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We investigate the radiative decays of pseudoscalar (71',[\’,1;,1]’)’

The Southeastern Unive'I'Sities Research Assogiqtion (SURA) ?Perates the vector(p, K*,w,4) and axial vector (A;) mesons using a simple relativistic
Thomas Jefferson National Accelerator Facility for the United States
Department of Energy under contract DE-AC05-84ER40150. constituent quark model. For both simplicity and relativity, we take ad-

vantage of the distinguished features in the light-cone quantization method;
(1) the Fock-state expansion of meson wavefunctions are not contaminated
by the vacuum fluctuation, (2) the problem of assigning quantum numbers
JPC o mesons is circumvented by the Melosh transformation. Except the
well-known constituent quark masses of (u,d,s) quarks and the spin-averaged
meson masses, the only parameter in the model is the gaussian parameter §
which determines the bma,dness( or sharpness) of radial wavefunction. Our
overall predictions of pseudoscalar, vector and axial vector meson radiative

decay processes are remarkably in a good agreement witb the experimental

data.
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L INTRODUCTION

While the nonperturbative QCD methods such as QCD sum-rule techniques [1-3] and
lattice QCD calculations [4-6] are available, there is still growing interest in using simple
relativistic quark models [7-12] to describe hadron properties. Our relativistic quark model
[7.8] is based upon the Fock state decomposition of hadronic state which arises naturally
in the ‘light-cone quantization’ of QCD. In this approach, a hadron is characterized by a
set of Fock state wave functions, the probability amplitudes for finding different combi-
nations of bare quarks and gluons in the hadron at a given light-cone time 7 = t + z/c.
These wave functions provided the essential link between hadronic phenomena. at short dis-
tances(perturbative) and at long distances(non-perturbative) [13].

The distinguished features in the light-cone approach are the simplicity of the vacuum
except the zero modes and the dynamical property of rotation operators. The vacuum at
equal 7 haé dramatic difference compare to the vacuum at equal t. For the particle which has
the mass m and the four-momentum k = (%, k', k2, k%), the relativistic energy-momentum

relation at equal 7 is given by

- kz,’ + n’l2
where the light-cone energy conjugate to 7 is given by k= = £° — k* and the light-cone
momenta k* = £° + k* and k; = (k',k?) are orthogonal to ¥~ and form the light-cone
three-momentum k = (k*, k). The rational rclation given by Eq.(1) is drastically different

from the irrational energy-momentum relation at equal ¢ given by
= VkZ 4 m?, (1.2)

where the encrgy £° is conjugate to ¢ and the three-momentum vector k is given by k =
(k', k%, k*). The important point here is that signs of k* and &~ are correlated while at equal
t the signé of k° and k are not correlated. Thus the momentum k+ is always positive because
only the positive energy k= makes the system evolve to the [uture direction(i.e. positive
7), while the momentum k® can be either positive or negative even though k° is positive
to evolve the system in the future dircction(i.e. positive ¢). This provides a remarkable
feature to the light-cone vacuum, namely , the Fock state vacuum is an eigenstate of the full
Hamiltonian. Consequently, all bare quanta in an hadronic Fock state arc associated with

the hadron and none are disconnected clements of the vacuum [13).

Furthermore, the problem of boost operators at equal ¢ changing particle numbers can
be cured by this framework since the quantization surface 7 = 0 is invariant under both
longitudinal and transverse boosts defined at equal 7. However, the quantization surface 7
= 0 is not invariant under the transverse rotation whose direction is perpendicular to the
direction of the quantization axis z at equal 7 [14]. Thus, the transverse angular momentum
operator involves the interaction that changes the particle number and it is not easy to
specify the total angular momentum of a particular hadronic state. Also 7 is not invariant
under parity {15]. We circumvent these problems by using the Melosh transformation of
each constituents from equal ¢ to equal 7.

The key approximation in the light-cone approach is the mock-hadron approximation
[16] to saturate the Fock state expansion by the constituent quark and anti-quark and treat
the saturated constituent Fock state as a free state as far as the spin-orbit part is concerned
while the radial part is given by the ground state of the harmonic oscillator wavefunction.
Then, the assignment of the quantum numbers such as angular momentum, parity and
charge conjugation to the light-cone wavefunctions is given by the Melosh transformation

[17]. For example, the meson state |M > is represented by
M >= ¥84510Q >, (13)

where @ and @ are the effective dressed quark and antiquark. The model wavcfunction is

then given by [7,8]
VU5 = Uz ki N) = Om(zi ko) xar(zi kui, A) (1.4)

where the radial wavefunction is given by

2 k2.4 m?
@M(Ii,k“) = ACXP[—Z "k'l_'; = /8ﬂ2] [} (15)
=1

i
and the spin-orbit wavefunction xa(zi, ki, A;) is obtained by the interaction indepen-
dent Melosh transformation from the ordinary equal-time static spin-orbit wavefunction
assigned by the quantum numbers JFC. These wavefunctions are represented by the Lorentz-
invariant variables z; = pf/P*, ky; = p1i — 2Py, and X, where P* = (P, P ,P)) =
(P°+ P3,(m3, + P, %)/ P*,P,) is the momentum of the meson M, and p* and ); are the mo-
mentum and the helicity of constituent quarks, respectively. Then, the light-cone spin-orbit

wavelunction corresponding to the specific quantum number JFC

is given by
xm(®i ki, M) = @y, Tamuvn, (1.6)
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where the operators I'p,, are given by [8]

JPC =074, = (myt Phrs, a7
17750, = m, f(p) + [—i—)-;("—)] (1.8)
14500 = (mat P)[E g 4 L2 H) o, (19)

Here the space components () of the polarization four-vectors €(u) in the rest frame have
the components &) = F(1, +i,0)}/v?2, &0) = (0,0, 1).

