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INTRODUCTION

In recent years important contributions to our understanding
of the hadron physics have been obtained following two rather different

approaches.

In the framework of a pure theory of strong interactions
large attention has been dedicated to the study of the properties of the
Dual Resonance Models (DRM). The interest of these models is based on the
fact that they incorporate some general requirements of S matrix theory,
such as analyticity of first and second kind and crossing, and they
exhibit very attractive physical features such as a large degeneracy of the

spectrum and linear Regge trajectories with an universal slope ! .

On the other hand, the study of the electromagnetic and
weak interactions of hadrons was instrumental in obtaining new important
physical insights. At this conference the properties of the products of
currents for light-like distances, especially of current commutators, and
their consequences for the asymptotic behaviour (Bjorken limit) of scat-

. . . 2
tering processes have been extensively discussed .

At first sight these two lines of investigation appear
quite unrelated to each other. We can mention, for example, the difficulties
met by the program of building dual amplitudes for currents. Nevertheless,
a feeling of the existence of a possible relationship between these two
different types of approaches is now developing. Let us consider, for
example, the extremely large degeneracy of the spectrum, exponentially
increasing with the energy, that is perhaps the most striking feature of
the DRM. This degeneracy, when seen from the point of view of the sta-
tisticél models of the hadrons, suggests an underlying picture of the
hadrons as made up of an infinite number of constituents moving almost
freely. This picture then is not remote from the one advocated by the
parton model, in which the e.m. current interacts directly with the almost

free constituents of the nucleon.



II.

Furthermore, recent developments in the analysis of the
properties of the DRM are leading to an extremely simple and attractive
physical picture for a specific critical dimension D of the space-time.

In fact, it has been shown that for D<26, for the ordinary ci (0) =1
model (D<10 for the Neveu-Schwarz model), the model is free from negative

)o

physical picture given by the model is extremely similar to the infinite

norm states (ghosts) 3 In addition, at the critical dimension, the
momentum frame picture. In fact, any physical state can be obtained by
applying to the "vacuum" (corresponding to the lower energy level, the
tachyon with squared mass equal to -1) an arbitrary number of purely

. . 4
transverse "photon" operators with collinear momenta .

The purpose of this talk is to further investigate these
analogies, starting from the light-cone point of view and recovering some
interesting properties of the DRM. This talk follows cssentially the line
of a previous paper > by the same authors, but more emphasis 1s given here
to the discussion of the deep inelastic structure functions that can be

explicitly obtained as an output of our approach.

BASIC ASSUMPTIONS

We start with the assumption that the elementary particles
are, in some way, composite systems made of quarks which, at least in

the present deep inelastic experiments, appear as point-like objects.
The experimental validity of the Bjorken scaling suggests
that for what concerns the light-cone properties of the hadrons the "true"

gquark field can be approximated by an "asymptotic" field which obeys the

free massless equation

O ¢ =o

For simplicity we will start with spinless quarks. We recall that the

(11.1)

above equation is not only invariant under the Poincaré group, but also under

the larger conformal group.

Another fundamental property of Eq. (II.1> is that its

general integral can be written in the form



d>()?}t) = S S-(E - ?ﬁuﬁ; '5:) oLQ-“:. =

§ag (ana §(3,® 3(E-Ri-g)

where the integral in d‘la is evaluated over all the directions of a unit

(11.2)

-
vector u:

&z____ 4 (11.%)

In order to avoid the appearance of unpleasant divergent
quantities which are present anytime we consider matrix elements of a
product of operators f(g ﬁI) belonging to the same direction 3, we

define the averaged operator:

Rie) = = \d{(s,2
m AS.S).L (I1.4)

so that Eq. (II.2) can be expressed as

ORt) = b 3 B(t-RT)

(11.5)
The commutation relations and the vacuum expectation value

of the field Pi(g ) are given by

[ Ped, Ble] = & 5 §(5,-5) -

<0| P fﬂ,) (fz)lO) " A S:J é;';'—-z"e)z (11.7)

