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We explore the large spin spectrum in two-dimensional conformal field theories with a finite twist

gap, using the modular bootstrap in the light-cone limit. By recursively solving the modular crossing

equations associated with different PSLð2;ZÞ elements, we identify the universal contribution to the

density of large spin states from the vacuum in the dual channel. Our result takes the form of a sum

over PSLð2;ZÞ elements, whose leading term generalizes the usual Cardy formula to a wider regime.

Rather curiously, the contribution to the density of states from the vacuum becomes negative in a

specific limit, which can be canceled by that from a nonvacuum Virasoro primary whose twist is no

bigger than c−1
16
. This suggests a new upper bound of c−1

16
on the twist gap in any c > 1 compact, unitary

conformal field theory with a vacuum, which would in particular imply that pure AdS3 gravity does not

exist. We confirm this negative density of states in the pure gravity partition function by Maloney,

Witten, and Keller. We generalize our discussion to theories with N ¼ ð1; 1Þ supersymmetry and find

similar results.
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I. INTRODUCTION

Despite progress in the classification program of rational

conformal field theories, we have shockingly little under-

standing of the general landscape of two-dimensional (2D)

conformal field theories (CFTs). For example, there is no

explicit construction of any 2D compact, unitary CFTwith

central charge c > 1 and no Virasoro conserved currents of

any spin [1]. Such CFTs are expected to be generic, and our

ignorance of them clearly shows the limitation in our

understanding.

To go beyond the realm of rational CFTs, we will

consider CFTs with a finite twist gap. The twist of an

operator is defined asΔ − jjj ¼ 2 minðh; h̄Þ. Theories with
conserved currents, such as rational CFTs, necessarily have

a vanishing twist gap.
1
For this reason we will think of the

twist gap as a measure on how irrational a CFT is.

In this paper, we will address the following two general

questions for CFTs with a finite twist gap:

(1) Is there a universal Cardy-like growth for the large

spin states?

(2) At a fixed central charge c, how large can the twist

gap be?

These two questions are tied together by modular invari-

ance of the torus partition function.

We start with the first question. We generalize Cardy’s

argument for the asymptotic growth of states with large

scaling dimensions [2]. More specifically, we analytically

continue the torus moduli τ, τ̄ to two independent complex

variables, and consider the limit ImðτÞ → 0while keeping τ̄

fixed. This is similar to the light-cone limit studied in the

conformal bootstrap of four-point functions [3,4], but now

applied to the modular bootstrap program [5]. By solving

the modular crossing equations in the light-cone limit with

arbitrary rational real parts of τ, τ̄,
2
we recursively identify
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1
A priori, there could be theories without conserved currents,

but with an accumulation of operators toward vanishing twist,
and therefore have zero twist gap.

2
These are the PSLð2;ZÞ images of the cusp at τ ¼ i∞.
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the universal contribution from the Virasoro vacuum multi-

plet to the density of large spin states for any c > 1CFTwith

a finite twist gap. Our formula generalizes the usual Cardy

formula from the regime h; h̄ ≫ c to h ≫ c but with h̄ −
c−1
24

> 0 finite. The universal density of states takes the form

of a sum overPSLð2;ZÞ images,
3
whose leading term is the

extended Cardy formula discussed recently in [6–8]. The

density of states depends on the number-theoretic properties

of the spin j ¼ h − h̄ and is in particular nonanalytic in j.
Now we turn to the second question. Rather curiously,

our density of states from the vacuum contribution becomes

negative in the double limit where j → ∞ and h̄ − c−1
24

→ 0.

Such negative density of states of course should not be

present in a physical, unitary CFT. This negativity can be

canceled by the contribution from a nonvacuum primary

operator of twist Δ − jjj at or below c−1
16

in the dual channel.

We are therefore led to the following tentative conclusion:

any compact, unitary CFT with a PSLð2;CÞ invariant

vacuum must have a twist gap of at most c−1
16
. Our argument

is not yet rigorous, and wewill discuss the gaps to complete

the proof. If true, our result improves the earlier c−1
12

bound

on the twist gap by Hartman and [1].
4

Via the holographic correspondence [9], our result has

interesting implications on pure Einstein gravity as a

quantum gravity theory in AdS3. In the strictest sense,

pure AdS3 gravity is dual to a 2D large c, unitary CFT

where all nonvacuum Virasoro primary operators have

h; h̄ ≥ c−1
24

and are interpreted as Bañados-Teitelboim-

Zanelli (BTZ) black holes. The new twist gap bound c−1
16

suggested by our argument would imply that pure AdS3
gravity does not exist.

5
Indeed, we will check explicitly that

the pure gravity partition function computed by Maloney-

Witten-Keller [12,13] agrees with our formula in the

specific double limit mentioned above. The sum over the

PSLð2;ZÞ elements in our formula is identified as a sum

over geometries in AdS3.
6
In particular, we confirm that the

pure gravity partition function has an identical negative

density of states in this limit. This gives another interpre-

tation of our result: while the pure gravity partition function

of [12,13] is unphysical in various ways, it approximates

the universal density of large spin states dictated by the

vacuum state in the dual channel of the modular crossing

equation. In other words, the pure gravity partition function

of Maloney-Witten-Keller is the analog of double-twist

operators in d > 2 [3,4], or of “Virasoro mean field theory”

in 2D [7] for the modular bootstrap (see also [16]).

The paper is organized as follows. In Sec. II we review

the argument by Hartman and [1] for the c−1
12

bound on the

twist gap. In Sec. III, the extended Cardy formula for the

density of large spin states is reviewed. In Sec. IV, we

generalize the extended Cardy formula to include sublead-

ing corrections by solving recursively the crossing equa-

tions associated with general elements of PSLð2;ZÞ.
In Sec. V, the implications of this universal density of

large spin states are discussed, which suggest that the twist

gap in any compact, unitary c > 1 CFT can be at most c−1
16
.

Section VI discusses the interpretation of our result in

relation to the pure AdS3 gravity partition function. In

Sec. VII, we discuss the N ¼ ð1; 1Þ supersymmetric

generalization. The Appendixes A and B describe some

technical steps needed in solving the crossing equations.

Appendix C discusses some subtleties present when there is

an accumulation of operators in twist. In Appendix D, we

record the modular crossing kernels for more general

elements of PSLð2;ZÞ.

II. WARM-UP: THE c− 1
12

TWIST GAP

In this section we review an argument by Hartman and

[1] showing that the twist gap in any compact unitary 2D

CFT has to be no larger than c−1
12
. This argument has been

generalized from the Virasoro algebra to the WN algebra

in [17].

Consider the partition function Zðq; q̄Þ of a 2D CFTon a

torus with complex structure moduli q ¼ expð2πiτÞ;
q̄ ¼ expð−2πiτ̄Þ. We will analytically continue so that τ

and τ̄ are two independent complex variables. Let us

parametrize the torus moduli as

τ ¼ i
β

2π
; τ̄ ¼ −i

β̄

2π
; ð2:1Þ

and take β, β̄ to be independent positive numbers. The

physical interpretation of this analytic continuation of τ, τ̄

to two independent imaginary values is the following.

The torus partition function can be interpreted as the

twist-field four-point function in the symmetric product

of two identical copies of the original CFT. Then taking τ, τ̄

independently to be purely imaginary corresponds to the

Lorentzian regime of the twist-field four-point function.

Later we will take β → 0 while keeping β̄ fixed, which is

the light-cone limit from the twist-field four-point function

point of view. We have

q ¼ exp ð−βÞ; q̄ ¼ exp ð−β̄Þ: ð2:2Þ

3
More precisely, this is a sum over the coset PSLð2;ZÞ=Γ∞

where Γ∞ is the subgroup generated by T∶τ → τ þ 1 that
stabilizes the cusp at τ ¼ i∞.

4
In [1] this argument was credited to Tom Hartman.

5
Recently, the closest theory to pure gravity in AdS2, the

Jackiw-Teitelboim theory, has been shown to be dual to a random
matrix model, rather than a single quantum system with a definite
Hamiltonian [10]. Furthermore, a pure AdS gravity theory, if it
exists, would have been a counterexample to the swampland
conjecture in [11]. The current paper provides another piece of
evidence that pure gravity in AdS3 might not be dual to a single
unitary 2D CFT.

6
A similar sum over PSLð2;ZÞ images was originally inter-

preted as a sum over gravitational saddle points in [14] for elliptic
genera. Each term in the PSLð2;ZÞ sum corresponds to a
different AdS3 geometry discussed in [15].
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Their modular S transforms will be denoted with a prime:

q0 ¼ exp

�

−
4π2

β

�

; q̄0 ¼ exp

�

−
4π2

β̄

�

: ð2:3Þ

The torus partition function can be expanded in Virasoro

characters. For a 2D unitary CFT with c > 1, the possible

modules of the Virasoro algebra are the degenerate module,

i.e., the vacuum module h ¼ 0, and a continuous family of

nondegenerate modules labeled by a positive conformal

weight h > 0. Their Virasoro characters are given by

χ0ðqÞ ¼ ð1 − qÞ q
−c−1

24

ηðqÞ ; χh>0ðqÞ ¼
qh−

c−1
24

ηðqÞ : ð2:4Þ

Combining the left with the right, there are three kinds of

Virasoro primaries:

ðvacuumÞ χ0ðqÞχ0ðq̄Þ;
ðconserved currentÞ χ0ðqÞχh̄>0ðq̄Þ; χh>0ðqÞχ0ðq̄Þ;

ðnondegenerateÞ χh>0ðqÞχh̄>0ðq̄Þ: ð2:5Þ

Consider an operator with conformal weights (h; h̄). The
scaling dimension Δ and the spin j are defined as

Δ ¼ hþ h̄; j ¼ h − h̄: ð2:6Þ

The twist of an operator is defined as Δ − jjj, and we will

denote half of the twist as t:

t≡minðh; h̄Þ ¼ Δ − jjj
2

: ð2:7Þ

We would like to study 2D CFTs with the finite twist gap

2tgap > 0. In particular, this implies that there is no

conserved current in the theory. Under the finite twist

gap assumption, the torus partition function can be

expanded as

Zðq; q̄Þ ¼ χ0ðqÞχ0ðq̄Þ þ
X

h;h̄≥tgap

nh;h̄ χhðqÞχ̄h̄ðq̄Þ

¼
X

j∈Z

Z

∞

0

dtρjðtÞχhðqÞχ̄h̄ðq̄Þ; ð2:8Þ

where nh;h̄ ∈ N is the number of Virasoro primaries with

conformal weights ðh; h̄Þ. In the second line we have

introduced the density of Virasoro primaries ρjðtÞ, defined
as a discrete sum over delta functions:

ρjðtÞ≡
X

Owith spin j

δðt − tOÞ; ð2:9Þ

where the sum is over the Virasoro primaries in the spe-

ctrum with spin j, and tO refers to min ðhO; h̄OÞ. In what

follows we will refer to ρjðtÞ as the “density of states” even
though it is really the density of Virasoro primaries.