Using this model wavefunction Eq.(1.4), we have calculated various static properties
of =, K,p, and A; mesons {7,8]. Since our model provided a remarkably good description
of static properties for the pion and K-mesons and reproduced the basic features of the
lattice QCD and the QCD sum-rule results for x, K, p, and A, mesons {7.8], it is of our
interest to investigate more observables with the same model. In this paper, we present a
comprehensive study of the radiative decays of pseudoscalar(x, K,7,7'), vector(p, K*,w, ¢)
and axial vector(A;) mesons.

Both in the past works and the present work, we use the spin averaged mass as argued
by Dziembowski [9,10]. Before we perform the Melosh transformation, we assume that
the starting ground state mesons are described by the harmonic oscillator wavefunctions.
These equal t wavefunctions are known to give a reasonable first approximation of the static
propertics [18]. Since these starling wavefunctions prior to the Melosh transformation are
valid in a scheme without short-range hyperfine interactions, it is reasonable to assume the
spin averaged mass [9]. The spin averaged masses of 7, K, p, and A, mesons are given by
[7,8] ms = m, = 0.612 GeV, mx = mg. = 0.793 GeV and myu, = 1.120 GeV. Since we
consider now 7,7’,w and ¢ mesons also in this work, we present the dctails of how we obtain
the spin averaged values of 5,7’,w and ¢ mesons in the Appendix A. The flavor assignment

of 7 and ' mesons in the quark and anliquark basis arc as follows:

(uit + dJ) B
n= X"‘_\/_i—— - Y,,s.s, (110)
, (ut +dd R
7= ",(——\/5—24-)’,,,33, (1.11)
where X, = Yy = —sinfp; and ¥, = X,y = cosOp, with 0p; = Osu(3) — Oideat = Osu(s) —
35°. Of particular interest are the values of mixing angle Osy(3) = —10°(so called “perfect

mixing”) [19,20] and —23° that are used in our analysis. The spin averaged masses of n and
8 y P £

1’ for cach scheme are given in Table I. For w and ¢ mesons, we use the scheme of ideal

4

mixing [21] and obtain the spin averaged masses m,, = 928 MeV and my = 799 McV. Once
the spin averaged masses are fixed, then besides the well-known constituent quark masses
of (u,d,s) quarks,i.e. m, = my =330 MeV and m, = 450 MeV, the only papameter in this
model is the gaussian parameter 8 which determines the broadness( or sharpness) of radial
wavefunction. We will present our numerical results for a typical 8 value of 8 = 360 McV
throughout the paper, unless stated otherwise. The predictions for other values of B are
summarized in Table II.

In the following section, Sec.Il, we calculate the form factors, charge radii, magnetic and
quadrupolc moments of the p and A; mesons and compare with the results of QCD sum
rules [22]. In Sec.Ill, the transition form factors and the decay widths of the transitions
V = Psy", Ps » Vy* (V = p,K*,w,¢ and Ps = 7, K,9,7') and A} — %" are presented
including the comparison with other theoretical results as well as the experimental data. In
Sec.1V, we present the calculation of the transition form factors of the 7® — TYn =7y
and n’ — 4*y transitions and compare our results with the recent experimental data [23-25).
Summary and discussions of our major results are followed in Sec.V. In the Appendix A,
the details of how we obtain the spin averaged masses of 7,7’,w and ¢ are presented. In the
Appendix B, we present the derivation of the formula used for the electromagnetic decay
widths.

II. THE FORM FACTORS OF THE p AND A1 MESONS

A. The p meson form factors.

Our analysis will be carried out using the standard light-cone frame(LCF)(¢* = ¢° + ¢%)
[26):

M?
P=(rPt, P ,P))= (P+’F'°*)’
Q?
9= (q+1 7,q.) = (0, F)ql)» (1)

where M is the meson mass and the photon momentum is transverse to the direction of the
incident spin-one system, with ¢2 = Q? = —¢%.

The Lorentz invariant clectromagnetic form factors Fi(i = 1,2, 3) for a spin 1 particle are
defined [27] by the matrix elements of the current operator J* between the initial |P, A >

and the final |P’, )’ > eigenstate of momentum P and helicity A as follows:
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<PXIHPA > = c:,'m[ ~ g (P + PYR(QY) + (89" - g ") F(Q*)
+9°P(P + P R(QY)/(2M?)| , (2.2)

where ¢ = P’ — P and the polarization vectors of the initial and final mesons ¢ = €\ and

€' = €y, respectively, are defined by

2 2
€0) = 37 (PH 30, ) =, 2L o)
(1) = %(0,0,I,ii), d(41) = %(o, 2}‘,‘—:, 1, +i). 2.3)

Also, the Lorentz invariant form factors Fi(Q?) are related to the charge, magnetic and

quadrupole form factors of a meson [27] as follows:

Fo=F+ %KFQ,

Fu= F,
Fo=Fi—F+(1+n)p, (2.4)

where & = Q?/4M? is a kincmatic factor. At zcro momentum transfer,Lhese form factors are
proportional to the usual static quantities of charge ¢, magnetic inoment 11, and quadrupole

moment @y:
Fo(0) =1, eFm(0)=2Mp,, cFg(0) = M?Q,. (2.5)

In the light-cone quark model, the matrix element can be calculated by the convolution of

initial and final light-cone wavefunctions of a meson:

1 &k
<P N|IJPA > = e,/o d:c/ o ¥m(@, ko + (1 - 2)a.)u(z, ko)
x fo\‘v,\;(z,kl +(1 ~ 2)q )" xa,0, (2, k1) + e2(1 & 2 of the first term), (2.6)
AN

where the spin covariant functions x(.t ky) are given by Eqs.(1.7)-(1.9) and the vertex I'*
is obtained from the expression ¢ ,+), 7Y T:()%)ﬁ [28].

