied on matrix product
states [32] (MPS) to represent infinite homogenous sys-
tems [33, 34]. Initial states were obtained using the
DMRG algorithm [35]. For the time evolution, we used a
second-order Suzuki–Trotter decomposition [24, 25]. We
achieved quasi-exact results on the relevant time scale
tJ/~ ∼ 2 by choosing a small enough Trotter time step
(∼ 0.002) and retaining a few thousand states.
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