Using modular invariance Zðq; q̄Þ ¼ Zðq0; q̄0Þ, we can

rewrite the partition function in the dual channel:

Zðq0; q̄0Þ ¼
X

j0∈Z

Z

∞

0

dt0ρj0ðt0Þχh0ðq0Þχ̄h̄0ðq̄0Þ

¼
expð4π2

β
c−1
24
Þ

ηðq0Þ

�

ð1 − e−4π
2=βÞχ0ðq̄0Þ

þ
X

j∈Z

Z

∞

tgap

dt0ρj0ðt0Þe−4π
2h0=βχh̄0ðq̄0Þ

�

: ð2:10Þ

Up to this point all the equations are exact with no

approximation. We now equate (2.8) with (2.10) and take

the β → 0 limit:

vacþ
X

j∈Z

Z

∞

tgap

dtρjðtÞe−βðh−
c−1
24
Þe−β̄ðh̄−

c−1
24
Þ

¼
ffiffiffiffiffiffiffi

4π2

ββ̄

s

e
4π2

β
c−1
24 e

4π2

β̄

c−1
24

h

ð1−e−
4π2

β Þð1−e
−4π2

β̄ Þþ���
i

; ð2:11Þ

where vac ≡ð1 − qÞð1 − q̄Þq−c−1
24 q̄−

c−1
24 . We have used

ηðq0Þ ¼
ffiffiffiffi

β

2π

q

ηðqÞ. The � � � are contributions from the non-

vacuum operators in the cross channel. As we take β → 0

(but keep β̄ finite), the divergence on the right-hand side

(RHS) has to be reproduced by an infinite number of states

on the left-hand side (LHS).

Let us further simplify the LHS of (2.11) in the β → 0

limit. First we can drop the vacuum term since any

individual term does not give a divergence as β → 0.

We then write the LHS as

X

∞

j¼0

e−βj
Z

∞

tgap

dh̄ρjðh̄Þ exp
�

−ðβ þ β̄Þ
�

h̄ −
c − 1

24

��

þ
X

−1

j¼−∞

eβ̄j
Z

∞

tgap

dhρjðhÞ exp
�

−ðβ þ β̄Þ
�

h −
c − 1

24

��

:

ð2:12Þ

Note that t ¼ h̄ if j ≥ 0 and t ¼ h if j < 0. In the β → 0

limit (while keeping β̄ finite), the second term is finite,

which can thus be ignored. Moreover, we can replace β þ β̄

in the first term by β̄ in this limit. Hence, Eq. (2.11) in the

β → 0 limit becomes
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X

∞

j¼0

e−βj
Z

∞

tgap

dh̄ρjðh̄Þ exp
�

−β̄

�

h̄ −
c − 1

24

��

¼ 2π
ffiffiffiffiffi

ββ̄
p e

4π2

β
c−1
24 e

4π2

β̄

c−1
24 ð1 − e−

4π2

β Þð1 − e
−4π2

β̄ Þ

þOðe4π2

β
ðc−1
24
−tgapÞÞ: ð2:13Þ

Using (2.13), we now prove the twist gap 2tgap cannot be

larger than c−1
12
. Let us assume otherwise, i.e., 2tgap >

c−1
12
.

We multiply both sides by eβ̄ðtgap−
c−1
24
Þ. Then the LHS has a

negative β̄ derivative, but the β̄ derivative of the RHS will

eventually be positive for large enough β̄ (while still

keeping β̄ ≪ 1=β) due to the exponential growth of the

factor eβ̄ðtgap−
c−1
24
Þ. We therefore arrive at a contradiction.

III. EXTENDED CARDY FORMULA

In this section, we will review the derivation in [6–8] of

the universal spectrum of large spin Virasoro primaries for

all c > 1 2D CFTs with nonzero twist gap, i.e., 2tgap > 0.

We will argue that the physical density of states ρjðh̄Þ in the
large spin j ≫ c limit is universally approximated by

ρ0j;1ðh̄Þ¼
e4π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðh̄þjÞðc−1
24
Þ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðh̄þ j− c−1
24
Þðh̄− c−1

24
Þ

q θ

�

h̄−
c−1

24

�

×

2

4cosh

0

@4π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�

c−1

24

��

h̄−
c−1

24

�

s

1

A

− cosh

0

@4π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�

c−25

24

��

h̄−
c−1

24

�

s

1

A

3

5: ð3:1Þ

We use the superscript 0 to remind the reader that, much as

the usual Cardy formula, ρ0j;1ðtÞ is a continuous function of
the twist 2t that at large spin approximates the physical

density of states ρjðtÞ, which is a sum of delta functions.

The meaning of the subscript 1, on the other hand, will

become clear in Sec. IV. Here θðxÞ is the Heaviside step

function that equals 1 if x > 0 and 0 otherwise. Note that

the twist gap for this solution is 2tgap ¼ c−1
12
. In the limit

j ≫ c with h̄ > c−1
24
, this can be written more compactly as

ρ0j;1ðh̄Þ ¼ KSðh̄þ jÞKSðh̄Þ; ð3:2Þ

where KSðh̄Þ is the modular kernel for the S transforma-

tion [18]

KSðh̄Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

h̄ − c−1
24

s

2

4cosh

0

@4π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�

c − 1

24

��

h̄ −
c − 1

24

�

s

1

A

− cosh

0

@4π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�

c − 25

24

��

h̄ −
c − 1

24

�

s

1

A

3

5: ð3:3Þ

The asymptotic growth (3.1) generalizes the usual Cardy

formula [2], which holds without assuming 2tgap > 0,

beyond its regime of applicability h; h̄ ≫ c. In the h̄ ≫ c

limit of (3.1), ρ0j;1ðh̄Þ reduces to the usual Cardy formula,

ρ0j;1ðh̄Þ →
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðh − c−1
24
Þðh̄ − c−1

24
Þ

q

× e4π
ffiffiffiffiffiffiffiffiffi

ðc−1
24
Þh

p
þ4π

ffiffiffiffiffiffiffiffiffi

ðc−1
24
Þh̄

p
; h; h̄ ≫ c: ð3:4Þ

For this reason, we will refer to (3.1) as the extended Cardy

formula.

Before we verify that (3.1) is a solution to our crossing

equation (2.13), we first discuss the defining property of the

modular kernel KSðh̄Þ. It relates the vacuum Virasoro

character in one channel to the nondegenerate Virasoro

characters in the crossed channel,

χ0ðq̄0Þ ¼
Z

∞

c−1
24

dh̄KSðh̄Þχh̄ðq̄Þ; ð3:5Þ

or equivalently

e
4π2

β̄

c−1
24 ð1 − e

−4π2

β̄ Þ ¼

ffiffiffiffiffiffi

β̄

2π

s

Z

∞

c−1
24

dh̄KSðh̄Þe−β̄ðh̄−
c−1
24
Þ ð3:6Þ

and similarly for the holomorphic (left-moving) characters.

This equation will be crucial for our crossing solution.

The argument leading to the extended Cardy for-

mula (3.1) is similar to the original argument by Cardy,

but now in the light-cone limit where β → 0while β̄ is held

fixed. This leads to the crossing equation (2.13), where the

divergence on the RHS needs to be reproduced by a certain

asymptotic growth of states with large spin. Below we

show that (3.1) is indeed a solution to the crossing equation.

Plugging in the solution (3.1) into (2.13), the LHS becomes

X

∞

j¼0

e−βj
Z

∞

c−1
24

dh̄KSðh̄þ jÞKSðh̄Þ exp
�

−β̄

�

h̄ −
c − 1

24

��

:

ð3:7Þ

In Appendix A, we show that in the small β limit, the sum

over j in the above equation can be approximated by an

integral over j, up to a term that is β independent, which can

be absorbed in the error term of the RHS of (2.13). Shifting

integration variables and using (3.6), we then reproduce the

BENJAMIN, OOGURI, SHAO, and WANG PHYS. REV. D 100, 066029 (2019)

066029-4



leading divergent terms in the β → 0 limit on the RHS

of (2.13).

Therefore, Eq. (3.1) is indeed a solution to the crossing

equation and gives the universal density of large spin states

in any compact unitary CFTwith a finite twist gap, up to an

error that grows slower than exp ð4π
ffiffiffiffiffiffiffiffiffi

c−1
24

j
q

Þ in the large

spin limit. On the other hand, ρ0j;1 ¼ 0 if h̄ < c−1
24
, meaning

that there is no exponential growth in the large spin limit.