The relationship in Fq.(2.2) between the covariant form factors and current matrix cle-
ments can be applied {29,30], in principle, to any choice of Lorentz frame. As discussed by
Brodsky and Hiller [31], in the standard LCF [26], ¢* = 0, ¢, = 0, ¢, = Q, the three form

factors can be obtained from the ‘4'-component of three helicity matrix elements:

i 16 Ff, 2x-3 2
—_ A 35 ] ) -1F+],
Fe= 2P+(2n+l){3 Vox T3 fwtge-DFL
- Fi + +]
F""2P+(2n+1)[(2'c Do + P = Fif s
1 F k41
= —— . F+] 2.7
Fa 2P+(26 +1) \/2_,; o @7)

where we defined < P, N|J#|P, A >= F7},,. After a tedious but straightforward calculation,

we find the following expressions for the helicity form factors of the p meson:

1 dr &+ ml + z(ml - m?)
= ./o z(1 —z) expl- :c(l - I)? “] .
x [21:2(1 —z)* + (1 - z)(a} + a3) + (a102)? — (a2 + @2 — da1a,)E% + f‘] R (2.8)
2452 4 2 a2
Flu= 23’3 [ Fenl- S M0 e~ <1 - 2], (9)
_ 2y 2 22 _ z2
Ft o= 4ﬂ7 / a z) ayazexp|— s m;z; i(’:)’ m,)]’ (2.10)
where
g e m

16/52 y M= 2ﬂ1
(zm, + mi) (1 — z)m, + my)
ay = y G2= ’
28 28
and my,m, are the constituent masses of the quark and anti-quark. The normalization
constant N, = (%ﬁi)’ is fixed by the definition of charge, Fc(0) = 1. For the systems

of spin 1 or greatcr, in addition to the parity and time-reversal invariance of the current

(2.11)

operator J*(0) [27,31], an additional constraint on the current operator comes from the
rotational covariance requirement [29,32,33]. The angular condition for the spin 1 system is

given by {32-34):
AQY) = (1 +2))F}, + F}_ ~ VBxF}y— Ff=0. (2.12)

As a matter of fact, the expressions of right-hand side in Eq.(2.7) are thus not unique
because of the angular condition in Eq.(2.12). As pointed out by Refs. [33,34], unless
the exact Poincaré covariant current operator beyond one-body sector is used, the angular
condition is in general violated(i.e., A(Q?) # 0) and the calculation of the form factors F;
is dependent on the expressions of the r.h.s. of Eq.(2.7). Examples of diflcrent choices of

current combinations can be found in Ref. [34] for the calculation of p meson form factors.
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As shown in Fig.1(a), our result obtained for A(Q?) is comparable with other choices given
in Ref. [34].

The magnetic(in unit of ¢/2M) and quadrupole moments(in unit of ¢/M?) of the p meson
are obtained by Eq.(2.5);

m=21, Q =041 (2.13)

These values are not much different from the values of other model predictions presented
in Ref. [34](p1 = 2.26, Q1 = 0.37) and Ref. [35](sy = 2.3, Q) = 0.45). We also calculated
the electromagnetic radii associated with the form factors, F%, Ff; and Fgas <1} >=
14 GeV? <1}, >=22 GeV~? and < rhe >= —5 GeV™?, respectively. The results of
Fe(Q%), Fm(Q?) and Fo(Q?) for 0 < Q* <5 GeV? are shown in Fig.1(b). To see the cflect
of the Melosh transformation(the measure of relativistic effects), we calculated the charge
form factor by turning the Melosh rotations off and included the result in Fig.1(b). The
charge radius from this nonrelativistic form fator is < r2 >non-rel= 10.6 GeV~? which is
about 30% smaller than that of relativistic charge radius. In Fig.1{c), we also compared
our results with the previous calculations of these form factors which were made in the

framework of QCD sum rules by Ioffe and Smilga [22] .

B. The Al meson form factors.

The electromagnetic form factors of the A1 meson are defined by Eq.(2.2) as in the case
of the p meson. Using the similar method taken in the p meson case, we find the following

helicitiy component of the Al form factors analogous to Eqs.(2.8)-(2.10);

1 de £ + ? + (i ~ i)
+ _ i 2 a3 _ .13 201 _ )2
F}= NM/O = _z)exp[ (-2 ,[61 (1 —2z)* +22%(1 - 2)

[ af + a3 — €1+ 2(1 - 2)[(0105)" + £'] - E[(@102)* — (a? + a3 + 4aya,)62 + f‘]] , (2.14)

Q ldz £ 4+ m} + (il — m?)
+ oo X = 2 (as —
Fh= ZﬂNM LS exp[— (1= 2) |(az — ay

+2(l - 2)4 - ) + € - masf’] (2.15)

)[2;2(1 — 2y

'The definition of the form factors(G;) by QCD sum-rule {22] and the definition in this paper are

related as follows: Gy = Fi, G3 = F, — Fy and G3 = F/2

8

P = G [ 0=y LS

As one can sec in ! lg.?(a), the behavior of each form factor looks similar to the p meson case.

~a)z(1-2)+ €. (216)

In Fig.2(a), we also included JA(Q?)] for A,. The amount of deviation from the rotational
covariance is almost same as that of the p meson case.