Equation (II.6) shows that each direction gives rise to orthogonal subspaces.
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Up to now we have only discussed, very briefly, the
kinematical properties of the parton field. We now introduce our main
dynamical assumptions. We assume that not only the quark field but also

the compound field obeys, near the light-cone, the d'Alembert equation

QA = o

In analogy with what we did in the case of the quark field, we can make

(11.8)

the following decomposition

ARE) = ASL 2 X () (11.9)

The field ;xi( g ) is then constructed as a function of the quark field

Pi(r ):

%) = F®e]

As a consequence of the assumptions (II.8) and (II.10) we see

(11.10)

that among all possible multiquark states the single particle states are
those obtained by the product of an arbitrary number of collinear quark
fields. This shows the analogy of our model both with the parton model in
the infinite momentum frame and with the DRM where for a critical value of
the space-time dimension the physical states are obtained by a product of
an arbitrary number of "photon" operators all aligned along a certain
common light-like direction E . We must notice, however, that our model

is unable to give a correct description of the "wee" partons, i.e., partons
of very low momentum that it is impossible to assign to any precise direction.
Therefore, we expect that our model will fail in correctly describing
features, such as the behaviour of the structure functions for W —O0,
strictly related, in the parton model to the distribution of the "wee"

partons.
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On the other hand, we notice that the DRM gives rise to
masses of the physical particles which are non-vanishing. This is a
consequence of the fact that even if the "photon" operators carry a light-
like four-momentum, as in the case of Egqs. (II.1) and (II.8), they are
applied to a vacuum state (which, in the DRM, is associated with the ground
state with a definite momentum) whose momentum combined with the momentum

of the "photons" gives rise to a non-vanishing mass for the excited particles.

It is clear that the "collinearity assumption" in our
present form is too crude and it needs probably to be modified for a future

development.

COMPOUND STATES AND THEIR DEEP INELASTIC STRUCTURE FUNCTIONS

We can now discuss the transformation properties of our
parton field under the conformal group. As we have discussed previously,
we will be interested only in the case of partons all moving along the same
direction (say the 2z direction). Then we will be interested only in the

subgroup of the full conformal group leaving the =z direction invariant.

The generators of such a subgroup are, in the usual

n

(o]
ot

ations,

3-3 = Mn_ ,\ = l__—'&Moz (111.1)

)

Ly= £ (ReP)
Lo = 5(Ma*D)

= L (K -k
L' o ( ° 3> (111.2)

The algebraic properties of the five operators defined in
Egs. (III.1) and (III.2) are most interesting. First of all, J5 and r\

commute with all other operators.
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The three fundamental operators Li obey the 0(2,1)
algebra given by:

[Ln/Li] = il—;‘:
[L.\.' L-] = -al,

(111.3)
Finally the commutation relations of L, with P(g) are
[L+, P(g)] = %—E-
(L, Plo] = (s i‘-g + 1) Ple)
(L. Pie)] = (gzj—? +28) Plg) .

The operators /\ and J3 commute with PQS ). The fact that /\ com-
mutes with PQ?) is quite general. On the other hand, the zero commutator
of J5 with P(g ) is a consequence of the fact that f(x) is a spinless
field. In the case of quarks endowed with spin, J will have non-vanishing

P

commutators with the relevant operators.

We notice at this point that, since we are working in the
case of massless quarks oriented along the same direction, the value of the
total angular momentum will coincide with that of its component along the
direction of motion. This means that the spin of the composite particles
will have no orbital component and will only originate from the spin of the

quarks.

So in the present unrealistic case of spinless quarks we

shall thus deal with spinless composite particles.

We wish to define now a new quantum number which will
allow us to classify the different states that can be obtained in terms of

collinear quarks.