Let us comment on the corrections to (3.1) in the large

spin limit. First, there are error terms from approximating

the discrete spectrum by a continuous density of states.

This error for the density of states ρðΔÞ that is insensitive to
the spin has recently been quantified in [19,20] (see also

Appendix C of [21]). Second, there are contributions to the

density of states from the lowest twist, nonvacuum primary

operators, corresponding to the last term in (2.13). Last,

there are contributions coming from the vacuum but for

different elements of PSLð2;ZÞ. The last two corrections

will be discussed in later sections.

We emphasize that the converse of our statement here is

also true, which follows simply from running our argument

backwards. Namely, if a 2D CFT has a large spin spectrum

that satisfies (3.1), it is guaranteed to have a nonzero twist

gap 2tgap > 0. It would be interesting if there is a holo-

graphic interpretation of (3.1) for h̄ not in the Cardy regime,

in terms of the entropy of BTZ black holes. If so, it may

suggest the theories holographically dual to Einstein

gravity in AdS3 generically have a nonzero twist gap.

IV. PSLð2;ZÞ MODULAR CROSSING EQUATIONS

In this section we will repeat the analyses in Secs. II

and III, but with a more general PSLð2;ZÞ transformation,

and we will find qualitatively new behavior.

A. Crossing Equation

We now repeat the previous analysis but instead take
7

τ ¼ i
β

2π
þ r

s
; τ̄ ¼ −i

β̄

2π
þ r

s
: ð4:1Þ

Here r and s are two coprime integers, with s positive.

As before, we consider the limit β → 0 at fixed β̄. The q
variables are

q¼ exp

�

−βþ2πir

s

�

; q̄¼ exp

�

−β̄−
2πir

s

�

: ð4:2Þ

Let us act on τ, τ̄ with the modular transformation

�

a b

s −r

�

∈ SLð2;ZÞ; −ar − bs ¼ 1; ð4:3Þ

to get

τ0¼2πi

βs2
þa

s
; τ̄0¼−

2πi

s2β̄
þa

s
;

q0¼ exp

�

−
4π2

s2β
þ2πi

a

s

�

; q̄0¼ exp

�

−
4π2

s2β̄
−2πi

a

s

�

:

ð4:4Þ

Now we use modular invariance of the torus partition

function to set (2.8) and (2.10) equal with the new para-

metrizations of q and q̄ as above. Since each individual

term in (2.8) is not sufficient to reproduce the divergence in

(2.10) as we take β → 0, we can drop the isolated vacuum

contribution in (2.8) and obtain

X

j∈Z

Z

∞

tgap

dtρjðtÞ exp
�

−β

�

h −
c − 1

24

�

− β̄

�

h̄ −
c − 1

24

�

þ 2πi
r

s
ðh − h̄Þ

�

¼ 2π

s
ffiffiffiffiffi

ββ̄
p e

4π2ðc−1Þ
24s2β e

4π2ðc−1Þ
24s2 β̄

�

1 − e
−4π2

s2β
þ2πia

s

��

1 − e
−4π2

s2 β̄
−2πia

s

�

þO

�

e
4π2

s2β
ðc−1
24
−tgapÞ

�

: ð4:5Þ

From (4.3), we see that ar≡ −1ðmodsÞ. Moreover (4.5) is

invariant under a → aþ s. We will henceforth write a as

the modular inverse of −r mod s, i.e., a ¼ −ðr−1Þs.
Following the same steps to (2.13), we simplify the

above crossing equation in the β → 0 limit to

X

∞

j¼0

exp

�

−

�

β−
2πir

s

�

j

�
Z

∞

tgap

dh̄ρjðh̄Þexp
�

−β̄

�

h̄−
c−1

24

��

¼ 2π

s
ffiffiffiffiffi

ββ̄
p e

4π2

s2β

c−1
24 e

4π2

s2 β̄

c−1
24

�

1−e
−4π2

s2β
−
2πiðr−1Þs

s

��

1−e
−4π2

s2 β̄
þ2πiðr−1Þs

s

�

þO

�

e
4π2

s2β
ðc−1
24
−tgapÞ

�

: ð4:6Þ

Note that we reproduce (2.13) if we take r ¼ 0, s ¼ 1. This

is our main equation for the modular crossing equations

associated with more general PSLð2;ZÞ elements.

B. Solution to the crossing equations

The universal density of states in (3.1) does not success-

fully reproduce the RHS of (4.6). In particular, if we

plug (3.1) into (4.6), the LHS in the β → 0 is finite and

fails to provide the divergence exp ð4π2
s2β

c−1
24
Þ on the RHS

of the equation. See Appendix B for detailed derivations.

7
Note that there is a slight generalization of this we can

consider, in which ReðτÞ ≠ Reðτ̄Þ. We will not pursue this
generalization in the current paper.
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This implies that there must be other universal contribu-

tions to the density of large spin states that, while being

subleading to (3.1), are responsible for solving the more

general crossing equations (4.6).

Our solution to (4.6) will involve the Kloosterman sum

defined by

Sðj; J; sÞ ¼
X

r∶ gcdðr;sÞ¼1

0≤r<s

exp

�

2πi
rjþ ðr−1ÞsJ

s

�

; ð4:7Þ

which is sensitive to the number-theoretic properties of the

integer spin j. Some basic properties of the Kloosterman

sum are Sðj; J; sÞ ¼ Sð−j;−J; sÞ, Sðj; J; sÞ ¼ SðJ; j; sÞ,
and Sðjþ s; J; sÞ ¼ Sðj; J þ s; sÞ ¼ Sðj; J; sÞ. In addition,

X

lcmðs;s0Þ−1

j¼0

Sðj; J; s0Þe−2πirj
s ¼ se

2πiðr−1ÞsJ
s δs;s0 : ð4:8Þ

Finally we define the following functions:

d0ðh;sÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

sðh− c−1
24
Þ

s

cosh

0

@

4π

s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�

h−
c−1

24

��

c−1

24

�

s

1

A

×θ

�

h−
c−1

24

�

;

d1ðh;sÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

sðh− c−1
24
Þ

s

cosh

0

@

4π

s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�

h−
c−1

24

��

c−25

24

�

s

1

A

×θ

�

h−
c−1

24

�

; ð4:9Þ

and

ρj;sðh; h̄Þ ¼ Sðj; 0; sÞd0ðh; sÞd0ðh̄; sÞ
− Sðj;−1; sÞd0ðh; sÞd1ðh̄; sÞ
− Sðj; 1; sÞd1ðh; sÞd0ðh̄; sÞ
þ Sðj; 0; sÞd1ðh; sÞd1ðh̄; sÞ: ð4:10Þ

In the large j limit, the continuous solution to (4.6) is given

by
8

ρ0jðh̄Þ ¼
X

s0¼1

ρj;s0ðh̄þ j; h̄Þ; j ≫ c: ð4:11Þ

Importantly, the dependence on the spin j is highly

nonanalytic and depends on the number-theoretic property

through the Kloosterman sum (4.7). The s0 ¼ 1 term is the

extended Cardy formula (3.1), which grows as

exp ð4π
ffiffiffiffiffiffiffiffiffi

c−1
24

j
q

Þ in the large spin limit. The higher s0 terms

grow as exp ð4π
s0

ffiffiffiffiffiffiffiffiffi

c−1
24

j
q

Þ and are subleading corrections

to (3.1).

Let us comment on the sum in s0. The solution presented
above is designed to reproduce the divergence on the RHS

of the crossing equation (4.6) as β → 0. However, the

divergence on the RHS is present only if s≲ 1=
ffiffiffi

β
p

. The

divergence, if present, controls the density of states whose

spins are of the order j ∼ 1=β due to the suppression factor

e−βj on the LHS of (4.6). It follows that for a fixed large

spin j, we can trust the solution only if s≲
ffiffi

j
p

; therefore

the sum in (4.11) should be truncated before order
ffiffi

j
p

.

For a fixed s, we show in Appendix B that the modular

crossing equations labeled by r with gcdðr; sÞ ¼ 1 are

solved by the term ρj;sðh̄þ j; h̄Þ in the sum in (4.11). In

particular, we show that, to leading order in β → 0, the

terms with s0 ≠ s do not contribute to the modular crossing

equations for any r at a fixed s.
Just as in Sec. III, where the density of states for the

extended Cardy formula can be interpreted as a product of

modular kernels for the S transformation, the density of

states we derived in this section can also be interpreted as

modular kernels for more general PSLð2;ZÞ transforma-

tions. In Appendix D, we present simplified expressions for

some of these modular kernels.

V. TWIST GAP REVISITED

Let us examine the solution (4.11) to the crossing

equation. In the large spin limit j ≫ c, the leading terms are

ρ0jðh̄Þ ¼ ρj;1ðh; h̄Þ þ ρj;2ðh; h̄Þ þOðe4π
3

ffiffiffiffiffiffiffiffi

ðc−1
24
Þj

p
Þ

¼ ½d0ðh; 1Þ − d1ðh; 1Þ�½d0ðh̄; 1Þ − d1ðh̄; 1Þ�
þ ð−1Þj½d0ðh; 2Þ þ d1ðh; 2Þ�½d0ðh̄; 2Þ þ d1ðh̄; 2Þ�

þOðe4π
3

ffiffiffiffiffiffiffiffi

ðc−1
24
Þj

p
Þ; ð5:1Þ

where we write h̄þ j ¼ h above to avoid cluttering. Now

we further focus on the following part of the spectrum in

the large spin limit j ≫ c:

0< h̄−
c−1

24
<

1

8π2
exp

�

−2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

j

�

c−1

24

�

s

�

; j∶ odd:

ð5:2Þ

In this regime, the first term ρj;1 is smaller in magnitude

than the second one ρj;2. This is due to the different h̄

dependence in ρj;1 and ρj;2. As h̄ approaches c−1
24

from

above, ρj;1 scales as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h̄ − c−1
24

q

, whereas ρj;2 scales as

1
ffiffiffiffiffiffiffiffiffi

h̄−c−1
24

p . In the region (5.2), the different h̄ dependence is

8
As in Sec. III, we use the superscript 0 to emphasize this is a

continuous function in the twist which approximates the physical
density of states ρjðtÞ. By contrast, the latter is a sum of delta
functions.