The clectromagnetic radii associated with F4*, F&' and Fé" are obtained as < r},, >=
10 GeV™?, < r,’:" >=20 GeV~? and < r}q >=—~10 GeV~?, respectively. The magnetic

and quadrupole moments of the A; meson are also obtained as

m =216, Q=134 (217

While the magnetic moment of A; does not differ from that of the p meson, the quadrupole
moment of A, is about 4 times greater than that of the p meson in accordance with the fact
that the A, meson is a bound state with nonzero orbital angular momentum { = 1 [35). In

Fig.2(b), we compare our results with those of QCD sum rules {22].

II. THE TRANSITION FORM FACTORS OF V — Psy*, # — p(w)y", AND
A oyt
The transition form factors of A — By* (A, B) = (P, 7), (p,0), (w, ®), (w, ), (K*, K),
(', p), (0", w), ($,1),($,7')) and Ay — 79" are defined by
< B(P)J#|A(P,X) > = eGap(Q*)e*Pe,(P,\)P.P;, (3.1)
<a(PIIAPN) > = i[(? 98" - P*")G:(@)

o P - PG (B, 62)

my
where ¢(P,A) denotes the polarization vector of the initial particles and P = P + P, As
shown in the Appendix B, the width of the decay A — B~ is given by

s iCasor (e by

where a is the fine structure constant, Sy is the spin of the initial particle and Myp) is the

(A > By) = (3.3)

mass? of the meson A(B). In the case of A, — 77 transition, the decay width is expressed

*This must be the physical mass rather than the spin-averaged mass because the phase factor

is nothing to do with the model. Spin-averaged masses are used only for the calculation of form
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in terms of G1(0)(see Appendix B);

da Gy(0) , M3, — M?

r
(4= m7) =TI P re .

(3.4)

Carrying out again a tedius but straightforward calculation, we find the following expressions
for the form [actors G,»(@?) and G, (Q?):

GP‘K(Qz) = (e- + ed)ll(mM’mqyﬂ),
GW(Q’) = (eu - ed)Il(mMymw ﬂ)v (35)

1. - I
hmag, g, B) = . /NMN /“iiexp £+mi(+‘z_(1:)§ m?)]

x [af + o+ of +aflle(t — 2) ~ €]+ aiaifa] + o)

where

+ afal(a} + )], (36)

and o' = (zmu,, + mg)/28 with i and f meaning incident and outgoing mesons. The
normalization constants of the p and x-mesons are given by N, = N,/2 = 2(&%;3—-)2.
We obtained the following prediction of decay widths of the p*(770) — =ty and

w(782) — x transitions;

I'(p* — 7ty) =69 keV (T4, =68£8 keV),
Pw—79) =708 keV (I'S%,, =717 451 keV). 3.7)

Our results for the decay widths I',, and T, are in a very good agreement with the exper-
imental data. The electromagnetic radii of these form factors are obtained as < g, >=
7 GeV~? and < rg;" >= 20 GeV~? respectively. In Fig.3(a), we present the transition
form factor of p — 74" for 0 < Q? < 8 GeV? and compare with other model predictions of
Rels. [34,36]. In Fig.3(b), our prediction(solid line) of w — 74* transition form factor in the
space like region is compared with the VDM(dashed line) with F,, = 1/(1 + Q*/M?) and
the pole fit(dotted line) of the experimental data in the time-like region [38,39).

Similarly, we calculated all other radiative decay processes between vector (1=7) and

pscudoscalar mesons(0~+) using the one loop integral formula I,(mps,m,,d) given by

factors.
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Eq.(3.6). We needed to change only the spin-averaged meson masses mp and constituent
quark masses m;(i = 1,2), accordingly. Thus, for the p = 77* and w ~ 77° decays, we

obtain the following transition form factors

GM(Qz) = Xn(eu - ed)ll(mM, mg, ﬂ)y
Gun(Q?) = Xy(eu + ea) I (mp, my, B). . (3.8)

Using the two different mixing schemes, i.e., Osu(z) = —10° and —23°, we obtain the decay
widths of the transitions p — 5y and w — 5y as T;!% = 56 keV, r;!% = 6.4 keV and
P2 =65 keV, ;2 = 7.4 keV, respectively. Both schemes are in excellent agreement
with the cxperimental data of [22, = 58 4 10 keV and rge., = 7.0+ 1.8 keV. The
clectromagnetic charge radii of p — 77 transition are also predicted as < r'é;” >= 16
GeV~? for —10° and 18 GeV~? for —23° mixing angle. The charge radii for w — nv*
transition are < réw, >=5 GeV~? for —10° and 6 GeV~? for —23°, respectively.

The form factors of the o' — py" and n’ — wy* are given by

Gﬂ'ﬂ(Q’) = Xy(ew — ea) 1 (mpy,my, B),

G"'U(Qz) = -\’,,‘(8., + ed)]l(mMy my, ﬂ). (3.9)

Our predictions of the decay widths are given by I‘;'_ﬂ’:,y = 117 keV, I‘;'_(‘);_y = 9.7 keV and
—23° ~23° ex

r, ‘_‘fm = 72 keV, I';Z,,, = 6.0 keV. The experimental data of IF,, = 6148 keV and

ISP, = 5.9 +£0.9 keV. It is interesting to note that in case of transitions involving ',

the result of —23° mixing scheme is much better than that of —10° mixing scheme. The
electromagnetic charge radii for —23° mixing angle are predicted as < rén,P >= 12 GeV™?
and < réq,u >= 4 GeV~?, respectively.

The transitions of the K** — K*4* and K® — K°y* in which the constituent quarks
have uncqual masses are also interesting processes to test our model predictions. As shown
in our previous works [7], the predictions for the kaon charge radius < % >/2 the kaon
form factor Fk, and the decay constant fi are consistent with available experimental data.