The operator W associated with such quantum number
should be diagonalizable at the same time as the momentum and should have

the same eigenvalue independently of the Lorentz frame we are using.

In other terms

[W, LO] =
[W; L*] =0 (111.5)

Such an operator is provided by the Casimir operator of the 0(2,1) group:

W= Lo-S(Llo+LoLy)

Then we can classify the single particle compound states by means of the

(111.6)

eigenvalues of the Casimir operator.

In other words, we require that the compound field belong to

an irreducible representation of 0(2,1):

D—+, X(S)]
[Le, 2] (s +2)x®
[L., un]= (88 +21) 20 S

We can now obtain the general express1on for the operator X(g) associated

with a compound state.

The most general operator constructed out of the quark

field whose dimensionality is equal to N, is given by

[P(g)] *P“‘] [ d‘P(c) ”3 (116)



with the condition

n/ (111.9)

The number of these operators is given by the partition function of N

My, + :LV\Z + ESIH} + -

objects; we denote it by T(N). We have to take an arbitrary linear
combination of them and impose the correct commutation relations (III.?)
The number of operators of the type (III.8) which are covariant under 0(2,1)

transformations with x =N is then given by

P(N) = TIN) - T(N-1)

(111.10)

The action of the operator W on such states which we denote by |4’,X:>

is given by

Wlw,A> = ,\(k-i) '%)) (111.11)

The degeneracy of physical states for large values of )\ is given by the

asymptotic expression of the partition function:

LT \r;:
a(\) ~ = Ve

(111.12)

If we now make the formal substitution

2
X\ —> bm (111.13)

we recover the exponential degeneracy of the spectrum given by the D.R.M.
The "correspondence principle" (I1I.12) leads also to a quantization for
integer values of the physical particles as we would expect from a model

based on linear Regge trajectories.

We see that in our extreme "collinear" model we lose track
of the mass operator which is not important for consideration valid at
short distances; however, from our approach we get a new quantum number

)\ which seems to enjoy properties very similar to the mass of the

physical states in the DRM.



To further investigate this analogy, we have to go behind
this extremely unrealistic model in which both the quarks and the compound
states are spinless. To this purpose in next section we will discuss the

case of a spin 3 quark field.

In order to gain some insight on the physical consequences
of our model we conclude this section discussing the properties of the

electromagnetic structure function in our model.

Let us cousider the matrix element of the bilocal operator
evaluated on the light cone, between states of one compound particle of

momentum p, directed along the direction Hz:

<Pl i(90%0) i IP>

The Fourier transform of this matrix element gives the momentum distribution

(I11.14)

of the parton inside the compound particle and, when generalized to a more
realistic case, is related to the structure functions measured in deep
inelastic electron scattering. The state <p] is given in terms of the

field of the compound particle X)\( g) Ly:

<o ‘Pf
v
<PA| = C(?)S<°lxx(s)e de
(111.15)
- oD
whare the constant C(p) has to be fixed tarough the normalization
requirements. For the first few levels the field ){X(,?) is uniquely
determined by our conlformal requirement, so that the matrix element (III.14)
can he evaluated. As an example, we can consider the most general states

which are coupled to two partons. The structure of these fields is the

following:

m-2 5 (m-2-4)
.. a'P d Py
\\)M ?0 C_‘\ ——-dg* dgh-?.—*‘ '

(111.16)
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_ . ‘L(M—i)(mw?\-l) F(n-1
<= 0 Al (‘e\"")! I_<M-4e~> (I11.17)

Following the same line of Appendix C of Ref. 5) we find that the structure

function associated with the field ‘P o Ls given by
L

§.) ~ (rw)o’ Flamnm ;2,40

(111.18)
Recalling that
- ’ ] [— N .
F(2-n,m+4;2;0)= F2-mme;2; D=1
(111.19)
we see that the behaviour near the points W~ 0 and W~ 1 is universal

for such states,

the

(@)

We can also coasider the states corresponding t

. . on . . I
compound fields :P ):. Their structure functions are the following:
Y g

R~ )

The above examples give an idea of the validity of our model. The structure

(111.20)

functions that we obtain are qui‘e reasonable for (W~ 1, but they fall off
too fast when @) —»0. This problem is common to all parton models with a
finite number of partons and clearly suggests that our collinsarity assuamp-
tion is too strong for the "wee'" partons that contribute at W ~o.