BENJAMIN, OOGURI, SHAO, and WANG PHYS. REV. D 100, 066029 (2019)

066029-6



enough to overcome the larger exponential in spin that ρj;1
has over ρj;2. Moreover, ρj;s for s ≥ 2 scales as 1

ffiffiffiffiffiffiffiffiffi

h̄−c−1
24

p in the

same regime, so we do not get qualitatively new behavior

by considering higher s.
Since we take j to be an odd integer, our crossing

solution ρ0jðh̄Þ is large and negative from the sign ð−1Þj.
In particular, in the large j limit,

Z

c−1
24
þ 1

8π2
e
−2π

ffiffiffiffiffiffiffi

jðc−1
24

Þ
p

c−1
24

dh̄ρ0jðh̄Þ ≃ −

ffiffiffi

2
p

eπ
ffiffi

j
p

3π
ffiffi

j
p : ð5:3Þ

The density of states of a physical CFT receives

correction to the solution ρ0jðh̄Þ from various sources.

One obvious correction comes from the lowest twist

2tgap operator in the dual channel. Let the conformal

weights of this lowest twist operator be ðtgap; h̄gapÞ.9
Repeating the same argument in Sec. III, this lowest twist

operator contributes to the density of states by

ρnon−vacj ðh̄Þ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðh − c−1
24
Þðh̄ − c−1

24
Þ

q

× cosh

2

44π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�

c − 1

24
− tgap

��

h −
c − 1

24

�

s

3

5

× cosh

2

44π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�

c − 1

24
− h̄gap

��

h̄ −
c − 1

24

�

s

3

5

ð5:4Þ

in the large j limit. Note that this contribution to the density

of states is exponentially large in the large spin limit only if

the twist 2tgap is below
c−1
12
, which is necessarily the case as

we reviewed in Sec. II. This positive contribution from the

lowest twist nonvacuum primary can only overcome the

negativity of ρ0jðh̄Þ in the regime (5.2) if

tgap ≤
c − 1

32
: ð5:5Þ

This leads to a tempting conclusion that all two-

dimensional, unitary, c > 1 CFTs with unique normal-

izable vacua have twist gap 2tgap no greater than c−1
16
.
10

This is not yet a rigorous derivation as there are

potentially other corrections to the density of states that

might cure the negativity in ρ0jðh̄Þ. Among other things,

there are error terms from approximating the discrete

spectrum by a continuous density of states as mentioned

in Sec. III. It would be interesting to extend the analysis in

[19–21] to control the error in a rigorous way. For a CFT

with a finite twist gap (and hence necessarily irrational),

there is generally no huge degeneracy at a given energy

level, so we expect the error due to granularity to be much

smaller than that of a rational CFT.

An equivalent, but perhaps more intuitive, explanation of

our argument is the following. Let us define

ρoddj ðh̄Þ ¼ 1 − ð−1Þj
2

ρjðh̄Þ; ð5:6Þ

i.e., the density of Virasoro primaries of odd spin. We can

obtain a crossing equation for ρoddj ðh̄Þ by combining (4.6)

for r
s
¼ 0 and r

s
¼ 1

2
:

X

∞

j¼0

e−βj
Z

∞

tgap

dh̄ρoddj ðh̄Þe−β̄ðh̄−c−1
24
Þ

¼ π
ffiffiffiffiffi

ββ̄
p

�

e
4π2

β
c−1
24 e

4π2

β̄

c−1
24 ð1 − e−

4π2

β Þð1 − e
−4π2

β̄ Þ

−
1

2
e
π2

β
c−1
24 e

π2

β̄

c−1
24 ð1þ e−

π2

β Þð1þ e
−π2

β̄ Þ
�

þOðe4π2

β
ðc−1
24
−tgapÞÞ: ð5:7Þ

If we take the inverse Laplace transform of the RHS

of (5.7), we would obtain the first two terms of (4.11); a

twist gap of c−1
16

or below would cure the negativity in this

density.
11

In [1], the authors found a bootstrap upper bound on the

twist gap 2tgap that is numerically close to the analytic

bound c−1
12

reviewed in Sec. II. A simple partition function

that saturates this bound comes from the c ≥ 1 Liouville

theory

ZLiouvilleðq; q̄Þ ∝
1

τ
1
2

2jηðqÞj2
: ð5:8Þ

Alternatively, we could consider the c ¼ 1 compact boson

at any finite radius, but now viewed as a partition function

for a c > 1 theory by shifting the vacuum Casimir energy.

In this new interpretation, there is no vacuum, while the

original vacuum of the c ¼ 1 compact boson is now an

9
Here we implicitly assume there are only a finite number of

low twist operators. More precisely, we assume there exists an
ϵ > 0 such that there are a finite number of primary operators
with h < tgap þ ϵ. This is not necessarily the case: there could be

an accumulation point in the twist. In Appendix C we will
consider a slight generalization of the argument in this section
where we account for this possibility, which suggests a weaker

bound that tgap ≤
15
16
ðc−1
24
Þ.

10
In [22], a spin-dependent shift in the BTZ threshold is

discussed, which can potentially be another way to cure the
negative density of states.

11
Readers may notice that the RHS of (5.7) without the error

term can become negative for β̄ of Oðe3π2

β Þ. However, our light-
cone bootstrap analysis requires taking β → 0 first. Thus this
apparent negativity in the canonical ensemble cannot be trusted.
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h ¼ h̄ ¼ c−1
24

primary. A notable difference of this example

from the Liouville case is that the spectrum of primaries is

discrete and includes all spins.

At first sight, this seems to imply that one cannot lower

the twist gap below c−1
12
, which is in tension with our

suggested twist gap c−1
16
. However, recall that in our argu-

ment, it is crucial that there is a normalizable vacuum with

h ¼ h̄ ¼ 0 in the spectrum for us to perform the light-cone

bootstrap. Neither the Liouville partition function nor the

shifted compact boson partition function contains a vacuum

state; therefore they need not obey the constraints we

derived. Similarly in the numerical modular bootstrap

analysis, it is difficult to impose the condition that there

is a normalizable vacuum in the spectrum. We therefore

predict that the functionals found in [1] would have zeros

above the twist gap that “coalesce.” In other words, as the

truncation order in the derivative increases, the zeros

become denser and denser rather than approach a fixed

spectrum.

Interestingly, unlike in [23], the limit as the truncation

order goes to infinity does not produce a nontrivial

“extremal functional.” In the previous paragraph, we

argued that the limit would produce a functional that

vanishes for all integer spins with twist at least c−1
12
.

However, in Sec. VI, we will review a construction by

[12,13] that inputs any single state with twist below c−1
12

and

produces a modular invariant function by adding states all

with twist at least c−1
12
. Since the proposed extremal func-

tional would vanish on the crossing equation for this

modular invariant function, it must in addition vanish on

all states with twist below c−1
12
. Therefore the extremal

functional approaches zero as the truncation order goes to

infinity.

The twist 2t ¼ 2 minðh; h̄Þ ¼ c−1
16

has also appeared in

other contexts. In [7], the authors introduced the notion of

the Virasoro mean field theory, defined as the inversion of

the vacuum Virasoro block for the sphere four-point

function. While the Virasoro mean field theory by itself

does not give a consistent four-point function of a physical

theory, it approximates the large spin CFT data of any

compact, unitary 2D CFT with nonzero twist gap. For

identical external operators with conformal weight ðh; h̄Þ,
the authors show that the associated Virasoro mean field

theory spectrum is qualitatively different for h > c−1
32

versus

h < c−1
32
: In the former case, the spectrum consists only of a

continuum above h > c−1
24
, while in the latter case, there are

in addition a discrete set of primaries.
12

Indeed, the four-

point function of identical scalar primaries with scaling

dimension Δ ¼ c−1
16

is special. The four-point sphere

conformal block with external scalar scaling dimension
c−1
16

and internal scalar scaling dimension c−1
12

is a simple

power of jzj; j1 − zj, and is self-crossing invariant by itself

[see, e.g., (3.15) of [24] ]. Furthermore, it has been shown

in [25] that c−1
16

is the minimal external scalar scaling

dimension for a four-point function with only internal

scalar primaries.
13
This value of the twist has also appeared

in the discussion of the Renyi entropy after a local

quench [6,8].

VI. PURE GRAVITY

The twist gap that we have proposed has very interesting

implications for two-dimensional CFTs holographically

dual to large-radius Einstein gravity in AdS3. Recall that

the classical BTZ black hole has mass, M, and angular

momentum, j, related to the CFT conformal dimensions h

and h̄ via [26]

M ¼ 1

lAdS

�

hþ h̄ −
c

12

�

; j ¼ h − h̄ ð6:1Þ

in the large c limit. In particular, classical BTZ black holes

have MlAdS ≥ jjj, which implies h; h̄ ≥ c
24
þOð1Þ.