The transition form factors of the charged and netural K* decays are given by
Gresx2(Q%) = *(eu + €)1 (mp, mg, B),
Grogo(Q® = (ea + €,)(mpr,my, B). (3.10)

Using the spin averaged masses of mg.: = 792.1 MeV and mg. = 796.5 MeV and the

constituent quark mass m, = 0.45 GeV [7], we obtain the decay widths for these charged
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and neutral vector kaon decay processes as gt xt,= 53 keV, Freo_go,= 122 keV, re-
spectively. The experimental data are TP ge,= 50 £ 5 keV, FR% ko= 11T £ 10 keV.
The electromagnetic transition charge radii are predicted as < 10’\_.*",* =11 GeV~? and
< r?,-x.oh_o >= 16 GeV~>. In Fig.4, we reported Q?-dependence of transition form fac-
tor of charged and ncutral vector kaon,i.c., Gyt k+(Q?) and Ggwox0(Q?), respectively, for
0 < @* < 10 GeV2. Even though we showed the result of B = 0.36 GeV only, we note that
our results become much closer to those of Bethe-Salpeter(BS) quark model prediction [39]
with smaller values of ,i.c., 8 ~ 0.3 GeV.

For the decay processes of ¢ — n(y')y*, the transition form factors of ¢ — ny* and

¢ — ’y" arc given by

Gea(Q7) = Ya2e,i(mag, my, B)

Gon(Q%) = Yy2e,li(mp, my, B). @3.11)
As shown in the Appendix A, we obtain the spin averaged mass of ¢-meson as mg = .799
GeV. Our predictions of the decay widths of the transitions ¢ — 7y and ¢ — 7'y with
Osuz) = —10° and —23° are given by ;15 = 61 keV, ;2. = 0.28 keV and [;%% = 45
keV, 3%, = 0.45 keV, respectively. The current experimental data are I7,, | =56.9+2.9
keV and T3, < 1.8 keV. It will be very interesting to compare our results, especially for
¢ — 1'y, with the more precise measurements envisioned at TINAF. The electromagnetic
charge radii for —10° mixing angle are also predicted as < r&,, >=5GeV 2 and < r?;", >=
5.5 GeV~2.

In the case of transition A, — #x+*, the kinematical factors in [ront of the form factor
Gy in Eq.(3.2) yields zero for a certain q} in the standard Drell-Yan frame(P, = 0,¢* = 0)
as discussed in Ref. {35]. This leads to a technical difficulty in extracting the form factors
numerically from Eq.(3.2). Thus, as pointed out in Ref. [35}, we use the following symmetric

coordinate frame for the calculation of of A; — xv* transition form factors;

my + 1 m? + 1q? |
p(pr Tt o) e it
m? — m?
9= (0, — 52, qu). (3.12)
Then, we find the following expressions for the Al form factors:
2y _ + 4 -my +Q? )C+] 13
6@ = gy a6t + \,mm 5l (3.13)
2m4 (m —ml )

2\ _ Ay s Ay e 14
Gl@) = o |G~ e ] (3.11)
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where G} =< x(P')|J#|A(P,A) > and its matrix elements are given by

Na N, 1d 2 4 =2 52 _ 2 ) )
6t = %\/—" A —’exp{—‘ PPN of ) ad — ale(1 - 7) + €7, (319
£ +ml + a(ml — m?)
,/zNA, / el TR (3.16)

z NA: l dz 62 +1h + “("’2
o 7zt z(l -z)
with a common facfor Go in the longitudinal component of G:

LI

Go = 22%(1 - 2)*{(af + af) — (o} + a)] + 2(1 — 2){afal(a} +a})  aiai(a! + af)]
— &'[(a1 + a3) + (af + a))) + [alai(a] + af) + ala(a} + a})]. (3.18)
In Fig.5, we show the result of A, transition form factors, G1(Q?)(solid line) and
G2(Q?)(dashed line). While the form factor G3(Q?) agrees with the predictions of the QCD
sum-rules(dot-dashed line) {22] in the region 1 < Q? < 3 GeV?, the form factor Gi(@Y)
seems to be quite different from the QCD sum-rule result(dotted line) [22]. However, there
are other QCD sum rule calculations of Gy and G [40,41] and the results are rather different
from cach other. The authors of QCD sum-rules [22] also pointed out that their predictions
for the transition A; — x7* are of semiqualitative results. The electromagnetic radii cor-
responding to these form factors are evaluated as < % >=15GeV~? and < rd, >=~30
GeV 2, respectively.
The decay width of AF(1260) — x*7 is obtained from Eq.(3.4) as

(A = 77) = 705 keV. (3.19)
The prediction of VDM [42,43] is given by T'Y2M - 1000 — 1500 keV and the experimental

Ay—oxy
value has been reported [14,45]) as [(A} — xty) = 640 £ 246 keV using the measurment
of Primakoff production of the A, resonance. Thus, our predicted width is quite consistent
with the corresponding experimental data. In Refs. [35,37], the same decay width was
calculated using the invariant mass of A, meson instead of the spin averaged mass. Their
results P(A} — x+y) = 319 keV {35] and 250 keV [37] scem to have rather large discrepancy

from the experimental data.

IV. THE FORM FACTORS OF - 7*y 5 — 1°y AND 5 — 1"y TRANSITIONS

The transition form factor of Ps — y*y(Ps = x% 7y, and 7') is defined from the matrix
n n

element of electromagnetic current [y =< (P + ¢)|J,|Ps(P) > as follows:
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Ty = 1€’Gper(Q%)epps P* €97, (4.1)

where P and q are the momenta of the incident pseudoscalar meson and virtual photon,
respectively, and ¢ is the polarization vector of the final (on-shell) photon.

The Q? dependent decay rate for Ps — 4" is given by?