We notice that the behaviour near CQ ~ O of the structure functions (III.19)
and (III.21) is the same; for a general compound state l\Yt> the structure
function behaves near ) ~ O as

wuz}

where i 1is the smallest derivative of the quark field present in 1q1>.

For @) ~ 1 the structure function of a general compound

state H’> behaves:



IvV.
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2M-3+2¢
(t-0)

where n 1is the number of quarks of which H/> is made and 1 1is the

highest derivative of the quark field present in ¥ >.

SPIN % QUARKS

In this Section we discuss the main results of our model,
concerning the particle spectrum and the structure functions, in the

more realistic case of spin %; quarks.

We start with the free massless Dirac equation for the quark

field

Yo 2yl =0

;”9» (1v.1)

We will write for W (x) an unspecified Poisson bracket, without committing

ourselves to a Fermi or a Bose statistics

[ 560, ¥y()], = -3 &

(1v.2)
As in Section II we perform the "velocity" decomposition (11.2)
v +
<) = (404 Se-22-)g, 052
Pe@) = Jddg $(E-F2-0g, 65D
where
Ye(x) = 3 (1214) ¥(X)
(1v.4)
and Si(-ﬁ)) are normalized spinors obeying the equation
<+ -
(@) = £ (WD) -

- —
The reasoas for thes appearance of g‘(t —x-u-f) in
Eq. (IV.3), rather than a S(t X - g ) as in Eq. (II.2) are discussed

thoroughly in Appendix A of !Ref. 5).
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As in the scalar case, it is useful to average the operator

gi(j n]) around a given direction ;i and we define:

(& -
8o =t | (s R)dR

AL (1v.6)

Then Eg. (IV.3) reads

Yo« (En 2 2550
‘ S
(1v.7)

Using Egs. (IV.2) and (IV.7) we obtain the following Poisson brackets for

the operators Si(? ):
[$200,5760 ] =0
[ s, +_(a> (5)) ] =0
[sio, S ] =0

¢id ()) ) C.
[sit9),8:'60]= £, §659)8;

The non-vanishing Green functions are:

(1v.8)

() +(F) L
<9o|S., = — S'
'S_ (?)S (§ >,D> (TI)33 : 3 / (1v.9)

The commutators of Si(si) with the fundamental operators JZ, LO, Li

[Jo,Sel00] = + S:00)
[L+,S2t ] = S..- (s)

[Le, S2(®]= (gdg r£)S:(s)

[c-,s:07 - (g’g‘} +9) Ss(8) (1r.10)

are:



- 13 -

We see that Si(g ) belongs to a representation X.::% of 0(2,1).
In order to obtain the structure of the compound states we can now proceed as

in the scalar case.

The most general compound field of coanformal quantum
number >\ is a superposition with appropriate coefficients of terms of the

type:

ds+
Se dS
3¢ S

oghtm aSuT s*"*[: ]M'

+ o\:

LY

(Iv.11)

where
_>\ - M1+‘2W7_+3M3 +. . y‘_:-bznz:-\-...

Mgk 2ig 4 B b R W 2y b3y e
(1v.12)

The coefficients of the superposition are fixed by the requirement that the

compound field be covariant under the group 0(2,1).

Then, we again obtain, for large values of )\ , the
Hagedorn exponential increase of levels. Since we are dealing with quarks
having a spin different from zero, we can now derive some interesting pro-
perties concerning the spin of excited levels. It is easy to see, in fact,
that the spin of the compound states will never exceed x , and that the

most probable value of the spin is proportional to «/A for large values

of )‘.