There have been attempts to formulate a “pure” theory of

quantum gravity in AdS3 [12,13]. Via AdS=CFT, the

strictest definition of a pure theory of gravity is a 2D

unitary CFT at large c where all nonvacuum Virasoro

primary operators can be interpreted as BTZ black holes.
14

The bound (5.5) on the twist gap suggested by our

argument would imply that no such CFT exists. In this

section we check that the pure gravity partition function

computed in [12,13] indeed has a negative density of states

in the regime (5.2), confirming our general argument.

Our main result (4.11) is the universal contribution from

the vacuum character in the dual channel to the large spin

density of states. Its expression is very reminiscent of the

sum over geometries in the calculation of the partition

function of pure AdS3 gravity [12,13]. This is not a

coincidence. We will further show that in the limit

h̄ − c−1
24

→ 0 and j ≫ c, the pure gravity partition function

matches our ρ0jðh̄Þ (4.11). We therefore reach an important

12
Note that in terms of the Liouville momentum αðhÞ > 0,

defined as h ¼ αðQ − αÞ with c ¼ 1þ 6Q2, we have

2αðc−1
32
Þ ¼ αðc−1

24
Þ.

13
If the external scaling dimension is greater than or equal to

c−1
12
, then such four-point functions with only scalar internal

primaries are realized by Liouville theory. If the external scaling

dimension is between c−1
16

and c−1
12
, such four-point functions can

be obtained by analytically continuing the Liouville four-point
function [25].

14
The extremal partition functions of [27] are also often

referred to as partition functions of pure gravity. However, due
to their holomorphic factorization, the partition functions of [27]
contain nonvacuum states with a vanishing twist that therefore
cannot be interpreted as BTZ black holes. In this section we thus
will focus on the partition function of [12,13], which obeys the
stricter definition of pure gravity.
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conclusion: Even though the pure gravity partition function

derived in [12,13] has various unphysical properties, it is

the universal contribution from the vacuum character to the

density of large spin states in any CFT with a finite

twist gap.

A. Maloney-Witten-Keller partition function

The Maloney-Witten-Keller (MWK) partition function

[12,13] is computed by starting with the vacuum Virasoro

character

χ0ðqÞχ0ðq̄Þ ¼
1

jηðqÞj2 ðq
−c−1

24 q̄−
c−1
24 − q−

c−1
24
þ1q̄−

c−1
24

− q−
c−1
24 q̄−

c−1
24
þ1 þ q−

c−1
24
þ1q̄−

c−1
24
þ1Þ; ð6:2Þ

and adding its PSLð2;ZÞ images. The sum is divergent,

and a certain regularization is required to make the answer

finite. The MWK partition function has the following

features:

(i) It has a unique vacuum, and all other Virasoro

primaries have h; h̄ ≥ c−1
24
.

(ii) The spectrum contains a continuum of states with

integer spins.

(iii) The density of states is not always positive. In

particular, the degeneracy of the state with h ¼ h̄ ¼
c−1
24

is −6.

Since the MWK partition function has no nonvacuum state

with twist below c−1
16
, our argument in Sec. V suggests that

the density of states must turn negative in the regime (5.2),

in addition to the known negativity at h ¼ h̄ ¼ c−1
24
. We will

show that this is exactly the case.

Below we review the density of states for the MWK

partition function. Instead of using the spin j and the twist

2t, we will follow the convention in [13] and use the

variables e and j defined as

e ¼ hþ h̄ −
c − 1

12
; j ¼ h − h̄: ð6:3Þ

The density of states for the MWK partition function

receives contributions from the PSLð2;ZÞ sums from each

of the four terms 1

jηðqÞj2 q
EL q̄ER in (6.2),

ρMWK
j ðeÞ¼ρ

−c−1
12
;0

j ðeÞ−ρ
−c−13

12
;1

j ðeÞ−ρ
−c−13

12
;−1

j ðeÞþρ
−c−25

12
;0

j ðeÞ;
ð6:4Þ

where the superscripts E, J of ρE;Jj ðeÞ are defined analo-

gously as E ¼ EL þ ER; J ¼ EL − ER for each of the

“seed” terms 1

jηðqÞj2 q
EL q̄ER in (6.2).

Each of the four terms in (6.4) is further written as an

infinite sum:

ρE;Jj ðeÞ ¼
X

∞

m¼0

ρE;Jj;mðeÞ: ð6:5Þ

When j ≠ 0, which is the case of interest, ρE;Jj;mðeÞ is

given by

ρE;Jj;mðeÞ¼Zj;Jðmþ1=2Þ2
3mþ1π2m

ð2mÞ! jjjm−1νE;Jm ðe=jjjÞ; ð6:6Þ

where the function νE;Jm ðtÞ will be defined momentarily.
15

Zj;Jðmþ 1=2Þ is the Kloosterman zeta function defined by

a Dirichlet series

Zj;Jðmþ 1=2Þ ¼
X

∞

s¼1

s−2ðmþ1=2ÞSðj; J; sÞ: ð6:7Þ

When m ¼ 0, the above series diverges and the

Kloosterman zeta function Zj;Jð1=2Þ is defined by analytic

continuation and finite of order Oðj2J2Þ [12,13]. For our
purposes, the dominant contributions come from the higher

m terms, so we will not be concerned about the explicit

regularized values of Zj;Jð1=2Þ.
Below we define the function νE;Jm ðtÞ. Since all of the

nonvacuum states in the MWK partition function have

h; h̄ ≥ c−1
24
, i.e., e ≥ jjj, we will define the function ν

E;J
m ðtÞ

only for t ≥ 1. We first define

fmðtÞ ¼
1
ffiffiffiffiffiffiffiffiffiffiffiffi

t2 − 1
p coshðm cosh−1ðtÞÞ: ð6:8Þ

Next, we define the operator Dt as

Dtfk ¼ −Efk − Jfk−1 −
J

2

�

1 −
m

k

�

ðfkþ1 − fk−1Þ; ð6:9Þ

which can be realized by a matrix action. With these

preparations, νE;Jm ðtÞ is given by

νE;Jm ðtÞ ¼ Dm
t fmðtÞ: ð6:10Þ

B. Double limit

Here we consider a special case of the double limit (5.2)

where we first take h̄ to c−1
24
, and then take j to be odd

and large. The function ν
E;J
m ðtÞ simplifies in the limit

t ¼ e=jjj → 1:

νE;Jm ðtÞ ≃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2ðt − 1Þ

s

ð−E − JÞm: ð6:11Þ

15
νE;Jm ðe=jjjÞ is denoted as νj;mðeÞ in [13].
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Hence in this limit, we have
16

ρE;Jj ðeÞ ≃
X

∞

s¼1

2

s
Sðj; J; sÞ

X

∞

m¼1

s−2m
23mπ2m

ð2mÞ! jjjm−1ð−E − JÞm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

j

4ðh̄ − c−1
24
Þ

s

:

ð6:12Þ

In the large spin j limit, the sum is dominated by large m,

and we can approximate the sum in m by an exponential:

ρ
E;J
j ðeÞ ≃

X

∞

s¼1

1

2s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jðh̄ − c−1
24
Þ

q Sðj; J; sÞ

× exp

�

4π

s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−E − J

2
j

r

�

: ð6:13Þ

Adding up the four terms in (6.4), we obtain the

following expression for the MWK density of states in

the limit where we take h̄ →
c−1
24

first and then j → ∞:

ρjðeÞ ≃
X

∞

s¼1

1

2s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jðh̄ − c−1
24
Þ

q

�

Sðj; 0; sÞ exp
�

4π

s

ffiffiffiffiffiffiffiffiffiffiffiffiffi

c − 1

24
j

r

�

þ Sðj; 0; sÞ exp
�

4π

s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c − 25

24
j

r

�

− Sðj;−1; sÞ exp
�

4π

s

ffiffiffiffiffiffiffiffiffiffiffiffiffi

c − 1

24
j

r

�

− Sðj; 1; sÞ exp
�

4π

s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c − 25

24
j

r

��

; ð6:14Þ

which is precisely our formula (4.11) for the asymptotic

density of states in this limit.
17
In particular, the s ¼ 1 term

in (6.14) vanishes and the density of states is dominated by

the s ¼ 2 term, which is negative in this limit as argued in

Sec. V. Furthermore, we can show that the MWK density of

states is negative in the more general regime (5.2) as

predicted by (4.11) by keeping the subleading term of

νE;Jm ðtÞ in the t → 1 limit, namely

ν
E;J
m ðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2ðt − 1Þ

s

ð−E − JÞm þ ð2m − 1Þð−E − JÞm−1ðð2mþ 1Þð−EÞ þ ð2m − 1ÞJÞ
ffiffiffiffiffiffiffiffiffiffi

t − 1
p

4
ffiffiffi

2
p þOððt − 1Þ32Þ: ð6:15Þ

This gives the subleading term in ðh̄ − c−1
24
Þ when plugged

into ρjðeÞ. In particular, this accounts for the leading

nonzero contribution at s ¼ 1. We have also confirmed

our prediction (4.11) numerically with the MWK density of

states.

In [13], the authors show that the density of states is

positive if we fix e and j, and then take c to be large.

Here we uncover the negative density of states in a

different regime (5.2) where both e and j are taken to be

much larger than c. This new regime of negative

density of states makes it more challenging to correct

the MWK partition function to a unitary, physical

partition function.