Prgra( @) = 0 M3,Gh,(@%), (42)

where Mp, is the mass of Ps = 2% 7, and 5f'. Here, the decay width is given by T'p._.,, at
Q* = 0. If we choose the ‘+'-component of the current, the vertex factor in Eq.(4.1) is given
by

\/_EC Z/ ./16 s'ﬁPs(I.,kL)[v’\'(zz’k"') /ﬂx(zl’;:_l-i‘ )

u z,k +q u zyk 1
& l\/;—l L)’+ A(\/l_l l)q l(_u;)’mzl_x,um’ +( H2)]' (4.3)

Here, only anti-parallel helicities of constituents contribute to the integrations and our model

wave function tp (i, k1) for anti-parallel helicities is given by

Nps l“(ala;—kl ) kf-l-m’
'/)Ps(xnkl) 2ﬂ3 =) v exp(—sx(l eyl (4.4)
A straightforward calculation for the transition x° — 7"y gives the following result
Gry = V(4 — @) ha(mpm, mugay, B),
G = VA Xo(al + D) T, muy, B) = YaglV2hn(mpr, mo, B)),
Gpy = \/"_c[Xn'(q: + ‘I:)Ii(mMa My(d)» B+ le"ls ﬂl?(mMﬂnn ﬂ)]’ (4.5)
where
\/ Np; da: 4£% 4 m?
I(mp,my, ) = — / exp{— 2 )[21 -z) exp(m—_z—))
22, e 48 +m? ﬁz’ ]
x (ajaz + m? + 4¢ )/mdtexp( %2 =3) 1)/ (4.6)
Using Eqs.(4.2)-(4.6), the decay widths for Ps — y7 are obtained as
[(x° = v7) = 6.50 eV,
T(7 = 7) = 0.47[0.65] keV,
I'(n" — yv) = 7.9[5.6] keV, (4.7)
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where the values for § — vy and ' — ¥7 are obtained for the -10°[-23°] mixing scheme.
The experimental data [47] are given by [t = 7.8 £ 0.5 eV, TP = 0.47 £ 0.05 keV

and I';P =

= 4.3 £ 0.6 keV. The agreement of our results with the experimental data is not
unreasonable. In Figs.6-8, the Q? dependence of the decay rate I'p,.,(Q?) for Ps = x%,7,
and 7' are shown and compared with the recent expcrimental data [23-25]. Our predictions
for all of these processes are overall in a good agreement with the experimental data up to
a rather large Q2. In Table II, our predictions of the two photon decay widths for various 8

values are include.

V. SUMMARY AND DISCUSSION

In this paper, we have investigated the radiative decays of pseudoscalar(r, K,7,7'),
vector(p, K*,w, ¢) and axial vector(A,) mesons as well as the form factors of p and A,
mesons using a simple relativistic constituent quark model. The use of a spin averaged
hadron mass in the lightconc quark model has of course a wide literature [7-12]. The kine-
matical constraints following from the proper Poincaré-group invariance has been studied in
detail [10] and it is shown that our light-cone quark model wavefunctions given by Eq.(1.4)
are Lorentz invariant. Also, in our method, each constituent is individually Melosh trans-
formed and thus the orthogonality of the constructed meson wavefunctions is not spoiled
by the Melosh transformation. Since we started from the orthogonal wave functions of
pseudoscalar, vector and axial vector mesons, the constructed wavefunctions by the Melosh
transformation are clearly orthogonal.

We summarized all of our predictions on the meson decay widths for various values of 8
(4 = 0.32,0.31,0.36,0.38) GeV in Table II. Remarkably, most of our predictions with the
parameter  in this region are within the experimental errors. We have also investigated the
sensitivity of our results by varying quark masses. For £10% variation of the nonstrange
quark masses, the decay width I' and the transition charge radius < r? >/2 of the radiative
meson decays change by 3-4% and 2-4%, respectively. Changing strange quark mass by
+10% for the process of K** — K*+ yiclds 13-15% and 3-4% difference in the decay width
and the transition charge radius, respectively.

Overall, our numerical results for all the meson radiative decays thal we investigated in
this model are remarkably in a good agreement with the experimental data. In our point

of view, the success of this model hinges upon the simplicity of the light-cone vacuum. The



recent lattice QCD results [48] indicate that the mass difference between n’ and pseudoscalar
octet mesons due to the complicated nontrivial vacuum eflect increases(or decreases) as the
quark mass m, decreases(or increases),i.e., the effect of the topological charge contribution
should be small as m, increases. This makes us to belicve that the complicated nontrivial
vacuum eflect can be traded off by the constituent quark masscs. This may mean that there
is a suppression of complicate zero mode contribution [49] from the light-cone vacuum in
our model due to rather large constituent quark masses.

Our approach in this work was obviously to model the wavefuction rather than to model
the potential. However, we have attempted to compare our results with various other avail-
able theoretical results [32-43] including the potential models and the QCD sum rules. At
the very least, our results scem to be quite comparable with the results from modelling the
potential. The results on the angular condition are also not drastically different from the
result of the potential models (See Fig.1(a)). Furthermore, the agreement with the QCD
sum rule results is not unreasonable. Therefore, the light-conc quark model presented here
should be distinguished from the so called naive quark model. Our model has a predictive
power and more experimentally measurable quantities should be calculated and compared
with data. A particularly interesting prediction from our model is the branching ratio of
¢ —+ n'y estimated as 10~* for the 5 — 5’ mixing angle of -23°. For the mixing angle -10°, the
estimation for this branching ratio is reduced by 60% from that of -23°. Thus, it will be very

interesting to comparc our results with the precise measurements envisioned at TINAF.
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APPENDIX A: SPIN AVERAGED MESON MASSES OF 7,7,w AND ¢

Here, let’s first list our flavor wave functions of the neutral pscudoscalar (n,7') and vector
(w, ¢) nonet states to show explicitly how we obtained the values of spin averaged mass used
in this paper;