In order to obtain more detailed information on the
compound particle states in terms of the quark field, we still lack two
main ingredients:

1) a precise commitment to the quark statistics;

2) the introduction of internal guantum numbers.
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Then, in order to calculate the electron-proton structure

function, we introduce internal quantum numbers for the field Si(g:) and

Us (6)
:Di‘ (?) (IV-13)

whose U (g) and Di<f> are respectively fields corresponding to the

define

S+ (g) =

+
value i% of the third component of the isotopic spin.

We also assume the validity of an sU(6) scheme and the

fact that the quarks satisfy the Fermi statistics.

Then the nucleon and the N%s resonance have the same
22
space structure. The lowest possible value of )\ allowed is then

k =g corresponding to the Na field

3
2

L 040 U, U, (6)

We can now build two expressions having the correct commutation relations

S
2

with L_, both corresponding to the values =1, T3:=%, namely:

K(2)= 0., &) Ua (0 D.(8)+U, (6)Ude)D.(9)+ Uple) U, D (8)

(Iv.14)
H(ﬂ =\ U l.).'ﬁ+ + O.,. U.j)..."‘ 04. O,l.', +
+ t)._kbar:jSQ.'*‘ C)..L)+:Js*,4' ()_ C>+.:I>*. :
(Iv.15)
2 K(3) - H(®
(1v.15)

is the desired pure isotopic spin % which is identified with the proton field.
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Using techniques similar to the ones discussed in Appendix C

of Ref. 5) we can now explicitly calculate the structure function FZP(GO).

The behaviour of such function for & ~0 and @ ~1 1is the following:
ep 2
F;- (w) ~ o W AR
Lp 3
’»n - -»>
F3 (w) (4 OJ) » 1 (1v.17)

Had we started with a Bose quark field we would have obtained the following

proton field:

N U: D. - U-,-U_:D-'- . | (1v.18)

and the following behaviour for the structure fuunction:

Fz‘P ~ w?. W =>o

FZQP ~ 4=0d W= (1v.19)

V. CONCLUSIONS

To conclude we summarize the results we have obtained so
far. We have introduced a conformal quantum number >\ to classify our

states. In terms of )\ we have the following properties:

1) the conformal quantum number >\ takes only integer values;
2) the states corresponding to small values of X; are non-degenerate;

3) fof large values of )‘ the degeneracy increases exponentially;

2T
N(L) o Qﬁ\rx -

4)  the spin of the compound particle cannot be larger than

J e\

(v.2)

5) the average value of the spin for large values of )\ is proportional
to ,/; . All those results are translated into well-known properties

of the dual models if one introduces the "correspondence principle" ;
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rd
>\ ~ LW (v.3)

The constant b present in Eq. (V.B) introduces a fundamental length
which in the dual models is related to the universal slope of the Regge

trajectories.

We see then, that in our "asymptotic" model, the mass of
the compound particles can only be obtained "a posteriori" on the basis
of the "correspondence principle" [Eq. (V.BZ}. This is clearly due to the
fact that the quark fields have been studied essentially from the point
of view of their "light -cone" properties, so that they have been taken

to be massless and collinear

This hypothesis of extreme collinearity seems to be a very
weak point in our model. As we have already discussed, this hypothesis
prevents the introduction of "wee partons" in our model. As a consequence,
we obtain structure functions - for example in the "realistic" spin % case -
that although quite good at @) ~1, are in disagreement with any reasonable
Regge model in the asymptotic limit & -0. This disease is common to all

parton models with only optical quarks.

) We can conclude by saying that both the program to recover
the main features of the DRM starting from the light-cone approach and the
one of obtaining information on the "parton distribution" inside the nucleon
have been only partially successful. Any further progress seems clearly

to be bound to a reformulation or a weakening of the collinearity assumption.
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