To cancel the negative density of states in the regime

(5.2) of the MWK partition function without ruining

modular invariance, one tentative candidate is to add N

copies of the PSLð2;ZÞ sum of the state ðh; h̄Þ ¼ ðc−1
32

; c−1
32
Þ

above the vacuum. The “seed” term of this addition to the

partition function is N
jηðqÞj2 q

c−1
32
−c−1

24 q̄
c−1
32
−c−1

24 ¼ N
jηðqÞj2 q

−c−1
96 q̄−

c−1
96 ,

and therefore contributes to the density of states by

NρE¼−c−1
48
;J¼0. As shown in [13], ρE;0j ðeÞ (with E < 0) is

positive everywhere except for a negative delta function at

e ¼ 0 with j ¼ 0. This delta function negativity can be

canceled by adding, for example, the modular invariant

partition function of the c ¼ 1 self-dual boson (see Sec. 4.2

of [13]). Putting everything together, let us consider the

final density of states

ρMWK
j ðeÞ þ Nρ−

c−1
48
;0ðeÞ þ ðN þ 6Þρc¼1

j ðeÞ; ð6:16Þ

where ρc¼1
j ðeÞ is the density of states for the c ¼ 1 self-dual

boson, whose vacuum is now interpreted as a h ¼ h̄ ¼ c−1
24

state. The term 6ρc¼1
j ðeÞ is there to cancel the negative delta

function density of states at h ¼ h̄ ¼ c−1
24

coming from the

MWK partition function itself. For N > 1, the above

density of states appears to be positive at large c in all

regimes we have considered, and gives a modular invariant

partition function. It has a vacuum, a finite number of states

at h ¼ h̄ ¼ c−1
32
, and a continuum starting at h; h̄ ≥ c−1

24
. The

twist gap 2tgap and the gap in the scaling dimension Δgap

16
Strictly speaking, the m ¼ 0 term requires analytic continu-

ation to make sense, but in the following we will only be
interested in the large m terms which dominate in the limit (5.2).

17
In comparing the above with (4.11), there is a relative factor

of 2 coming from the Jacobian factor when we change variables
from t, j to e, j.
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are both c−1
16
. It would be interesting to prove that this

density of states is indeed positive everywhere.
18

VII. SUPERSYMMETRIC GENERALIZATION

Our arguments in this paper can be generalized to 2D

CFTs with any chiral algebra. In this section we will

perform a similar analysis for the N ¼ 1 super-Virasoro

algebra. Recall that there are four partition functions we can

consider, depending on the four spin structures on the torus,

which correspond to (anti)periodic boundary conditions of

the fermions in the space and time directions.
19

These

correspond to partition functions restricted to the Neveu-

Schwarz or Ramond sectors, and with or without a ð−1ÞF
insertion. Three of these partition functions are related by

PSLð2;ZÞ transformations, and the remaining one is the

Witten index.

In this section we will focus on the partition function

with antiperiodic boundary conditions for the fermions in

both directions on the torus, namely

Zðq; q̄Þ ¼ TrHNS;NS
ðqL0−

c
24q̄L̄0−

c
24Þ: ð7:1Þ

This function is invariant under a subgroup of PSLð2;ZÞ,
generated by the group elements S and T2. We will denote

this group as Γθ, which can also be defined by SLð2;ZÞ
matrices ða

c
b
d
Þ with aþ d and bþ c both even. The

characters for the N ¼ 1 super-Virasoro algebra with

c > 3
2
under this spin structure are

χN¼1
0 ðqÞ ¼ q−

c−3
2

24 ð1 − q
1
2Þ ηðqÞ
ηðq2Þηðq1=2Þ vacuum;

χN¼1
h ðqÞ ¼ qh−

c−3
2

24

ηðqÞ
ηðq2Þηðq1=2Þ ; h > 0: ð7:2Þ

We can similarly define a modular kernel KN¼1
S ðhÞ as

χN¼1
0 ðq0Þ ¼

Z

∞

0

dhKN¼1
S ðhÞχN¼1

h ðqÞ; ð7:3Þ

where q0 is the S transform of q. It is given by

KN¼1
S ðhÞ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi

2

h−
c−3

2

24

s

θ

�

h−
c− 3

2

24

�

×

2

4cosh

0

@4π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�

c− 3
2

24

��

h−
c− 3

2

24

�

s
1

A

−cosh

0

@4π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�

c− 27
2

24

��

h−
c− 3

2

24

�

s
1

A

3

5: ð7:4Þ

By the same argument in Sec. III, any 2D CFT with

N ¼ 1 super-Virasoro symmetry and a nonzero twist gap

under the N ¼ 1 super-Virasoro algebra obeys a Cardy-

like formula with extended validity. In particular, the

density of super-Virasoro primaries is given by

ρ0j;1ðh̄Þ ¼ KN¼1
S ðh̄þ jÞKN¼1

S ðh̄Þ; ð7:5Þ

which is valid whenever h̄þ j ≫ c, h̄ >
c−3

2

24
.

However, just as for the nonsupersymmetric case,

Eq. (7.5) is not all we can learn from the light-cone modular

bootstrap. Let us consider a more general setup where we set

τ and τ̄ as in (4.1), in the limit where β goes to zero with β̄

fixed. Again, r and s in (4.1) are coprime integers, and s ≥ 1;

we will now in addition demand that r and s have different
parities. We can consider a Γθ transformation

�

aðr; sÞ bðr; sÞ
s −r

�

: ð7:6Þ

For consistency, aðr; sÞmust satisfy the following properties:

If s is even,aðr; sÞ ¼ −ðr−1Þ2s. If s is odd,aðr; sÞ ¼ −ðr−1Þs
and chosen so that aðr; sÞ is even. We then obtain the

following crossing equation [similar to (4.6) for the

Virasoro case]:

X

j≥0
j∈Z=2

exp

�

−

�

β−
2πir

s

�

j

�
Z

dh̄ρjðh̄Þexp
�

−β̄

�

h̄−
c− 3

2

24

��

¼ 2π

s
ffiffiffiffiffi

ββ̄
p e

4π2ðc−3
2
Þ

24s2β e
4π2ðc−3

2
Þ

24s2 β̄ ð1−e
−2π2

s2β
þπiaðr;sÞ

s Þð1−e
−2π2

s2 β̄
−
πiaðr;sÞ

s Þ

þOðe
4π2

s2β
ðc−

3
2

24
−tgapÞÞ: ð7:7Þ

In (7.7), the sum over j runs over both integers and

half-integers.

We will find a continuous solution to (7.7), in a similar

manner as in Sec. IV B.We define a Γθ Kloosterman sum as

SΓθðj; J; sÞ ¼
X

r∶ gcdðr;sÞ¼1
0≤r<2s
rþs odd

exp

�

πi
2rj − aðr; sÞJ

s

�

; ð7:8Þ

which satisfies

X

lcmðs;s0Þ−1
2

j¼0
j∈Z=2

SΓθðj; J; s0Þe−2πirj
s ¼ 2se−

πiaðr;sÞJ
s δs;s0 : ð7:9Þ

18
Note that there is a simple alternative to (6.16) where instead

of adding scalars of twist c−1
16

to the MWK partition function, we

add twist c−1
16

states with arbitrary spin [plus PSLð2;ZÞ images].

If the spectra of these partition functions are also positive definite,

they would have twist gap c−1
16

and scaling gap no greater than c−1
12
.

19
Here we assume for simplicity that left and right moving

fermions have identical spin structures. It would be interesting to
explore modular constraints by considering partition functions
with mixed spin structures.
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We also define the functions

dN¼1
0 ðh; sÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

sðh −
c−3

2

24
Þ

s

cosh

 

4π

s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�

h −
c − 3

2

24

��

c − 3
2

24

�

s

!

θ

�

h −
c − 3

2

24

�

;

dN¼1
1 ðh; sÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

sðh −
c−3

2

24
Þ

s

cosh

 

4π

s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�

h −
c − 3

2

24

��

c − 27
2

24

�

s

!

θ

�

h −
c − 3

2

24

�

; ð7:10Þ

and

ρN¼1
j;s ðh; h̄Þ ¼ SΓθðj; 0; sÞdN¼1

0 ðh; sÞdN¼1
0 ðh̄; sÞ

− SΓθðj;−1; sÞdN¼1
0 ðh; sÞdN¼1

1 ðh̄; sÞ
− SΓθðj; 1; sÞdN¼1

1 ðh; sÞdN¼1
0 ðh̄; sÞ

þ SΓθðj; 0; sÞdN¼1
1 ðh; sÞdN¼1

1 ðh̄; sÞ: ð7:11Þ

A solution to (7.7) at large spin is then given by

ρ0jðh̄Þ ¼
X

s0¼1

ρN¼1
j;s0 ðh̄þ j; h̄Þ; j ≫ c: ð7:12Þ

The solution (7.12) again has the interesting property that

for large odd (or half-integer) spin, with h̄ exponentially

close to
c−3

2

24
, there is a negative degeneracy of states. This

can be cured with a single operator whose twist is at or

below
c−3

2

16
.
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APPENDIX A: SUM ESTIMATION

Consider a complex function fðzÞ that satisfies the

following properties:

(i) fðzÞ is analytic on the half-plane Rez ≥ 0.