1

n= —G(ut‘4+dd_—2s§), (A1)

W= Lg(ua +dd + s3), (A2)
|

w= 7§(uu + dd), (A3)

¢ = s3. (A4)

For ideally mixed isocalar and isovector mesons, we take the flavor wave function as
1 -
PsV) = —(ui + dd
n ﬁ( + )7
XV = 3, (A5)

where Ps(V) denotes pseudoscalar(vector) meson states. In terms of this basis, the neutral

mcson nonet states are given by

2 1 2 1
h = \/;Xff + \/;st, w = ‘/;w + \/;¢v
- l Ps _2. Ps = l 2
s = \/; ns \/;X. s Wy = 3‘4 I 3¢ (A6)

where g =ns, " =, w=xY, and ¢ = xY. We define the spin averaged masses M of x,,

and x, as [ollows;

., = l Ps § v
MM - 4Mm + 4Mnn
M, = iM,”s + %M,V . (A7)

Using Eqs.(A3),(A4),(A5) and (A6), we assign
1 2
exp _ _paPs | “aqPs
M = 3MM +3Nf' .

ex; 2 P, 1 P
Al'l'p = EMMS + §M; 7,

M = M,
M = MY, (A8)
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Then, we obtain the following spin averaged masses of 5 and 7';

_ 1
M, = §M s+ 5M = 842MeV, (A9)
My = ;n + %M = 885MeV. (A10)
Likewise, from Eq.(A6), we obtain
_ 2 _ 1
Mw, = §Mw + §M¢, (All)
_ 1 - 2 _
M, = §M” + §M¢. (A12)

Using M, = M., and M,, = M,,, we can then evaluate the spin averaged masses of w and
¢ as M, = 928 McV and M, = 799 MeV, respectively.

To calculate the spin averaged meson masses depending on the schemes of flavor mixing,
let’s consider the “perfect mixing” (fsy(s) = —10°) 7 and 5’ states defined by (19,20},

- 1

7= \/-(x... -x*), 1=K+ xP). (A13)

SI

2
Using Eqs.(A13) and Eq.(A6), we obtain

V2= 1+\/§+1~,
h = \/6 n \/6 ’
_14VZL 12
=it e (Al4)

Thus, the spin averaged masses m of the §j and 7’ in “perfect mixing” scheme are related to

M, and M, calculated in our scheme (see Eqgs.(A9) and (A10)),respectively, as follows;

M,=(f‘1)2 (\/'+1)‘
6
M, = (‘/—+1)2...,, (\/56—1)2'_",;’. (A15)

From Eq.(A15), the spin averaged masses for the “perfect mixing” states are given by mj; =
843 MeV and m; = 884 MeV, respectively. Using the same method in the above, for
the fsy(s) = —23° mixing scheme, we obtain the following spin averaged meson masses:
n, = 838 MeV and m,y = 873 MeV, respcctively.

APPENDIX B: THE ELECTROMAGNETIC DECAY WIDTH I'(A — B + v)

In this appendix, we derive the decay widths of A —» B +9 (A = p,K*,w, 4, and
B==,K,p,n')and Ay = 7+ 1.

Consider the electromagnetic decay process A — B 4+. If the masses of A and B mesons
are given by my and mp, respectively, then the decay rate I'(A — B + 4) in the rest frame
of Ais given by (h =c=1);

&ps &p,

[A—B+y)= (21)6%/ 2Ep 2E,

IMI*(27)*6*(p5 + p4)b(ma — Es — E,), (B1)

where S = 1/;! for cach group of j identical particles in the final states. Here, M is the

transition matrix element defined by
M =€, (Ay) < B(P)I¥A(P, ) > . (B2)
To allow decays to all possible spin conﬁgurations, we consider the replacement

MP =TT = ety T (B3)

where S, is the spin of particle A and A, corresponds to the state of transverse polarization
of the emitted photon. The above replacement means the average over the initial spin and

the sum over the helicities of the emitted photon. Then, from Eq.(B1), we get

8(ma — Jm ¥ ph ~
[(A— B+C)= L_l_/ Ipsdipsjdn AV ™8 + Pb ~ Ipsl)
2(47)Pmp 254 + 1 |PB!\/m§;+p%

x 37 IMP. (B4)
Ayutt
Il we let |pp| = p and E = \/m} + p? + p, then
S 1 p
¥ — [TaE - 2 B5
P B ) = G 28 31 Jmy “E B4 E)AE, WMJ (B%)
Therefore, we get
S 2
where
S=1 if B#y«y
S=l il B=+. (B7)

Here, po is the value of p when E = my, i.e., pp = (m% — m%)/2m4. In the rest frame of
Ajie, Py = (mA,ﬁ) ,Pp = (mp,ps) and P, = (|psl, —pn), the invariant amplitude square

is given by
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X M= Y 1eGan(@)e P€ (M )en( P, A) PoPof?

Ay=21 Ay= 1

= €’|Gan(Q) P2 P P, Py|?
= ¢’|Gan(Q%)*2m%p}
2 _ 22
- (m% 2mB) |G as(QY)[1. (B8)

Therefore, we get the following decay width I'(A — B + )

(A—-B+19)= IGAB(O)Iz(m—A,;Eﬁ)" (B9)

23 +1
where a(= e?/4r) is the fine structure constant.
The decay width of A; — 77 can be calculated in the same manner using our definition
of the transition matrix element given by Eq.(3.2) as follows;
Y M =le(h) <x(P)J4|A(PA) > P
Av=tl

- 21e9M|p.|(mA. s+ [Pl
= 2e & ‘Q A b emaper, (B10)
and the result is given by
s = r) = IS 0p ey (1)
20
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FIGURES

Fig.1(a). A(Q?) testing the angular condition is shown as a function of Q. The solid lines
are our results with 8 = 0.32 and 0.36 GeV. For comparison, we include various choices of the
wave function w? introduced by Godfrey and Isgur(GI) in Ref. [34]. The dashed, dotted and
dashed-dotted lines correspond to w,i(spin-independent part), wqar(OGE + linear confining

term) and weong(linear confinging term), respectively.