(ii) limjImzj→∞e
−2πjImzjjfðzÞj ¼ 0 uniformly in any finite

interval ðδ;ΛÞ of Rez.
From a contour argument, one can derive the Abel-Plana

formula (see Sec. III in [28] or Sec. 13.14 in [29]) which

relates the discrete sum to the integral of fðzÞ,

X

∞

k¼0

fðkÞ−
Z

∞

0

dzfðzÞ

¼ 1

2
fð0Þ þ i

Z

∞

0

dz
fðizÞ− fð−izÞ

e2πz − 1

þ lim
Λ→þ∞

�

1

2
fðΛÞ þ i

Z

∞

0

dz
fðΛ− izÞ− fðΛþ izÞ

e2πz − 1

�

:

ðA1Þ

One application of the formula arises in the main text

where we replace the sum over spin j by an integral over j
in (3.7). In this case, we choose

fðjÞ ¼ e−βj
Z

∞

c−1
24

dh̄
e4π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðh̄þjÞðc−1
24
Þ

p
KSðh̄Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h̄þ j − c−1
24

q

× exp

�

−β̄

�

h̄ −
c − 1

24

��

; ðA2Þ

which clearly satisfies the criterion for the Abel-Plana

formula and in addition limΛ→þ∞fðΛþ iyÞ ¼ 0. Moreover

the RHS of (A1) is finite in the limit β → 0; thus we can

freely replace the sum with the integral (or vice versa)

without affecting the exponentially dominating terms of the

form Oðea
βÞ for some β-independent constant a.

APPENDIX B: CROSSING SOLUTION

In this Appendix we show that (4.11) solves the crossing

equation (4.6). In particular, we show that for the modular

crossing equation (4.6) labeled by s (and for all coprime

1 ≤ r < s), only the ρj;s0¼s term in (4.11) contributes to the

leading term on the RHS of (4.6) in the β → 0 limit.

The LHS of (4.6) is given by (see end of Sec. IV B for the

range of s0)

BENJAMIN, OOGURI, SHAO, and WANG PHYS. REV. D 100, 066029 (2019)

066029-12



X

∞

j¼0

e
2πirj
s exp½−jβ�

Z

∞

tgap

dh̄ρjðh̄Þ exp
�

−β̄

�

h̄ −
c − 1

24

��

¼
X

s0

X

∞

j¼0

e
2πirj
s exp½−jβ�

Z

∞

tgap

dh̄ exp

�

−β̄

�

h̄ −
c − 1

24

��

× ½Sðj; 0; s0Þd0ðh̄þ j; s0Þd0ðh̄; s0Þ − Sðj;−1; s0Þd0ðh̄þ j; s0Þd1ðh̄; s0Þ
−Sðj; 1; s0Þd1ðh̄þ j; s0Þd0ðh̄; s0Þ þ Sðj; 0; s0Þd1ðh̄þ j; s0Þd1ðh̄; s0Þ�: ðB1Þ

Let us consider the first term coming from the square bracket on the RHS of (B1). We rewrite j ¼ j̃þ klcmðs; s0Þ where
k ≥ 0 and 0 ≤ j̃ ≤ lcmðs; s0Þ − 1 to get

X

s0

X

∞

j¼0

e
2πirj
s exp½−jβ�

Z

∞

tgap

dh̄Sðj; 0; s0Þd0ðh̄þ j; s0Þd0ðh̄; s0Þ exp
�

−β̄

�

h̄ −
c − 1

24

��

¼
X

s0

X

lcmðs;s0Þ−1

j̃¼0

e
2πirj̃
s Sðj̃; 0; s0Þ

X

∞

k¼0

exp½−ðj̃þ klcmðs; s0ÞÞβ�

×

Z

∞

tgap

dh̄d0ðh̄þ j̃þ klcmðs; s0Þ; s0Þd0ðh̄; s0Þ exp
�

−β̄

�

h̄ −
c − 1

24

��

: ðB2Þ

If we replaced the sum over k with an integral in (B2), we could shift variables k → k − j̃
lcmðs;s0Þ. In Appendix A, we show

that the correction coming from changing the sum to an integral approaches a constant as β goes to 0. Since we only aim to

reproduce the divergence as β → 0 on the RHS of (4.6), we can approximate the sum in k by an integral,

X

s0

2

6

4

X

lcmðs;s0Þ−1

j̃¼0

e
2πirj̃
s Sðj̃; 0; s0Þ

3

7

5

Z

∞

0

dk

Z

∞

tgap

dh̄d0ðh̄þ klcmðs; s0Þ; s0Þd0ðh̄; s0Þ exp½−βklcmðs; s0Þ� exp
�

−β̄

�

h̄ −
c − 1

24

��

:

ðB3Þ

The sum over j̃ in (B3) can now be done using (4.8), which is proportional to δs;s0 . It follows that only the ρj;s0¼s term in

the sum (4.11) contributes to the modular crossing equation (4.6) labeled by s. The s0 ¼ s term then gives

s

Z

∞

0

dk

Z

∞

tgap

dh̄d0ðh̄þ ks; sÞd0ðh̄; sÞ exp
�

−β̄

�

h̄ −
c − 1

24

�

− βks

�

¼
Z

∞

tgap

dh̄ exp ½βh̄�
Z

∞

h̄

dkd0ðk; sÞd0ðh̄; sÞ exp
�

−β̄

�

h̄ −
c − 1

24

�

− βk

�

¼
ffiffiffiffiffiffi

2π

sβ

s

e
4π2ðc−1Þ
24s2β

Z

∞

tgap

dh̄ exp

�

ðβ − β̄Þ
�

h̄ −
c − 1

24

��

d0ðh̄; sÞ

≃

ffiffiffiffiffiffi

2π

sβ

s

e
4π2ðc−1Þ
24s2β

Z

∞

tgap

dh̄ exp

�

−β̄

�

h̄ −
c − 1

24

��

d0ðh̄; sÞ

¼ 2π

s
ffiffiffiffiffi

ββ̄
p e

4π2ðc−1Þ
24s2β e

4π2ðc−1Þ
24s2 β̄ ; ðB4Þ
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where we use ≃ to mean equal in the limit β → 0. We have

succeeded in reproducing one of the divergent terms on the

RHS of (4.6).

We can evaluate the remaining three terms in (B1)

following the same steps. When combined, we finally get

2π

s
ffiffiffiffiffi

ββ̄
p e

4π2ðc−1Þ
24s2β e

4π2ðc−1Þ
24s2 β̄

�

1 − e
−4π2

s2β
−
2πiðr−1Þs

s

��

1 − e
−4π2

s2 β̄
þ2πiðr−1Þs

s

�

ðB5Þ

precisely matching (4.6).

APPENDIX C: ACCUMULATION

POINT IN TWIST

In Sec. V, we gave a suggestive argument that the twist

gap 2tgap cannot exceed c−1
16
. However, there we assumed

that the contribution of the lowest twist nonvacuum

operator to the density of large spin states came from a

finite number of low-twist operators. It is possible that the

twist gap comes from an accumulation point in twist. In that

case, it is not obvious that the contribution to the high-spin

density of states has the h̄ dependence in (5.4).

We start with the modular constraint (2.13) rewritten as

X

∞

j¼0

e−βj
Z

∞

0

dh̄ρjðh̄Þ exp
�

−β̄

�

h̄ −
c − 1

24

��

¼
X

∞

j¼0

e−βj
Z

∞

0

dh̄ρ0jðh̄Þ exp
�

−β̄

�

h̄ −
c − 1

24

��

þOðe4π2

β
ðc−1
24
−tgapÞÞ: ðC1Þ

Recall that ρjðh̄Þ is the physical density of states (2.9)

and ρ0jðh̄Þ is defined in (4.11). We perform an inverse

Laplace transform in β,
20

Z

∞

0

dh̄ρjðh̄Þ exp
�

−β̄

�

h̄ −
c − 1

24

��

¼
Z

∞

0

dh̄ρ0jðh̄Þ exp
�

−β̄

�

h̄ −
c − 1

24

��

þO

�

e4π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jðc−1
24
−tgapÞ

p �

: ðC2Þ

It is then tempting to equate ρjðh̄Þ with ρ0jðh̄Þ, but the
inverse Laplace transform with respect to β̄ is only unique

up to a measure zero set ofRþ. Nonetheless, two piecewise
continuous functions with the same Laplace transforms

agree on the subset of Rþ where they are both continuous

(see, e.g., [30]). To utilize this uniqueness property, we

consider the integrated spectral density for ρjðh̄Þ defined as

Fjðh̄Þ ¼
Z

h̄

0

dh̄0ρjðh̄0Þ; ðC3Þ

which is piecewise continuous. Similarly we define F0
jðh̄Þ

for ρ0jðh̄Þ. By performing integration by parts on (C2), we

obtain

Z

∞

0

dh̄Fjðh̄Þ exp
�

−β̄

�

h̄ −
c − 1

24

��

¼
Z

∞

0

dh̄F0
jðh̄Þ exp

�

−β̄

�

h̄ −
c − 1

24

��

þOðe4π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jðc−1
24
−tgapÞ

p
Þ; ðC4Þ

where we used limh̄→∞Fjðh̄Þe−β̄ h̄ ¼ 0 as evident from the

usual Cardy formula. Next performing the inverse Laplace

transform in β̄, we obtain

Fjðh̄Þ ¼ F0
jðh̄Þ þOðe4π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jðc−1
24
−tgapÞ

p
Þ; ðC5Þ

where the equality holds away from the discontinuities of

the LHS. We define the function

gjðh̄Þ≡ Fjðh̄Þ − F0
jðh̄Þ: ðC6Þ

It satisfies the following two properties:

(1) limj→∞

gjðh̄Þ
exp ½4π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jðc−1
24
−tgapÞ

p
�
¼ Gðh̄Þ where Gðh̄Þ is

some finite function of h̄.
(2) gjðh̄Þ is finite at every h̄, and in particular

limh̄→c−1
24
gjðh̄Þ is finite.

The first property follows from (C5) while the second

follows from the finiteness of the number of states up to

twist h̄ at a given spin j.

The question we are interested in is the large j growth of

gjðh̄Þ in the double limit (5.2). To make it more precise, let

us choose any function fðjÞ such that

0 < fðjÞ − c − 1

24
<

1

8π2
exp

�

−2π

ffiffiffiffiffiffiffiffiffiffiffiffiffi

c − 1

24
j

r

�

; j∶ odd:

ðC7Þ

We would like to know the large j behavior of

gjðh̄ ¼ fðjÞÞ. In this limit, we have shown in Sec. V that

F0
jðh̄Þ ∼ −eπ

ffiffiffiffiffiffi

jc−1
24

p
: ðC8Þ

If we naively commute the two limits j → ∞ and h̄ →
c−1
24
,

we would have claimed that gjðh̄ ¼ fðjÞÞ grows no faster

than e4π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jðc−1
24
−tgap

p
Þ; i.e.,

20
Here and below we assume that the inverse Laplace trans-

form of the error term in (C1) with respect to β is dominated by

the inverse Laplace transform of e
4π2

β
ðc−1
24
−tgapÞ for large j. To prove

this requires a refinement of the argument in [19] with a finite
twist gap (or irrationality) condition imposed.
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lim
j→∞

gjðfðjÞÞ
exp ½4π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jðc−1
24

− tgapÞ
q

�
ðC9Þ

is finite. If this were the case, then for the negativity

of F0
jðh̄Þ ∼ −eπ

ffiffiffiffiffiffi

c−1
24
j

p
to be canceled by the growth

e4π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jðc−1
24
−tgap

p
Þ, the twist has to be no bigger than

tgap ≤

�

15

16

��

c − 1

24

�

: ðC10Þ

If it can be proven that (C9) not only is finite but also

vanished as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h̄ − c−1
24

q

(as would be the case if there were a

finite number of low-twist operators), we would recover the

original claim of tgap ≤
c−1
32

in Sec. V. However, Eq. (C9)

involves a double limit on both h̄ and j, whose behavior

does not follow from the two properties of gjðh̄Þ above. We

leave a rigorous derivation of the large j behavior of

gjðfðjÞÞ for the future.

APPENDIX D: MODULAR TRANSFORMATION

OF VIRASORO CHARACTERS

In this Appendix, we derive simplified formulas for the

modular kernel of general PSLð2;ZÞ transformations for

Virasoro characters at central charge c > 1. See [31,32] for

a nice review on this subject. We will mostly follow the

conventions of [31] here and focus on the holomor-

phic side.

It is convenient to parametrize the CFT central charge as

c ¼ 1þ 6Q2; Q ¼ bþ 1

b
; ðD1Þ

where 0 < b < 1 for c > 25 or b is a complex phase with

jbj ¼ 1 for 1 < c ≤ 25, inspired by the Liouville theory.

Similarly, we label Virasoro primaries of weight h by the

Liouville momenta

α≡
Qþ ip

2
; h ¼ αðQ − αÞ ðD2Þ

such that for p ∈ R
þ, we have a nondegenerate primary

with character and weight

χpðτÞ ¼
q

p2

4

ηðτÞ ; hp ¼ Q2 þ p2

4
: ðD3Þ

For imaginary p ¼ iðm=bþ nbÞ with m; n ∈ N, we have a

degenerate primary (which has a single null vector at level

mn for generic b) with character and weight

χm;n ¼
q−

ðm=b−nbÞ2
4 − q−

ðm=bþnbÞ2
4

ηðτÞ ;

hm;n ¼
Q2 − ðm=bþ nbÞ2

4
: ðD4Þ

In particular, the vacuum is identified with the m ¼ n ¼ 1

degenerate primary

χvac ≡ χ1;1: ðD5Þ

The S transformation of the Virasoro characters are

particularly simple in Liouville notation,

χpð−1=τÞ ¼
Z

∞

0

dp0Sp
p0
χp0 ; Sp

p0 ¼
ffiffiffi

2
p

cosðπpp0Þ;

χm;nð−1=τÞ ¼
Z

∞

0

dp0Sm;n
p0
χp0 ;

Sm;n
p0 ¼ 2

ffiffiffi

2
p

sinhðπmp0=bÞ sinhðπnbp0Þ; ðD6Þ

while the T transformation gives a phase

χpðτ þ 1Þ ¼ e
πi
2
p2

e
πi
12χpðτÞ;

χm;nðτ þ 1Þ ¼ e−
πi
2
ðm=bþnbÞ2e

πi
12χm;nðτÞ: ðD7Þ

For a given element γ ∈ PSLð2;ZÞ generated by a

sequence of S and T transformations, it is straightforward

to compose the integrals and derive the modular kernel

Kγ.
21

In particular,

KSðm; n;pÞ ¼ Sm;n
p; KSðp;p0Þ ¼ Sp

p0
: ðD8Þ

For illustration, let us look at the STnS transformation (with

n ∈ N)

γ · τ ¼ τ

1 − nτ
ðD9Þ

of the identity character

χvacðγ · τÞ ¼ 2e
−nπi
12

Z

R
þ
dp0 sinhðπp0=bÞ sinhðπbp0Þenπip02

2

×

Z

R

dpeiπpp
0
χpðτÞ: ðD10Þ

Wewould like to perform the p0 integral first but as it stands
above, the integral diverges exponentially. We can get

around this by shifting the contour of the p integral in the

21
Note that the modular crossing kernel Kγ here differs from

Kγ in the main text [e.g., (3.3)] by the choice of integration

measure over Virasoro modules. For example, KγðhpÞ ¼
1
ffiffiffiffiffiffiffiffiffiffi

hp−
c−1
24

p Kγðvac;pÞ for nondegenerate modules labeled by p.
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imaginary direction by Δ ¼ 1=bþ bþ ϵ for ϵ > 0 [31].

Since there are no poles in p, we obtain

χvacðγ · τÞ ¼ 2e
−nπi
12

Z

R
þ
dp0 sinhðπp0=bÞ sinhðπbp0Þenπip02

2

×

Z

RþiΔ

dpeiπpp
0
χpðτÞ ðD11Þ

and can now integrate over p0 using the following identities
that involve the (complement) error function erfcðzÞ or

equivalently the Faddeeva function wðizÞ:
Z

R
þ
dp0eπp

0ðϵ1=bþϵ2bÞenπip
02=2eiπpp

0

¼ e
πi
4

ffiffiffiffiffiffi

2n
p ezðp;ϵ1;ϵ2Þ

2

erfcðzðp; ϵ1; ϵ2ÞÞ

¼ e
πi
4

ffiffiffiffiffiffi

2n
p wðizðp; ϵ1; ϵ2ÞÞ; ðD12Þ

where

erfcðzÞ≡ 2
ffiffiffi

π
p
Z

∞

z

e−t
2

dt ¼ 1 − erfðzÞ;

wðzÞ ¼ e−z
2

erfcð−izÞ ðD13Þ

with

zðp; ϵ1; ϵ2Þ ¼ e−3πi=4
ffiffiffiffiffiffi

π

2n

r

ðϵ1=bþ ϵ2bþ ipÞ: ðD14Þ

Now using the fact that wðizÞ is an entire function22 and the
exponential suppression from χpðτÞ in the p integral, we

can deform the p-integration contour back to R and (D11)

becomes

χvacðγ · τÞ ¼
e
ð3−nÞπi

12

2
ffiffiffiffiffiffi

2n
p

X

ϵ1;2¼�

Z

R

dpwðizðp; ϵ1; ϵ2ÞÞχpðτÞ

¼ e
ð3−nÞπi

12

ffiffiffiffiffiffi

2n
p

Z

R

dpðezðp;1;1Þ2 − ezðp;1;−1Þ
2ÞχpðτÞ

¼ e
ð3−nÞπi

12

ffiffiffiffiffiffi

2n
p

Z

R
þ
dpðeπi

2n
ðbþ1=bþisÞ2 − e

πi
2n
ðb−1=bþisÞ2 þ e

πi
2n
ðbþ1=b−isÞ2 − e

πi
2n
ðb−1=b−isÞ2ÞχpðτÞ: ðD15Þ

In the second equality above, we have used

wð−zÞ ¼ 2e−z
2

− wðzÞ. We read off the modular kernel

KSTnSðvac;pÞ from the last line of (D15) to be

KSTnSðvac;pÞ ¼
2e

ð3−nÞπi
12

ffiffiffiffiffiffi

2n
p e

2πiðc−1Þ
24n e

−πip2

2n

�

cosh

�

πpðbþ 1=bÞ
n

�

− e
−2πi
n cosh

�

πpðb − 1=bÞ
n

��

: ðD16Þ

As a check of (D16), note that in PSLð2;ZÞ, we have the
identity STS ¼ T−1ST−1. One can immediately write down

the modular transformation of χvac under T−1ST−1 using

(D6) and (D7),

χvacðγ · τÞ ¼ 2
ffiffiffi

2
p

e
2πi
12e

2πiðc−1Þ
24

×

Z

R
þ
dp sinhðπp=bÞ sinhðπbpÞe−πip2

2 χpðτÞ;

ðD17Þ

and we see that this indeed matches (D16) when n ¼ 1.

Similarly, it is straightforward to derive the STnS trans-

formation of a nondegenerate Virasoro character labeled by

s ∈ R
þ,

χsðγ · τÞ ¼
1

2
e
−nπi
12

Z

R

dp0eiπsp
0
e
nπip02

2

Z

R

dpeiπpp
0
χpðτÞ

¼ 1
ffiffiffiffiffiffi

2n
p e

πið3−nÞ
12

Z

dpe−
πiðpþsÞ2

2n χpðτÞ; ðD18Þ

and thus

KSTnSðs;pÞ ¼
1
ffiffiffiffiffiffi

2n
p e

πið3−nÞ
12 e−

πiðpþsÞ2
2n : ðD19Þ22

For more properties of the Faddeeva function and related
functions see Chapter 7 of [33].
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