Fig.1(b). The form factors of p meson with parameter 8 = 0.36 GeV. The solid, dotted,
and dashed lines correspond to F(Q?),Fa(Q?) and Fg(Q?), respectively. The dashed-
dotted line is the result of non-relativistic limit of F(Q?) by turning off the Melosh trans-

formation.

Fig.1(c). The form factors, G, = F}, G; = F, — F, and G; = F3/2, of p meson are
compared with the results of QCD sum rules [22]. The dotted, dashed and dashed-dotted
lines correspond to Gy, Ga, and Gj of Ref. [22]

Fig.2(a). The form factors of A; meson with the parameter 8 = 0.36 GeV. The solid,
dotted, and dashed lines correspond to F, Fiy, and Fy, respectively. The quantity IA(QY)]

is shown as dashed-dotted line.

Fig.2(b). The form factors, Gy = Fy, G, = F; — F, and G = F3/2, of A, meson are
compared with the result of QCD sum rules [22]. The solid, dotted, and dashed lines are our
predictions of Gy, G3/2, and G, respectively. The QCD sum-rule results are G1(Q%)(long
dashed line) and G2(Q?)/2(dashed-dotted line).

Fig.3(a). The transition form factor of p* — x*4* multiplied by Q* is shown as a
function of @Q*. The solid lines are our results with # = 0.32 and 0.36 GeV. The dotted line,
dashed, and dashed-dotted lines correspond to the results obtained using wgy in Ref. [34],
the BS approach of Ref. [36] and the predictions of VDM model with G, = 1/(1+ QM2

Fig.3(b). The normalized transition form factor of w — 7y*. Our result with 8 = 0.36
GeV(solid line) is compared with VDM with G.,, = 1/(1 + Q*/M?) and the pole fit of the
experimental data(dotted line) [38].
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Fig.4. The normalized form factors of K*+ -+ K**(solid line) and K°® — K%*(dotted
line) transitions with the parameter 8 = 0.36 GeV. The dotted and dashed lines correspond
to charged and nentral vector kaon transition form factors by Ref. [39]. The dashed-dotted

line correspouds to the VDM prediction.

Fig.5. The form factors of A} — x+y* transition with the parameter 8 =036 GeV.
G1(Q%) and G2(Q?)/10 of our results arc represented by the solid and dashed lines, re-
spectively.For comparison, we show also the QCD sum-rule results: Gy (Q?)(dotted-line) and
G2(Q?)/10(dotted-dashed line).

Fig.6. The decay rate for #° — ~*y transition with the parameter 8 = 0.36 GeV. Data
arc taken from Ref. [23,24].

Fig.7. The decay rate for n — *+ transition with the parameter 8 = 0.36 GeV. The solid
and dotted lincs correspond to the Osu(3) = —10° and —23° mixing schemes, respectively.
Data are taken from Ref. [23-25].

Fig.8. The dccay rate for p — y*y transition with the parameter B = 0.36 GeV. The solid
and dotted lines correspond to the Osu(3) = —10° and —23° mixing schemes, respectively.
Data are taken from Ref. [23-25].
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TABLES

TABLE L. Three different mixing schemes for 7 and %’ and the corresponding spin averaged

masses.

Osu(3) ” Y, Xy Yy, my[MeV] m,[MeV]
0° NAVE V273 V273 Vi/3 842 885

-10° ViJ2 V12 VIJ2 ViJ2 843 884

-23° 0.85 0.53 0.53 0.85 834 873
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TABLE I1. Decay widths for V — Psy, Ps — Vv, Ay — x7y and Pg — 2y with Ps = =, K, 9,7’

and V = p, K*,w, ¢ for various model parameters 8

B[GeV] 0.32 0.34 0.36 0.38 ST*  Experiment?
(pt — 11y) 78 73 69 64 60 + B[keV]©
Nw — 77) 775 742 708 674 717 £ 51
I(K** - K*yq) 60 57 53 50 50+ 5
P(K*0 — K%) 134 128 122 116 117+ 10
I(p — ny)d 66{77] 60[70] 56(65] 51[60] 40 58+10
w — 1) 74[85)  69(7.9]  64[7.4]  6.0[6.8] 4.6 7.0418
oy = p1) 137[89} 126{80) 117[72] 108[66) 144 6148
Iy - wy) 11.27.3]  10.4[66]  9.7[6.0) 9.1(56] 120 59409
(¢ — 1) 54[40} 58[42] 61[45] 65[47] 71 569429
(¢ — 1) 0.26[0.43]  0.27(0.44]  0.280.45] 0.20(0.46] 023 <18
I'(A; = xv) 620 664 705 742 640 + 246 14445
I'(x° — 2y) 7.58 7.06 6.50 591 7.84 0.5[eV]
Iy — 2y) 0.61(0.78]  0.53(0.71]  0.47[0.65]  0.42(0.58) 0.44  0.47 £ 0.05
Iy — 27) . 8865  83[61]  7.9[5.6) 7351 90 43+06

2 ST = standard mixing(fsy(s) = 0°) for = 0.36 GeV.

* From Ref. [47], unless otherwise noted.

¢ The unit of decay width is [keV], unless otherwise noted.

¢ The values are the result from Osu(3) = —10°[~23°] mixing scheme.
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